-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathtrain_bert_crf.py
376 lines (309 loc) · 17 KB
/
train_bert_crf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
from __future__ import absolute_import, division, print_function, unicode_literals
import argparse
import numpy as np
import logging
import random
import pickle
import json
import os
from pathlib import Path
import torch
from pytorch_transformers import AdamW, WarmupLinearSchedule
from torch.utils.tensorboard import SummaryWriter # from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from torch import nn, optim
from tqdm import tqdm, trange
from data_utils.utils import CheckpointManager, SummaryManager
from model.net import KobertCRF
from model.utils import Config
from data_utils.ner_dataset import NamedEntityRecognitionDataset, NamedEntityRecognitionFormatter
from data_utils.vocab_tokenizer import Vocabulary, Tokenizer
from data_utils.pad_sequence import keras_pad_fn
from gluonnlp.data import SentencepieceTokenizer
from kobert.pytorch_kobert import get_pytorch_kobert_model
from kobert.utils import get_tokenizer
from sklearn.metrics import classification_report
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# os.environ["CUDA_VISIBLE_DEVICES"] = "0" # use gpu 0, gpu 1, gpu 2, ... (gpu index)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
logger = logging.getLogger(__name__)
def set_seed(seed=100):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
n_gpu = torch.cuda.device_count()
if n_gpu > 0:
torch.cuda.manual_seed_all(seed)
def main(parser):
# Config
args = parser.parse_args()
data_dir = Path(args.data_dir)
model_dir = Path(args.model_dir)
# data_config = Config(json_path=data_dir / 'config.json')
model_config = Config(json_path=model_dir / 'config.json')
# Vocab & Tokenizer
tok_path = get_tokenizer() # ./tokenizer_78b3253a26.model
ptr_tokenizer = SentencepieceTokenizer(tok_path)
_, vocab_of_gluonnlp = get_pytorch_kobert_model()
token_to_idx = vocab_of_gluonnlp.token_to_idx
model_config.vocab_size = len(token_to_idx)
vocab = Vocabulary(token_to_idx=token_to_idx)
print("len(token_to_idx): ", len(token_to_idx))
with open(model_dir / "token2idx_vocab.json", 'w', encoding='utf-8') as f:
json.dump(token_to_idx, f, ensure_ascii=False, indent=4)
# save vocab & tokenizer
with open(model_dir / "vocab.pkl", 'wb') as f:
pickle.dump(vocab, f)
# load vocab & tokenizer
with open(model_dir / "vocab.pkl", 'rb') as f:
vocab = pickle.load(f)
tokenizer = Tokenizer(vocab=vocab, split_fn=ptr_tokenizer, pad_fn=keras_pad_fn, maxlen=model_config.maxlen)
ner_formatter = NamedEntityRecognitionFormatter(vocab=vocab, tokenizer=tokenizer, maxlen=model_config.maxlen, model_dir=model_dir)
# Train & Val Datasets
cwd = Path.cwd()
data_in = cwd / "data_in"
train_data_dir = data_in / "NER-master" / "말뭉치 - 형태소_개체명"
tr_ds = NamedEntityRecognitionDataset(train_data_dir=train_data_dir, model_dir=model_dir)
tr_ds.set_transform_fn(transform_source_fn=ner_formatter.transform_source_fn, transform_target_fn=ner_formatter.transform_target_fn)
tr_dl = DataLoader(tr_ds, batch_size=model_config.batch_size, shuffle=True, num_workers=4, drop_last=False)
val_data_dir = data_in / "NER-master" / "validation_set"
val_ds = NamedEntityRecognitionDataset(train_data_dir=val_data_dir, model_dir=model_dir)
val_ds.set_transform_fn(transform_source_fn=ner_formatter.transform_source_fn, transform_target_fn=ner_formatter.transform_target_fn)
val_dl = DataLoader(val_ds, batch_size=model_config.batch_size, shuffle=True, num_workers=4, drop_last=False)
# Model
model = KobertCRF(config=model_config, num_classes=len(tr_ds.ner_to_index))
model.to(device)
model.train()
# optim
train_examples_len = len(tr_ds)
val_examples_len = len(val_ds)
print("num of train: {}, num of val: {}".format(train_examples_len, val_examples_len))
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}]
# num_train_optimization_steps = int(train_examples_len / model_config.batch_size / model_config.gradient_accumulation_steps) * model_config.epochs
t_total = len(tr_dl) // model_config.gradient_accumulation_steps * model_config.epochs
optimizer = AdamW(optimizer_grouped_parameters, lr=model_config.learning_rate, eps=model_config.adam_epsilon)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=model_config.warmup_steps, t_total=t_total)
n_gpu = torch.cuda.device_count()
# if n_gpu > 1:
# model = torch.nn.DataParallel(model)
# save
tb_writer = SummaryWriter('{}/runs'.format(model_dir))
