1
1
# Generated by using Rcpp::compileAttributes() -> do not edit by hand
2
2
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393
3
3
4
- check_is_seq <- function (indices ) {
5
- .Call(`_rsparse_check_is_seq` , indices )
6
- }
7
-
8
- copy_csr_rows <- function (indptr , indices , values , rows_take ) {
9
- .Call(`_rsparse_copy_csr_rows` , indptr , indices , values , rows_take )
10
- }
11
-
12
- copy_csr_rows_col_seq <- function (indptr , indices , values , rows_take , cols_take ) {
13
- .Call(`_rsparse_copy_csr_rows_col_seq` , indptr , indices , values , rows_take , cols_take )
14
- }
15
-
16
- copy_csr_arbitrary <- function (indptr , indices , values , rows_take , cols_take ) {
17
- .Call(`_rsparse_copy_csr_arbitrary` , indptr , indices , values , rows_take , cols_take )
18
- }
19
-
20
- get_ftrl_weights <- function (R_model ) {
21
- .Call(`_rsparse_get_ftrl_weights` , R_model )
22
- }
23
-
24
- ftrl_partial_fit <- function (m , y , R_model , weights , do_update = 1L , n_threads = 1L ) {
25
- .Call(`_rsparse_ftrl_partial_fit` , m , y , R_model , weights , do_update , n_threads )
26
- }
27
-
28
4
fm_create_param <- function (learning_rate_w , learning_rate_v , rank , lambda_w , lambda_v , w0_R , w_R , v_R , grad_w2_R , grad_v2_R , task , intercept ) {
29
5
.Call(`_rsparse_fm_create_param` , learning_rate_w , learning_rate_v , rank , lambda_w , lambda_v , w0_R , w_R , v_R , grad_w2_R , grad_v2_R , task , intercept )
30
6
}
@@ -57,6 +33,14 @@ is_invalid_ptr <- function(sexp_ptr) {
57
33
.Call(`_rsparse_is_invalid_ptr` , sexp_ptr )
58
34
}
59
35
36
+ get_ftrl_weights <- function (R_model ) {
37
+ .Call(`_rsparse_get_ftrl_weights` , R_model )
38
+ }
39
+
40
+ ftrl_partial_fit <- function (m , y , R_model , weights , do_update = 1L , n_threads = 1L ) {
41
+ .Call(`_rsparse_ftrl_partial_fit` , m , y , R_model , weights , do_update , n_threads )
42
+ }
43
+
60
44
cpp_glove_create <- function (params ) {
61
45
.Call(`_rsparse_cpp_glove_create` , params )
62
46
}
@@ -65,36 +49,40 @@ cpp_glove_partial_fit <- function(ptr, x_irow, x_icol, x_val, iter_order, n_thre
65
49
.Call(`_rsparse_cpp_glove_partial_fit` , ptr , x_irow , x_icol , x_val , iter_order , n_threads )
66
50
}
67
51
68
- csr_dense_tcrossprod <- function (x_csr_r , y_transposed , num_threads = 1L ) {
69
- .Call(`_rsparse_csr_dense_tcrossprod ` , x_csr_r , y_transposed , num_threads )
52
+ arma_kmeans <- function (x , k , seed_mode , n_iter , verbose , result ) {
53
+ .Call(`_rsparse_arma_kmeans ` , x , k , seed_mode , n_iter , verbose , result )
70
54
}
71
55
72
- dense_csc_prod <- function (x_r , y_csc_r , num_threads = 1L ) {
73
- .Call(`_rsparse_dense_csc_prod ` , x_r , y_csc_r , num_threads )
56
+ check_is_seq <- function (indices ) {
57
+ .Call(`_rsparse_check_is_seq ` , indices )
74
58
}
75
59
76
- als_implicit_double <- function (m_csc_r , X , Y , XtX , lambda , n_threads , solver , cg_steps , with_biases , is_x_bias_last_row ) {
77
- .Call(`_rsparse_als_implicit_double ` , m_csc_r , X , Y , XtX , lambda , n_threads , solver , cg_steps , with_biases , is_x_bias_last_row )
60
+ copy_csr_rows <- function (indptr , indices , values , rows_take ) {
