-
Notifications
You must be signed in to change notification settings - Fork 941
/
Copy pathagent-with-ui.py
135 lines (106 loc) · 4.55 KB
/
agent-with-ui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import asana
from asana.rest import ApiException
from openai import OpenAI
from dotenv import load_dotenv
from datetime import datetime
import streamlit as st
import json
import os
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage, ToolMessage
load_dotenv()
model = os.getenv('LLM_MODEL', 'gpt-4o')
configuration = asana.Configuration()
configuration.access_token = os.getenv('ASANA_ACCESS_TOKEN', '')
api_client = asana.ApiClient(configuration)
tasks_api_instance = asana.TasksApi(api_client)
@tool
def create_asana_task(task_name, due_on="today"):
"""
Creates a task in Asana given the name of the task and when it is due
Example call:
create_asana_task("Test Task", "2024-06-24")
Args:
task_name (str): The name of the task in Asana
due_on (str): The date the task is due in the format YYYY-MM-DD. If not given, the current day is used
Returns:
str: The API response of adding the task to Asana or an error message if the API call threw an error
"""
if due_on == "today":
due_on = str(datetime.now().date())
task_body = {
"data": {
"name": task_name,
"due_on": due_on,
"projects": [os.getenv("ASANA_PROJECT_ID", "")]
}
}
try:
api_response = tasks_api_instance.create_task(task_body, {})
return json.dumps(api_response, indent=2)
except ApiException as e:
return f"Exception when calling TasksApi->create_task: {e}"
def prompt_ai(messages, nested_calls=0):
if nested_calls > 5:
raise "AI is tool calling too much!"
# First, prompt the AI with the latest user message
tools = [create_asana_task]
asana_chatbot = ChatOpenAI(model=model) if "gpt" in model.lower() else ChatAnthropic(model=model)
asana_chatbot_with_tools = asana_chatbot.bind_tools(tools)
stream = asana_chatbot_with_tools.stream(messages)
first = True
for chunk in stream:
if first:
gathered = chunk
first = False
else:
gathered = gathered + chunk
yield chunk
has_tool_calls = len(gathered.tool_calls) > 0
# Second, see if the AI decided it needs to invoke a tool
if has_tool_calls:
# If the AI decided to invoke a tool, invoke it
available_functions = {
"create_asana_task": create_asana_task
}
# Add the tool request to the list of messages so the AI knows later it invoked the tool
messages.append(gathered)
# Next, for each tool the AI wanted to call, call it and add the tool result to the list of messages
for tool_call in gathered.tool_calls:
tool_name = tool_call["name"].lower()
selected_tool = available_functions[tool_name]
tool_output = selected_tool.invoke(tool_call["args"])
messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"]))
# Call the AI again so it can produce a response with the result of calling the tool(s)
additional_stream = prompt_ai(messages, nested_calls + 1)
for additional_chunk in additional_stream:
yield additional_chunk
def main():
st.title("Asana Chatbot")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = [
SystemMessage(content=f"You are a personal assistant who helps manage tasks in Asana. The current date is: {datetime.now().date()}")
]
# Display chat messages from history on app rerun
for message in st.session_state.messages:
message_json = json.loads(message.json())
message_type = message_json["type"]
if message_type in ["human", "ai", "system"]:
with st.chat_message(message_type):
st.markdown(message_json["content"])
# React to user input
if prompt := st.chat_input("What would you like to do today?"):
# Display user message in chat message container
st.chat_message("user").markdown(prompt)
# Add user message to chat history
st.session_state.messages.append(HumanMessage(content=prompt))
# Display assistant response in chat message container
with st.chat_message("assistant"):
stream = prompt_ai(st.session_state.messages)
response = st.write_stream(stream)
st.session_state.messages.append(AIMessage(content=response))
if __name__ == "__main__":
main()