-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathdeepsets.py
374 lines (326 loc) · 14.9 KB
/
deepsets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
from __future__ import annotations
from dataclasses import dataclass, MISSING
from typing import Optional, Sequence, Type
import torch
from tensordict import TensorDictBase
from torch import nn, Tensor
from torchrl.modules import MLP
from benchmarl.models.common import Model, ModelConfig
class Deepsets(Model):
r"""Deepsets Model from `this paper <https://arxiv.org/abs/1703.06114>`__ .
The BenchMARL Deepsets accepts multiple inputs of 2 types:
- sets :math:`s` : Tensors of shape ``(*batch,S,F)``
- arrays :math:`x` : Tensors of shape ``(*batch,F)``
The Deepsets model will check that all set inputs have the same shape (excluding the last dimension)
and cat them along that dimension before processing them.
It will check that all array inputs have the same shape (excluding the last dimension)
and cat them along that dimension.
It will then compute the output according to the following function.
.. math::
\rho \left (x, \bigoplus_{s\in S}\phi(s) \right ),
where :math:`\rho,\phi` are MLPs configurable in the model setup.
The model is useful in various contexts, for example:
- When used as a policy (``self.centralized==False``, ``self.input_has_agent_dim==True``), it can process
observations with shape ``(*batch,n_agents,S,F)``, reducing them to ``(*batch,n_agents,F)``
- When used a a centralized crtic with a global state as input
(``self.centralized==True``, ``self.input_has_agent_dim==False``), it can process the global state with shape
``(*batch,S,F)`` , reducing it to ``(*batch,F)``.
- When used a a centralized crtic with local agent observations as input
(``self.centralized==True``, ``self.input_has_agent_dim==True``), it can process normal agent observations with shape
``(*batch,n_agents,F)``, reducing them to ``(*batch,F)``. **Note**: If the agents also have set observations
``(*batch,n_agents,S,F)`` it will apply two deep sets networks. The first will remove the set dimension
in the agents' inputs (``(*batch,n_agents,F)``), and the second will remove the agent dimension (``(*batch,F)``).
Both networks will share the same configuration.
Args:
aggr (str): The aggregation strategy to use in the Deepsets model.
local_nn_num_cells (Sequence[int]): number of cells of every layer in between the input and output in the :math:`\phi` MLP.
local_nn_activation_class (Type[nn.Module]): activation class to be used in the :math:`\phi` MLP.
out_features_local_nn (int): output features of the :math:`\phi` MLP.
global_nn_num_cells (Sequence[int]): number of cells of every layer in between the input and output in the :math:`\rho` MLP.
global_nn_activation_class (Type[nn.Module]): activation class to be used in the :math:`\rho` MLP.
"""
def __init__(
self,
aggr: str,
local_nn_num_cells: Sequence[int],
local_nn_activation_class: Type[nn.Module],
out_features_local_nn: int,
global_nn_num_cells: Sequence[int],
global_nn_activation_class: Type[nn.Module],
**kwargs,
):
super().__init__(**kwargs)
self.aggr = aggr
self.local_nn_num_cells = local_nn_num_cells
self.local_nn_activation_class = local_nn_activation_class
self.global_nn_num_cells = global_nn_num_cells
self.global_nn_activation_class = global_nn_activation_class
self.out_features_local_nn = out_features_local_nn
self.input_local_set_features = sum(
[self.input_spec[key].shape[-1] for key in self.set_in_keys_local]
)
self.input_local_tensor_features = sum(
[self.input_spec[key].shape[-1] for key in self.tensor_in_keys_local]
)
self.input_global_set_features = sum(
[self.input_spec[key].shape[-1] for key in self.set_in_keys_global]
)
self.input_global_tensor_features = sum(
[self.input_spec[key].shape[-1] for key in self.tensor_in_keys_global]
)
self.output_features = self.output_leaf_spec.shape[-1]
if self.input_local_set_features > 0: # Need local deepsets
self.local_deepsets = nn.ModuleList(
[
self._make_deepsets_net(
in_features=self.input_local_set_features,
out_features_local_nn=self.out_features_local_nn,
