-
Notifications
You must be signed in to change notification settings - Fork 75
/
Copy pathiql.py
198 lines (165 loc) · 6.71 KB
/
iql.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
from dataclasses import dataclass, MISSING
from typing import Dict, Iterable, Tuple, Type
from tensordict import TensorDictBase
from tensordict.nn import TensorDictModule, TensorDictSequential
from torchrl.data import Composite, Unbounded
from torchrl.modules import EGreedyModule, QValueModule
from torchrl.objectives import DQNLoss, LossModule, ValueEstimators
from benchmarl.algorithms.common import Algorithm, AlgorithmConfig
from benchmarl.models.common import ModelConfig
class Iql(Algorithm):
"""Independent Q Learning (from `https://www.semanticscholar.org/paper/Multi-Agent-Reinforcement-Learning%3A-Independent-Tan/59de874c1e547399b695337bcff23070664fa66e <https://www.semanticscholar.org/paper/Multi-Agent-Reinforcement-Learning%3A-Independent-Tan/59de874c1e547399b695337bcff23070664fa66e>`__).
Args:
loss_function (str): loss function for the value discrepancy. Can be one of "l1", "l2" or "smooth_l1".
delay_value (bool): whether to separate the target value networks from the value networks used for
data collection.
"""
def __init__(self, delay_value: bool, loss_function: str, **kwargs):
super().__init__(**kwargs)
self.delay_value = delay_value
self.loss_function = loss_function
#############################
# Overridden abstract methods
#############################
def _get_loss(
self, group: str, policy_for_loss: TensorDictModule, continuous: bool
) -> Tuple[LossModule, bool]:
if continuous:
raise NotImplementedError("Iql is not compatible with continuous actions.")
else:
# Loss
loss_module = DQNLoss(
policy_for_loss,
delay_value=self.delay_value,
loss_function=self.loss_function,
action_space=self.action_spec[group, "action"],
)
loss_module.set_keys(
reward=(group, "reward"),
action=(group, "action"),
done=(group, "done"),
terminated=(group, "terminated"),
action_value=(group, "action_value"),
value=(group, "chosen_action_value"),
priority=(group, "td_error"),
)
loss_module.make_value_estimator(
ValueEstimators.TD0, gamma=self.experiment_config.gamma
)
return loss_module, True
def _get_parameters(self, group: str, loss: LossModule) -> Dict[str, Iterable]:
return {"loss": loss.parameters()}
def _get_policy_for_loss(
self, group: str, model_config: ModelConfig, continuous: bool
) -> TensorDictModule:
n_agents = len(self.group_map[group])
logits_shape = [
*self.action_spec[group, "action"].shape,
self.action_spec[group, "action"].space.n,
]
actor_input_spec = Composite(
{group: self.observation_spec[group].clone().to(self.device)}
)
actor_output_spec = Composite(
{
group: Composite(
{"action_value": Unbounded(shape=logits_shape)},
shape=(n_agents,),
)
}
)
actor_module = model_config.get_model(
input_spec=actor_input_spec,
output_spec=actor_output_spec,
agent_group=group,
input_has_agent_dim=True,
n_agents=n_agents,
centralised=False,
share_params=self.experiment_config.share_policy_params,
device=self.device,
action_spec=self.action_spec,
)
if self.action_mask_spec is not None:
action_mask_key = (group, "action_mask")
else:
action_mask_key = None
value_module = QValueModule(
action_value_key=(group, "action_value"),
action_mask_key=action_mask_key,
out_keys=[
(group, "action"),
(group, "action_value"),
(group, "chosen_action_value"),
],
spec=self.action_spec[group, "action"],
action_space=None,
)
return TensorDictSequential(actor_module, value_module)
def _get_policy_for_collection(
self, policy_for_loss: TensorDictModule, group: str, continuous: bool
) -> TensorDictModule:
if self.action_mask_spec is not None:
action_mask_key = (group, "action_mask")
else:
action_mask_key = None
greedy = EGreedyModule(
annealing_num_steps=self.experiment_config.get_exploration_anneal_frames(
self.on_policy
),
action_key=(group, "action"),
spec=self.action_spec[(group, "action")],
action_mask_key=action_mask_key,
eps_init=self.experiment_config.exploration_eps_init,
eps_end=self.experiment_config.exploration_eps_end,
device=self.device,
)
return TensorDictSequential(*policy_for_loss, greedy)
def process_batch(self, group: str, batch: TensorDictBase) -> TensorDictBase:
keys = list(batch.keys(True, True))
group_shape = batch.get(group).shape
nested_done_key = ("next", group, "done")
nested_terminated_key = ("next", group, "terminated")
nested_reward_key = ("next", group, "reward")
if nested_done_key not in keys:
batch.set(
nested_done_key,
batch.get(("next", "done")).unsqueeze(-1).expand((*group_shape, 1)),
)
if nested_terminated_key not in keys:
batch.set(
nested_terminated_key,
batch.get(("next", "terminated"))
.unsqueeze(-1)
.expand((*group_shape, 1)),
)
if nested_reward_key not in keys:
batch.set(
nested_reward_key,
batch.get(("next", "reward")).unsqueeze(-1).expand((*group_shape, 1)),
)
return batch
#####################
# Custom new methods
#####################
@dataclass
class IqlConfig(AlgorithmConfig):
"""Configuration dataclass for :class:`~benchmarl.algorithms.Iql`."""
delay_value: bool = MISSING
loss_function: str = MISSING
@staticmethod
def associated_class() -> Type[Algorithm]:
return Iql
@staticmethod
def supports_continuous_actions() -> bool:
return False
@staticmethod
def supports_discrete_actions() -> bool:
return True
@staticmethod
def on_policy() -> bool:
return False