Skip to content

Commit 488cffe

Browse files
committed
Meshgrid example
1 parent 73bda1a commit 488cffe

File tree

2 files changed

+181
-0
lines changed

2 files changed

+181
-0
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,75 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": 7,
6+
"metadata": {
7+
"collapsed": true
8+
},
9+
"outputs": [],
10+
"source": [
11+
"import numpy as np\n",
12+
"from matplotlib import pyplot as plt\n",
13+
"%matplotlib inline\n",
14+
"import pandas as pd"
15+
]
16+
},
17+
{
18+
"cell_type": "code",
19+
"execution_count": 13,
20+
"metadata": {
21+
"collapsed": false
22+
},
23+
"outputs": [],
24+
"source": [
25+
"a = np.zeros((100,))\n",
26+
"\n",
27+
"d = pd.DataFrame({'name': a})\n",
28+
"d.to_csv('out.csv', header=True)"
29+
]
30+
},
31+
{
32+
"cell_type": "code",
33+
"execution_count": 6,
34+
"metadata": {
35+
"collapsed": false
36+
},
37+
"outputs": [
38+
{
39+
"name": "stdout",
40+
"output_type": "stream",
41+
"text": [
42+
"(20, 20)\n",
43+
"(20, 20)\n"
44+
]
45+
}
46+
],
47+
"source": [
48+
"z = np.meshgrid(np.arange(-1.0, 1.0, 0.1), np.arange(-1.0, 1.0, 0.1))\n",
49+
"print z[0].shape\n",
50+
"print z[1].shape"
51+
]
52+
}
53+
],
54+
"metadata": {
55+
"kernelspec": {
56+
"display_name": "Python 2",
57+
"language": "python",
58+
"name": "python2"
59+
},
60+
"language_info": {
61+
"codemirror_mode": {
62+
"name": "ipython",
63+
"version": 2
64+
},
65+
"file_extension": ".py",
66+
"mimetype": "text/x-python",
67+
"name": "python",
68+
"nbconvert_exporter": "python",
69+
"pygments_lexer": "ipython2",
70+
"version": "2.7.12"
71+
}
72+
},
73+
"nbformat": 4,
74+
"nbformat_minor": 2
75+
}