in_fetures_global_nn=self.out_features_local_nn
+ self.input_local_tensor_features,
out_features=(
self.output_features
if not self.centralised
else self.out_features_local_nn
),
aggr=self.aggr,
local_nn_activation_class=self.local_nn_activation_class,
global_nn_activation_class=self.global_nn_activation_class,
local_nn_num_cells=self.local_nn_num_cells,
global_nn_num_cells=self.global_nn_num_cells,
)
for _ in range(self.n_agents if not self.share_params else 1)
]
)
if self.centralised: # Need global deepsets
self.global_deepsets = nn.ModuleList(
[
self._make_deepsets_net(
in_features=(
self.input_global_set_features
if self.input_local_set_features == 0
else self.out_features_local_nn
),
out_features_local_nn=self.out_features_local_nn,
in_fetures_global_nn=self.out_features_local_nn
+ self.input_global_tensor_features,
out_features=self.output_features,
aggr=self.aggr,
local_nn_activation_class=self.local_nn_activation_class,
global_nn_activation_class=self.global_nn_activation_class,
local_nn_num_cells=self.local_nn_num_cells,
global_nn_num_cells=self.global_nn_num_cells,
)
for _ in range(self.n_agents if not self.share_params else 1)
]
)
def _make_deepsets_net(
self,
in_features: int,
out_features: int,
aggr: str,
local_nn_num_cells: Sequence[int],
local_nn_activation_class: Type[nn.Module],
global_nn_num_cells: Sequence[int],
global_nn_activation_class: Type[nn.Module],
out_features_local_nn: int,
in_fetures_global_nn: int,
) -> _DeepsetsNet:
local_nn = MLP(
in_features=in_features,
out_features=out_features_local_nn,
num_cells=local_nn_num_cells,
activation_class=local_nn_activation_class,
device=self.device,
)
global_nn = MLP(
in_features=in_fetures_global_nn,
out_features=out_features,
num_cells=global_nn_num_cells,
activation_class=global_nn_activation_class,
device=self.device,
)
return _DeepsetsNet(local_nn, global_nn, aggr=aggr)
def _perform_checks(self):
super()._perform_checks()
input_shape_tensor_local = None
self.tensor_in_keys_local = []
input_shape_set_local = None
self.set_in_keys_local = []
input_shape_tensor_global = None
self.tensor_in_keys_global = []
input_shape_set_global = None
self.set_in_keys_global = []
error_invalid_input = ValueError(
f"DeepSet set inputs should all have the same shape up to the last dimension, got {self.input_spec}"
)
for input_key, input_spec in self.input_spec.items(True, True):
if self.input_has_agent_dim and len(input_spec.shape) == 3:
self.set_in_keys_local.append(input_key)
if input_shape_set_local is None:
input_shape_set_local = input_spec.shape[:-1]
elif input_spec.shape[:-1] != input_shape_set_local:
raise error_invalid_input
elif self.input_has_agent_dim and len(input_spec.shape) == 2:
self.tensor_in_keys_local.append(input_key)
if input_shape_tensor_local is None:
input_shape_tensor_local = input_spec.shape[:-1]
elif input_spec.shape[:-1] != input_shape_tensor_local:
raise error_invalid_input
elif not self.input_has_agent_dim and len(input_spec.shape) == 2:
self.set_in_keys_global.append(input_key)
if input_shape_set_global is None:
input_shape_set_global = input_spec.shape[:-1]
elif input_spec.shape[:-1] != input_shape_set_global:
raise error_invalid_input
elif not self.input_has_agent_dim and len(input_spec.shape) == 1:
self.tensor_in_keys_global.append(input_key)
if input_shape_tensor_global is None:
input_shape_tensor_global = input_spec.shape[:-1]
elif input_spec.shape[:-1] != input_shape_tensor_global:
raise error_invalid_input
else:
raise ValueError(
f"DeepSets input value {input_key} from {self.input_spec} has an invalid shape"
)
# Centralized model not needing any local deepsets
if (
self.centralised
and not len(self.set_in_keys_local)
and self.input_has_agent_dim
):
self.set_in_keys_global = self.tensor_in_keys_local
input_shape_set_global = input_shape_tensor_local
self.tensor_in_keys_local = []
if (not self.centralised and not len(self.set_in_keys_local)) or (
self.centralised
and not self.input_has_agent_dim
and not len(self.set_in_keys_global)
):
raise ValueError("DeepSets found no set inputs, maybe use an MLP?")
