|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 7, |
| 6 | + "metadata": { |
| 7 | + "collapsed": true |
| 8 | + }, |
| 9 | + "outputs": [], |
| 10 | + "source": [ |
| 11 | + "import numpy as np\n", |
| 12 | + "from matplotlib import pyplot as plt\n", |
| 13 | + "%matplotlib inline\n", |
| 14 | + "import pandas as pd" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": 13, |
| 20 | + "metadata": { |
| 21 | + "collapsed": false |
| 22 | + }, |
| 23 | + "outputs": [], |
| 24 | + "source": [ |
| 25 | + "a = np.zeros((100,))\n", |
| 26 | + "\n", |
| 27 | + "d = pd.DataFrame({'name': a})\n", |
| 28 | + "d.to_csv('out.csv', header=True)" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "code", |
| 33 | + "execution_count": 39, |
| 34 | + "metadata": { |
| 35 | + "collapsed": false |
| 36 | + }, |
| 37 | + "outputs": [ |
| 38 | + { |
| 39 | + "name": "stdout", |
| 40 | + "output_type": "stream", |
| 41 | + "text": [ |
| 42 | + "(200, 200)\n", |
| 43 | + "(200, 200)\n", |
| 44 | + "(40000, 2)\n" |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "data": { |
| 49 | + "text/plain": [ |
| 50 | + "<matplotlib.collections.PathCollection at 0x7f10bbd66810>" |
| 51 | + ] |
| 52 | + }, |
| 53 | + "execution_count": 39, |
| 54 | + "metadata": {}, |
| 55 | + "output_type": "execute_result" |
| 56 | + }, |
| 57 | + { |
| 58 | + "data": { |
| 59 | + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhcAAAFkCAYAAACThxm6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAE6FJREFUeJzt3X/M7nV93/HXW8BSaEQ2AmdMAv5Yra6KcGT2pOnighSp\nGZrFxlg6yWzmGunGNFtNjMaVRY2u4uyvKZJUSIDFNg1ldfNkmNYt40CXw4/ZCuoi2CqeI1KGSRER\nzmd/fK9jLw/nvs+5D+/vfd/nPo9HcuXm+l6f73V9yCfXuZ/39/pe11VjjAAAdHnWRk8AANhaxAUA\n0EpcAACtxAUA0EpcAACtxAUA0EpcAACtxAUA0EpcAACtxAUA0GrWuKiqn6mqW6rqG1W1r6ouPYx9\nXl1Vu6vq8ar6clVdPuccAYBecx+5ODnJ3UmuSHLILzGpqnOS/FGSzyU5N8nHklxbVRfNN0UAoFOt\n1xeXVdW+JG8YY9yyypgPJblkjPHypW03JTlljPFz6zBNAOAZ2mznXPxUklsP2LYzyY4NmAsAcASO\n3+gJHGBbkr0HbNub5DlV9SNjjO8duENV/e0kFyd5IMnjs88QALaOE5Ock2TnGOPhrjvdbHFxMLX4\nudLrNxcnuWGd5gIAW9FlSW7surPNFhd7kpxxwLbTk3xnjPHECvs8kCT5J0lOm21erKfPJnntRk+C\nVtZ0a7GeW8e3k/xBkv2/S5tstrjYleSSA7b97GL7SqaXQk5LcuY8k2KdnRhrudVY063Fem5FracV\nzP05FydX1blV9YrFphcsrp+1uP2DVXXd0i4fT/LCqvpQVb24qt6e5I1Jrp5zngBAn7nfLfLKJHcl\n2Z3pnImPJLkzya8tbt+W5Kz9g8cYDyR5XZLXZPp8jHck+aUxxoHvIAEANqlZXxYZY3w+qwTMGOOf\nrbDP9jnnBQDMZ7N9zgUkL9voCdDOmm4t1pNDEBdsPv7h2nqs6dZiPTkEcQEAtBIXAEArcQEAtBIX\nAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEAr\ncQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEA\ntBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIX\nAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEAr\ncQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtFqXuKiqK6rq\n/qr6blXdXlUXrDL28qraV1VPLX7uq6rH1mOeAMAzN3tcVNWbknwkyfuSnJfkniQ7q+q0VXZ7NMm2\npcvZc88TAOixHkcu3pHkE2OM68cY9yX55SSPJXnrKvuMMcZDY4xvLS4PrcM8AYAGs8ZFVZ2QZHuS\nz+3fNsYYSW5NsmOVXX+sqh6oqr+oqpur6qVzzhMA6DP3kYvTkhyXZO8B2/dmernjYL6U6ajGpUku\nyzTH26rq7841SQCgz/Eb9LiVZBzshjHG7Ulu/8HAql1J7k3ytkznbRzcZ5OceMC2ly0uAHCs+8Li\nsuzxeR5q7rj4dpKnkpxxwPbT8/SjGQc1xniyqu5K8qJVB742yZlHMEMAOBYc7A/uB5Nc0/9Qs74s\nMsb4fpLdSS7cv62qanH9tsO5j6p6VpKfTPLNOeYIAPRaj5dFrk5yXVXtTvKnmd49clKSTyVJVV2f\n5OtjjHcvrr8308si/zfJc5P8aqa3ol67DnMFAJ6h2eNijPHpxWdaXJXp5ZG7k1y89PbS5yV5cmmX\nUzMdpNmW5JFMRz52LN7GCgBscjW9M/ToVVXnJ9mdt8U5FwCwFn9zzsX2McadXXfru0UAgFbiAgBo\nJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4A\ngFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbi\nAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBo\nJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4A\ngFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbi\nAgBotS5xUVVXVNX9VfXdqrq9qi44xPifr6p7F+PvqapL1mOeAMAzN3tcVNWbknwkyfuSnJfkniQ7\nq+q0FcbvSHJjkk8meUWSm5PcXFUvnXuuAMAztx5HLt6R5BNjjOvHGPcl+eUkjyV56wrjr0zy38YY\nV48xvjTGeF+SO5P8yjrMFQB4hmaNi6o6Icn2JJ/bv22MMZLcmmTHCrvtWNy+bOcq4wGATWTuIxen\nJTkuyd4Dtu9Nsm2FfbatcTwAsIkcv0GPW0lG6/jPJjnxgG0vW1wA4Fj3hcVl2ePzPNTccfHtJE8l\nOeOA7afn6Ucn9tuzxvGT1yY5c+0TBIBjwsH+4H4wyTX9DzXryyJjjO8n2Z3kwv3bqqoW129bYbdd\ny+MXLlpsBwA2ufV4WeTqJNdV1e4kf5rp3SMnJflUklTV9Um+PsZ492L8x5J8vqremeQzSd6c6aTQ\nf77ag/zTu5JtX02+cmrynROTZz+ZPHH83/w85XvJCx9Oqp4+xm29t23GOW312zbjnLb6bZtxTlv9\nts04p6P5tlO+l5zxleTjM/zinz0uxhifXnymxVWZXu64O8nFY4yHFkOel+TJpfG7qurNSd6/uHwl\nyevHGF9c7XH+9f9Ozp/jfwAAtqg7M09c1PTO0KNXVZ2fZPfuiAsAWIs7M700kGT7GOPOrvv13SIA\nQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtx\nAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0\nEhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcA\nQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtx\nAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0\nEhcAQCtxAQC0EhcAQKtZ46KqTq2qG6rq0ap6pKquraqTD7HPn1TVvqXLU1X1O3POEwDoc/zM939j\nkjOSXJjk2Uk+leQTSX5xlX1GkmuSvDdJLbY9Nt8UAYBOs8VFVf1EkouTbB9j3LXY9i+TfKaq/s0Y\nY88quz82xnhorrkBAPOZ82WRHUke2R8WC7dmOjLxqkPse1lVPVRVX6iqD1TVj842SwCg1Zwvi2xL\n8q3lDWOMp6rqrxa3reSGJF9L8mCSlyf5cJIfT/LGmeYJADRac1xU1QeTvGuVISPJS1a7i8WYg+88\nxrVLV/+8qvYkubWqnj/GuH+l/d6R5JQDtr15cQGAY91Ni8uyR2d6rCM5cvHrSX73EGO+mmRPktOX\nN1bVcUlOTbJ3DY93R6YgeVGSFePio0nOX8OdAsCx5GB/cN+ZZPsMj7XmuBhjPJzk4UONq6pdSZ5b\nVectnXdxYaZQuGMND3lepiMd31zrXAGA9TfbCZ1jjPuS7Ezyyaq6oKp+OslvJrlp/ztFqurMqrq3\nql65uP6CqnpPVZ1fVWdX1aVJrkvy+THGn801VwCgz9yfc/ELSX4r07tE9iX5/SRXLt1+QqaTNU9a\nXH8iyWsWY05O8pdJfi/J+2eeJwDQZNa4GGP8v6zygVljjK8lOW7p+teTvHrOOQEA8/LdIgBAK3EB\nALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQS\nFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBA\nK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EB\nALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQS\nFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBA\nK3HBpnPTRk+AdtZ0a7GeHMpscVFV766q/1VVf11Vf7WG/a6qqger6rGq+u9V9aK55sjm5B+urcea\nbi3Wk0OZ88jFCUk+neQ/He4OVfWuJL+S5F8k+QdJ/jrJzqp69iwzBADaHT/XHY8xfi1JquryNex2\nZZJ/P8b4L4t935Jkb5I3ZAoVAGCT2zTnXFTV85NsS/K5/dvGGN9JckeSHRs1LwBgbWY7cnEEtiUZ\nmY5ULNu7uG0lJybJvTNNivX3aJI7N3oStLKmW4v13DqWfnee2Hm/a4qLqvpgknetMmQkeckY48vP\naFYHPOzifldyTpL8YuMDsvG2b/QEaGdNtxbrueWck+S2rjtb65GLX0/yu4cY89UjnMueTCFxRn74\n6MXpSe5aZb+dSS5L8kCSx4/wsQHgWHRiprDY2Xmna4qLMcbDSR7unMDSfd9fVXuSXJjk/yRJVT0n\nyauS/PYh5nTjHHMCgGNA2xGL/eb8nIuzqurcJGcnOa6qzl1cTl4ac19VvX5pt/+Y5D1V9Y+r6mVJ\nrk/y9SR/ONc8AYBec57QeVWStyxd33/+zz9K8j8W//33kpyyf8AY48NVdVKSTyR5bpL/meSSMcYT\nM84TAGhUY6x2riQAwNpsms+5AAC2BnEBALQ6KuPCl6JtLVV1alXdUFWPVtUjVXXt8om/K+zzJ1W1\nb+nyVFX9znrNmR9WVVdU1f1V9d2qur2qLjjE+J+vqnsX4++pqkvWa64c2lrWs6ouX3oO7n8+Prae\n82VlVfUzVXVLVX1jsTaXHsY+r66q3VX1eFV9eY1f45HkKI2L+FK0rebGJC/J9Dbk1yX5h5lO6l3N\nSHJNps9F2Zbk7yT51RnnyAqq6k1JPpLkfUnOS3JPpufWaSuM35FpzT+Z5BVJbk5yc1W9dH1mzGrW\nup4Lj2Z6Hu6/nD33PDlsJye5O8kVWf0DKZMkVXVOkj/K9FUc5yb5WJJrq+qitTzoUX1C56KmPjrG\n+FuHMfbBJP9hjPHRxfXnZPqwrsvHGL4UbYNU1U8k+WKS7WOMuxbbLk7ymSTPG2PsWWG/P05y1xjj\nnes2WQ6qqm5PcscY48rF9Uryl0l+Y4zx4YOM/89JThpjXLq0bVem9Xz7Ok2bFRzBeh72v8NsrKra\nl+QNY4xbVhnzoUzv0nz50rabkpwyxvi5w32so/XIxZr4UrRNbUeSR/aHxcKtmQr7VYfY97Kqeqiq\nvlBVH6iqH51tlhxUVZ2Q6ZOgl59bI9MarvTc2rG4fdnOVcazTo5wPZPkx6rqgar6i6pyFOro9lNp\neH5upi8um9ORfika89uW5FvLG8YYTy3OpVltbW5I8rUkDyZ5eZIPJ/nxJG+caZ4c3GlJjsvBn1sv\nXmGfbSuM91zceEeynl9K8tZMn6x8SpJ/m+S2qvr7Y4xvzDVRZrPS8/M5VfUjY4zvHc6dbJq42KRf\nisYROtz1XO0ussrajDGuXbr654uPjr+1qp4/xrh/TZNlDmt9bnkubm4rrs8