forked from sureshmangs/Code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path78. Subsets.cpp
97 lines (61 loc) · 1.58 KB
/
78. Subsets.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
Given a set of distinct integers, nums, return all possible subsets (the power set).
Note: The solution set must not contain duplicate subsets.
Example:
Input: nums = [1,2,3]
Output:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
// Backtracking
// TC: n * 2^n
class Solution {
public:
void solve(int start, int size, vector <int> &nums, vector<int> &cur, vector<vector<int>> &res) {
if (cur.size() == size) {
res.push_back(cur);
return;
}
for (int i = start; i < nums.size(); i++) {
cur.push_back(nums[i]);
solve(i + 1, size, nums, cur, res);
cur.pop_back(); // backtrack
}
}
vector<vector<int>> subsets(vector<int>& nums) {
vector<vector<int>> res;
vector <int> cur;
int n = nums.size();
for (int k = 0; k <= n; k++) {
solve(0, k, nums, cur, res);
}
return res;
}
};
// Backtracking
class Solution {
public:
void subset(vector<int> nums, int i, vector<vector<int> > &res, vector<int> &curr){
if(i==nums.size()){
res.push_back(curr);
return;
}
curr.push_back(nums[i]);
subset(nums, i+1, res, curr);
curr.erase(curr.end()-1);
subset(nums, i+1, res, curr);
}
vector<vector<int>> subsets(vector<int>& nums) {
vector<vector<int> > res;
vector<int> curr;
subset(nums, 0, res, curr);
return res;
}
};
// also can be done using bitmasking