if len(self.set_in_keys_local) and input_shape_set_local[-2] != self.n_agents:
raise ValueError()
if (
len(self.tensor_in_keys_local)
and input_shape_tensor_local[-1] != self.n_agents
):
raise ValueError()
if (
len(self.set_in_keys_global)
and self.input_has_agent_dim
and input_shape_set_global[-1] != self.n_agents
):
raise ValueError()
if (
self.output_has_agent_dim
and (
self.output_leaf_spec.shape[-2] != self.n_agents
or len(self.output_leaf_spec.shape) != 2
)
) or (not self.output_has_agent_dim and len(self.output_leaf_spec.shape) != 1):
raise ValueError()
def _forward(self, tensordict: TensorDictBase) -> TensorDictBase:
if len(self.set_in_keys_local):
# Local deep sets
input_local_sets = torch.cat(
[tensordict.get(in_key) for in_key in self.set_in_keys_local], dim=-1
)
input_local_tensors = None
if len(self.tensor_in_keys_local):
input_local_tensors = torch.cat(
[tensordict.get(in_key) for in_key in self.tensor_in_keys_local],
dim=-1,
)
if self.share_params:
local_output = self.local_deepsets[0](
input_local_sets, input_local_tensors
)
else:
local_output = torch.stack(
[
net(input_local_sets, input_local_tensors)[..., i, :]
for i, net in enumerate(self.local_deepsets)
],
dim=-2,
)
else:
local_output = None
if self.centralised:
if local_output is None:
# gather local output
local_output = torch.cat(
[tensordict.get(in_key) for in_key in self.set_in_keys_global],
dim=-1,
)
# Global deepsets
input_global_tensors = None
if len(self.tensor_in_keys_global):
input_global_tensors = torch.cat(
[tensordict.get(in_key) for in_key in self.tensor_in_keys_global],
dim=-1,
)
if self.share_params:
global_output = self.global_deepsets[0](
local_output, input_global_tensors
)
else:
global_output = torch.stack(
[
net(local_output, input_global_tensors)
for i, net in enumerate(self.global_deepsets)
],
dim=-2,
)
tensordict.set(self.out_key, global_output)
else:
tensordict.set(self.out_key, local_output)
return tensordict
class _DeepsetsNet(nn.Module):
"""https://arxiv.org/abs/1703.06114"""
def __init__(
self,
local_nn: torch.nn.Module,
global_nn: torch.nn.Module,
set_dim: int = -2,
aggr: str = "sum",
):
super().__init__()
self.aggr = aggr
self.set_dim = set_dim
self.local_nn = local_nn
self.global_nn = global_nn
def forward(self, x: Tensor, extra_global_input: Optional[Tensor]) -> Tensor:
x = self.local_nn(x)
x = self.reduce(x, dim=self.set_dim, aggr=self.aggr)
if extra_global_input is not None:
x = torch.cat([x, extra_global_input], dim=-1)
x = self.global_nn(x)
return x
@staticmethod
def reduce(x: Tensor, dim: int, aggr: str) -> Tensor:
if aggr == "sum" or aggr == "add":
return torch.sum(x, dim=dim)
elif aggr == "mean":
return torch.mean(x, dim=dim)
elif aggr == "max":
return torch.max(x, dim=dim)[0]
elif aggr == "min":
return torch.min(x, dim=dim)[0]
elif aggr == "mul":
return torch.prod(x, dim=dim)
@dataclass
class DeepsetsConfig(ModelConfig):
"""Dataclass config for a :class:`~benchmarl.models.Deepsets`."""
aggr: str = MISSING
out_features_local_nn: int = MISSING
local_nn_num_cells: Sequence[int] = MISSING
local_nn_activation_class: Type[nn.Module] = MISSING
global_nn_num_cells: Sequence[int] = MISSING
global_nn_activation_class: Type[nn.Module] = MISSING
@staticmethod
def associated_class():
return Deepsets