|
189 | 189 | "\n", |
190 | 190 | "print(\"Indexing complete!\")" |
191 | 191 | ] |
| 192 | + }, |
| 193 | + { |
| 194 | + "cell_type": "markdown", |
| 195 | + "metadata": {}, |
| 196 | + "source": [ |
| 197 | + "Now are going to create a pipeline to vectorize the descriptions text_field through our inference text embedding model." |
| 198 | + ] |
| 199 | + }, |
| 200 | + { |
| 201 | + "cell_type": "code", |
| 202 | + "execution_count": null, |
| 203 | + "metadata": {}, |
| 204 | + "outputs": [], |
| 205 | + "source": [ |
| 206 | + "pipeline_body = {\n", |
| 207 | + " \"description\": \"Pipeline to run the descriptions text_field through our inference text embedding model\",\n", |
| 208 | + " \"processors\": [\n", |
| 209 | + " {\n", |
| 210 | + " \"set\": {\n", |
| 211 | + " \"field\": \"temp_desc\",\n", |
| 212 | + " \"value\": \"passage: {{description}}\"\n", |
| 213 | + " }\n", |
| 214 | + " },\n", |
| 215 | + " {\n", |
| 216 | + " \"inference\": {\n", |
| 217 | + " \"field_map\": {\n", |
| 218 | + " \"temp_desc\": \"text_field\"\n", |
| 219 | + " },\n", |
| 220 | + " \"model_id\": \".multilingual-e5-small_linux-x86_64_search\",\n", |
| 221 | + " \"target_field\": \"vector_description\"\n", |
| 222 | + " }\n", |
| 223 | + " },\n", |
| 224 | + " {\n", |
| 225 | + " \"remove\": {\n", |
| 226 | + " \"field\": \"temp_desc\"\n", |
| 227 | + " }\n", |
| 228 | + " }\n", |
| 229 | + " ]\n", |
| 230 | + "}\n", |
| 231 | + "\n", |
| 232 | + "try:\n", |
| 233 | + " es.ingest.put_pipeline(id=\"vectorize_descriptions\", body=pipeline_body)\n", |
| 234 | + " print(\"Pipeline 'vectorize_descriptions' created successfully.\")\n", |
| 235 | + "except Exception as e:\n", |
| 236 | + " print(f\"Error creating pipeline: {str(e)}\")\n" |
| 237 | + ] |
| 238 | + }, |
| 239 | + { |
| 240 | + "cell_type": "markdown", |
| 241 | + "metadata": {}, |
| 242 | + "source": [ |
| 243 | + "We also need to create a new Elasticsearch index with the specified vector mapping." |
| 244 | + ] |
| 245 | + }, |
| 246 | + { |
| 247 | + "cell_type": "code", |
| 248 | + "execution_count": null, |
| 249 | + "metadata": {}, |
| 250 | + "outputs": [], |
| 251 | + "source": [ |
| 252 | + "index_body = {\n", |
| 253 | + " \"mappings\": {\n", |
| 254 | + " \"properties\": {\n", |
| 255 | + " \"description\": {\n", |
| 256 | + " \"type\": \"text\"\n", |
| 257 | + " },\n", |
| 258 | + " \"en\": {\n", |
| 259 | + " \"type\": \"text\"\n", |
| 260 | + " },\n", |
| 261 | + " \"image_url\": {\n", |
| 262 | + " \"type\": \"keyword\"\n", |
| 263 | + " },\n", |
| 264 | + " \"language\": {\n", |
| 265 | + " \"type\": \"keyword\"\n", |
| 266 | + " },\n", |
| 267 | + " \"vector_description.predicted_value\": {\n", |
| 268 | + " \"type\": \"dense_vector\",\n", |
| 269 | + " \"dims\": 384,\n", |
| 270 | + " \"index\": True,\n", |
| 271 | + " \"similarity\": \"cosine\",\n", |
| 272 | + " \"index_options\": {\n", |
| 273 | + " \"type\": \"bbq_hnsw\"\n", |
| 274 | + " }\n", |
| 275 | + " }\n", |
| 276 | + " }\n", |
| 277 | + " }\n", |
| 278 | + "}\n", |
| 279 | + "\n", |
| 280 | + "try:\n", |
| 281 | + " es.indices.create(index=\"coco_multi\", body=index_body)\n", |
| 282 | + " print(\"Index 'coco_multi' created successfully.\")\n", |
| 283 | + "except Exception as e:\n", |
| 284 | + " print(f\"Error creating index: {str(e)}\")\n" |
| 285 | + ] |
| 286 | + }, |
| 287 | + { |
| 288 | + "cell_type": "markdown", |
| 289 | + "metadata": {}, |
| 290 | + "source": [ |
| 291 | + "Now, we just need to run the pipeline to bring and vectorize the data into the Elasticsearch index." |
| 292 | + ] |
| 293 | + }, |
| 294 | + { |
| 295 | + "cell_type": "code", |
| 296 | + "execution_count": null, |
| 297 | + "metadata": {}, |
| 298 | + "outputs": [], |
| 299 | + "source": [ |
| 300 | + "from elasticsearch import Elasticsearch\n", |
| 301 | + "\n", |
| 302 | + "es = Elasticsearch()\n", |
| 303 | + "\n", |
| 304 | + "reindex_body = {\n", |
