-
Notifications
You must be signed in to change notification settings - Fork 0
/
atom.xml
68 lines (63 loc) · 3.13 KB
/
atom.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
<?xml version="1.0" encoding="UTF-8" ?>
<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
<channel>
<atom:link href="https://blog.alvarezrosa.com/rss.xml"
rel="self"
type="application/rss+xml" />
<title>David Álvarez Rosa | Personal Blog</title>
<link>https://blog.alvarezrosa.com/</link>
<language>en</language>
<description>
My personal Blog site. Stuff I've written, mainly about Technology and
Mathematics. By David Álvarez Rosa.
</description>
<image>
<url>https://david.alvarezrosa.com/img/favicon.ico</url>
<title>Icon for David Álvarez Rosa Personal Website.</title>
<link>https://blog.alvarezrosa.com/</link>
</image>
<webMaster>[email protected] (David Álvarez Rosa)</webMaster>
<item>
<title>Hello World!</title>
<guid>https://blog.alvarezrosa.com/hello-world.php</guid>
<link>https://blog.alvarezrosa.com/hello-world.php</link>
<author>[email protected] (David Álvarez Rosa)</author>
<pubDate>Thu, 07 Nov 2019 16:53:04 -0500</pubDate>
<category>Blog</category>
<category>Entry</category>
<category>Greeting</category>
<description><![CDATA[ As when starting anything new in CS, <em>Hello
World!</em> This blog post is dated the day my personal website
<strong>went live</strong>. Either way, hello again. If you happen to be
interested, feel free to <strong>subscribe</strong> using the above RSS
file or to get in touch by clicking on the link in the homepage.
]]></description>
</item>
<item>
<title>Implementing a Neural Network from scratch - Part 1</title>
<guid>https://blog.alvarezrosa.com/neural-network-part1.php</guid>
<link>https://blog.alvarezrosa.com/neural-network-part1.php</link>
<author>[email protected] (David Álvarez Rosa)</author>
<pubDate>Sat, 11 Apr 2020 16:53:04 -0500</pubDate>
<category>Neural Network</category>
<category>AI</category>
<category>Deep Learning</category>
<category>Machine Learning</category>
<category>C++</category>
<category>Implementation</category>
<category>Scratch</category>
<description><![CDATA[ <strong class="abstract">Abstract</strong>. The
first entry of this blog series of implementing a Neural Network in C++
will be covering the <strong>mathematical theory</strong> behind the fully
connected layered artificial neural networks. We will start by defining
its <a href="#sec:topology" title="Scroll to network topology section.">
topology</a> and its core <strong>components</strong>. Then we will dicuss
how a neural network works (namely <a href="#sec:forward" title="Scroll to
feed forward section."> forward propagation</a>) This blog entry will
finish by <strong>reformulating</strong> the learning problem from a
mathematical optimization point of view and deriving the
<em>well-known</em> <a href="#sec:backward" title="Scroll to backward
propagation section"> backward propagation</a> formula. ]]></description>
</item>
</channel>
</rss>