Y4/Ykt/9g4PQS171J\n3pbpvA2OfrX4edjP0U0TF9mcX4rGkTvc9dyTaR1+oKqOS3Jqnl7Pq7kj0xq/KIm4WD/fTvJUpufW\nstOz8vrtWeN41s+RrOcPGWM8WVV3ZXoucvRZ6fn5nbV8WvamiYvN+KVoHLnDXc/FXznPrarzls67\nuDBTKNyxhoc8L1NVf3Otc+XIjTG+X1W7M63ZLckPTgC8MMlvrLDbroPcftFiOxvoCNfzh1TVs5L8\nZJL/Otc8mdWuJAe+Nfxns8bn51F5QqcvRds6xhj3ZTpZ6JNVdUFV/XSS30xy0/53ilTVmYvPRHjl\n4voLquo9VXV+VZ29eN/2dUk+P8b4s436fzmGXZ3kbVX1lsW7fz6e5KQkn0qSqrq+qj6wNP5jSS6p\nqndW1Yur6t9lOonwt9Z32qxgTetZVe+tqouq6vlVdV6m86HOTnLt0++a9VZVJy9+P75isekFi+tn\nLW7/YFVdt7TLx5O8sKo+tHh+vj3TuWxXr+VxN82RizXypWhbyy9k+sVya5J9SX4/yZVLt5+Q6WTN\nkxbXn0jymsWYkzO9Te73krx/nebLkjHGpxefgXBVpsOpdye5eIzx0GLI85I8uTR+V1W9OdN6vT/J\nV5K8fozxxfWdOQez1vXM9BLmNZlOBHwkye4kOxZ/OLDxXpnkjzMd2R2ZPsMkmf4ge2umdTtr/+Ax\nxgNV9bpMMfGvMv0R/ktjjAPfQbKqo/pzLgCAzeeofFkEANi8xAUA0EpcAACtxAUA0EpcAACtxAUA\n0EpcAACtxAUA0EpcAACtxAUA0EpcAACt/j9VSmx490nxBAAAAABJRU5ErkJggg==\n", |
| 60 | + "text/plain": [ |
| 61 | + "<matplotlib.figure.Figure at 0x7f10bbdd6250>" |
| 62 | + ] |
| 63 | + }, |
| 64 | + "metadata": {}, |
| 65 | + "output_type": "display_data" |
| 66 | + } |
| 67 | + ], |
| 68 | + "source": [ |
| 69 | + "z = np.meshgrid(np.arange(-1.0, 1.0, 0.01), np.arange(-1.0, 1.0, 0.01))\n", |
| 70 | + "print z[0].shape\n", |
| 71 | + "print z[1].shape\n", |
| 72 | + "# print z[0].ravel()\n", |
| 73 | + "k = np.c_[z[0].ravel(), z[1].ravel()]\n", |
| 74 | + "print k.shape\n", |
| 75 | + "\n", |
| 76 | + "plt.figure(0)\n", |
| 77 | + "plt.xlim(-1.0, 1.0)\n", |
| 78 | + "plt.ylim(-1.0, 1.0)\n", |
| 79 | + "\n", |
| 80 | + "plt.scatter(k[:k.shape[0]/2, 0], k[:k.shape[0]/2, 1], linewidths=0.1, color='red')\n", |
| 81 | + "plt.scatter(k[k.shape[0]/2:, 0], k[k.shape[0]/2:, 1], linewidths=0.1, color='green')" |
| 82 | + ] |
| 83 | + } |
| 84 | + ], |
| 85 | + "metadata": { |
| 86 | + "kernelspec": { |
| 87 | + "display_name": "Python 2", |
| 88 | + "language": "python", |
| 89 | + "name": "python2" |
| 90 | + }, |
| 91 | + "language_info": { |
| 92 | + "codemirror_mode": { |
| 93 | + "name": "ipython", |
| 94 | + "version": 2 |
| 95 | + }, |
| 96 | + "file_extension": ".py", |
| 97 | + "mimetype": "text/x-python", |
| 98 | + "name": "python", |
| 99 | + "nbconvert_exporter": "python", |
| 100 | + "pygments_lexer": "ipython2", |
| 101 | + "version": "2.7.12" |
| 102 | + } |
| 103 | + }, |
| 104 | + "nbformat": 4, |
| 105 | + "nbformat_minor": 2 |
| 106 | +} |
0 commit comments