| 305 | + " \"source\": {\n", |
| 306 | + " \"index\": \"coco\"\n", |
| 307 | + " },\n", |
| 308 | + " \"dest\": {\n", |
| 309 | + " \"index\": \"coco_multilingual\",\n", |
| 310 | + " \"pipeline\": \"vectorize_descriptions\"\n", |
| 311 | + " }\n", |
| 312 | + "}\n", |
| 313 | + "\n", |
| 314 | + "response = es.reindex(\n", |
| 315 | + " body=reindex_body,\n", |
| 316 | + " # Not waiting for completion here cause this process might take a while\n", |
| 317 | + " wait_for_completion=False\n", |
| 318 | + ")\n", |
| 319 | + "\n", |
| 320 | + "print(\"Reindex task started. Task info:\")\n", |
| 321 | + "print(response)\n" |
| 322 | + ] |
| 323 | + }, |
| 324 | + { |
| 325 | + "cell_type": "markdown", |
| 326 | + "metadata": {}, |
| 327 | + "source": [ |
| 328 | + "Voilà, now let's try some queries and have some fun!" |
| 329 | + ] |
| 330 | + }, |
| 331 | + { |
| 332 | + "cell_type": "code", |
| 333 | + "execution_count": null, |
| 334 | + "metadata": {}, |
| 335 | + "outputs": [], |
| 336 | + "source": [ |
| 337 | + "query_body = {\n", |
| 338 | + " \"size\": 10,\n", |
| 339 | + " \"_source\": [\n", |
| 340 | + " \"description\", \"language\", \"en\"\n", |
| 341 | + " ],\n", |
| 342 | + " \"knn\": {\n", |
| 343 | + " \"field\": \"vector_description.predicted_value\",\n", |
| 344 | + " \"k\": 10,\n", |
| 345 | + " \"num_candidates\": 100,\n", |
| 346 | + " \"query_vector_builder\": {\n", |
| 347 | + " \"text_embedding\": {\n", |
| 348 | + " \"model_id\": \".multilingual-e5-small_linux-x86_64_search\",\n", |
| 349 | + " \"model_text\": \"query: kitty\"\n", |
| 350 | + " }\n", |
| 351 | + " }\n", |
| 352 | + " }\n", |
| 353 | + "}\n", |
| 354 | + "\n", |
| 355 | + "response = es.search(index=\"coco_multi\", body=query_body)\n", |
| 356 | + "print(response)\n" |
| 357 | + ] |
| 358 | + }, |
| 359 | + { |
| 360 | + "cell_type": "markdown", |
| 361 | + "metadata": {}, |
| 362 | + "source": [] |
| 363 | + }, |
| 364 | + { |
| 365 | + "cell_type": "code", |
| 366 | + "execution_count": null, |
| 367 | + "metadata": {}, |
| 368 | + "outputs": [], |
| 369 | + "source": [ |
| 370 | + "query_body = {\n", |
| 371 | + " \"size\": 100,\n", |
| 372 | + " \"_source\": [\n", |
| 373 | + " \"description\", \"language\", \"en\"\n", |
| 374 | + " ],\n", |
| 375 | + " \"knn\": {\n", |
| 376 | + " \"field\": \"vector_description.predicted_value\",\n", |
| 377 | + " \"k\": 50,\n", |
| 378 | + " \"num_candidates\": 1000,\n", |
| 379 | + " \"query_vector_builder\": {\n", |
| 380 | + " \"text_embedding\": {\n", |
| 381 | + " \"model_id\": \".multilingual-e5-small_linux-x86_64_search\",\n", |
| 382 | + " \"model_text\": \"query: kitty lying on something\"\n", |
| 383 | + " }\n", |
| 384 | + " }\n", |
| 385 | + " }\n", |
| 386 | + "}\n", |
| 387 | + "\n", |
| 388 | + "response = es.search(index=\"coco_multi\", body=query_body)\n", |
| 389 | + "print(response)\n" |
| 390 | + ] |
| 391 | + }, |
| 392 | + { |
| 393 | + "cell_type": "code", |
| 394 | + "execution_count": null, |
| 395 | + "metadata": {}, |
| 396 | + "outputs": [], |
| 397 | + "source": [ |
| 398 | + "query_body = {\n", |
| 399 | + " \"size\": 100,\n", |
| 400 | + " \"_source\": [\n", |
| 401 | + " \"description\", \"language\", \"en\"\n", |
| 402 | + " ],\n", |
| 403 | + " \"knn\": {\n", |
| 404 | + " \"field\": \"vector_description.predicted_value\",\n", |
| 405 | + " \"k\": 50,\n", |
| 406 | + " \"num_candidates\": 1000,\n", |
| 407 | + " \"query_vector_builder\": {\n", |
| 408 | + " \"text_embedding\": {\n", |
| 409 | + " \"model_id\": \".multilingual-e5-small_linux-x86_64_search\",\n", |
| 410 | + " \"model_text\": \"query: 고양이\"\n", |
| 411 | + " }\n", |
| 412 | + " }\n", |
| 413 | + " }\n", |
| 414 | + "}\n", |
| 415 | + "\n", |
| 416 | + "response = es.search(index=\"coco_multi\", body=query_body)\n", |
| 417 | + "print(response)\n" |
| 418 | + ] |
192 | 419 | } |
193 | 420 | ], |
194 | 421 | "metadata": { |
|
0 commit comments