-
Notifications
You must be signed in to change notification settings - Fork 260
/
CHANGES.txt
127 lines (86 loc) · 3.67 KB
/
CHANGES.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
Change History
==============
0.6.1 - 2019-11-05
------------------
See Github for a list of changes between this release and the last:
https://github.com/dnouri/nolearn/pulls?q=is%3Apr+is%3Aclosed
0.6.0 - 2016-08-27
------------------
Thanks to @BenjaminBossan, @cancan101, @DanChianucci who greatly
contributed to this release.
- lasagne: Many improvements to the nolearn.lasagne interface. Some
of the more important changes:
- Add basic support for multiple outputs
https://github.com/dnouri/nolearn/pull/278
- Extra scores can now be computed as part of Theano computation
graph
https://github.com/dnouri/nolearn/pull/261
- Fix excessive memory usage in batch iterator when using shuffle
https://github.com/dnouri/nolearn/pull/238
- Add visualization code for saliency maps
https://github.com/dnouri/nolearn/pull/223
- Add method for convenient access of network's intermediate layer
output
https://github.com/dnouri/nolearn/pull/196
- Allow gradients to be scaled per layer
https://github.com/dnouri/nolearn/pull/195
- Add shuffling to BatchIterator
https://github.com/dnouri/nolearn/pull/193
- Add l1 and l2 regularization to default objective
https://github.com/dnouri/nolearn/pull/169
- Add RememberBestWeights handler: restores best weights after
training
https://github.com/dnouri/nolearn/pull/155
- Passing Lasagne layer instances to 'layers' parameter of NeuralNet
is now possible
https://github.com/dnouri/nolearn/pull/146
- Add feature visualization functions plot_loss, plot_weights,
plot_activity, and plot_occlusion. The latter shows for image
samples, which part of the images are crucial for the prediction
https://github.com/dnouri/nolearn/pull/74
- Add SaveWeights handler that saves weights to disk every n epochs
https://github.com/dnouri/nolearn/pull/91
- In verbose mode, print out more detailed layer information before
starting with training
https://github.com/dnouri/nolearn/pull/85
- List of NeuralNet's 'layers' parameter may now be formatted to
contain '(layer_factory, layer_kwargs)' tuples
https://github.com/dnouri/nolearn/pull/73
- dbn: Added back module dbn because there's a few online articles
referencing it. Works with Python 2 only.
- Removed deprecated modules. Also deprecate grid_search module.
0.5 - 2015-01-22
----------------
- Deprecated modules console, dataset, dbn, and model.
- lasagne: Added scikit-learn compatible wrapper around the `Lasagne`
neural network library for building simple feed-forward networks.
0.5b1 - 2014-08-09
------------------
- overfeat: Add OverFeat-based feature extractor.
- caffe: Add feature extractor based on ImageNet-pretrained nets found
in caffe.
0.4 - 2014-01-15
----------------
- cache: Use joblib's `numpy_pickle` instead of `cPickle` to persist.
0.3.1 - 2013-11-18
------------------
- convnet: Add `center_only` and `classify_direct` options.
0.3 - 2013-11-02
----------------
- convnet: Add scikit-learn estimator based on Jia and Donahue's
`DeCAF`.
- dbn: Change default args of `use_re_lu=True` and `nesterov=True`.
0.2 - 2013-03-03
----------------
- dbn: Add parameters `learn_rate_decays` and `learn_rate_minimums`,
which allow for decreasing the learning after each epoch of
fine-tuning.
- dbn: Allow `-1` as the value of the input and output layers of the
neural network. The shapes of `X` and `y` will then be used to
determine those.
- dbn: Add support for processing sparse input data matrices.
- dbn: Improve miserable speed of `DBN.predict_proba`.
0.2b1 - 2012-12-30
------------------
- Added a scikit-learn estimator based on George Dahl's `gdbn` in
`nolearn.dbn`.