-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinpolymoll.m
260 lines (234 loc) · 7.55 KB
/
inpolymoll.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
function varargout=inpolymoll(lonv,latv,degres)
% [v,xp,yp,xgr,ygr,degres]=INPOLYMOLL(lonv,latv,degres)
%
% Finds the indices of a Mollweide grid that fall within a polygon
% defined by longitude and latitude pairs in degrees
%
% INPUT:
%
% lonv,latv Same-size arrays to define pairs of longitude and latitude
% degres Degree resolution of the underlying grid [default: 1]
%
% OUTPUT:
%
% v An index set that is plottable using PCOLOR
% xp,yp The Mollweide coordinates of the polygon
% xgr,ygr A Mollweide grid at the apppropriate resolution
% degres Degree resolution of the underlying grid [default: 1]
%
% SEE ALSO:
%
% INPOLYCUBE
%
% EXAMPLE:
%
% inpolymoll('demo1')
% inpolymoll('demo2')
%
% Last modified by fjsimons-at-alum.mit.edu, 10/17/2021
% Wherever you keep coastlines etc
defval('ddir',fullfile(getenv('IFILES'),'COASTS'))
if ~isstr(lonv)
% A default set of contours
lon0=123; lat0=46; rad0=15; npt0=100;
% Ouput first in spherical coordinates
[lon1,lat1]=caploc([lon0 lat0],rad0,npt0,1);
defval('lonv',lon1)
defval('latv',lat1)
defval('degres',1)
% Convert these inputs to Mollweide coordinates
[xp,yp]=mollweide(lonv*pi/180,latv*pi/180);
% Now make the Mollweide grid coordinates with a certain degree resolution
lon=linspace( 0,2*pi,2*pi/(degres*pi/180)+1);
lat=linspace(-pi/2,pi/2, pi/(degres*pi/180)+1);
[longr,latgr]=meshgrid(lon,lat);
[xgr,ygr]=mollweide(longr,latgr,pi);
% Now see what's inside - needs adaptation for straddlining the
% boundary - inside xbox and ybox - figure out boundary intersection
% and then deal with it appropriately
load(fullfile(ddir,'conm'))
% Where are the jumps?
[~,~,~,p]=penlift(xp,yp);
if length(p)==2
% First piece
xp1=[xp(p(2)+1:end) ; xp(1:p(1))];
yp1=[yp(p(2)+1:end) ; yp(1:p(1))];
v1=inpolybound(xgr,ygr,xp1,yp1,xbox,ybox,p);
% Second piece, do the same thing
xp2=xp(p(1)+1:p(2));
yp2=yp(p(1)+1:p(2));
v2=inpolybound(xgr,ygr,xp2,yp2,xbox,ybox,p);
% Patch them together
v=v1+v2;
elseif length(p)==1
% There is only one piece and we reassemble
xp=[xp(p+1:end) ; xp(1:p)];
yp=[yp(p+1:end) ; yp(1:p)];
% But we need to offer the boundaries in a different way, not E/W but N/S
% 1=ll 2=ul ; 3=ur ; 4=lr
x1=xbox(1:size(xbox,1)/2,1);
y1=ybox(1:size(ybox,1)/2,1);
x2=xbox(size(xbox,1)/2+1:end,1);
y2=ybox(size(ybox,1)/2+1:end,1);
x3=xbox(1:size(xbox,1)/2,2);
y3=ybox(1:size(ybox,1)/2,2);
x4=xbox(size(xbox,1)/2+1:end,2);
y4=ybox(size(ybox,1)/2+1:end,2);
% for index=1:size(xbox,1); plot(xbox(index,1),ybox(index,1),'+'); hold on ; pause ; end
% for index=1:size(xbox,2); plot(xbox(index,2),ybox(index,2),'+'); hold on ; pause ; end
xbox=[[x4 ; x1] [x2 ; x3]];
ybox=[[y4 ; y1] [y2 ; y3]];
v=inpolybound(xgr,ygr,xp,yp,xbox,ybox,p);
else
v=inpolygon(xgr,ygr,xp,yp);
end
% Interior verification
xver=0;
if xver
clf
plot(xbox,ybox,'-') ; hold on
pcolor(xgr,ygr,double(v)); shading flat
[xp,yp]=penlift(xp,yp);
plot(xp,yp,'-')
axis image
end
% Variable output
varns={v,xp,yp,xgr,ygr,degres};
varargout=varns(1:nargout);
elseif strcmp(lonv,'demo1')
% A bunch of handpicked ones
lon0=353; lat0=46; rad0=15; npt0=100;
[lon1,lat1]=caploc([lon0 lat0],rad0,npt0,1);
[v1,xp1,yp1,xgr,ygr]=inpolymoll(lon1,lat1);
lon0=143; lat0=41; rad0=12; npt0=100;
[lon2,lat2]=caploc([lon0 lat0],rad0,npt0,1);
[v2,xp2,yp2]=inpolymoll(lon2,lat2);
lon0=143; lat0=31; rad0=24; npt0=100;
[lon3,lat3]=caploc([lon0 lat0],rad0,npt0,1);
[v3,xp3,yp3]=inpolymoll(lon3,lat3);
% Make the plot of the combined hitcounts
pcolor(xgr,ygr,v1+v2+v3); shading flat
hold on
[xp1,yp1]=penlift(xp1,yp1);
[xp2,yp2]=penlift(xp2,yp2);
