|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 25, |
| 6 | + "metadata": { |
| 7 | + "collapsed": true |
| 8 | + }, |
| 9 | + "outputs": [], |
| 10 | + "source": [ |
| 11 | + "import random\n", |
| 12 | + "import numpy as np\n", |
| 13 | + "from matplotlib import pyplot as plt\n", |
| 14 | + "%matplotlib inline" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": 33, |
| 20 | + "metadata": { |
| 21 | + "collapsed": true |
| 22 | + }, |
| 23 | + "outputs": [], |
| 24 | + "source": [ |
| 25 | + "NODES = 6\n", |
| 26 | + "GOAL = 4\n", |
| 27 | + "\n", |
| 28 | + "ALPHA = 0.01\n", |
| 29 | + "GAMMA = 0.9" |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "code", |
| 34 | + "execution_count": 40, |
| 35 | + "metadata": { |
| 36 | + "collapsed": false |
| 37 | + }, |
| 38 | + "outputs": [], |
| 39 | + "source": [ |
| 40 | + "#for ix in range(6):\n", |
| 41 | + "# for iy in range(6):\n", |
| 42 | + "# print \"(\" + str(ix) + \", \" + str(iy) + \"): 0,\"\n", |
| 43 | + "\n", |
| 44 | + "# Reward function\n", |
| 45 | + "R = {\n", |
| 46 | + "(0, 1): 0,\n", |
| 47 | + "(0, 2): 0,\n", |
| 48 | + "(0, 5): -4,\n", |
| 49 | + "(1, 0): -1,\n", |
| 50 | + "(1, 2): 5,\n", |
| 51 | + "(1, 3): 2,\n", |
| 52 | + "(1, 5): 0,\n", |
| 53 | + "(2, 0): -5,\n", |
| 54 | + "(2, 1): 0,\n", |
| 55 | + "(2, 3): 10,\n", |
| 56 | + "(2, 5): 8,\n", |
| 57 | + "(3, 0): 5,\n", |
| 58 | + "(3, 1): -3,\n", |
| 59 | + "(3, 2): 4,\n", |
| 60 | + "(3, 4): 50,\n", |
| 61 | + "(3, 5): 2,\n", |
| 62 | + "(4, 0): -10,\n", |
| 63 | + "(4, 1): -5,\n", |
| 64 | + "(4, 2): -20,\n", |
| 65 | + "(4, 3): 0,\n", |
| 66 | + "(4, 4): 100,\n", |
| 67 | + "(4, 5): -50,\n", |
| 68 | + "(5, 0): -15,\n", |
| 69 | + "(5, 1): 2,\n", |
| 70 | + "(5, 2): 7,\n", |
| 71 | + "(5, 3): 0,\n", |
| 72 | + "(5, 4): 70,\n", |
| 73 | + "}\n", |
| 74 | + "\n", |
| 75 | + "Q = {}" |
| 76 | + ] |
| 77 | + }, |
| 78 | + { |
| 79 | + "cell_type": "code", |
| 80 | + "execution_count": 41, |
| 81 | + "metadata": { |
| 82 | + "collapsed": false, |
| 83 | + "scrolled": true |
| 84 | + }, |
| 85 | + "outputs": [], |
| 86 | + "source": [ |
| 87 | + "def get_actions(current):\n", |
| 88 | + " actions = []\n", |
| 89 | + " for rx in xrange(NODES):\n", |
| 90 | + " if (current, rx) in R:\n", |
| 91 | + " actions.append(rx)\n", |
| 92 | + " return actions\n", |
| 93 | + "\n", |
| 94 | + "# get_actions(4)" |
| 95 | + ] |
| 96 | + }, |
| 97 | + { |
| 98 | + "cell_type": "code", |
| 99 | + "execution_count": 42, |
| 100 | + "metadata": { |
| 101 | + "collapsed": false, |
| 102 | + "scrolled": false |
| 103 | + }, |
| 104 | + "outputs": [ |
