|
| 1 | +from types import ModuleType |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import pytest |
| 5 | + |
| 6 | +from array_api_extra._lib import Backend |
| 7 | +from array_api_extra._lib._testing import xp_assert_equal |
| 8 | +from array_api_extra._lib._utils._compat import device as get_device |
| 9 | +from array_api_extra._lib._utils._helpers import asarrays, in1d |
| 10 | +from array_api_extra._lib._utils._typing import Device |
| 11 | +from array_api_extra.testing import lazy_xp_function |
| 12 | + |
| 13 | +# mypy: disable-error-code=no-untyped-usage |
| 14 | + |
| 15 | +# FIXME calls xp.unique_values without size |
| 16 | +lazy_xp_function(in1d, jax_jit=False, static_argnames=("assume_unique", "invert", "xp")) |
| 17 | + |
| 18 | + |
| 19 | +class TestIn1D: |
| 20 | + @pytest.mark.xfail_xp_backend( |
| 21 | + Backend.SPARSE, reason="no unique_inverse, no device kwarg in asarray()" |
| 22 | + ) |
| 23 | + # cover both code paths |
| 24 | + @pytest.mark.parametrize( |
| 25 | + "n", |
| 26 | + [ |
| 27 | + pytest.param(9, id="fast path"), |
| 28 | + pytest.param( |
| 29 | + 15, |
| 30 | + id="slow path", |
| 31 | + marks=pytest.mark.xfail_xp_backend( |
| 32 | + Backend.DASK, reason="NaN-shaped array" |
| 33 | + ), |
| 34 | + ), |
| 35 | + ], |
| 36 | + ) |
| 37 | + def test_no_invert_assume_unique(self, xp: ModuleType, n: int): |
| 38 | + x1 = xp.asarray([3, 8, 20]) |
| 39 | + x2 = xp.arange(n) |
| 40 | + expected = xp.asarray([True, True, False]) |
| 41 | + actual = in1d(x1, x2) |
| 42 | + xp_assert_equal(actual, expected) |
| 43 | + |
| 44 | + @pytest.mark.xfail_xp_backend(Backend.SPARSE, reason="no device kwarg in asarray") |
| 45 | + def test_device(self, xp: ModuleType, device: Device): |
| 46 | + x1 = xp.asarray([3, 8, 20], device=device) |
| 47 | + x2 = xp.asarray([2, 3, 4], device=device) |
| 48 | + assert get_device(in1d(x1, x2)) == device |
| 49 | + |
| 50 | + @pytest.mark.skip_xp_backend(Backend.NUMPY_READONLY, reason="xp=xp") |
| 51 | + @pytest.mark.xfail_xp_backend( |
| 52 | + Backend.SPARSE, reason="no arange, no device kwarg in asarray" |
| 53 | + ) |
| 54 | + def test_xp(self, xp: ModuleType): |
| 55 | + x1 = xp.asarray([1, 6]) |
| 56 | + x2 = xp.arange(5) |
| 57 | + expected = xp.asarray([True, False]) |
| 58 | + actual = in1d(x1, x2, xp=xp) |
| 59 | + xp_assert_equal(actual, expected) |
| 60 | + |
| 61 | + |
| 62 | +class TestAsArrays: |
| 63 | + @pytest.mark.xfail_xp_backend(Backend.SPARSE, reason="no isdtype") |
| 64 | + @pytest.mark.parametrize( |
| 65 | + ("dtype", "b", "defined"), |
| 66 | + [ |
| 67 | + # Well-defined cases of dtype promotion from Python scalar to Array |
| 68 | + # bool vs. bool |
| 69 | + ("bool", True, True), |
| 70 | + # int vs. xp.*int*, xp.float*, xp.complex* |
| 71 | + ("int16", 1, True), |
| 72 | + ("uint8", 1, True), |
| 73 | + ("float32", 1, True), |
| 74 | + ("float64", 1, True), |
| 75 | + ("complex64", 1, True), |
| 76 | + ("complex128", 1, True), |
| 77 | + # float vs. xp.float, xp.complex |
| 78 | + ("float32", 1.0, True), |
| 79 | + ("float64", 1.0, True), |
| 80 | + ("complex64", 1.0, True), |
| 81 | + ("complex128", 1.0, True), |
| 82 | + # complex vs. xp.complex |
| 83 | + ("complex64", 1.0j, True), |
| 84 | + ("complex128", 1.0j, True), |
| 85 | + # Undefined cases |
| 86 | + ("bool", 1, False), |
| 87 | + ("int64", 1.0, False), |
| 88 | + ("float64", 1.0j, False), |
| 89 | + ], |
| 90 | + ) |
| 91 | + def test_array_vs_scalar( |
| 92 | + self, dtype: str, b: int | float | complex, defined: bool, xp: ModuleType |
| 93 | + ): |
| 94 | + a = xp.asarray(1, dtype=getattr(xp, dtype)) |
| 95 | + |
| 96 | + xa, xb = asarrays(a, b, xp) |
| 97 | + assert xa.dtype == a.dtype |
| 98 | + if defined: |
| 99 | + assert xb.dtype == a.dtype |
| 100 | + else: |
| 101 | + assert xb.dtype == xp.asarray(b).dtype |
| 102 | + |
| 103 | + xbr, xar = asarrays(b, a, xp) |
| 104 | + assert xar.dtype == xa.dtype |
| 105 | + assert xbr.dtype == xb.dtype |
| 106 | + |
| 107 | + def test_scalar_vs_scalar(self, xp: ModuleType): |
| 108 | + a, b = asarrays(1, 2.2, xp=xp) |
| 109 | + assert a.dtype == xp.asarray(1).dtype # Default dtype |
| 110 | + assert b.dtype == xp.asarray(2.2).dtype # Default dtype; not broadcasted |
| 111 | + |
| 112 | + ALL_TYPES: tuple[str, ...] = ( |
| 113 | + "int8", |
| 114 | + "int16", |
| 115 | + "int32", |
| 116 | + "int64", |
| 117 | + "uint8", |
| 118 | + "uint16", |
| 119 | + "uint32", |
| 120 | + "uint64", |
| 121 | + "float32", |
| 122 | + "float64", |
| 123 | + "complex64", |
| 124 | + "complex128", |
| 125 | + "bool", |
| 126 | + ) |
| 127 | + |
| 128 | + @pytest.mark.parametrize("a_type", ALL_TYPES) |
| 129 | + @pytest.mark.parametrize("b_type", ALL_TYPES) |
| 130 | + def test_array_vs_array(self, a_type: str, b_type: str, xp: ModuleType): |
| 131 | + """ |
| 132 | + Test that when both inputs of asarray are already Array API objects, |
| 133 | + they are returned unchanged. |
| 134 | + """ |
| 135 | + a = xp.asarray(1, dtype=getattr(xp, a_type)) |
| 136 | + b = xp.asarray(1, dtype=getattr(xp, b_type)) |
| 137 | + xa, xb = asarrays(a, b, xp) |
| 138 | + assert xa.dtype == a.dtype |
| 139 | + assert xb.dtype == b.dtype |
| 140 | + |
| 141 | + @pytest.mark.parametrize("dtype", [np.float64, np.complex128]) |
| 142 | + def test_numpy_generics(self, dtype: type): |
| 143 | + """ |
| 144 | + Test special case of np.float64 and np.complex128, |
| 145 | + which are subclasses of float and complex. |
| 146 | + """ |
| 147 | + a = dtype(0) |
| 148 | + xa, xb = asarrays(a, 0, xp=np) |
| 149 | + assert xa.dtype == dtype |
| 150 | + assert xb.dtype == dtype |
0 commit comments