-
evaluation
- end2end: beam-search on scores produced by ASR, LM + whatever
- ASR-only: greedy-search
-
pretrained espnet model
-
take pretrained librispeech model, evaluate on spanish dataset
- transformer-encoder only
- compare vs. full-architecture
- spanish data
install apex
- if on hpc-node: do:
module load nvidia/cuda/10.1 && module load comp
- install it:
git clone https://github.com/NVIDIA/apex && cd apex && OMP_NUM_THREADS=8 pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
- on frontend:
OMP_NUM_THREADS=2 wandb init
- on hpc
module load comp export PYTHONPATH=$HOME/SPEECH/speech-to-text:$HOME/SPEECH/speech-recognition:$HOME/UTIL/util:$HOME/SPEECH/fairseq WANDB_MODE=dryrun python train.py
python evaluation.py --model libri_960_1024_32_11_04_2020/deepspeech_9.pth.tar --datasets test-clean
module load comp
export PYTHONPATH=$HOME/SPEECH/speech-to-text:$HOME/SPEECH/speech-recognition:$HOME/UTIL/util
python lightning/train_lightning.py