-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
130 lines (102 loc) · 4.24 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from argparse import ArgumentParser
import os
import numpy as np
import torch
import pytorch_lightning as pl
from torch.optim.rmsprop import RMSprop
from model_lstm import MyLSTM
from model_ntm import MyNTM
class MyModel(pl.LightningModule):
def __init__(self,
**kwargs
):
super().__init__()
# save the hyperparameters. Can be accessed by self.hparams.[variable name]
self.save_hyperparameters()
add_repeat = 1 if self.hparams.task.lower() == 'repeat-copy' else 0
if self.hparams.model.lower() == 'lstm':
network = MyLSTM(
self.hparams.seq_width + 1 + add_repeat,
self.hparams.seq_width + add_repeat,
self.hparams.lstm_num_layers,
self.hparams.lstm_hidden_size,
)
elif self.hparams.model.lower() == 'ntm':
network = MyNTM(
self.hparams.seq_width + 1 + add_repeat,
self.hparams.seq_width + add_repeat,
self.hparams.ntm_controller_size,
self.hparams.ntm_controller_layers,
self.hparams.ntm_num_heads,
self.hparams.ntm_memory_n,
self.hparams.ntm_memory_m
)
# raise NotImplementedError('NTMx is not yet implemented')
else:
raise NotImplementedError('{} is not yet implemented'.format(self.hparams.model.lower()))
self.model = network
self.criterion = torch.nn.BCELoss()
def forward(self, data_in, data_out):
# get shapes
inp_seq_len = data_in.size(0)
outp_seq_len, batch_size, _ = data_out.size()
# New sequence
self.model.init_sequence(batch_size, self.device)
# Feed the sequence + delimiter
for i in range(inp_seq_len):
self.model(data_in[i])
# Read the output (no input given)
y_out = []
for i in range(outp_seq_len):
temp, _ = self.model()
y_out.append(temp)
# prepare for output
y_out = torch.stack(y_out)
if y_out.dim() == 4:
y_out = y_out.squeeze(dim=1)
return y_out
def training_step(self, batch, batch_idx):
loss, cost = self.on_step(batch, batch_idx)
self.log('train_loss', loss, on_epoch=True)
self.log('train_cost', cost, on_step=False, on_epoch=True, prog_bar=True)
return {'loss': loss, 'cost': cost}
def validation_step(self, batch, batch_idx):
loss, cost = self.on_step(batch, batch_idx)
self.log('valid_loss', loss, on_epoch=True)
return {'loss': loss, 'cost': cost}
def on_step(self, batch, batch_idx):
# get the data and permute correctly
data_in, data_out = batch
data_in = data_in.permute(1, 0, 2)
data_out = data_out.permute(1, 0, 2)
# batch_size
batch_size = data_out.size(1)
# forward
output = self(data_in, data_out)
# get loss
loss = self.criterion(output, data_out)
# get cost
y_out_binarized = output.clone().data
y_out_binarized = (y_out_binarized > 0.5).float()
# The cost is the number of error bits per sequence
cost = torch.sum(torch.abs(y_out_binarized - data_out.data))
return loss, cost.item() / batch_size
def validation_epoch_end(self, outputs):
# get data
cost = ([x['cost'] for x in outputs])
mean_cost = np.array(cost).mean()
self.log('valid_cost', mean_cost, prog_bar=True)
def configure_optimizers(self):
optimizer = RMSprop(self.parameters(),
momentum=self.hparams.rmsprop_momentum,
alpha=self.hparams.rmsprop_alpha,
lr=self.hparams.rmsprop_lr)
return optimizer
@staticmethod
def add_model_specific_args(parent_parser):
parser = ArgumentParser(parents=[parent_parser], add_help=False)
parser.add_argument('--rmsprop_lr', type=float, default=3e-5)
parser.add_argument('--rmsprop_alpha', type=float, default=0.95)
parser.add_argument('--rmsprop_momentum', type=float, default=0.99)
parser.add_argument('--gradient_clip', type=float, default=10)
return parser