-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearning_curve.py
155 lines (128 loc) · 4.4 KB
/
learning_curve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from pprint import pprint
import os
from collections import OrderedDict
from functools import partial
from torch import multiprocessing
import flair_score_tasks
from data_splitting import shufflesplit_trainset_only_trainsize_range
from experiment_util import Experiment
from mlutil.crossvalidation import (
calc_scores,
calc_mean_and_std,
ScoreTask,
) # TODO(tilo) must be imported before numpy
import numpy
from itertools import groupby
from time import time
from typing import Dict, List, Tuple, Any, Iterable
from reading_seqtag_data import (
read_scierc_data,
read_JNLPBA_data,
TaggedSeqsDataSet,
read_conll03_en,
)
from spacyCrf_score_task import SpacyCrfScorer
from util import data_io
def groupandsort_by_first(tups: Iterable[Tuple[Any, Any]]):
by_first = lambda xy: xy[0]
return OrderedDict(
[
(k, [l for _, l in group])
for k, group in groupby(sorted(tups, key=by_first), key=by_first)
]
)
home = os.environ["HOME"]
def tuple_2_dict(t):
m, s = t
return {"mean": m, "std": s}
def calc_write_learning_curve(exp: Experiment, max_num_workers=40):
num_workers = min(
min(max_num_workers, multiprocessing.cpu_count() - 1), exp.num_folds
)
name = exp.name
print("got %d evaluations to calculate" % len(exp.jobs))
results_path = results_folder + "/" + name
os.makedirs(results_path, exist_ok=True)
start = time()
scores = calc_scores(
exp.score_task, [split for train_size, split in exp.jobs], n_jobs=num_workers
)
duration = time() - start
meta_data = {
"duration": duration,
"num-workers": num_workers,
"experiment": str(exp),
}
data_io.write_json(results_path + "/meta_datas.json", meta_data)
print("calculating learning-curve for %s took %0.2f seconds" % (name, duration))
pprint(scores)
results = groupandsort_by_first(
zip([train_size for train_size, _ in exp.jobs], scores)
)
data_io.write_json(results_path + "/learning_curve.json", results)
trainsize_to_mean_std_scores = {
train_size: tuple_2_dict(calc_mean_and_std(m))
for train_size, m in results.items()
}
data_io.write_json(
results_path + "/learning_curve_meanstd.json", trainsize_to_mean_std_scores,
)
data_path = os.environ["HOME"] + "/scibert/data/ner/JNLPBA"
def data_supplier():
data = read_JNLPBA_data(data_path)
return data._asdict()
if __name__ == "__main__":
# data_supplier= partial(read_scierc_data,path=home + "/data/scierc_data/sciERC_processed/processed_data/json")
# data_supplier = partial(
# read_scierc_seqs,
# jsonl_file=home + "/data/scierc_data/final_data.json",
# process_fun=char_to_token_level,
# )
# data_supplier = partial(
# read_conll03_en, path=os.environ["HOME"] + "/data/IE/seqtag_data"
# )
results_folder = home + "/data/seqtag_results/JNLPBA_20percent"
os.makedirs(results_folder, exist_ok=True)
dataset = data_supplier()
num_folds = 3
splits = shufflesplit_trainset_only_trainsize_range(
TaggedSeqsDataSet(**dataset), num_folds=num_folds, train_sizes=[0.2],
)
import farm_score_tasks
exp = Experiment(
"farm",
num_folds=num_folds,
jobs=splits,
score_task=farm_score_tasks.FarmSeqTagScoreTask(
params=farm_score_tasks.Params(n_epochs=9), data_supplier=data_supplier
),
)
calc_write_learning_curve(exp, max_num_workers=0)
exp = Experiment(
"flair-pooled",
num_folds=num_folds,
jobs=splits,
score_task=flair_score_tasks.BiLSTMConll03enPooled(
params=flair_score_tasks.Params(max_epochs=40), data_supplier=data_supplier
),
)
calc_write_learning_curve(exp, max_num_workers=0)
exp = Experiment(
"flair",
num_folds=num_folds,
jobs=splits,
score_task=flair_score_tasks.BiLSTMConll03en(
params=flair_score_tasks.Params(max_epochs=40), data_supplier=data_supplier
),
)
calc_write_learning_curve(exp, max_num_workers=0)
import spacy_features_sklearn_crfsuite as spacy_crf
exp = Experiment(
"spacy-crf",
num_folds=num_folds,
jobs=splits,
score_task=SpacyCrfScorer(
params=spacy_crf.Params(max_it=100), data_supplier=data_supplier
),
)
calc_write_learning_curve(exp, max_num_workers=40)