[xp3,yp3]=penlift(xp3,yp3);
p{1}=plot(xp1,yp1);
p{2}=plot(xp2,yp2);
p{3}=plot(xp3,yp3);
plotcont([],[],2)
plotplates([],[],2)
hold off
axis off image
set(p{1}(:),'LineStyle','-')
set(p{2}(:),'LineStyle','-')
set(p{3}(:),'LineStyle','-')
elseif strcmp(lonv,'demo2')
% A bunch of random ones
nrand=100;
lon0=rand(nrand,1)*360; lat0=90-rand(nrand,1)*180; rad0=rand(nrand,1)*20; npt0=100;
[lonv,latv]=caploc([lon0 lat0],rad0,npt0,1);
% Find the insides
for index=1:size(lonv,2)
% Next line for troubleshooting
% disp(sprintf('lon0=%f; lat0=%f; rad0=%f;',lon0(index),lat0(index),rad0(index)))
[v{index},xp(:,index),yp(:,index),xgr,ygr,degres]=inpolymoll(lonv(:,index),latv(:,index));
end
vv=sum(cat(3,v{:}),3);
pcolor(xgr,ygr,vv); shading flat
hold on
for index=1:size(lonv,2)
[xpp,ypp]=penlift(xp(:,index),yp(:,index));
p{index}=plot(xpp,ypp,'k','LineWidth',1);
end
plotcont([],[],2)
% plotplates([],[],2)
hold off
axis off
set(p{1}(:),'LineStyle','-')
set(p{2}(:),'LineStyle','-')
set(p{3}(:),'LineStyle','-')
axis image
t=title(sprintf(...
'%s for %i randomly distributed spherical patches\nMollweide resolution %4.2f%s - Maximum observed overlap %i',...
upper(mfilename),nrand,degres,str2mat(176),max(vv(:))));
set(t,'FontWeight','normal')
movev(t,0.1)
text(1.65,-1.4,copyright,'FontSize',6)
g=flipud(gray(1+max(vv(:)))); %g(1,:)=[1 1 1];
colormap(g)
% If you want a physical print
figdisp([],sprintf('%3i',nrand),[],2)
end
% Function to include the boundary in polygon finding
function v=inpolybound(xgr,ygr,xp,yp,xbox,ybox,p)
% Find the nearest boundary point to the first piece
% Watch out, these are Euclidean distances only to the defined points...
% Knowing that there are two distinct boundaries
xver=0;
if xver
plot(xbox,ybox,'-'); hold on
for index=1:size(xp,1); plot(xp(index),yp(index),'o'); hold on ; pause ; end
end
dxxp1=xxpdist([xp yp],[xbox(:,1) ybox(:,1)]);
dxxp2=xxpdist([xp yp],[xbox(:,2) ybox(:,2)]);
% Only one of them is the closest
[dmin1,i1]=min(dxxp1(:));
[dmin2,i2]=min(dxxp2(:));
% So you take the closest and that's your boundary now
if dmin1<dmin2
i=i1; xb=xbox(:,1); yb=ybox(:,1); sized=size(dxxp1);
else
i=i2; xb=xbox(:,2); yb=ybox(:,2); sized=size(dxxp2);
end
% The ith point on the curve is closest to the jth point on the boundary
[i1,j1]=ind2sub(sized,i);
% Finding anything but the first or last points is highly suspect, probably due to
% not sampling the boundary finely enough... may need to go further back
if i1==2
i1=1;
end
if i1==length(xp)-1
i1=length(xp);
end
% If it's not (first or) last you should reorder the curve from that beginning
if i1~=size(xp,1)
xp=[xp(i1:end) ; xp(1:i1-1)];
yp=[yp(i1:end) ; yp(1:i1-1)];
% So you know the first point on the curve and its closest boundary
i1=1;
% Now you'll find the closest to the last point on the boundary
i2=size(xp,1);
else
% So you know the last point on the curve and its closest boundary
% Now you'll find the closest to the first point on the boundary
i2=1;
end
if xver
plot(xp(i1),yp(i1),'+'); plot(xb(j1),yb(j1),'v')
end
% And then you have to find one more point
dxxp=xxpdist([xp(i2) yp(i2)],[xb yb]);
[dmin,j2]=min(dxxp(:));
if xver
plot(xp(i2),yp(i2),'+'); plot(xb(j2),yb(j2),'^')
end
% And then you define the new polygon with the boundary segment
if j1<j2
xb=xb(j1:j2);
yb=yb(j1:j2);
else
xb=xb(j2:j1);
yb=yb(j2:j1);
end
% The flip orders the curve, might need to be conditioned on a penlift
xpp=[xp ; flipud(xb)];
ypp=[yp ; flipud(yb)];
if xver
for index=1:size(xb,1); plot(xb(index),yb(index),'+'); hold on ; pause ; end
for index=1:size(xpp,1); plot(xpp(index),ypp(index),'v'); hold on ; pause ; end
end
% Finally find where it's at
v=inpolygon(xgr,ygr,xpp,ypp);
if xver
pcolor(xgr,ygr,double(v)); shading flat
end