-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathui.R
124 lines (116 loc) · 3.66 KB
/
ui.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#TITLE:----
##Experimentation with LSTM----
##networks for time series----
##forecasting----
#ABOUT:----
# App to carry out simple experiments of the use of LSTM networks in
# time series forecasting. It allows users to solve univariate and
# multivariate regression problems by testing different set of
# features, and comparing the effectiveness of the obtained results.
#REQUIREMENT:----
# Install the libraries specified in the LIBRARIES section before
# you run the app. This can be done as follow:
# install.packages(c("shiny","shinyalert","shinycssloaders",...))
#RUN APP:----
# Alternative you can run the app by:
# - Clone it from github:
# shiny::runGitHub(repo = "davidrsch/LSTM-regressionexperiment", ref = "main")
# - Or try it on shinyapps.io:
# https://daviddrsch.shinyapps.io/experimentwithLSTMnetforTSforecast/
#CREATOR INFO:----
# - Name: David Díaz Rodríguez
# - Email: [email protected]
# - LinkedIn: https://www.linkedin.com/in/david-d-6257951b8
# - GitHub: https://github.com/davidrsch
# - Stackoverflow: https://stackoverflow.com/users/12660035/
# - ORCid: https://orcid.org/0000-0002-0927-9795
#SUPPORT:----
# Buy me a coffe with:
# - Bitcoin: https://drive.google.com/uc?export=view&id=1qxCy-QLbhG8t_KakHSU24af0Z_CjzKBq
# - Ethereum: https://drive.google.com/uc?export=view&id=1cDTplii0HMth8ys6NSQjfLwL70i2TnC4
# - TetherUS: https://drive.google.com/uc?export=view&id=1U2vwzXhIWBMGT0LGw7RUPt9MxPG3iIBf
#LIBRARIES----
library(shiny)
library(shinyalert)
library(shinycssloaders)
library(shinyglide)
library(shinyjs)
library(shinyWidgets)
library(abind)
library(callr)
library(dplyr)
library(DT)
library(english)
library(htmlwidgets)
library(jsonlite)
library(keras)
library(Metrics)
library(tensorflow)
library(future)
library(readxl)
library(readr)
library(tools)
library(ggplot2)
library(GGally)
library(pastecs)
library(plotly)
library(rhandsontable)
library(rmarkdown)
library(runner)
library(tseries)
library(scales)
library(zip)
#UI CODE----
ui <- fluidPage(
useShinyjs(),
tags$head(
tags$link(rel = "stylesheet", type = "text/css", href = "stylesheet.css")
),
##App container----
div(
###Title----
div(
id="titlediv",
titlePanel(
title = h1("Experimentation with LSTM networks for Time series forecasting",
style = "text-align: center; border: 1px solid black; padding:10px 0 10px 0"),
windowTitle = "LSTMexperimentation"
)
),
###App Main Panel----
div(
mainPanel(
####Tabset Panel containing app sections----
tabsetPanel(
id = "Main_tabsetpanel",
#####01-Wellcome Panel----
tabPanel(
title = "Wellcome",
source(
file = "www/Panels/1_Wellcome/Wellcome.R",
encoding = 'UTF-8')$value,
value = "WELLCOME_TABPANEL"
),
#####02-Upload Data Panel----
tabPanel(
title = "Upload Data",
source(file = "www/Panels/2_Uploading_data/UI/UI_UD.R")$value
),
#####03-Selecting Features Panel----
tabPanel(
title = "Selecting Features",
source(file = "www/Panels/3_Selecting_features/UI/UI_SF.R")$value
),
#####04-Results Panel----
tabPanel(
title = "Results",
source(file = "www/Panels/4_Results/UI/UI_R.R")$value
)
),
###App Main Panel Style----
style = "width: 100%; height:100%; background-color: white; padding: 1%"
),
style = "margin: 0 -1.0% 0 -1.0%"
)
)
)