class_07/Try_mesh.ipynb

+106
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,106 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": 7,
6+
"metadata": {
7+
"collapsed": true
8+
},
9+
"outputs": [],
10+
"source": [
11+
"import numpy as np\n",
12+
"from matplotlib import pyplot as plt\n",
13+
"%matplotlib inline\n",
14+
"import pandas as pd"
15+
]
16+
},
17+
{
18+
"cell_type": "code",
19+
"execution_count": 13,
20+
"metadata": {
21+
"collapsed": false
22+
},
23+
"outputs": [],
24+
"source": [
25+
"a = np.zeros((100,))\n",
26+
"\n",
27+
"d = pd.DataFrame({'name': a})\n",
28+
"d.to_csv('out.csv', header=True)"
29+
]
30+
},
31+
{
32+
"cell_type": "code",
33+
"execution_count": 39,
34+
"metadata": {
35+
"collapsed": false
36+
},
37+
"outputs": [
38+
{
39+
"name": "stdout",
40+
"output_type": "stream",
41+
"text": [
42+
"(200, 200)\n",
43+
"(200, 200)\n",
44+
"(40000, 2)\n"
45+
]
46+
},
47+
{
48+
"data": {
49+
"text/plain": [
50+
"<matplotlib.collections.PathCollection at 0x7f10bbd66810>"
51+
]
52+
},
53+
"execution_count": 39,
54+
"metadata": {},
55+
"output_type": "execute_result"
56+
},
57+
{
58+
"data": {
59+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhcAAAFkCAYAAACThxm6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAE6FJREFUeJzt3X/M7nV93/HXW8BSaEQ2AmdMAv5Yra6KcGT2pOnighSp\nGZrFxlg6yWzmGunGNFtNjMaVRY2u4uyvKZJUSIDFNg1ldfNkmNYt40CXw4/ZCuoi2CqeI1KGSRER\nzmd/fK9jLw/nvs+5D+/vfd/nPo9HcuXm+l6f73V9yCfXuZ/39/pe11VjjAAAdHnWRk8AANhaxAUA\n0EpcAACtxAUA0EpcAACtxAUA0EpcAACtxAUA0EpcAACtxAUA0GrWuKiqn6mqW6rqG1W1r6ouPYx9\nXl1Vu6vq8ar6clVdPuccAYBecx+5ODnJ3UmuSHLILzGpqnOS/FGSzyU5N8nHklxbVRfNN0UAoFOt\n1xeXVdW+JG8YY9yyypgPJblkjPHypW03JTlljPFz6zBNAOAZ2mznXPxUklsP2LYzyY4NmAsAcASO\n3+gJHGBbkr0HbNub5DlV9SNjjO8duENV/e0kFyd5IMnjs88QALaOE5Ock2TnGOPhrjvdbHFxMLX4\nudLrNxcnuWGd5gIAW9FlSW7surPNFhd7kpxxwLbTk3xnjPHECvs8kCT5J0lOm21erKfPJnntRk+C\nVtZ0a7GeW8e3k/xBkv2/S5tstrjYleSSA7b97GL7SqaXQk5LcuY8k2KdnRhrudVY063Fem5FracV\nzP05FydX1blV9YrFphcsrp+1uP2DVXXd0i4fT/LCqvpQVb24qt6e5I1Jrp5zngBAn7nfLfLKJHcl\n2Z3pnImPJLkzya8tbt+W5Kz9g8cYDyR5XZLXZPp8jHck+aUxxoHvIAEANqlZXxYZY3w+qwTMGOOf\nrbDP9jnnBQDMZ7N9zgUkL9voCdDOmm4t1pNDEBdsPv7h2nqs6dZiPTkEcQEAtBIXAEArcQEAtBIX\nAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEAr\ncQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEA\ntBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIX\nAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEAr\ncQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtBIXAEArcQEAtFqXuKiqK6rq\n/qr6blXdXlUXrDL28qraV1VPLX7uq6rH1mOeAMAzN3tcVNWbknwkyfuSnJfkniQ7q+q0VXZ7NMm2\npcvZc88TAOixHkcu3pHkE2OM68cY9yX55SSPJXnrKvuMMcZDY4xvLS4PrcM8AYAGs8ZFVZ2QZHuS\nz+3fNsYYSW5NsmOVXX+sqh6oqr+oqpur6qVzzhMA6DP3kYvTkhyXZO8B2/dmernjYL6U6ajGpUku\nyzTH26rq7841SQCgz/Eb9LiVZBzshjHG7Ulu/8HAql1J7k3ytkznbRzcZ5OceMC2ly0uAHCs+8Li\nsuzxeR5q7rj4dpKnkpxxwPbT8/SjGQc1xniyqu5K8qJVB742yZlHMEMAOBYc7A/uB5Nc0/9Qs74s\nMsb4fpLdSS7cv62qanH9tsO5j6p6VpKfTPLNOeYIAPRaj5dFrk5yXVXtTvKnmd49clKSTyVJVV2f\n5OtjjHcvrr8308si/zfJc5P8aqa3ol67DnMFAJ6h2eNijPHpxWdaXJXp5ZG7k1y89PbS5yV5cmmX\nUzMdpNmW5JFMRz52LN7GCgBscjW9M/ToVVXnJ9mdt8U5FwCwFn9zzsX2McadXXfru0UAgFbiAgBo\nJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4A\ngFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbi\nAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBo\nJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4A\ngFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbiAgBoJS4AgFbi\nAgBotS5xUVVXVNX9VfXdqrq9qi44xPifr6p7F+PvqapL1mOeAMAzN3tcVNWbknwkyfuSnJfkniQ7\nq+q0FcbvSHJjkk8meUWSm5PcXFUvnXuuAMAztx5HLt6R5BNjjOvHGPcl+eUkjyV56wrjr0zy38YY\nV48xvjTGeF+SO5P8yjrMFQB4hmaNi6o6Icn2JJ/bv22MMZLcmmTHCrvtWNy+bOcq4wGATWTuIxen\nJTkuyd4Dtu9Nsm2FfbatcTwAsIkcv0GPW0lG6/jPJjnxgG0vW1wA4Fj3hcVl2ePzPNTccfHtJE8l\nOeOA7afn6Ucn9tuzxvGT1yY5c+0TBIBjwsH+4H4wyTX9DzXryyJjjO8n2Z3kwv3bqqoW129bYbdd\ny+MXLlpsBwA2ufV4WeTqJNdV1e4kf5rp3SMnJflUklTV9Um+PsZ492L8x5J8vqremeQzSd6c6aTQ\nf77ag/zTu5JtX02+cmrynROTZz+ZPHH83/w85XvJCx9Oqp4+xm29t23GOW312zbjnLb6bZtxTlv9\nts04p6P5tlO+l5zxleTjM/zinz0uxhifXnymxVWZXu64O8nFY4yHFkOel+TJpfG7qurNSd6/uHwl\nyevHGF9c7XH+9f9Ozp/jfwAAtqg7M09c1PTO0KNXVZ2fZPfuiAsAWIs7M700kGT7GOPOrvv13SIA\nQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtx\nAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0\nEhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcA\nQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtx\nAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0EhcAQCtxAQC0\nEhcAQCtxAQC0EhcAQKtZ46KqTq2qG6rq0ap6pKquraqTD7HPn1TVvqXLU1X1O3POEwDoc/zM939j\nkjOSXJjk2Uk+leQTSX5xlX1GkmuSvDdJLbY9Nt8UAYBOs8VFVf1EkouTbB9j3LXY9i+TfKaq/s0Y\nY88quz82xnhorrkBAPOZ82WRHUke2R8WC7dmOjLxqkPse1lVPVRVX6iqD1TVj842SwCg1Zwvi2xL\n8q3lDWOMp6rqrxa3reSGJF9L8mCSlyf5cJIfT/LGmeYJADRac1xU1QeTvGuVISPJS1a7i8WYg+88\nxrVLV/+8qvYkubWqnj/GuH+l/d6R5JQDtr15cQGAY91Ni8uyR2d6rCM5cvHrSX73EGO+mmRPktOX\nN1bVcUlOTbJ3DY93R6YgeVGSFePio0nOX8OdAsCx5GB/cN+ZZPsMj7XmuBhjPJzk4UONq6pdSZ5b\nVectnXdxYaZQuGMND3lepiMd31zrXAGA9TfbCZ1jjPuS7Ezyyaq6oKp+OslvJrlp/ztFqurMqrq3\nql65uP6CqnpPVZ1fVWdX1aVJrkvy+THGn801VwCgz9yfc/ELSX4r07tE9iX5/SRXLt1+QqaTNU9a\nXH8iyWsWY05O8pdJfi/J+2eeJwDQZNa4GGP8v6zygVljjK8lOW7p+teTvHrOOQEA8/LdIgBAK3EB\nALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQS\nFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBA\nK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EB\nALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQS\nFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBAK3EBALQSFwBA\nK3HBpnPTRk+AdtZ0a7GeHMpscVFV766q/1VVf11Vf7WG/a6qqger6rGq+u9V9aK55sjm5B+urcea\nbi3Wk0OZ88jFCUk+neQ/He4OVfWuJL+S5F8k+QdJ/jrJzqp69iwzBADaHT/XHY8xfi1JquryNex2\nZZJ/P8b4L4t935Jkb5I3ZAoVAGCT2zTnXFTV85NsS/K5/dvGGN9JckeSHRs1LwBgbWY7cnEEtiUZ\nmY5ULNu7uG0lJybJvTNNivX3aJI7N3oStLKmW4v13DqWfnee2Hm/a4qLqvpgknetMmQkeckY48vP\naFYHPOzifldyTpL8YuMDsvG2b/QEaGdNtxbrueWck+S2rjtb65GLX0/yu4cY89UjnMueTCFxRn74\n6MXpSe5aZb+dSS5L8kCSx4/wsQHgWHRiprDY2Xmna4qLMcbDSR7unMDSfd9fVXuSXJjk/yRJVT0n\nyauS/PYh5nTjHHMCgGNA2xGL/eb8nIuzqurcJGcnOa6qzl1cTl4ac19VvX5pt/+Y5D1V9Y+r6mVJ\nrk/y9SR/ONc8AYBec57QeVWStyxd33/+zz9K8j8W//33kpyyf8AY