-
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsimple-prompt.cpp
292 lines (253 loc) · 11.8 KB
/
simple-prompt.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#include "llama.h"
#include "llama-sampling.h"
#include <cstdio>
#include <string>
#include <cstdlib>
#include <vector>
#include <algorithm>
const char* BLUE = "\033[0;34m";
const char* GREEN = "\033[0;32m";
const char* ORANGE = "\033[0;33m";
const char* RESET = "\033[0m";
std::string token_as_string(llama_model* model, llama_token token) {
int lsplit = 0;
bool special = false;
std::vector<char> piece(8, 0);
int n_tokens = llama_token_to_piece(model, token, piece.data(), piece.size(), lsplit, special);
if (n_tokens < 0) {
piece.resize(-n_tokens);
llama_token_to_piece(model, token, piece.data(), piece.size(), lsplit, special);
} else {
piece.resize(n_tokens);
}
return std::string(piece.data(), piece.size());
}
void print_top_logits(llama_model* model, llama_context* ctx) {
float* logits = llama_get_logits(ctx);
printf("%sTop 5 logits:%s\n", BLUE, RESET);
std::vector<std::pair<llama_token, float>> top_logits;
for (int i = 0; i < llama_n_vocab(model); i++) {
top_logits.push_back(std::make_pair(i, logits[i]));
}
std::partial_sort(top_logits.begin(), top_logits.begin() + 5, top_logits.end(),
[](const std::pair<llama_token, float>& a,
const std::pair<llama_token, float>& b) {
return a.second > b.second;
});
for (int i = 0; i < 5; i++) {
printf("%sToken %d (%s): %f%s\n",
BLUE,
top_logits[i].first,
token_as_string(model, top_logits[i].first).c_str(),
top_logits[i].second,
RESET);
}
}
int main(int argc, char** argv) {
llama_model_params model_params = llama_model_default_params();
// parse the two optional integers named "main_gpu" and "n_gpu_layers" and set the default to zero if they are not provided.
int main_gpu = 1;
int num_gpu_layers = 33;
std::string model_path = "models/llama-2-7b.Q4_K_M.gguf";
//std::string model_path = "models/llama-2-7b.Q4_0.gguf";
if (argc > 1) {
main_gpu = atoi(argv[1]);
}
if (argc > 2) {
num_gpu_layers = atoi(argv[2]);
}
if (argc > 3) {
model_path = argv[3];
}
model_params.main_gpu = main_gpu;
model_params.n_gpu_layers = num_gpu_layers;
fprintf(stdout, "llama.cpp example using model: %s\n", model_path.c_str());
// If the prompt provided is in the form of a question like it is here
// the model will predict the first token to be a new line, completing the
// prompt with a new line. It will then predict the next token to be the
// another new line.
std::string prompt = "What is LoRA?";
llama_backend_init();
//llama_numa_init(GGML_NUMA_STRATEGY_DISABLED);
llama_model* model = llama_load_model_from_file(model_path.c_str(), model_params);
if (model == NULL) {
fprintf(stderr , "%s: error: failed to to load model %s\n" , __func__, model_path.c_str());
return 1;
}
llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = 1024;
ctx_params.n_threads = 1;
ctx_params.n_threads_batch = 1;
ctx_params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR;
//struct llama_sampler* sampler = llama_sampler_init_greedy();
auto sparams = llama_sampler_chain_default_params();
llama_sampler* sampler = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(sampler, llama_sampler_init_softmax());
llama_sampler_chain_add(sampler, llama_sampler_init_dist(1234));
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
// Tokenize the prompt.
const int add_bos_token = llama_add_bos_token(model);
const bool add_bos = add_bos_token != -1 ? bool(add_bos_token) :
(llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM); // SPM = SentencePiece Model
printf("%sprompt.len: %ld%s\n", ORANGE, prompt.length(), RESET);
int n_tokens = prompt.length() + add_bos;
std::vector<llama_token> input_tokens(n_tokens);
n_tokens = llama_tokenize(model,
prompt.data(),
prompt.length(),
input_tokens.data(),
input_tokens.size(),
true,
false);
// llama_tokenize will return the negative length of the token if
// it is longer that the passed in result.length. If that is the case
// then we need to resize the result vector to the length of the token
// and call llama_tokenize again.
if (n_tokens < 0) {
input_tokens.resize(-n_tokens);
int new_len = llama_tokenize(model, prompt.data(), prompt.length(), input_tokens.data(), input_tokens.size(), add_bos, false);
} else {
input_tokens.resize(n_tokens);
}
fprintf(stderr, "\n");
printf("%sn_tokens: %d%s\n", ORANGE, n_tokens, RESET);
// Create a new batch
llama_batch batch = llama_batch_init(512,/*embd*/ 0, /*n_seq_max*/ 1);
// batch.token will be a pointer to llama_token with a bytes size of 2048
// sizeof(llama_token) = 4, 4 * n_tokens = 2048, so it will be able to
// store 512 tokens.
// batch.pos is similarly a pointer to llama_pos with a bytes size of 2048
// sizeof(llama_pos) = 4, 4 * n_tokens = 2048, so it will be able to
// store 512 positions.
// n_seq_max is the max number of sequences in the batch.
// batch.logits is an array of bools with a bytes size of 512.