| 105 | + { |
| 106 | + "name": "stdout", |
| 107 | + "output_type": "stream", |
| 108 | + "text": [ |
| 109 | + "Episode: 0 | Reward: 53\n", |
| 110 | + "Episode: 1 | Reward: 33\n", |
| 111 | + "Episode: 2 | Reward: 29\n", |
| 112 | + "Episode: 3 | Reward: 116\n", |
| 113 | + "Episode: 4 | Reward: 84\n", |
| 114 | + "Episode: 5 | Reward: 5\n", |
| 115 | + "Episode: 6 | Reward: 25\n", |
| 116 | + "Episode: 7 | Reward: 182\n", |
| 117 | + "Episode: 8 | Reward: 145\n", |
| 118 | + "Episode: 9 | Reward: 49\n", |
| 119 | + "Episode: 10 | Reward: 165\n", |
| 120 | + "Episode: 11 | Reward: 19\n", |
| 121 | + "Episode: 12 | Reward: -5\n", |
| 122 | + "Episode: 13 | Reward: -11\n", |
| 123 | + "Episode: 14 | Reward: 10\n", |
| 124 | + "Episode: 15 | Reward: 3\n", |
| 125 | + "Episode: 16 | Reward: 59\n", |
| 126 | + "Episode: 17 | Reward: -22\n", |
| 127 | + "Episode: 18 | Reward: 11\n", |
| 128 | + "Episode: 19 | Reward: 15\n", |
| 129 | + "Episode: 20 | Reward: 7\n", |
| 130 | + "Episode: 21 | Reward: 177\n", |
| 131 | + "Episode: 22 | Reward: 70\n", |
| 132 | + "Episode: 23 | Reward: 85\n", |
| 133 | + "Episode: 24 | Reward: 69\n", |
| 134 | + "Episode: 25 | Reward: 214\n", |
| 135 | + "Episode: 26 | Reward: 4\n", |
| 136 | + "Episode: 27 | Reward: 62\n", |
| 137 | + "Episode: 28 | Reward: 18\n", |
| 138 | + "Episode: 29 | Reward: 94\n", |
| 139 | + "Episode: 30 | Reward: 51\n", |
| 140 | + "Episode: 31 | Reward: 146\n", |
| 141 | + "Episode: 32 | Reward: 4\n", |
| 142 | + "Episode: 33 | Reward: 3\n", |
| 143 | + "Episode: 34 | Reward: -5\n", |
| 144 | + "Episode: 35 | Reward: 102\n", |
| 145 | + "Episode: 36 | Reward: -4\n", |
| 146 | + "Episode: 37 | Reward: 52\n", |
| 147 | + "Episode: 38 | Reward: 1\n", |
| 148 | + "Episode: 39 | Reward: -3\n", |
| 149 | + "Episode: 40 | Reward: 203\n", |
| 150 | + "Episode: 41 | Reward: 24\n", |
| 151 | + "Episode: 42 | Reward: 6\n", |
| 152 | + "Episode: 43 | Reward: -1\n", |
| 153 | + "Episode: 44 | Reward: 210\n", |
| 154 | + "Episode: 45 | Reward: 84\n", |
| 155 | + "Episode: 46 | Reward: 127\n", |
| 156 | + "Episode: 47 | Reward: 175\n", |
| 157 | + "Episode: 48 | Reward: 11\n", |
| 158 | + "Episode: 49 | Reward: 144\n", |
| 159 | + "Episode: 50 | Reward: 26\n", |
| 160 | + "Episode: 51 | Reward: 30\n", |
| 161 | + "Episode: 52 | Reward: -19\n", |
| 162 | + "Episode: 53 | Reward: 101\n", |
| 163 | + "Episode: 54 | Reward: 0\n", |
| 164 | + "Episode: 55 | Reward: 12\n", |
| 165 | + "Episode: 56 | Reward: -4\n", |
| 166 | + "Episode: 57 | Reward: 85\n", |
| 167 | + "Episode: 58 | Reward: -5\n", |
