-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistributions.py
297 lines (223 loc) · 8.1 KB
/
distributions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import numpy as np
import scipy
import scipy.stats as stats
from scipy.misc import factorial
class Distribution(object):
def dim(self):
raise NotImplementedError('abstract base class')
def predict(self, cond=None):
raise NotImplementedError('abstract base class')
def sample(self, cond=None, key_prefix=""):
raise NotImplementedError('abstract base class')
def log_p(self, x, cond=None, key_prefix=""):
raise NotImplementedError('abstract base class')
def deriv_log_p(self, x, idx=None, cond=None, cond_key=None, cond_idx=None, lp0=None, eps=1e-4, **kwargs):
"""
Derivative of log P(X = x | cond = cond) with
respect to x_idx (if idx is not None) or with
respect to cond[cond_key]_{cond_idx} (if those
quantities are not None).
The default implementation computes a numerical
approximation to the derivative:
df/dx ~= f(x + eps)
"""
lp0 = lp0 if lp0 else self.log_p(x=x, cond=cond, **kwargs)
if cond_key is None:
# we're computing df/dx
if idx is None:
# assume x is scalar
deriv = ( self.log_p(x = x + eps, cond=cond, **kwargs) - lp0 ) / eps
else:
x[idx] += eps
deriv = ( self.log_p(x = x, cond=cond, **kwargs) - lp0 ) / eps
x[idx] -= eps
else:
# we're computing df/dcond[cond_key]
if cond_idx is None:
cond[cond_key] += eps
deriv = ( self.log_p(x = x, cond=cond, **kwargs) - lp0 ) / eps
cond[cond_key] -= eps
else:
cond[cond_key][cond_idx] += eps
deriv = ( self.log_p(x = x, cond=cond, **kwargs) - lp0 ) / eps
cond[cond_key][cond_idx] -= eps
return deriv
def dump_to_file(self, fname):
with open(fname, 'wb') as f:
cPickle.dump(self, f, cPickle.HIGHEST_PROTOCOL)
@staticmethod
def load_from_file(fname):
raise NotImplementedError('abstract base class')
def save_to_db(self, dbconn):
raise NotImplementedError('abstract base class')
@staticmethod
def load_from_db(dbconn, return_extra=False):
raise NotImplementedError('abstract base class')
class Gamma(Distribution):
def __init__(self, alpha, beta):
self.alpha = alpha
self.beta = beta
def log_p(self, x, **kwargs):
alpha = self.alpha
beta = self.beta
if x < 0.0: return np.log(1e-300)
# the special case of an exponential distribution is defined even when x==0
if alpha == 1: return np.log(beta) - beta*x
if x == 0.0: return np.log(1e-300)
lp = alpha*np.log(beta) - scipy.special.gammaln(alpha) + (alpha-1)*np.log(x) - beta*x
if np.isnan(lp):
lp = np.float("-inf")
return lp
def deriv_log_p(self, x):
alpha = self.alpha
beta = self.beta
if x == 0.0: return 1000.0
return (alpha-1)/x - beta
def predict(self, **kwargs):
return self.alpha/self.beta
def sample(self, **kwargs):
return stats.gamma.rvs(self.alpha, scale=1.0/self.beta, loc=0., n=1)
class InvGamma(Distribution):
# mean: beta/(alpha-1)
# mode: beta/(alpha+1)
# variance: beta^2 / ( (alpha-1)^2 (alpha-2) )
def __init__(self, alpha, beta):
self.alpha = alpha
self.beta = beta
def predict(self):
return self.beta / (self.alpha+1) # return the mode, since the mean isn't always defined
def log_p(self, x):
alpha = self.alpha
beta = self.beta
if alpha <= 0 or beta <= 0:
return np.float("-inf")
if x == 0.0: return np.log(1e-300)
lp = alpha*np.log(beta) - scipy.special.gammaln(alpha) - (alpha+1)*np.log(x) - beta/x
if np.isnan(lp):
lp = np.float("-inf")
return lp
def deriv_log_p(self, x):
alpha = self.alpha