checkpoint_manager = CheckpointManager(model_dir)
summary_manager = SummaryManager(model_dir)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(tr_ds))
logger.info(" Num Epochs = %d", model_config.epochs)
logger.info(" Instantaneous batch size per GPU = %d", model_config.batch_size)
logger.info(" Gradient Accumulation steps = %d", model_config.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
best_dev_acc, best_dev_loss = 0.0, 99999999999.0
best_steps = 0
model.zero_grad()
set_seed() # Added here for reproductibility (even between python 2 and 3)
# Train
train_iterator = trange(int(model_config.epochs), desc="Epoch")
for _epoch, _ in enumerate(train_iterator):
epoch_iterator = tqdm(tr_dl, desc="Iteration")
epoch = _epoch
for step, batch in enumerate(epoch_iterator):
model.train()
x_input, token_type_ids, y_real = map(lambda elm: elm.to(device), batch)
log_likelihood, sequence_of_tags = model(x_input, token_type_ids, y_real)
# loss: negative log-likelihood
loss = -1 * log_likelihood
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if model_config.gradient_accumulation_steps > 1:
loss = loss / model_config.gradient_accumulation_steps
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), model_config.max_grad_norm)
tr_loss += loss.item()
if (step + 1) % model_config.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
with torch.no_grad():
sequence_of_tags = torch.tensor(sequence_of_tags).to(device)
mb_acc = (sequence_of_tags == y_real).float()[y_real != vocab.PAD_ID].mean()
tr_acc = mb_acc.item()
tr_loss_avg = tr_loss / global_step
tr_summary = {'loss': tr_loss_avg, 'acc': tr_acc}
# if step % 50 == 0:
print('epoch : {}, global_step : {}, tr_loss: {:.3f}, tr_acc: {:.2%}'.format(epoch + 1, global_step, tr_summary['loss'], tr_summary['acc']))
# training & evaluation log
if model_config.logging_steps > 0 and global_step % model_config.logging_steps == 0:
if model_config.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
eval_summary, list_of_y_real, list_of_pred_tags = evaluate(model, val_dl)
tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
tb_writer.add_scalars('loss', {'train': (tr_loss - logging_loss) / model_config.logging_steps, 'val': eval_summary["eval_loss"]}, global_step)
tb_writer.add_scalars('acc', {'train': tr_acc, 'val': eval_summary["eval_acc"]}, global_step)
print("eval acc: {}, loss: {}, global steps: {}".format(eval_summary['eval_acc'], eval_summary['eval_loss'], global_step))
print("Average loss: {} at global step: {}".format((tr_loss - logging_loss) / model_config.logging_steps, global_step))
logging_loss = tr_loss
# save model
if model_config.save_steps > 0 and global_step % model_config.save_steps == 0:
eval_summary, list_of_y_real, list_of_pred_tags = evaluate(model, val_dl)
# Save model checkpoint
output_dir = os.path.join(model_config.output_dir, 'epoch-{}'.format(epoch + 1))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print("Saving model checkpoint to %s", output_dir)
state = {'global_step': global_step + 1,
'model_state_dict': model.state_dict(),
'opt_state_dict': optimizer.state_dict()}
summary = {'train': tr_summary, 'eval': eval_summary}
summary_manager.update(summary)
print("summary: ", summary)
summary_manager.save('summary.json')
# Save
is_best = eval_summary["eval_acc"] >= best_dev_acc # acc 기준 (원래는 train_acc가 아니라 val_acc로 해야)
if is_best:
best_dev_acc = eval_summary["eval_acc"]
best_dev_loss = eval_summary["eval_loss"]
best_steps = global_step
# if args.do_test:
# results_test = evaluate(model, test_dl, test=True)
# for key, value in results_test.items():
# tb_writer.add_scalar('test_{}'.format(key), value, global_step)
# logger.info("test acc: %s, loss: %s, global steps: %s", str(eval_summary['eval_acc']), str(eval_summary['eval_loss']), str(global_step))
checkpoint_manager.save_checkpoint(state, 'best-epoch-{}-step-{}-acc-{:.3f}.bin'.format(epoch + 1, global_step, best_dev_acc))
print("Saving model checkpoint as best-epoch-{}-step-{}-acc-{:.3f}.bin".format(epoch + 1, global_step, best_dev_acc))
# print classification report and save confusion matrix
cr_save_path = model_dir / 'best-epoch-{}-step-{}-acc-{:.3f}-cr.csv'.format(epoch + 1, global_step, best_dev_acc)
cm_save_path = model_dir / 'best-epoch-{}-step-{}-acc-{:.3f}-cm.png'.format(epoch + 1, global_step, best_dev_acc)
save_cr_and_cm(val_dl, list_of_y_real, list_of_pred_tags, cr_save_path=cr_save_path, cm_save_path=cm_save_path)
else:
