-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathdata_generator.py
170 lines (140 loc) · 5.62 KB
/
data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import numpy as np
import os, sys
import random
import tensorflow as tf
import tqdm
import pickle
def get_images(paths, labels, nb_samples=None, shuffle=True):
if nb_samples is not None:
sampler = lambda x: random.sample(x, nb_samples)
else:
sampler = lambda x: x
images = [(i, os.path.join(path, image)) \
for i, path in zip(labels, paths) \
for image in sampler(os.listdir(path))]
if shuffle:
random.shuffle(images)
return images
class DataGenerator:
"""
Data Generator capable of generating batches of sinusoid or Omniglot data.
A "class" is considered a class of omniglot digits or a particular sinusoid function.
"""
def __init__(self, nway, kshot, kquery, meta_batchsz, total_batch_num = 200000):
"""
:param nway:
:param kshot:
:param kquery:
:param meta_batchsz:
"""
self.meta_batchsz = meta_batchsz
# number of images to sample per class
self.nimg = kshot + kquery
self.nway = nway
self.imgsz = (84, 84)
self.total_batch_num = total_batch_num
self.dim_input = np.prod(self.imgsz) * 3 # 21168
self.dim_output = nway
metatrain_folder = '/hdd1/liangqu/datasets/miniimagenet/train'
metaval_folder = '/hdd1/liangqu/datasets/miniimagenet/test'
self.metatrain_folders = [os.path.join(metatrain_folder, label) \
for label in os.listdir(metatrain_folder) \
if os.path.isdir(os.path.join(metatrain_folder, label)) \
]
self.metaval_folders = [os.path.join(metaval_folder, label) \
for label in os.listdir(metaval_folder) \
if os.path.isdir(os.path.join(metaval_folder, label)) \
]
self.rotations = [0]
print('metatrain_folder:', self.metatrain_folders[:2])
print('metaval_folders:', self.metaval_folders[:2])
def make_data_tensor(self, training=True):
"""
:param training:
:return:
"""
if training:
folders = self.metatrain_folders
num_total_batches = self.total_batch_num
else:
folders = self.metaval_folders
num_total_batches = 600
if training and os.path.exists('filelist.pkl'):
labels = np.arange(self.nway).repeat(self.nimg).tolist()
with open('filelist.pkl', 'rb') as f:
all_filenames = pickle.load(f)
print('load episodes from file, len:', len(all_filenames))
else: # test or not existed.
# 16 in one class, 16*5 in one task
# [task1_0_img0, task1_0_img15, task1_1_img0,]
all_filenames = []
for _ in tqdm.tqdm(range(num_total_batches), 'generating episodes'): # 200000
# from image folder sample 5 class randomly
sampled_folders = random.sample(folders, self.nway)
random.shuffle(sampled_folders)
# sample 16 images from selected folders, and each with label 0-4, (0/1..., path), orderly, no shuffle!
# len: 5 * 16
labels_and_images = get_images(sampled_folders, range(self.nway), nb_samples=self.nimg, shuffle=False)
# make sure the above isn't randomized order
labels = [li[0] for li in labels_and_images]
filenames = [li[1] for li in labels_and_images]
all_filenames.extend(filenames)
if training: # only save for training.
with open('filelist.pkl', 'wb') as f:
pickle.dump(all_filenames,f)
print('save all file list to filelist.pkl')
# make queue for tensorflow to read from
print('creating pipeline ops')
filename_queue = tf.train.string_input_producer(tf.convert_to_tensor(all_filenames), shuffle=False)
image_reader = tf.WholeFileReader()
_, image_file = image_reader.read(filename_queue)
image = tf.image.decode_jpeg(image_file, channels=3)
# tensorflow format: N*H*W*C
image.set_shape((self.imgsz[0], self.imgsz[1], 3))
# reshape(image, [84*84*3])
image = tf.reshape(image, [self.dim_input])
# convert to range(0,1)
image = tf.cast(image, tf.float32) / 255.0
examples_per_batch = self.nway * self.nimg # 5*16
# batch here means batch of meta-learning, including 4 tasks = 4*80
batch_image_size = self.meta_batchsz * examples_per_batch # 4* 80
print('batching images')
images = tf.train.batch(
[image],
batch_size=batch_image_size, # 4*80
num_threads= self.meta_batchsz,
capacity= 256 + 3 * batch_image_size, # 256 + 3* 4*80
)
all_image_batches, all_label_batches = [], []
print('manipulating images to be right order')
# images contains current batch, namely 4 task, 4* 80
for i in range(self.meta_batchsz): # 4
# current task, 80 images
image_batch = images[i * examples_per_batch:(i + 1) * examples_per_batch]
# as all labels of all task are the same, which is 0,0,..1,1,..2,2,..3,3,..4,4...
label_batch = tf.convert_to_tensor(labels)
new_list, new_label_list = [], []
# for each image from 0 to 15 in all 5 class
for k in range(self.nimg): # 16
class_idxs = tf.range(0, self.nway) # 0-4
class_idxs = tf.random_shuffle(class_idxs)
# it will cope with 5 images parallelly
# [0, 16, 32, 48, 64] or [1, 17, 33, 49, 65]
true_idxs = class_idxs * self.nimg + k
new_list.append(tf.gather(image_batch, true_idxs))
new_label_list.append(tf.gather(label_batch, true_idxs))
# [80, 84*84*3]
new_list = tf.concat(new_list, 0) # has shape [self.num_classes*self.num_samples_per_class, self.dim_input]
# [80]
new_label_list = tf.concat(new_label_list, 0)
all_image_batches.append(new_list)
all_label_batches.append(new_label_list)
# [4, 80, 84*84*3]
all_image_batches = tf.stack(all_image_batches)
# [4, 80]
all_label_batches = tf.stack(all_label_batches)
# [4, 80, 5]
all_label_batches = tf.one_hot(all_label_batches, self.nway)
print('image_b:', all_image_batches)
print('label_onehot_b:', all_label_batches)
return all_image_batches, all_label_batches