48NVdVKSTyR5bpL/meSSMcYT\nM84TAGhUY6x2riQAwNpsms+5AAC2BnEBALQ6KuPCl6JtLVV1alXdUFWPVtUjVXXt8om/K+zzJ1W1\nb+nyVFX9znrNmR9WVVdU1f1V9d2qur2qLjjE+J+vqnsX4++pqkvWa64c2lrWs6ouX3oO7n8+Prae\n82VlVfUzVXVLVX1jsTaXHsY+r66q3VX1eFV9eY1f45HkKI2L+FK0rebGJC/J9Dbk1yX5h5lO6l3N\nSHJNps9F2Zbk7yT51RnnyAqq6k1JPpLkfUnOS3JPpufWaSuM35FpzT+Z5BVJbk5yc1W9dH1mzGrW\nup4Lj2Z6Hu6/nD33PDlsJye5O8kVWf0DKZMkVXVOkj/K9FUc5yb5WJJrq+qitTzoUX1C56KmPjrG\n+FuHMfbBJP9hjPHRxfXnZPqwrsvHGL4UbYNU1U8k+WKS7WOMuxbbLk7ymSTPG2PsWWG/P05y1xjj\nnes2WQ6qqm5PcscY48rF9Uryl0l+Y4zx4YOM/89JThpjXLq0bVem9Xz7Ok2bFRzBeh72v8NsrKra\nl+QNY4xbVhnzoUzv0nz50rabkpwyxvi5w32so/XIxZr4UrRNbUeSR/aHxcKtmQr7VYfY97Kqeqiq\nvlBVH6iqH51tlhxUVZ2Q6ZOgl59bI9MarvTc2rG4fdnOVcazTo5wPZPkx6rqgar6i6pyFOro9lNp\neH5upi8um9ORfika89uW5FvLG8YYTy3OpVltbW5I8rUkDyZ5eZIPJ/nxJG+caZ4c3GlJjsvBn1sv\nXmGfbSuM91zceEeynl9K8tZMn6x8SpJ/m+S2qvr7Y4xvzDVRZrPS8/M5VfUjY4zvHc6dbJq42KRf\nisYROtz1XO0ussrajDGuXbr654uPjr+1qp4/xrh/TZNlDmt9bnkubm4rrs8Y4/Ykt/9g4PQS171J\n3pbpvA2OfrX4edjP0U0TF9mcX4rGkTvc9dyTaR1+oKqOS3Jqnl7Pq7kj0xq/KIm4WD/fTvJUpufW\nstOz8vrtWeN41s+RrOcPGWM8WVV3ZXoucvRZ6fn5nbV8WvamiYvN+KVoHLnDXc/FXznPrarzls67\nuDBTKNyxhoc8L1NVf3Otc+XIjTG+X1W7M63ZLckPTgC8MMlvrLDbroPcftFiOxvoCNfzh1TVs5L8\nZJL/Otc8mdWuJAe+Nfxns8bn51F5QqcvRds6xhj3ZTpZ6JNVdUFV/XSS30xy0/53ilTVmYvPRHjl\n4voLquo9VXV+VZ29eN/2dUk+P8b4s436fzmGXZ3kbVX1lsW7fz6e5KQkn0qSqrq+qj6wNP5jSS6p\nqndW1Yur6t9lOonwt9Z32qxgTetZVe+tqouq6vlVdV6m86HOTnLt0++a9VZVJy9+P75isekFi+tn\nLW7/YFVdt7TLx5O8sKo+tHh+vj3TuWxXr+VxN82RizXypWhbyy9k+sVya5J9SX4/yZVLt5+Q6WTN\nkxbXn0jymsWYkzO9Te73krx/nebLkjHGpxefgXBVpsOpdye5eIzx0GLI85I8uTR+V1W9OdN6vT/J\nV5K8fozxxfWdOQez1vXM9BLmNZlOBHwkye4kOxZ/OLDxXpnkjzMd2R2ZPsMkmf4ge2umdTtr/+Ax\nxgNV9bpMMfGvMv0R/ktjjAPfQbKqo/pzLgCAzeeofFkEANi8xAUA0EpcAACtxAUA0EpcAACtxAUA\n0EpcAACtxAUA0EpcAACtxAUA0EpcAACt/j9VSmx490nxBAAAAABJRU5ErkJggg==\n",
60+
"text/plain": [
61+
"<matplotlib.figure.Figure at 0x7f10bbdd6250>"
62+
]
63+
},
64+
"metadata": {},
65+
"output_type": "display_data"
66+
}
67+
],
68+
"source": [
69+
"z = np.meshgrid(np.arange(-1.0, 1.0, 0.01), np.arange(-1.0, 1.0, 0.01))\n",
70+
"print z[0].shape\n",
71+
"print z[1].shape\n",
72+
"# print z[0].ravel()\n",
73+
"k = np.c_[z[0].ravel(), z[1].ravel()]\n",
74+
"print k.shape\n",
75+
"\n",
76+
"plt.figure(0)\n",
77+
"plt.xlim(-1.0, 1.0)\n",
78+
"plt.ylim(-1.0, 1.0)\n",
79+
"\n",
80+
"plt.scatter(k[:k.shape[0]/2, 0], k[:k.shape[0]/2, 1], linewidths=0.1, color='red')\n",
81+
"plt.scatter(k[k.shape[0]/2:, 0], k[k.shape[0]/2:, 1], linewidths=0.1, color='green')"
82+
]
83+
}
84+
],
85+
"metadata": {
86+
"kernelspec": {
87+
"display_name": "Python 2",
88+
"language": "python",
89+
"name": "python2"
90+
},
91+
"language_info": {
92+
"codemirror_mode": {
93+
"name": "ipython",
94+
"version": 2
95+
},
96+
"file_extension": ".py",
97+
"mimetype": "text/x-python",
98+
"name": "python",
99+
"nbconvert_exporter": "python",
100+
"pygments_lexer": "ipython2",
101+
"version": "2.7.12"
102+
}
103+
},
104+
"nbformat": 4,
105+
"nbformat_minor": 2
106+
}

0 commit comments

Comments
 (0)