forked from sureshmangs/Code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlongest_common_subsequence_tabulation.cpp
74 lines (57 loc) · 1.38 KB
/
longest_common_subsequence_tabulation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
/*
Given two sequences, find the length of longest subsequence present in both of them. Both the strings are of uppercase.
Input:
First line of the input contains no of test cases T,the T test cases follow.
Each test case consist of 2 space separated integers A and B denoting the size of string str1 and str2 respectively
The next two lines contains the 2 string str1 and str2 .
Output:
For each test case print the length of longest common subsequence of the two strings .
Constraints:
1<=T<=200
1<=size(str1),size(str2)<=100
Example:
Input:
2
6 6
ABCDGH
AEDFHR
3 2
ABC
AC
Output:
3
2
Explanation
LCS for input Sequences “ABCDGH” and “AEDFHR” is “ADH” of length 3.
LCS of "ABC" and "AC" is "AC" of length 2
*/
#include<bits/stdc++.h>
using namespace std;
int LCS(string s1, string s2, int n, int m){
int dp[n+1][m+1];
for(int i=0;i<n+1;i++) dp[i][0]=0;
for(int j=0;j<m+1;j++) dp[0][j]=0;
for(int i=1;i<n+1;i++){
for(int j=1;j<m+1;j++){
if(s1[i-1]==s2[j-1])
dp[i][j]=1 + dp[i-1][j-1];
else dp[i][j]=max(dp[i][j-1], dp[i-1][j]);
}
}
return dp[n][m];
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
int t;
cin>>t;
while(t--){
int n,m;
cin>>n>>m;
string s1,s2;
cin>>s1>>s2;
cout<<LCS(s1,s2,n,m)<<endl;
}
return 0;
}