beta = self.beta
if x == 0.0: return 1000.0
return beta/(x**2) - (alpha+1)/x
class LogNormal(Distribution):
def __init__(self, mu, sigma):
self.mu = mu
self.sigma = sigma
def log_p(self, x):
mu = self.mu
sigma = self.sigma
if x == 0.0: return np.log(1e-300)
lp = -1 * np.log(x) - .5 * np.log(2*np.pi) - np.log(sigma) - .5 * (np.log(x) - mu)**2 / sigma**2
if np.isnan(lp):
lp = np.float("-inf")
return lp
def deriv_log_p(self, x):
mu = self.mu
sigma = self.sigma
if x == 0.0: return 1000.0
return (-1 -(np.log(x) - mu)/(sigma**2)) / x
def predict(self):
return np.exp(self.mu)
class LogUniform(Distribution):
def log_p(self, x):
return -np.log(x)
def deriv_log_p(self, x):
return -1.0/x
class Uniform(Distribution):
def __init__(self, lbound, rbound):
assert ( lbound < rbound)
self.lbound = lbound
self.rbound = rbound
def log_p(self, x, **kwargs):
if self.lbound <= x <= self.rbound:
return -np.log(self.rbound - self.lbound)
else:
return np.float("-inf")
def predict(self, **kwargs):
return self.lbound + (self.rbound - self.lbound) / 2
def sample(self, **kwargs):
return self.lbound + np.random.rand() * (self.rbound - self.lbound)
class Gaussian(Distribution):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def log_p(self, x, **kwargs):
mu = self.mean
sigma = self.std
lp = -.5 * np.log(2*np.pi*sigma*sigma) - .5 * (x - mu)**2 / sigma**2
if np.isnan(lp):
lp = np.float("-inf")
return lp
def predict(self, **kwargs):
return self.mean
def sample(self, **kwargs):
return self.mean + np.random.randn() * self.std
class Laplacian(Distribution):
def __init__(self, center, scale):
self.center = center
self.scale = scale
def log_p(self, x, **kwargs):
center = self.center
scale = self.scale
lp = -np.log(2*scale) - np.abs(x-center)/scale
if np.isnan(lp):
lp = np.float("-inf")
return lp
def predict(self, **kwargs):
return self.center
def sample(self, **kwargs):
u = np.random.rand()
return self.center - self.scale * np.sign(u) * np.log(1-2*u)
class Exponential(Distribution):
def __init__(self, rate, min_value=0.0):
self.rate = float(rate)
self.min_value = min_value
def log_p(self, x, **kwargs):
rate = self.rate
x = x - self.min_value
if x < 0:
lp = np.float("-inf")
lp = np.log(rate) - rate * x
return lp
def predict(self, **kwargs):
return 1.0/self.rate + self.min_value
def sample(self, **kwargs):
u = np.random.rand()
return -np.log(u) / self.rate + self.min_value
class Poisson(Distribution):
def __init__(self, mu):
self.mu = mu
def log_p(self, x, **kwargs):
return -self.mu + x * np.log(self.mu) - scipy.special.gammaln(x+1)
def predict(self, **kwargs):
return self.mu
def sample(self, **kwargs):
return stats.poisson.rvs(self.mu, n=1)
class Bernoulli(Distribution):
def __init__(self, p):
self.p = p
def log_p(self, x, **kwargs):
if x:
return np.log(self.p)
else:
return np.log(1-self.p)
def predict(self, **kwargs):
return self.p >= .5
def sample(self, **kwargs):
u = np.random.rand()
return u < self.p
class Negate(Distribution):
def __init__(self, dist):
self.dist = dist
def dim(self, *args, **kwargs):
return self.dist.dim( *args, **kwargs)
def predict(self, *args, **kwargs):
return -1 * self.dist.predict(*args, **kwargs)
def sample(self, *args, **kwargs):
return -1 * self.dist.sample(*args, **kwargs)
def log_p(self, x, *args, **kwargs):
return self.dist.log_p(-x, *args, **kwargs)
def deriv_log_p(self, x, *args, **kwargs):
return self.dist.deriv_log_p(-x, *args, **kwargs)