forked from yusong-tan/MARS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
139 lines (108 loc) · 4.08 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from __future__ import division
import csv
import numpy as np
import pdb
import os
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class Logger(object):
def __init__(self, path, header, resume_path, begin_epoch):
if (not os.path.exists(path)) or (resume_path==''):
self.log_file = open(path, 'w+')
self.logger = csv.writer(self.log_file, delimiter='\t')
self.logger.writerow(header)
else:
self.log_file = open(path, 'r+')
self.logger = csv.writer(self.log_file, delimiter='\t')
reader = csv.reader(self.log_file, delimiter='\t')
lines = []
print("begin = ", begin_epoch)
for line in reader:
lines.append(line)
if len(lines) == begin_epoch +1 :
break
self.log_file.close()
self.log_file = open(path, 'w')
self.logger = csv.writer(self.log_file, delimiter='\t')
self.logger.writerows(lines[:begin_epoch+1])
self.log_file.flush()
self.header = header
def __del(self):
self.log_file.close()
def log(self, values):
write_values = []
for col in self.header:
assert col in values
write_values.append(values[col])
self.logger.writerow(write_values)
self.log_file.flush()
class Logger_MARS(object):
def __init__(self, path, header, resume_path, begin_epoch):
if resume_path == '':
self.log_file = open(path, 'w+')
self.logger = csv.writer(self.log_file, delimiter='\t')
self.logger.writerow(header)
else:
self.log_file = open(path, 'r+')
self.logger = csv.writer(self.log_file, delimiter='\t')
reader = csv.reader(self.log_file, delimiter='\t')
lines = []
print("begin = ", begin_epoch)
for line in reader:
lines.append(line)
if len(lines) == begin_epoch +1 :
break
self.log_file.close()
self.log_file = open(path, 'w')
self.logger = csv.writer(self.log_file, delimiter='\t')
self.logger.writerows(lines[:begin_epoch+1])
self.log_file.flush()
self.header = header
def __del(self):
self.log_file.close()
def log(self, values):
write_values = []
for col in self.header:
assert col in values
write_values.append(values[col])
self.logger.writerow(write_values)
self.log_file.flush()
def load_value_file(file_path):
with open(file_path, 'r') as input_file:
value = float(input_file.read().rstrip('\n\r'))
return value
def calculate_accuracy(outputs, targets):
batch_size = targets.size(0)
_, pred = outputs.topk(1, 1, True)
pred = pred.t()
correct = pred.eq(targets.view(1, -1))
n_correct_elems = correct.float().sum().item()
return n_correct_elems / batch_size
def calculate_accuracy5(outputs, targets):
batch_size = targets.size(0)
pred = outputs.topk(5, 1, True)[1].data[0].tolist()
print("true = ", targets.view(1, -1).data[0].tolist()[0], "pred = ", pred)
correct = targets.view(1, -1).data[0].tolist()[0] in pred
print(correct)
n_correct_elems = int(correct)
return n_correct_elems / batch_size
def calculate_accuracy_video(output_buffer, i):
true_value = output_buffer[: i+1,-1]
pred_value = np.argmax(output_buffer[:i+1, :-1], axis = 1)
# print(output_buffer[0:3,:])
# print(true_value)
# print(pred_value)
# print("accuracy = ", 1*(np.equal(true_value, pred_value)).sum()/len(true_value))
return 1*(np.equal(true_value, pred_value)).sum()/len(true_value)