|
| 1 | +import os |
| 2 | + |
| 3 | +import streamlit as st |
| 4 | +from langchain.chains import RetrievalQA |
| 5 | +from PyPDF2 import PdfReader |
| 6 | +from langchain.text_splitter import RecursiveCharacterTextSplitter |
| 7 | +from langchain.callbacks.base import BaseCallbackHandler |
| 8 | +from langchain.vectorstores.neo4j_vector import Neo4jVector |
| 9 | +from streamlit.logger import get_logger |
| 10 | +from chains import ( |
| 11 | + load_embedding_model, |
| 12 | + load_llm, |
| 13 | +) |
| 14 | + |
| 15 | +# load api key lib |
| 16 | +from dotenv import load_dotenv |
| 17 | + |
| 18 | +load_dotenv(".env") |
| 19 | + |
| 20 | + |
| 21 | +url = os.getenv("NEO4J_URI") |
| 22 | +username = os.getenv("NEO4J_USERNAME") |
| 23 | +password = os.getenv("NEO4J_PASSWORD") |
| 24 | +ollama_base_url = os.getenv("OLLAMA_BASE_URL") |
| 25 | +embedding_model_name = os.getenv("EMBEDDING_MODEL") |
| 26 | +llm_name = os.getenv("LLM") |
| 27 | +# Remapping for Langchain Neo4j integration |
| 28 | +os.environ["NEO4J_URL"] = url |
| 29 | + |
| 30 | +logger = get_logger(__name__) |
| 31 | + |
| 32 | + |
| 33 | +embeddings, dimension = load_embedding_model( |
| 34 | + embedding_model_name, config={ollama_base_url: ollama_base_url}, logger=logger |
| 35 | +) |
| 36 | + |
| 37 | + |
| 38 | +class StreamHandler(BaseCallbackHandler): |
| 39 | + def __init__(self, container, initial_text=""): |
| 40 | + self.container = container |
| 41 | + self.text = initial_text |
| 42 | + |
| 43 | + def on_llm_new_token(self, token: str, **kwargs) -> None: |
| 44 | + self.text += token |
| 45 | + self.container.markdown(self.text) |
| 46 | + |
| 47 | + |
| 48 | +llm = load_llm(llm_name, logger=logger, config={"ollama_base_url": ollama_base_url}) |
| 49 | + |
| 50 | + |
| 51 | +def main(): |
| 52 | + st.header("📄Chat with your pdf file") |
| 53 | + |
| 54 | + # upload a your pdf file |
| 55 | + pdf = st.file_uploader("Upload your PDF", type="pdf") |
| 56 | + |
| 57 | + if pdf is not None: |
| 58 | + pdf_reader = PdfReader(pdf) |
| 59 | + |
| 60 | + text = "" |
| 61 | + for page in pdf_reader.pages: |
| 62 | + text += page.extract_text() |
| 63 | + |
| 64 | + # langchain_textspliter |
| 65 | + text_splitter = RecursiveCharacterTextSplitter( |
| 66 | + chunk_size=1000, chunk_overlap=200, length_function=len |
| 67 | + ) |
| 68 | + |
| 69 | + chunks = text_splitter.split_text(text=text) |
| 70 | + |
| 71 | + # Store the chunks part in db (vector) |
| 72 | + vectorstore = Neo4jVector.from_texts( |
| 73 | + chunks, |
| 74 | + url=url, |
| 75 | + username=username, |
| 76 | + password=password, |
| 77 | + embedding=embeddings, |
| 78 | + pre_delete_collection=True, # Delete existing PDF data |
| 79 | + ) |
| 80 | + qa = RetrievalQA.from_chain_type( |
| 81 | + llm=llm, chain_type="stuff", retriever=vectorstore.as_retriever() |
| 82 | + ) |
| 83 | + |
| 84 | + # Accept user questions/query |
| 85 | + query = st.text_input("Ask questions about related your upload pdf file") |
| 86 | + |
| 87 | + if query: |
| 88 | + stream_handler = StreamHandler(st.empty()) |
| 89 | + qa.run(query, callbacks=[stream_handler]) |
| 90 | + |
| 91 | + |
| 92 | +if __name__ == "__main__": |
| 93 | + main() |
0 commit comments