| 168 | + "Episode: 59 | Reward: -3\n", |
| 169 | + "Episode: 60 | Reward: 52\n", |
| 170 | + "Episode: 61 | Reward: 34\n", |
| 171 | + "Episode: 62 | Reward: 1\n", |
| 172 | + "Episode: 63 | Reward: 57\n", |
| 173 | + "Episode: 64 | Reward: 69\n", |
| 174 | + "Episode: 65 | Reward: 7\n", |
| 175 | + "Episode: 66 | Reward: 7\n", |
| 176 | + "Episode: 67 | Reward: 1\n", |
| 177 | + "Episode: 68 | Reward: 11\n", |
| 178 | + "Episode: 69 | Reward: 100\n", |
| 179 | + "Episode: 70 | Reward: 47\n", |
| 180 | + "Episode: 71 | Reward: 21\n", |
| 181 | + "Episode: 72 | Reward: 168\n", |
| 182 | + "Episode: 73 | Reward: 13\n", |
| 183 | + "Episode: 74 | Reward: 78\n", |
| 184 | + "Episode: 75 | Reward: -2\n", |
| 185 | + "Episode: 76 | Reward: 301\n", |
| 186 | + "Episode: 77 | Reward: 251\n", |
| 187 | + "Episode: 78 | Reward: 28\n", |
| 188 | + "Episode: 79 | Reward: 21\n", |
| 189 | + "Episode: 80 | Reward: -13\n", |
| 190 | + "Episode: 81 | Reward: 28\n", |
| 191 | + "Episode: 82 | Reward: 31\n", |
| 192 | + "Episode: 83 | Reward: -25\n", |
| 193 | + "Episode: 84 | Reward: 10\n", |
| 194 | + "Episode: 85 | Reward: 8\n", |
| 195 | + "Episode: 86 | Reward: 81\n", |
| 196 | + "Episode: 87 | Reward: 14\n", |
| 197 | + "Episode: 88 | Reward: 15\n", |
| 198 | + "Episode: 89 | Reward: 27\n", |
| 199 | + "Episode: 90 | Reward: 16\n", |
| 200 | + "Episode: 91 | Reward: 117\n", |
| 201 | + "Episode: 92 | Reward: 21\n", |
| 202 | + "Episode: 93 | Reward: 61\n", |
| 203 | + "Episode: 94 | Reward: -12\n", |
| 204 | + "Episode: 95 | Reward: 98\n", |
| 205 | + "Episode: 96 | Reward: -15\n", |
| 206 | + "Episode: 97 | Reward: 63\n", |
| 207 | + "Episode: 98 | Reward: 37\n", |
| 208 | + "Episode: 99 | Reward: 2\n" |
| 209 | + ] |
| 210 | + } |
| 211 | + ], |
| 212 | + "source": [ |
| 213 | + "N_ep = 100\n", |
| 214 | + "\n", |
| 215 | + "for ep in range(N_ep):\n", |
| 216 | + " pos = 0\n", |
| 217 | + " rew = 0\n", |
| 218 | + " \n", |
| 219 | + " # while not pos == GOAL:\n", |
| 220 | + " for kx in range(10):\n", |
| 221 | + " # print pos\n", |
| 222 | + " p_act = get_actions(pos)\n", |
| 223 | + " \n", |
| 224 | + " best_ac = []\n", |
| 225 | + " q_best = None\n", |
| 226 | + " \n", |
| 227 | + " for ac in p_act:\n", |
| 228 | + " rq = Q.setdefault((pos, ac), 0)\n", |
| 229 | + " if rq > q_best:\n", |
| 230 | + " q_best = rq\n", |
| 231 | + " best = [ac]\n", |
| 232 | + " elif rq == q_best:\n", |
| 233 | + " best.append(ac)\n", |
| 234 | + " \n", |
| 235 | + " nxt_pos = random.choice(p_act)\n", |
| 236 | + " nxt_p_ac = get_actions(nxt_pos)\n", |
| 237 | + " \n", |
| 238 | + " nq_best = None\n", |
