forked from ray-project/llmperf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
token_benchmark_ray.py
471 lines (423 loc) · 16.7 KB
/
token_benchmark_ray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import argparse
from collections.abc import Iterable
import json
import os
from pathlib import Path
import re
import time
import random
from typing import Any, Dict, List, Optional, Tuple
import pandas as pd
import ray
from llmperf import common_metrics
from llmperf.common import SUPPORTED_APIS, construct_clients
from llmperf.models import RequestConfig
from llmperf.requests_launcher import RequestsLauncher
from llmperf.utils import (
randomly_sample_sonnet_lines_prompt,
LLMPerfResults,
sample_random_positive_int,
)
from tqdm import tqdm
from transformers import LlamaTokenizerFast
def get_token_throughput_latencies(
model: str,
provider: str,
mean_input_tokens: int,
stddev_input_tokens: int,
mean_output_tokens: int,
stddev_output_tokens: int,
api_key: Optional[str] = None,
additional_sampling_params: Optional[Dict[str, Any]] = None,
num_concurrent_requests: int = 1,
max_num_completed_requests: int = 500,
test_timeout_s=90,
base_url: str = None,
llm_api="openai",
) -> Tuple[Dict[str, Any], List[Dict[str, Any]]]:
"""Get the token throughput and latencies for the given model.
Args:
model: The name of the model to query.
mean_input_tokens: The mean number of tokens to send in the prompt for the request.
stddev_input_tokens: The standard deviation of the number of tokens to send in the prompt for the request.
mean_output_tokens: The mean number of tokens to generate per request.
stddev_output_tokens: The standard deviation of the number of tokens to generate per request.
additional_sampling_params: Additional sampling parameters to send with the request.
For more information see the LLM APIs documentation for the completions
num_concurrent_requests: The number of concurrent requests to make. Increase
this to increase the amount of load and vice versa.
test_timeout_s: The amount of time to run the test for before reporting results.
llm_api: The name of the llm api to use. Either "openai" or "litellm".
Returns:
A summary of the performance metrics collected across all completed requests
(e.g. throughput, latencies, etc.)
The individual metrics for each request.
"""
random.seed(11111)
tokenizer = LlamaTokenizerFast.from_pretrained(
"hf-internal-testing/llama-tokenizer"
)
get_token_length = lambda text: len(tokenizer.encode(text))
if not additional_sampling_params:
additional_sampling_params = {}
clients = construct_clients(llm_api=llm_api, num_clients=num_concurrent_requests)
req_launcher = RequestsLauncher(clients)
completed_requests = []
num_completed_requests = 0
start_time = time.monotonic()
iter = 0
pbar = tqdm(total=max_num_completed_requests)
while (
time.monotonic() - start_time < test_timeout_s
and len(completed_requests) < max_num_completed_requests
):
iter += 1
num_output_tokens = sample_random_positive_int(
mean_output_tokens, stddev_output_tokens
)
prompt = randomly_sample_sonnet_lines_prompt(
prompt_tokens_mean=mean_input_tokens,
prompt_tokens_stddev=stddev_input_tokens,
expect_output_tokens=num_output_tokens,
)
default_sampling_params = {"max_tokens": num_output_tokens}
default_sampling_params.update(additional_sampling_params)
request_config = RequestConfig(
provider=provider,
model=model,
prompt=prompt,
sampling_params=default_sampling_params,
base_url=base_url,
llm_api=llm_api,
api_key=api_key,
)
req_launcher.launch_requests(request_config)
# Retrieving results less frequently allows for more concurrent requests
# to be launched. This will overall reduce the amount of time it takes
# for the test to run.
if not (iter % num_concurrent_requests):
outs = req_launcher.get_next_ready()
all_metrics = []
for out in outs:
request_metrics, gen_text, _ = out
num_output_tokens = get_token_length(gen_text)
if num_output_tokens:
request_metrics[common_metrics.INTER_TOKEN_LAT] /= num_output_tokens
else:
request_metrics[common_metrics.INTER_TOKEN_LAT] = 0
request_metrics[common_metrics.NUM_OUTPUT_TOKENS] = num_output_tokens
request_metrics[common_metrics.NUM_TOTAL_TOKENS] = (
request_metrics[common_metrics.NUM_INPUT_TOKENS] + num_output_tokens
)
request_metrics[common_metrics.REQ_OUTPUT_THROUGHPUT] = (
num_output_tokens / request_metrics[common_metrics.E2E_LAT]
)
all_metrics.append(request_metrics)
completed_requests.extend(all_metrics)
pbar.update(len(completed_requests) - num_completed_requests)
num_completed_requests = len(completed_requests)
pbar.close()
end_time = time.monotonic()
if end_time - start_time >= test_timeout_s:
print("Test timed out before all requests could be completed.")
# check one last time that there are no remaining results to collect.
outs = req_launcher.get_next_ready()
all_metrics = []
for out in outs:
request_metrics, gen_text, _ = out
num_output_tokens = get_token_length(gen_text)
if num_output_tokens:
request_metrics[common_metrics.INTER_TOKEN_LAT] /= num_output_tokens
else:
request_metrics[common_metrics.INTER_TOKEN_LAT] = 0
request_metrics[common_metrics.NUM_OUTPUT_TOKENS] = num_output_tokens
request_metrics[common_metrics.NUM_TOTAL_TOKENS] = (
request_metrics[common_metrics.NUM_INPUT_TOKENS] + num_output_tokens
)
request_metrics[common_metrics.REQ_OUTPUT_THROUGHPUT] = (
num_output_tokens / request_metrics[common_metrics.E2E_LAT]
)
all_metrics.append(request_metrics)
completed_requests.extend(all_metrics)
ret = metrics_summary(completed_requests, start_time, end_time)
metadata = {
"model": model,
"mean_input_tokens": mean_input_tokens,
"stddev_input_tokens": stddev_input_tokens,
"mean_output_tokens": mean_output_tokens,
"stddev_output_tokens": stddev_output_tokens,
"num_concurrent_requests": num_concurrent_requests,
"additional_sampling_params": additional_sampling_params,
}
metadata["results"] = ret
return metadata, completed_requests
def metrics_summary(
metrics: List[Dict[str, Any]], start_time: int, end_time: int
) -> Dict[str, Any]:
"""Generate a summary over metrics generated from potentially multiple instances of this client.
Args:
metrics: The metrics to summarize.
start_time: The time the test started.
end_time: The time the test ended.
Returns:
A summary with the following information:
- Overall throughput (generated tokens / total test time)
- Number of completed requests
- Error rate
- Error code frequency
- Quantiles (p25-p99) for the following metrics:
- Inter token latency
- Time to first token
- User total request time
- Number of tokens processed per request
- Number of tokens generated per request
- User throughput (tokens / s)
"""
ret = {}
def flatten(item):
for sub_item in item:
if isinstance(sub_item, Iterable) and not isinstance(sub_item, str):
yield from flatten(sub_item)
else:
yield sub_item
df = pd.DataFrame(metrics)
df_without_errored_req = df[df[common_metrics.ERROR_CODE].isna()]
for key in [
common_metrics.INTER_TOKEN_LAT,
common_metrics.TTFT,
common_metrics.E2E_LAT,
common_metrics.REQ_OUTPUT_THROUGHPUT,
common_metrics.NUM_INPUT_TOKENS,
common_metrics.NUM_OUTPUT_TOKENS,
]:
ret[key] = {}
series = pd.Series(list(flatten(df_without_errored_req[key]))).dropna()
quantiles = series.quantile([0.25, 0.5, 0.75, 0.9, 0.95, 0.99]).to_dict()
quantiles_reformatted_keys = {}
for quantile, value in quantiles.items():
reformatted_key = f"p{int(quantile * 100)}"
quantiles_reformatted_keys[reformatted_key] = value
ret[key]["quantiles"] = quantiles_reformatted_keys
mean = series.mean()
ret[key]["mean"] = mean
ret[key]["min"] = series.min()
ret[key]["max"] = series.max()
ret[key]["stddev"] = series.std()
ret[common_metrics.NUM_REQ_STARTED] = len(metrics)
error_codes = df[common_metrics.ERROR_CODE].dropna()
num_errors = len(error_codes)
ret[common_metrics.ERROR_RATE] = num_errors / len(metrics) if len(metrics) else 0
ret[common_metrics.NUM_ERRORS] = num_errors
error_code_frequency = dict(error_codes.value_counts())
if num_errors:
error_code_frequency = dict(error_codes.value_counts())
ret[common_metrics.ERROR_CODE_FREQ] = str(error_code_frequency)
overall_output_throughput = df_without_errored_req[
common_metrics.NUM_OUTPUT_TOKENS
].sum() / (end_time - start_time)
ret[common_metrics.OUTPUT_THROUGHPUT] = overall_output_throughput
num_completed_requests = len(df_without_errored_req)
num_completed_requests_per_min = (
num_completed_requests / (end_time - start_time) * 60
)
ret[common_metrics.NUM_COMPLETED_REQUESTS] = num_completed_requests
ret[common_metrics.COMPLETED_REQUESTS_PER_MIN] = num_completed_requests_per_min
return ret
def run_token_benchmark(
llm_api: str,
model: str,
test_timeout_s: int,
max_num_completed_requests: int,
num_concurrent_requests: int,
mean_input_tokens: int,
stddev_input_tokens: int,
mean_output_tokens: int,
stddev_output_tokens: int,
additional_sampling_params: str,
results_dir: str,
user_metadata: Dict[str, Any],
):
"""
Args:
llm_api: The name of the llm api to use.
model: The name of the model to query.
max_num_completed_requests: The number of requests to complete before finishing the test.
test_timeout_s: The amount of time to run the test for before reporting results.
num_concurrent_requests: The number of concurrent requests to make. Increase
this to increase the amount of load and vice versa.
mean_input_tokens: The mean number of tokens to send in the prompt for the request.
stddev_input_tokens: The standard deviation of the number of tokens to send in the prompt for the request.
mean_output_tokens: The mean number of tokens to generate per request.
stddev_output_tokens: The standard deviation of the number of tokens to generate per request.
additional_sampling_params: Additional sampling parameters to send with the request.
For more information see the LLM APIs documentation for the completions.
results_dir: The directory to save the results to.
user_metadata: Additional metadata to include in the results.
"""
if mean_input_tokens < 40:
print(
"the minimum number of input tokens that will be sent is 41"
" because of the prompting logic right now"
)
summary, individual_responses = get_token_throughput_latencies(
model=model,
llm_api=llm_api,
test_timeout_s=test_timeout_s,
max_num_completed_requests=max_num_completed_requests,
mean_input_tokens=mean_input_tokens,
stddev_input_tokens=stddev_input_tokens,
mean_output_tokens=mean_output_tokens,
stddev_output_tokens=stddev_output_tokens,
num_concurrent_requests=num_concurrent_requests,
additional_sampling_params=json.loads(additional_sampling_params),
)
if results_dir:
filename = f"{model}_{mean_input_tokens}_{mean_output_tokens}"
filename = re.sub(r"[^\w\d-]+", "-", filename)
filename = re.sub(r"-{2,}", "-", filename)
summary_filename = f"{filename}_summary"
individual_responses_filename = f"{filename}_individual_responses"
# Update to metadata.
summary.update(user_metadata)
results = LLMPerfResults(name=summary_filename, metadata=summary)
results_dir = Path(results_dir)
if not results_dir.exists():
results_dir.mkdir(parents=True)
elif not results_dir.is_dir():
raise ValueError(f"{results_dir} is not a directory")
try:
with open(results_dir / f"{summary_filename}.json", "w") as f:
json.dump(results.to_dict(), f, indent=4, default=str)
except Exception as e:
print(results.to_dict())
raise e
try:
with open(results_dir / f"{individual_responses_filename}.json", "w") as f:
json.dump(individual_responses, f, indent=4)
except Exception as e:
print(individual_responses)
raise e
args = argparse.ArgumentParser(
description="Run a token throughput and latency benchmark."
)
args.add_argument(
"--model", type=str, required=True, help="The model to use for this load test."
)
args.add_argument(
"--mean-input-tokens",
type=int,
default=550,
help=(
"The mean number of tokens to send in the prompt for the request. "
" (default: %(default)s)"
),
)
args.add_argument(
"--stddev-input-tokens",
type=int,
default=150,
help=(
"The standard deviation of number of tokens to send in the prompt for the request. "
"(default: %(default)s)"
),
)
args.add_argument(
"--mean-output-tokens",
type=int,
default=150,
help=(
"The mean number of tokens to generate from each llm request. This is the max_tokens param "
"for the completions API. Note that this is not always the number of tokens returned. "
"(default: %(default)s)"
),
)
args.add_argument(
"--stddev-output-tokens",
type=int,
default=80,
help=(
"The stdandard deviation on the number of tokens to generate per llm request. "
"(default: %(default)s)"
),
)
args.add_argument(
"--num-concurrent-requests",
type=int,
default=10,
help=("The number of concurrent requests to send (default: %(default)s)"),
)
args.add_argument(
"--timeout",
type=int,
default=90,
help="The amount of time to run the load test for. (default: %(default)s)",
)
args.add_argument(
"--max-num-completed-requests",
type=int,
default=10,
help=(
"The number of requests to complete before finishing the test. Note "
"that its possible for the test to timeout first. (default: %(default)s)"
),
)
args.add_argument(
"--additional-sampling-params",
type=str,
default="{}",
help=(
"Additional sampling params to send with the each request to the LLM API. "
"(default: %(default)s) No additional sampling params are sent."
),
)
args.add_argument(
"--results-dir",
type=str,
default="",
help=(
"The directory to save the results to. "
"(`default: %(default)s`) No results are saved)"
),
)
args.add_argument(
"--llm-api",
type=str,
default="openai",
help=(
f"The name of the llm api to use. Can select from {SUPPORTED_APIS}"
" (default: %(default)s)"
),
)
args.add_argument(
"--metadata",
type=str,
default="",
help=(
"A comma separated list of metadata to include in the results, e.g. "
"name=foo,bar=1. These will be added to the metadata field of the results. "
),
)
if __name__ == "__main__":
env_vars = dict(os.environ)
ray.init(runtime_env={"env_vars": env_vars})
args = args.parse_args()
# Parse user metadata.
user_metadata = {}
if args.metadata:
for item in args.metadata.split(","):
key, value = item.split("=")
user_metadata[key] = value
run_token_benchmark(
llm_api=args.llm_api,
model=args.model,
test_timeout_s=args.timeout,
max_num_completed_requests=args.max_num_completed_requests,
mean_input_tokens=args.mean_input_tokens,
stddev_input_tokens=args.stddev_input_tokens,
mean_output_tokens=args.mean_output_tokens,
stddev_output_tokens=args.stddev_output_tokens,
num_concurrent_requests=args.num_concurrent_requests,
additional_sampling_params=args.additional_sampling_params,
results_dir=args.results_dir,
user_metadata=user_metadata,
)