// Next we are going to populate the batch we created above. For each token
// of the tokenized prompt we are going to add it to the the batch.
for (int i = 0; i < n_tokens; i++) {
// the token of this batch entry.
batch.token[i] = input_tokens[i];
// the position in the sequence of this batch entry.
batch.pos[i] = i,
// the number of sequence id's of this batch entry.
batch.n_seq_id[i] = 1;
batch.seq_id[i][0] = 0; // the sequence id
// Determines if the logits for this token should be generated or not.
batch.logits[i] = false;
// Increment the number of tokens in the batch.
batch.n_tokens++;
}
// Instruct llama to generate the logits for the last token
batch.logits[batch.n_tokens - 1] = true;
printf("%sbatch.n_tokens: %d%s\n", ORANGE, batch.n_tokens, RESET);
printf("%sbatch.tokens: [%s", ORANGE, RESET);
for (int i = 0; i < batch.n_tokens; i++) {
printf("%s%d, %s",ORANGE, batch.token[i], RESET);
}
printf("%s]%s\n" , ORANGE, RESET);
printf("%sprompt: %s%s\n", ORANGE, prompt.c_str(), RESET);
// Now we run the inference on the batch. This will populate the logits
// for the last token in the batch.
printf("%sFirst decode. kv_cache count: %d%s\n", ORANGE, llama_get_kv_cache_token_count(ctx), RESET);
if (llama_decode(ctx, batch) != 0) {
fprintf(stderr, "llama_decode() failed\n");
return 1;
}
// Get the current state
struct llama_kv_cache_view kv_view = llama_kv_cache_view_init(ctx, 1);
llama_kv_cache_view_update(ctx, &kv_view);
printf("%skv n_cells: %d%s\n", GREEN, kv_view.n_cells, RESET);
printf("%skv used_cells: %d%s\n", GREEN, kv_view.used_cells, RESET);
printf("%skv n_seq_max: %d%s\n", GREEN, kv_view.n_seq_max, RESET);
printf("%skv token_count: %d%s\n", GREEN, kv_view.token_count, RESET);
printf("%skv max_contiguous: %d%s\n", GREEN, kv_view.max_contiguous, RESET);
//for (int i = 0; i < kv_view.n_cells; i++) {
// Print out the first 20 cells
for (int i = 0; i < 20; i++) {
struct llama_kv_cache_view_cell cv = kv_view.cells[i];
printf("%scell[%d].pos: %d%s\n", GREEN, i, cv.pos, RESET);
}
printf("%skv_cache_token count: %d%s\n", ORANGE, llama_get_kv_cache_token_count(ctx), RESET);
print_top_logits(model, ctx);
// This is the total number of tokens that we will generate, which recall
// includes our query tokens (they are all in the llm_batch).
const int n_len = 20;
int n_cur = batch.n_tokens;
int n_decode = batch.n_tokens;
int n_vocab = llama_n_vocab(model);
float* all_logits = llama_get_logits(ctx);
// All the logits are stored in a 2d vector std::vector<float> logits
// where the first dimension is the number of tokens in the batch and
// the second dimension is the number of tokens in the vocabulary.
float* last_logits = all_logits + (batch.n_tokens - 1) * n_vocab;
int n_batch_tokens = batch.n_tokens;
//while (true) {
while (n_cur <= n_len) {
const llama_token new_token_id = llama_sampler_sample(sampler, ctx, -1);
llama_sampler_reset(sampler);
// This is the token id that the model predicted.
// is it an end of stream?
if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
fprintf(stderr, "\n");
fflush(stderr);
break;
}
// Next we get the string value for the token id. This is called a
// piece // which I think comes from SentencePiece.
// We don't know that actual length of the token so we are using
// 8 here a "guess". If the token is longer than 8 bytes then we
// will resize the result vector and call llama_token_to_piece again.
int lsplit = 0;
bool special = false;
std::vector<char> piece(8, 0);
int n_tokens = llama_token_to_piece(model, new_token_id, piece.data(), piece.size(), lsplit, special);
// llama_token_to_piece will return the negative length of the token if
// it is longer that the passed in result.length. If that is the case
// then we need to resize the result vector to the length of the token
// and call llama_token_to_piece again.
if (n_tokens < 0) {
piece.resize(-n_tokens);
int new_len = llama_token_to_piece(model, new_token_id, piece.data(), piece.size(), lsplit, special);
} else {
piece.resize(n_tokens);
}
std::string piece_str = std::string(piece.data(), piece.size());
printf("%s%s%s", GREEN, piece_str.c_str(), RESET);
// stdout is line buffered and we are not printing a newline so we
// above so we need to call flush.
fflush(stderr);
// So we initially had a batch of size equal to the number of tokens
// of the prompt. Now, we want to pass in the token that we just
// predicted to the model and get the logits for the next token.
// Update the batch to include the new token id, and the position of the
// token in the sequence.
llama_batch single_token_batch = llama_batch_init(1,/*embd*/ 0, /*n_seq_max*/ 1);
single_token_batch.n_tokens = 1; // We are only passing in one token.
single_token_batch.token[0] = new_token_id; // the new token id.
single_token_batch.pos[0] = n_cur, // the position in the sequence.
single_token_batch.n_seq_id[0] = 1; // the number of sequences for this token.
single_token_batch.seq_id[0][0] = 0; // the actual sequence id.
single_token_batch.logits[0] = true;
n_batch_tokens = single_token_batch.n_tokens;
n_decode += 1;
n_cur += 1;
// With the new token added to the batch, we can now predict the
// next token.
if (llama_decode(ctx, single_token_batch)) {
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
return 1;
}
print_top_logits(model, ctx);
llama_batch_free(single_token_batch);
}
fprintf(stdout, "\nDecoded %d tokens\n", n_decode);
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
llama_kv_cache_view_free(&kv_view);
return 0;
}