| 239 | + " \n", |
| 240 | + " for ac in nxt_p_ac:\n", |
| 241 | + " rq = Q.setdefault((nxt_pos, ac), 0)\n", |
| 242 | + " nq_best = max(nq_best, rq)\n", |
| 243 | + " \n", |
| 244 | + " Q[(pos, nxt_pos)] = (1- ALPHA)*Q[(pos, nxt_pos)] + ALPHA*(R[(pos, nxt_pos)] + GAMMA*nq_best)\n", |
| 245 | + " rew += R[(pos, nxt_pos)]\n", |
| 246 | + " pos = nxt_pos\n", |
| 247 | + " print \"Episode:\", ep, \"| Reward:\", rew" |
| 248 | + ] |
| 249 | + }, |
| 250 | + { |
| 251 | + "cell_type": "code", |
| 252 | + "execution_count": 43, |
| 253 | + "metadata": { |
| 254 | + "collapsed": false |
| 255 | + }, |
| 256 | + "outputs": [ |
| 257 | + { |
| 258 | + "data": { |
| 259 | + "text/plain": [ |
| 260 | + "{(0, 1): 1.0527522119424737,\n", |
| 261 | + " (0, 2): 1.7765083795300343,\n", |
| 262 | + " (0, 5): 5.210843889083548,\n", |
| 263 | + " (1, 0): 0.0391664790275139,\n", |
| 264 | + " (1, 2): 2.6955696115274415,\n", |
| 265 | + " (1, 3): 3.156196226973814,\n", |
| 266 | + " (1, 5): 4.963970280138251,\n", |
| 267 | + " (2, 0): -1.3609407399152875,\n", |
| 268 | + " (2, 1): 0.5589380241903006,\n", |
| 269 | + " (2, 3): 5.812972573178521,\n", |
| 270 | + " (2, 5): 7.301826243368765,\n", |
| 271 | + " (3, 0): 1.4065845289178485,\n", |
| 272 | + " (3, 1): -0.25803609254372506,\n", |
| 273 | + " (3, 2): 1.7033928867280708,\n", |
| 274 | + " (3, 4): 11.208298009811994,\n", |
| 275 | + " (3, 5): 3.5555140878750735,\n", |
| 276 | + " (4, 0): -1.0076784500262796,\n", |
| 277 | + " (4, 1): -0.30127326885017214,\n", |
| 278 | + " (4, 2): -2.017800766935019,\n", |
| 279 | + " (4, 3): 0.5506222723837432,\n", |
| 280 | + " (4, 4): 17.84781294854947,\n", |
| 281 | + " (4, 5): -3.771335058692992,\n", |
| 282 | + " (5, 0): -4.208275309248176,\n", |
| 283 | + " (5, 1): 1.2881067744708923,\n", |
| 284 | + " (5, 2): 2.852172356891487,\n", |
| 285 | + " (5, 3): 1.9640566727660835,\n", |
| 286 | + " (5, 4): 26.060782382076916}" |
| 287 | + ] |
| 288 | + }, |
| 289 | + "execution_count": 43, |
| 290 | + "metadata": {}, |
| 291 | + "output_type": "execute_result" |
| 292 | + } |
| 293 | + ], |
| 294 | + "source": [ |
| 295 | + "#plt.figure(0)\n", |
| 296 | + "#for ix in range(NODES):\n", |
| 297 | + "# for iy in range(NODES):\n", |
| 298 | + "# plt.subplot(NODES, NODES)\n", |
| 299 | + "Q" |
| 300 | + ] |
| 301 | + }, |
| 302 | + { |
| 303 | + "cell_type": "code", |
| 304 | + "execution_count": 39, |
| 305 | + "metadata": { |
| 306 | + "collapsed": false |
| 307 | + }, |
| 308 | + "outputs": [ |
| 309 | + { |
| 310 | + "name": "stdout", |
| 311 | + "output_type": "stream", |
