forked from sureshmangs/Code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path914. X of a Kind in a Deck of Cards.cpp
71 lines (46 loc) · 1.32 KB
/
914. X of a Kind in a Deck of Cards.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
In a deck of cards, each card has an integer written on it.
Return true if and only if you can choose X >= 2 such that it is possible to split the entire deck into 1 or more groups of cards, where:
Each group has exactly X cards.
All the cards in each group have the same integer.
Example 1:
Input: deck = [1,2,3,4,4,3,2,1]
Output: true
Explanation: Possible partition [1,1],[2,2],[3,3],[4,4].
Example 2:
Input: deck = [1,1,1,2,2,2,3,3]
Output: false´
Explanation: No possible partition.
Example 3:
Input: deck = [1]
Output: false
Explanation: No possible partition.
Example 4:
Input: deck = [1,1]
Output: true
Explanation: Possible partition [1,1].
Example 5:
Input: deck = [1,1,2,2,2,2]
Output: true
Explanation: Possible partition [1,1],[2,2],[2,2].
Constraints:
1 <= deck.length <= 10^4
0 <= deck[i] < 10^4
class Solution {
public:
int gcdd(int a, int b){
if(a==0) return b;
return gcdd(b%a, a);
}
bool hasGroupsSizeX(vector<int>& deck) {
unordered_map<int, int> mp; // <number , frequency>
int n=deck.size();
for(int i=0;i<n;i++){
mp[deck[i]]++;
}
int gcd=mp.begin()->second; // first frequency
for(auto it=mp.begin(); it!=mp.end(); it++){
gcd=gcdd(gcd, it->second); // get gcd
}
return gcd>=2;
}
};