61
+ .Call(`_rsparse_copy_csr_rows ` , indptr , indices , values , rows_take )
78
62
}
79
63
80
- als_implicit_float <- function (m_csc_r , X_ , Y_ , XtX_ , lambda , n_threads , solver , cg_steps , with_biases , is_x_bias_last_row ) {
81
- .Call(`_rsparse_als_implicit_float ` , m_csc_r , X_ , Y_ , XtX_ , lambda , n_threads , solver , cg_steps , with_biases , is_x_bias_last_row )
64
+ copy_csr_rows_col_seq <- function (indptr , indices , values , rows_take , cols_take ) {
65
+ .Call(`_rsparse_copy_csr_rows_col_seq ` , indptr , indices , values , rows_take , cols_take )
82
66
}
83
67
84
- als_explicit_double <- function (m_csc_r , X , Y , cnt_X , lambda , n_threads , solver , cg_steps , dynamic_lambda , with_biases , is_x_bias_last_row ) {
85
- .Call(`_rsparse_als_explicit_double ` , m_csc_r , X , Y , cnt_X , lambda , n_threads , solver , cg_steps , dynamic_lambda , with_biases , is_x_bias_last_row )
68
+ copy_csr_arbitrary <- function (indptr , indices , values , rows_take , cols_take ) {
69
+ .Call(`_rsparse_copy_csr_arbitrary ` , indptr , indices , values , rows_take , cols_take )
86
70
}
87
71
88
- als_explicit_float <- function (m_csc_r , X_ , Y_ , cnt_X_ , lambda , n_threads , solver , cg_steps , dynamic_lambda , with_biases , is_x_bias_last_row ) {
89
- .Call(`_rsparse_als_explicit_float ` , m_csc_r , X_ , Y_ , cnt_X_ , lambda , n_threads , solver , cg_steps , dynamic_lambda , with_biases , is_x_bias_last_row )
72
+ csr_dense_tcrossprod <- function (x_csr_r , y_transposed , num_threads = 1L ) {
73
+ .Call(`_rsparse_csr_dense_tcrossprod ` , x_csr_r , y_transposed , num_threads )
90
74
}
91
75
92
- initialize_biases_double <- function (m_csc_r , m_csr_r , user_bias , item_bias , lambda , dynamic_lambda , non_negative , calculate_global_bias = FALSE ) {
93
- .Call(`_rsparse_initialize_biases_double ` , m_csc_r , m_csr_r , user_bias , item_bias , lambda , dynamic_lambda , non_negative , calculate_global_bias )
76
+ dense_csc_prod <- function (x_r , y_csc_r , num_threads = 1L ) {
77
+ .Call(`_rsparse_dense_csc_prod ` , x_r , y_csc_r , num_threads )
94
78
}
95
79
96
- initialize_biases_float <- function (m_csc_r , m_csr_r , user_bias , item_bias , lambda , dynamic_lambda , non_negative , calculate_global_bias = FALSE ) {
97
- .Call(`_rsparse_initialize_biases_float` , m_csc_r , m_csr_r , user_bias , item_bias , lambda , dynamic_lambda , non_negative , calculate_global_bias )
80
+ top_product <- function (x , y , k , n_threads , not_recommend_r , exclude , glob_mean = 0 . ) {
81
+ .Call(`_rsparse_top_product` , x , y , k , n_threads , not_recommend_r , exclude , glob_mean )
82
+ }
83
+
84
+ c_nnls_double <- function (x , y , max_iter , rel_tol ) {
85
+ .Call(`_rsparse_c_nnls_double` , x , y , max_iter , rel_tol )
98
86
}
99
87
100
88
rankmf_solver_double <- function (x_r , W , H , W2_grad , H2_grad , user_features_r , item_features_r , rank , n_updates , learning_rate = 0.01 , gamma = 1 , lambda_user = 0.0 , lambda_item_positive = 0.0 , lambda_item_negative = 0.0 , n_threads = 1L , update_items = TRUE , loss = 0L , kernel = 0L , max_negative_samples = 50L , margin = 0.1 , optimizer = 0L , report_progress = 10L ) {