| 312 | + "text": [ |
| 313 | + "0\n", |
| 314 | + "5\n", |
| 315 | + "Episode: 0 | Reward: 66\n", |
| 316 | + "0\n", |
| 317 | + "5\n", |
| 318 | + "Episode: 1 | Reward: 66\n", |
| 319 | + "0\n", |
| 320 | + "5\n", |
| 321 | + "Episode: 2 | Reward: 66\n", |
| 322 | + "0\n", |
| 323 | + "5\n", |
| 324 | + "Episode: 3 | Reward: 66\n", |
| 325 | + "0\n", |
| 326 | + "5\n", |
| 327 | + "Episode: 4 | Reward: 66\n" |
| 328 | + ] |
| 329 | + } |
| 330 | + ], |
| 331 | + "source": [ |
| 332 | + "N_ep = 5\n", |
| 333 | + "\n", |
| 334 | + "for ep in range(N_ep):\n", |
| 335 | + " pos = 0\n", |
| 336 | + " rew = 0\n", |
| 337 | + " \n", |
| 338 | + " while not pos == GOAL:\n", |
| 339 | + " print pos\n", |
| 340 | + " p_act = get_actions(pos)\n", |
| 341 | + " \n", |
| 342 | + " best_ac = []\n", |
| 343 | + " q_best = None\n", |
| 344 | + " \n", |
| 345 | + " for ac in p_act:\n", |
| 346 | + " rq = Q.setdefault((pos, ac), 0)\n", |
| 347 | + " if rq > q_best:\n", |
| 348 | + " q_best = rq\n", |
| 349 | + " best = [ac]\n", |
| 350 | + " elif rq == q_best:\n", |
| 351 | + " best.append(ac)\n", |
| 352 | + " \n", |
| 353 | + " nxt_pos = random.choice(best)\n", |
| 354 | + " nxt_p_ac = get_actions(nxt_pos)\n", |
| 355 | + " \n", |
| 356 | + " nq_best = None\n", |
| 357 | + " \n", |
| 358 | + " for ac in nxt_p_ac:\n", |
| 359 | + " rq = Q.setdefault((nxt_pos, ac), 0)\n", |
| 360 | + " nq_best = max(nq_best, rq)\n", |
| 361 | + " \n", |
| 362 | + " Q[(pos, nxt_pos)] = (1- ALPHA)*Q[(pos, nxt_pos)] + ALPHA*(R[(pos, nxt_pos)] + GAMMA*nq_best)\n", |
| 363 | + " rew += R[(pos, nxt_pos)]\n", |
| 364 | + " pos = nxt_pos\n", |
| 365 | + " print \"Episode:\", ep, \"| Reward:\", rew" |
| 366 | + ] |
| 367 | + }, |
| 368 | + { |
| 369 | + "cell_type": "code", |
| 370 | + "execution_count": null, |
| 371 | + "metadata": { |
| 372 | + "collapsed": true |
| 373 | + }, |
| 374 | + "outputs": [], |
| 375 | + "source": [] |
| 376 | + } |
| 377 | + ], |
| 378 | + "metadata": { |
| 379 | + "kernelspec": { |
| 380 | + "display_name": "Python 2", |
| 381 | + "language": "python", |
| 382 | + "name": "python2" |
| 383 | + }, |
| 384 | + "language_info": { |
| 385 | + "codemirror_mode": { |
| 386 | + "name": "ipython", |
| 387 | + "version": 2 |
| 388 | + }, |
| 389 | + "file_extension": ".py", |
| 390 | + "mimetype": "text/x-python", |
| 391 | + "name": "python", |
| 392 | + "nbconvert_exporter": "python", |
| 393 | + "pygments_lexer": "ipython2", |
| 394 | + "version": "2.7.12" |
| 395 | + } |
| 396 | + }, |
| 397 | + "nbformat": 4, |
| 398 | + "nbformat_minor": 2 |
| 399 | +} |
0 commit comments