-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclusteringEMnKmeans.m
149 lines (131 loc) · 4.16 KB
/
clusteringEMnKmeans.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
% ---------------------------------------------
%
% Clustering
% using EM and K-means
%
% Johan Dahlin ([email protected])
% 2013-03-19
%
% ---------------------------------------------
clear all;
lognpdf = @(x,m,s) (-1/2)*(length(x)*log(2*pi)+log(det(s))-(x-m)'/s*(x-m));
% Parameters
K=100; % Number of data points
% Generate data uniformly selected from three different Gaussians
for k=1:K
i(k)=randsample(3,1);
switch i(k)
case 1
x(k,:)=mvnrnd(-5*[1; 1],eye(2));
case 2
x(k,:)=mvnrnd(3*[-1; 1],eye(2));
case 3
x(k,:)=mvnrnd(0*[-1; 1],eye(2));
end
end
% Save the true index
i1=find(i==1); i2=find(i==2); i3=find(i==3);
% Plot the data
figure(1);
clf;
plot(x(i1,1),x(i1,2),'k*',x(i2,1),x(i2,2),'kx',x(i3,1),x(i3,2),'k.');
axis([-20 20 -20 20])
%% Inital distribution
% Pick random points as initial centers
tmp=randsample(K,3,'false');
mu1(1,:)=x(tmp(1),:);
mu2(1,:)=x(tmp(2),:);
mu3(1,:)=x(tmp(3),:);
% All classes have same covariance and prior
sigma1(:,:,1)=cov(x);
sigma2(:,:,1)=cov(x);
sigma3(:,:,1)=cov(x);
pihat(1,1)=1/3;
pihat(1,2)=1/3;
pihat(1,3)=1/3;
% Place data points into random classes and calculate the centers
ihat(1,:)=randsample(3,K,'true');
i1hat=find(ihat(1,:)==1);
i2hat=find(ihat(1,:)==2);
i3hat=find(ihat(1,:)==3);
c1mean(1,:)=mean(x(i1hat,:));
c2mean(1,:)=mean(x(i2hat,:));
c3mean(1,:)=mean(x(i3hat,:));
% Main loop
for n=1:100
% EM --------------------
% Plotting
if n>1
figure(1);
subplot(121);
plot(0,0);
hold on
for k=1:K
plot(x(k,1),x(k,2),'o','Color',[ghat(k,1) ghat(k,2) ghat(k,3)]);
end
plot(mu1(n,1),mu1(n,2),'cx','LineWidth',3)
plot(mu2(n,1),mu2(n,2),'cx','LineWidth',3)
plot(mu3(n,1),mu3(n,2),'cx','LineWidth',3)
hold off
title(['EM - iteration: ' num2str(n)]);
axis([-20 20 -20 20])
drawnow();
end
% Calculate log-likelihood
for k=1:K
tmp1=pihat(n,1)*mvnpdf(x(k,:),mu1(n,:),sigma1(:,:,n));
tmp2=pihat(n,2)*mvnpdf(x(k,:),mu2(n,:),sigma2(:,:,n));
tmp3=pihat(n,3)*mvnpdf(x(k,:),mu3(n,:),sigma3(:,:,n));
lltmp(k)=tmp1+tmp2+tmp3;
end
ll(n)=sum(log(lltmp));
% E-step
for k=1:K
ghat(k,1)=pihat(n,1)*mvnpdf(x(k,:),mu1(n,:),sigma1(:,:,n));
ghat(k,2)=pihat(n,2)*mvnpdf(x(k,:),mu2(n,:),sigma2(:,:,n));
ghat(k,3)=pihat(n,3)*mvnpdf(x(k,:),mu3(n,:),sigma3(:,:,n));
ghat(k,:)=ghat(k,:)./sum(ghat(k,:));
end
% M-step
N=sum(ghat);
mu1(n+1,:)=ghat(:,1)'*x/N(1);
mu2(n+1,:)=ghat(:,2)'*x/N(2);
mu3(n+1,:)=ghat(:,3)'*x/N(3);
sigma1(:,:,n+1)=zeros(2); sigma2(:,:,n+1)=zeros(2); sigma3(:,:,n+1)=zeros(2);
for k=1:K
sigma1(:,:,n+1)=sigma1(:,:,n+1)+ghat(k,1)*(x(k,:)-mu1(n+1,:))'*(x(k,:)-mu1(n+1,:))/N(1);
sigma2(:,:,n+1)=sigma2(:,:,n+1)+ghat(k,2)*(x(k,:)-mu2(n+1,:))'*(x(k,:)-mu2(n+1,:))/N(2);
sigma3(:,:,n+1)=sigma3(:,:,n+1)+ghat(k,3)*(x(k,:)-mu3(n+1,:))'*(x(k,:)-mu3(n+1,:))/N(3);
end
pihat(n+1,:)=N./K;
% K-means --------------------
% Plotting
figure(1);
subplot(122);
plot(x(i1hat,1),x(i1hat,2),'ro',x(i2hat,1),x(i2hat,2),'go',x(i3hat,1),x(i3hat,2),'bo');
hold on;
plot(c1mean(n,1),c1mean(n,2),'cx',c2mean(n,1),c2mean(n,2),'cx',c3mean(n,1),c3mean(n,2),'cx','LineWidth',3);
hold off;
axis([-20 20 -20 20])
title(['Kmeans - iteration: ' num2str(n)]);
drawnow();
% Calculate the distance from each data point to the centers
for k=1:K
dist1=norm(x(k,:)-c1mean(n,:),2);
dist2=norm(x(k,:)-c2mean(n,:),2);
dist3=norm(x(k,:)-c3mean(n,:),2);
[~,ihat(n,k)]=min([dist1 dist2 dist3]);
end
% Find the classes and update the centers
i1hat=find(ihat(n,:)==1);
i2hat=find(ihat(n,:)==2);
i3hat=find(ihat(n,:)==3);
c1mean(n+1,:)=mean(x(i1hat,:));
c2mean(n+1,:)=mean(x(i2hat,:));
c3mean(n+1,:)=mean(x(i3hat,:));
end
%% Plot the results
plot(x(i1,1),x(i1,2),'k*',x(i2,1),x(i2,2),'kx',...
x(i1hat,1),x(i1hat,2),'ro',x(i2hat,1),x(i2hat,2),'bo',...
c1mean(n+1,1),c1mean(n,2),'gx',c2mean(n,1),c2mean(n,2),'gx');
axis([-2 2 -2 2])