@@ -105,18 +93,6 @@ rankmf_solver_float <- function(x_r, W, H, W2_grad, H2_grad, user_features_r, it
105
93
invisible (.Call(`_rsparse_rankmf_solver_float` , x_r , W , H , W2_grad , H2_grad , user_features_r , item_features_r , rank , n_updates , learning_rate , gamma , lambda_user , lambda_item_positive , lambda_item_negative , n_threads , update_items , loss , kernel , max_negative_samples , margin , optimizer , report_progress ))
106
94
}
107
95
108
- top_product <- function (x , y , k , n_threads , not_recommend_r , exclude , glob_mean = 0 . ) {
109
- .Call(`_rsparse_top_product` , x , y , k , n_threads , not_recommend_r , exclude , glob_mean )
110
- }
111
-
112
- arma_kmeans <- function (x , k , seed_mode , n_iter , verbose , result ) {
113
- .Call(`_rsparse_arma_kmeans` , x , k , seed_mode , n_iter , verbose , result )
114
- }
115
-
116
- c_nnls_double <- function (x , y , max_iter , rel_tol ) {
117
- .Call(`_rsparse_c_nnls_double` , x , y , max_iter , rel_tol )
118
- }
119
-
120
96
omp_thread_count <- function () {
121
97
.Call(`_rsparse_omp_thread_count` )
122
98
}
@@ -133,3 +109,27 @@ deep_copy <- function(x) {
133
109
.Call(`_rsparse_deep_copy` , x )
134
110
}
135
111
112
+ als_explicit_double <- function (m_csc_r , X , Y , cnt_X , lambda , n_threads , solver , cg_steps , dynamic_lambda , with_biases , is_x_bias_last_row ) {
113
+ .Call(`_rsparse_als_explicit_double` , m_csc_r , X , Y , cnt_X , lambda , n_threads , solver , cg_steps , dynamic_lambda , with_biases , is_x_bias_last_row )
114
+ }
115
+
116
+ als_explicit_float <- function (m_csc_r , X_ , Y_ , cnt_X_ , lambda , n_threads , solver , cg_steps , dynamic_lambda , with_biases , is_x_bias_last_row ) {
117
+ .Call(`_rsparse_als_explicit_float` , m_csc_r , X_ , Y_ , cnt_X_ , lambda , n_threads , solver , cg_steps , dynamic_lambda , with_biases , is_x_bias_last_row )
118
+ }
119
+
120
+ als_implicit_double <- function (m_csc_r , X , Y , XtX , lambda , n_threads , solver , cg_steps , with_biases , is_x_bias_last_row ) {
121
+ .Call(`_rsparse_als_implicit_double` , m_csc_r , X , Y , XtX , lambda , n_threads , solver , cg_steps , with_biases , is_x_bias_last_row )
122
+ }
123
+
124
+ als_implicit_float <- function (m_csc_r , X_ , Y_ , XtX_ , lambda , n_threads , solver , cg_steps , with_biases , is_x_bias_last_row ) {
125
+ .Call(`_rsparse_als_implicit_float` , m_csc_r , X_ , Y_ , XtX_ , lambda , n_threads , solver , cg_steps , with_biases , is_x_bias_last_row )
126
+ }
127
+
128
+ initialize_biases_double <- function (m_csc_r , m_csr_r , user_bias , item_bias , lambda , dynamic_lambda , non_negative , calculate_global_bias = FALSE ) {
129
+ .Call(`_rsparse_initialize_biases_double` , m_csc_r , m_csr_r , user_bias , item_bias , lambda , dynamic_lambda , non_negative , calculate_global_bias )
130
+ }
131
+
132
+ initialize_biases_float <- function (m_csc_r , m_csr_r , user_bias , item_bias , lambda , dynamic_lambda , non_negative , calculate_global_bias = FALSE ) {
133
+ .Call(`_rsparse_initialize_biases_float` , m_csc_r , m_csr_r , user_bias , item_bias , lambda , dynamic_lambda , non_negative , calculate_global_bias )
134
+ }
135
+
0 commit comments