We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
main
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
In main, 4 figures and .json/.csv are generated below:
fig1 = nmf.component_plot(df_components, args1.xrd, args1.x_units, args1.show) fig2 = nmf.component_ratio_plot(df_component_weight_timeseries, args1.show) fig3 = nmf.reconstruction_error_plot(df_reconstruction_error, args1.show) if args1.pca_thresh: fig4 = nmf.explained_variance_plot(df_explained_var_ratio, args1.show) if args1.save_files: if not os.path.exists(os.path.join(os.getcwd(), "nmf_result")): os.mkdir(os.path.join(os.getcwd(), "nmf_result")) output_fn = datetime.fromtimestamp(time.time()).strftime("%Y%m%d%H%M%S%f") df_components.to_json(os.path.join(os.getcwd(), "nmf_result", "x_index_vs_y_col_components.json")) df_component_weight_timeseries.to_json( os.path.join(os.getcwd(), "nmf_result", "component_index_vs_pratio_col.json") ) df_component_weight_timeseries.to_csv( os.path.join(os.getcwd(), "nmf_result", output_fn + "component_row_pratio_col.txt"), header=None, index=False, sep=" ", mode="a", ) df_reconstruction_error.to_json( os.path.join(os.getcwd(), "nmf_result", "component_index_vs_RE_value.json") ) plot_file1 = os.path.join(os.getcwd(), "nmf_result", output_fn + "comp_plot.png") plot_file2 = os.path.join(os.getcwd(), "nmf_result", output_fn + "ratio_plot.png") plot_file3 = os.path.join(os.getcwd(), "nmf_result", output_fn + "loss_plot.png") if args1.pca_thresh: plot_file7 = os.path.join(os.getcwd(), "nmf_result", output_fn + "pca_var_plot.png") plot_file4 = os.path.splitext(plot_file1)[0] + ".pdf" plot_file5 = os.path.splitext(plot_file2)[0] + ".pdf" plot_file6 = os.path.splitext(plot_file3)[0] + ".pdf" if args1.pca_thresh: plot_file8 = os.path.splitext(plot_file7)[0] + ".pdf" txt_file = os.path.join(os.getcwd(), "nmf_result", output_fn + "_meta" + ".txt") with open(txt_file, "w+") as fi: fi.write("NMF Analysis\n\n") fi.write(f"{len(df_component_weight_timeseries.columns)} files uploaded for analysis.\n\n") fi.write(f"The selected active r ranges are: {args1.xrange} \n\n") fi.write("Thesholding:\n") fi.write(f"\tThe input component threshold was: {args1.threshold}\n") fi.write(f"\tThe input improvement threshold was: {args1.improve_thresh}\n") fi.write(f"\tThe input # of iterations to run was: {args1.n_iter}\n") fi.write(f"\tWas PCA thresholding used?: {args1.pca_thresh}\n") fi.write(f"{len(df_components.columns)} components were extracted") fig1.savefig(plot_file1) fig2.savefig(plot_file2) fig3.savefig(plot_file3) if args1.pca_thresh: fig4.savefig(plot_file7) fig1.savefig(plot_file4) fig2.savefig(plot_file5) fig3.savefig(plot_file6)
The code needs to be refactored - make variables name more explicit. Ex) plot_file1 - plot_file_4 which is a .pdf plot of plot_file1.
plot_file1
plot_file_4
The text was updated successfully, but these errors were encountered:
also, break it out into functions that are called by main.
Sorry, something went wrong.
No branches or pull requests
Problem
In
main
, 4 figures and .json/.csv are generated below:Solution
The code needs to be refactored - make variables name more explicit. Ex)
plot_file1
-plot_file_4
which is a .pdf plot ofplot_file1
.The text was updated successfully, but these errors were encountered: