-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathprocess_app_data.py
executable file
·564 lines (458 loc) · 19 KB
/
process_app_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
#!/usr/bin/python
import argparse
import json
import os
import random
import shutil
import cv2
import numpy as np
import tensorflow as tf
from data_processing import frame_randomizer, records_output, session
from itracker.common import eye_cropper, phone_config
class VideoSession(session.Session):
""" Specialization of Session for video data. """
# Name of the final file that we write to a frame directory to indicate that
# extraction completed.
_INDEX_FILE = "frames.json"
# Single eye cropper to use for all sessions.
_eye_cropper = None
def __init__(self, **kwargs):
"""
Args:
video_file: Location of the input video file.
dot_data: List of dot locations for each frame, in cm.
frames_per_dot: The number of captured frames for each dot.
phone_config: The phone configuration to use.
skip_frames: Number of frames to skip from the beginning of each video.
session_num: The session number. Defaults to 0.
int_freatures, float_features, byte_features: Additional feature
lists. """
# Number of frames to skip from the beginning of each video.
self.skip_frames = kwargs.get("skip_frames", 0)
# The video file associated with the session.
self.video_file = kwargs.get("video_file")
if kwargs.get("frame_files"):
# User shouldn't specify this.
raise ValueError("frame_files will be set automatically.")
self.session_num = kwargs.get("session_num", 0)
# Get the dot data. It should be included here, instead of with the
# features.
self.dot_data = kwargs.get("dot_data")
self.frames_per_dot = kwargs.get("frames_per_dot")
# Get number of frames in the video.
self.__total_frames = self.__num_usable_frames()
phone = kwargs.get("phone_config")
if phone is None:
raise NameError("phone_config is a required keyword argument.")
if VideoSession._eye_cropper is None:
# Create a new eye cropper.
VideoSession._eye_cropper = eye_cropper.EyeCropper(phone=phone)
super(VideoSession, self).__init__(**kwargs)
# Set the frame directory.
self.frame_dir = self.__generate_frame_dir()
# Precompute needed information.
self.__prepare_data()
def __num_usable_frames(self):
""" Gets the total number of usable frames in the video.
Returns:
The number of total frames that we should process from the video. """
# Get the total number of frames in the video.
cap = cv2.VideoCapture(self.video_file)
num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
num_dots = self.dot_data.shape[0]
expected_frames = self.frames_per_dot * num_dots
if num_frames > expected_frames:
print "WARNING: Have extraneous frames in %s." % (self.video_file)
elif num_frames < expected_frames:
print "WARNING: Missing frames. Final dots will be ignored."
# Don't process dots that we don't have the full number of frames for.
num_dots = num_frames / self.frames_per_dot
self.dot_data = self.dot_data[:num_dots]
return self.frames_per_dot * num_dots
def __generate_frame_dir(self):
""" Generates a unique frame directory name for this session. """
# We can base this on the video file name, since we know this is unique.
video_name = os.path.basename(self.video_file)
video_dir = os.path.dirname(self.video_file)
frame_dir = os.path.join(video_dir, "%s_frames" % (video_name))
return frame_dir
def __should_extract(self):
"""
Returns:
True if we need to extract the frames. """
# We write this file after successfully completing extraction.
last_file = os.path.join(self.frame_dir, VideoSession._INDEX_FILE)
if (os.path.exists(last_file)):
# We've extracted the frames.
return False
# We have not extracted the frames.
return True
def __extract_frames(self):
""" Pre-extracts the frames from the video file. """
if os.path.exists(self.frame_dir):
# Remove old stuff.
shutil.rmtree(self.frame_dir)
os.mkdir(self.frame_dir)
# Open the video file.
video_frames = cv2.VideoCapture(self.video_file)
frame_names = []
for i in range(0, self.__total_frames):
# Get the next frame.
_, frame = video_frames.read()
if frame is None:
raise ValueError("Video '%s' ended prematurely." % (self.__video_file))
if i % self.frames_per_dot < self.skip_frames:
# We want to skip frames at the beginning.
continue
# Write the frame.
frame_name = "frame%d.jpg" % i
frame_path = os.path.join(self.frame_dir, frame_name)
if not cv2.imwrite(frame_path, frame):
raise ValueError("Failed to save image %d." % (i,))
frame_names.append(frame_name)
# Write the index file containing all frames in order.
final_path = os.path.join(self.frame_dir, VideoSession._INDEX_FILE)
final_file = open(final_path, "w")
json.dump(frame_names, final_file)
final_file.close()
def __get_face_grid(self):
""" Computes the face grid fractional values for the last image it cropped.
Returns:
The fractional x, y, w, and h of the face grid. """
# Get standard bounding box.
grid_x, grid_y, grid_w, grid_h = self._eye_cropper.face_grid_box()
# We have to do some numerical gymnastics here, since the training code
# expects the grid to be 1-indexed, like in the gazecapture dataset.
grid_x = (grid_x + 1) / 25.0
grid_y = (grid_y + 1) / 25.0
grid_w = (grid_w + 1) / 25.0
grid_h = (grid_h + 1) / 25.0
return (grid_x, grid_y, grid_w, grid_h)
def __bbox_to_fractions(self, bbox, frame_h, frame_w):
""" Converts a bounding box from pixels to frame fractions.
Args:
bbox: The bounding box, in pixels.
frame_h: The frame height, in pixels.
frame_w: The frame width, in pixels.
Returns:
The same bounding box, in frame fractions. """
frame_w = float(frame_w)
frame_h = float(frame_h)
x, y, w, h = bbox
x /= frame_w
y /= frame_h
w /= frame_w
h /= frame_h
return (x, y, w, h)
def __detect_image(self, image):
""" Detects bounding boxes for a single image.
Args:
image: The raw image that we want to process.
Returns:
The face bbox coordinates, the left eye bbox coordinates, the right eye bbox
coordinates, and the face grid fractional coordinates, or a tuple of None if
it failed to crop the image. """
# Generate new detections.
leye_bbox, reye_bbox, face_bbox = self._eye_cropper.get_bboxes(image)
if face_bbox is None:
# Failed to crop the image.
print "WARNING: Failed to crop image."
return (None, None, None, None)
face_grid = self.__get_face_grid()
leye_bbox, reye_bbox = convert_to_face_coords(list(face_bbox),
list(leye_bbox),
list(reye_bbox))
# Convert to frame fractions.
_, _, face_w, face_h = face_bbox
leye_bbox = self.__bbox_to_fractions(leye_bbox, face_w, face_h)
reye_bbox = self.__bbox_to_fractions(reye_bbox, face_w, face_h)
return (face_bbox, leye_bbox, reye_bbox, face_grid)
def __compute_bboxes(self):
""" Computes the bounding boxes for all the frames. It adds features for the
left and right eye bounding boxes. If the detection fails, the frame will be
marked as invalid.
Returns:
The face bounding boxes. """
leye_bboxes = []
reye_bboxes = []
face_bboxes = []
grids = []
percent = 0.0
for i, frame_file in enumerate(self.frame_files):
frame_path = os.path.join(self.frame_dir, frame_file)
# Load the frame.
frame = cv2.imread(frame_path)
if frame is None:
raise RuntimeError("Failed to read image: %s" % (frame_path))
# Extract the bounding boxes.
face, leye, reye, grid = self.__detect_image(frame)
if face == None:
# Landmark detection failed. Mark as invalid.
self.valid[i] = 0
leye = reye = face = grid = [0, 0, 0, 0]
leye_bboxes.append(leye)
reye_bboxes.append(reye)
face_bboxes.append(face)
grids.append(grid)
new_percent = float(i) / len(self.frame_files) * 100.0
if new_percent - percent > 0.01:
percent = new_percent
print "Detecting landmarks. (%.2f%% complete)" % (percent)
# Add the features.
leye_bboxes = np.stack(leye_bboxes)
reye_bboxes = np.stack(reye_bboxes)
grids = np.stack(grids)
self.float_features.extend([leye_bboxes, reye_bboxes, grids])
return face_bboxes
def __generate_face_size(self):
""" Generates and adds the face size feature from the face bounding box. """
face_sizes = []
for bbox in self.face_bboxes:
face_size = bbox[:-2]
face_sizes.append(face_size)
# Add the feature.
face_sizes = np.stack(face_sizes)
self.float_features.append(face_sizes)
def __add_dot_data(self):
""" Adds a feature for the dot data. """
# For the feature, we'll need to expand the dots so there's one entry per
# frame.
dots_expanded = []
for dot in self.dot_data:
for _ in range(0, self.frames_per_dot - self.skip_frames):
dots_expanded.append(dot)
# Add the feature.
print "Dot length: %d" % (len(dots_expanded))
dots_expanded = np.stack(dots_expanded)
self.float_features.append(dots_expanded)
def __prepare_data(self):
""" Precomputes all the necessary information from the video files. """
# Extract the individual frames if necessary.
if self.__should_extract():
self.__extract_frames()
# Add features for the dot data.
self.__add_dot_data()
# Add all the frame files.
frame_index_file = file(os.path.join(self.frame_dir, self._INDEX_FILE))
self.frame_files = json.load(frame_index_file)
print "Frame files: %d" % (len(self.frame_files))
frame_index_file.close()
# Create the session number feature.
session_num = np.array([[self.session_num]] * len(self.frame_files))
self.int_features.append(session_num)
# Indicate that everything is valid initially.
self.valid = [1] * len(self.frame_files)
# Compute the bounding boxes with the landmark detector.
self.face_bboxes = self.__compute_bboxes()
# Generate face size feature.
self.__generate_face_size()
class AppSaver(records_output.Saver):
""" Saver specialization for app data. """
def _interpret_label_features(self, bytes_features, float_features,
int_features):
dots, leye, reye, grid, face_size = float_features
session_num = int_features[0]
features = {"dots": dots,
"face_size": face_size,
"leye_box": leye,
"reye_box": reye,
"grid_box": grid,
"session_num": session_num}
return features
def convert_to_face_coords(face_bbox, leye_bbox, reye_bbox):
""" Convert the left and right eye bounding boxes to be referenced relative to
the face crop instead of the raw image.
Args:
face_bbox: The face bounding box.
leye_bbox: The raw left eye bounding box.
reye_bbox: The raw right eye bounding box.
Returns:
The left and right eye bounding boxes, referenced to the face bounding box.
"""
leye_bbox[0] -= face_bbox[0]
leye_bbox[1] -= face_bbox[1]
reye_bbox[0] -= face_bbox[0]
reye_bbox[1] -= face_bbox[1]
return (leye_bbox, reye_bbox)
def dot_to_cm(dot_x, dot_y, phone):
""" Converts the dot coordinates in pixels to cm, assuming a coordinate system
as described by Mou, and a landscape orientation.
Args:
dot_x, dot_y: The pixel locations of the dot.
phone: The configuration for the phone that produced the data.
Returns:
The x and y coordinates of the dot in cm. """
res_long, res_short = phone.get_resolution()
size_long, size_short = phone.get_screen_cm()
offset_long, offset_short = phone.get_camera_offset()
# Convert to cm directly.
dot_x = float(dot_x) / res_short * size_short
dot_y = float(dot_y) / res_long * size_long
# The x and y values are actually flipped because we're working in landscape
# mode.
tmp = dot_x
dot_x = dot_y
dot_y = tmp
# Account for the camera positioning.
dot_x += offset_long
dot_y += offset_short
return (dot_x, dot_y)
def read_dot_data(data_file, phone):
""" Reads the dot data for each image.
Args:
data_file: The data file for the session.
phone: The configuration for the phone that produced the data.
Returns:
The number of frames for each dot, and an array of each dot position in cm, in
order. """
# Read the data file.
dot_data = file(data_file).read()
dot_data = dot_data.split("\n")
# Extract the first item, which is the frames/dot.
frames_per_dot = int(dot_data[0])
# Remove trailing newlines.
if dot_data[-1] == "":
dot_data.pop()
# Convert dots to actual numbers.
dot_converted = []
for pair in dot_data[1:]:
x, y = pair.split()
x, y = dot_to_cm(int(x), int(y), phone)
dot_converted.append((x, y))
# Numpyfy.
dot_converted = np.stack(dot_converted)
return (frames_per_dot, dot_converted)
def save_images(named_images, out_dir):
""" Saves a set of images to an output directory.
Args:
named_images: A dictionary mapping image file names to image data.
out_dir: The directory to write the named images into. """
for name, image in named_images.iteritems():
# Generate image path.
image_path = os.path.join(out_dir, name)
# Save the image.
if not cv2.imwrite(image_path, image):
raise RuntimeError("Failed to write image %s" % (image_path))
def process_session(index, video_file, data_file, randomizer, phone, skip=0):
""" Process one session worth of data.
Args:
index: Unique number for the session.
video_file: Path to the session video file.
data_file: Path to the session data file.
randomizer: The frame randomizer to add this session to.
phone: The configuration for the phone that produced the data.
skip: Number of frames to skip from the beginning of each video. """
# Load dot data.
frames_per_dot, dot_data = read_dot_data(data_file, phone)
# Create a new session.
my_session = VideoSession(video_file=video_file, dot_data=dot_data,
frames_per_dot=frames_per_dot, phone_config=phone,
session_num=index, skip_frames=skip)
# Add the session to the randomizer.
randomizer.add_session(my_session)
def process_day(index, day_dir, randomizer, phone, skip=0):
""" Processes one day's worth of data.
Args:
index: A unique index for the day.
day_dir: The directory for that day's data.
randomizer: The frame randomizer to add sessions from this day to.
phone: The configuration for the phone that produced the data.
skip: Number of frames to skip from beinning of video. """
for i, session_video in enumerate(os.listdir(day_dir)):
# We're going to look for the video files.
if not session_video.endswith(".mp4"):
continue
session_video = os.path.join(day_dir, session_video)
# Find the corresponding data file.
session_name = os.path.splitext(session_video)[0]
session_dat = session_name + ".dat"
if not os.path.exists(session_dat):
print "WARNING: Found video but no .dat file %s." % (session_dat)
continue
# Generate a session index from the day index.
session_index = index * 10 + i
# Process the session.
process_session(session_index, session_video, session_dat, randomizer,
phone, skip=skip)
def process_dataset(dataset_dir, output_dir, phone, args):
""" Processes an entire dataset, one session at a time.
Args:
dataset_dir: The root dataset directory.
output_dir: Where to write the output images.
phone: The configuration for the phone that produced the data.
args: Additional command-line arguments. """
# Create output directory.
if os.path.exists(output_dir):
# Remove existing direcory if it exists.
print "Removing existing directory '%s'." % (output_dir)
shutil.rmtree(output_dir)
os.mkdir(output_dir)
# Create writers for writing output.
train_record = os.path.join(output_dir, "app_data_train.tfrecord")
test_record = os.path.join(output_dir, "app_data_test.tfrecord")
train_writer = tf.python_io.TFRecordWriter(train_record)
test_writer = tf.python_io.TFRecordWriter(test_record)
# Create randomizers for each split.
train_randomizer = frame_randomizer.FrameRandomizer()
test_randomizer = frame_randomizer.FrameRandomizer()
# Create savers for managing output writing.
train_saver = AppSaver(train_randomizer, "train", train_writer)
test_saver = AppSaver(test_randomizer, "test", test_writer)
val_randomizer = None
val_saver = None
if args.valid_days:
# We want to create a validation dataset.
val_record = os.path.join(output_dir, "app_data_val.tfrecord")
val_writer = tf.python_io.TFRecordWriter(val_record)
val_randomizer = frame_randomizer.FrameRandomizer()
val_saver = AppSaver(val_randomizer, "val", val_writer)
days = os.listdir(dataset_dir)
# Shuffle the directories so we get a unique test split, but do it
# deterministically so we can get the same test split every time.
days.sort()
random.seed(42)
random.shuffle(days)
# Process each day one by one.
for i, item in enumerate(days):
item_path = os.path.join(dataset_dir, item)
if not os.path.isdir(item_path):
# This is some extraneous file.
continue
# Determine which split it belongs in.
randomizer = train_randomizer
if i < args.test_days:
randomizer = test_randomizer
elif i - args.test_days < args.valid_days:
randomizer = val_randomizer
# Calculate percentage complete.
percent = float(i) / len(days) * 100
print "(%.2f%%) Processing day %s..." % (percent, item)
process_day(i, item_path, randomizer, phone, skip=args.skip_frames)
# Save out the data.
train_saver.save_all()
test_saver.save_all()
train_saver.close()
test_saver.close()
if val_saver:
val_saver.save_all()
val_saver.close()
def main():
parser = argparse.ArgumentParser("Convert data collected through the app.")
parser.add_argument("dataset_dir", help="The root dataset directory.")
parser.add_argument("output_dir",
help="The directory to write output images.")
parser.add_argument("phone_config",
help="The configuration file for the phone.")
parser.add_argument("-t", "--test_days", type=int, default=1,
help="Number of days to use in the test set.")
parser.add_argument("-v", "--valid_days", type=int, default=0,
help="Number of days to use in the validation set.")
parser.add_argument("-s", "--skip_frames", type=int, default=15,
help="Number of frames to skip at the beginning of each video.")
args = parser.parse_args()
# Load the configuration.
print "Using phone configuration: %s" % (args.phone_config)
phone = phone_config.PhoneConfig(args.phone_config)
process_dataset(args.dataset_dir, args.output_dir, phone, args)
if __name__ == "__main__":
main()