torch.save(state, os.path.join(output_dir, 'model-epoch-{}-step-{}-acc-{:.3f}.bin'.format(epoch + 1, global_step, eval_summary["eval_acc"])))
print("Saving model checkpoint as model-epoch-{}-step-{}-acc-{:.3f}.bin".format(epoch + 1, global_step, eval_summary["eval_acc"]))
tb_writer.close()
print("global_step = {}, average loss = {}".format(global_step, tr_loss / global_step))
return global_step, tr_loss / global_step, best_steps
def evaluate(model, val_dl, prefix="NER"):
""" evaluate accuracy and return result """
results = {}
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
eval_loss = 0.0
nb_eval_steps = 0
list_of_y_real = []
list_of_pred_tags = []
count_correct = 0
total_count = 0
for batch in tqdm(val_dl, desc="Evaluating"):
model.train()
x_input, token_type_ids, y_real = map(lambda elm: elm.to(device), batch)
with torch.no_grad():
inputs = {'input_ids': x_input,
'token_type_ids': token_type_ids,
'tags': y_real}
log_likelihood, sequence_of_tags = model(**inputs)
eval_loss += -1 * log_likelihood.float().item()
nb_eval_steps += 1
y_real = y_real.to('cpu')
sequence_of_tags = torch.tensor(sequence_of_tags).to('cpu')
count_correct += (sequence_of_tags == y_real).float()[y_real != 2].sum() # 0,1,2,3 -> [CLS], [SEP], [PAD], [MASK] index
total_count += len(y_real[y_real != 2])
for seq_elm in y_real.tolist():
list_of_y_real += seq_elm
for seq_elm in sequence_of_tags.tolist():
list_of_pred_tags += seq_elm
eval_loss = eval_loss / nb_eval_steps
acc = (count_correct / total_count).item() # tensor -> float
result = {"eval_acc": acc, "eval_loss": eval_loss}
results.update(result)
return results, list_of_y_real, list_of_pred_tags
import operator
import pandas as pd
def save_cr_and_cm(val_dl, list_of_y_real, list_of_pred_tags, cr_save_path="classification_report.csv", cm_save_path="confusion_matrix.png"):
""" print classification report and confusion matrix """
# target_names = val_dl.dataset.ner_to_index.keys()
sorted_ner_to_index = sorted(val_dl.dataset.ner_to_index.items(), key=operator.itemgetter(1))
target_names = []
for ner_tag, index in sorted_ner_to_index:
if ner_tag in ['[CLS]', '[SEP]', '[PAD]', '[MASK]', 'O']:
continue
else:
target_names.append(ner_tag)
label_index_to_print = list(range(5, 25)) # ner label indice except '[CLS]', '[SEP]', '[PAD]', '[MASK]' and 'O' tag
print(classification_report(y_true=list_of_y_real, y_pred=list_of_pred_tags, target_names=target_names, labels=label_index_to_print, digits=4))
cr_dict = classification_report(y_true=list_of_y_real, y_pred=list_of_pred_tags, target_names=target_names, labels=label_index_to_print, digits=4, output_dict=True)
df = pd.DataFrame(cr_dict).transpose()
df.to_csv(cr_save_path)
np.set_printoptions(precision=2)
plot_confusion_matrix(y_true=list_of_y_real, y_pred=list_of_pred_tags, classes=target_names, labels=label_index_to_print, normalize=False, title='Confusion matrix, without normalization')
plt.savefig(cm_save_path)
# plt.show()
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
from sklearn.utils.multiclass import unique_labels
def plot_confusion_matrix(y_true, y_pred, classes, labels,
normalize=False,
title=None,
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if not title:
if normalize:
title = 'Normalized confusion matrix'
else:
title = 'Confusion matrix, without normalization'
# Compute confusion matrix
cm = confusion_matrix(y_true=y_true, y_pred=y_pred, labels=labels)
# Only use the labels that appear in the data
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
# --- plot 크기 조절 --- #
plt.rcParams['savefig.dpi'] = 200
plt.rcParams['figure.dpi'] = 200
plt.rcParams['figure.figsize'] = [20, 20] # plot 크기
plt.rcParams.update({'font.size': 10})
# --- plot 크기 조절 --- #
fig, ax = plt.subplots()
im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
# --- bar 크기 조절 --- #
from mpl_toolkits.axes_grid1 import make_axes_locatable
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(im, cax=cax)
# --- bar 크기 조절 --- #
# ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
# ... and label them with the respective list entries
xticklabels=classes, yticklabels=classes,
title=title,
ylabel='True label',
xlabel='Predicted label')
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
fig.tight_layout()
return ax
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', default='data_in', help="Directory containing config.json of data")
parser.add_argument('--model_dir', default='experiments/base_model_with_crf_val', help="Directory containing config.json of model")
main(parser)