-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMinimumSpanningTree.swift
447 lines (376 loc) · 16.7 KB
/
MinimumSpanningTree.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
public protocol Edge: CustomStringConvertible {
var u: Int { get set } // index of the "from" vertex
var v: Int { get set } // index of the "to" vertex
var reversed: Edge { get }
}
protocol Graph: class, CustomStringConvertible {
associatedtype VertexType: Equatable
associatedtype EdgeType: Edge
var vertices: [VertexType] { get set }
var edges: [[EdgeType]] { get set }
}
extension Graph {
/// How many vertices are in the graph?
public var vertexCount: Int { return vertices.count }
/// How many edges are in the graph?
public var edgeCount: Int { return edges.joined().count }
/// Get a vertex by its index.
///
/// - parameter index: The index of the vertex.
/// - returns: The vertex at i.
public func vertexAtIndex(_ index: Int) -> VertexType {
return vertices[index]
}
/// Find the first occurence of a vertex if it exists.
///
/// - parameter vertex: The vertex you are looking for.
/// - returns: The index of the vertex. Return nil if it can't find it.
public func indexOfVertex(_ vertex: VertexType) -> Int? {
if let i = vertices.firstIndex(of: vertex) {
return i
}
return nil
}
/// Find all of the neighbors of a vertex at a given index.
///
/// - parameter index: The index for the vertex to find the neighbors of.
/// - returns: An array of the neighbor vertices.
public func neighborsForIndex(_ index: Int) -> [VertexType] {
return edges[index].map({self.vertices[$0.v]})
}
/// Find all of the neighbors of a given Vertex.
///
/// - parameter vertex: The vertex to find the neighbors of.
/// - returns: An optional array of the neighbor vertices.
public func neighborsForVertex(_ vertex: VertexType) -> [VertexType]? {
if let i = indexOfVertex(vertex) {
return neighborsForIndex(i)
}
return nil
}
/// Find all of the edges of a vertex at a given index.
///
/// - parameter index: The index for the vertex to find the children of.
public func edgesForIndex(_ index: Int) -> [EdgeType] {
return edges[index]
}
/// Find all of the edges of a given vertex.
///
/// - parameter vertex: The vertex to find the edges of.
public func edgesForVertex(_ vertex: VertexType) -> [EdgeType]? {
if let i = indexOfVertex(vertex) {
return edgesForIndex(i)
}
return nil
}
/// Add a vertex to the graph.
///
/// - parameter v: The vertex to be added.
/// - returns: The index where the vertex was added.
public func addVertex(_ v: VertexType) -> Int {
vertices.append(v)
edges.append([EdgeType]())
return vertices.count - 1
}
/// Add an edge to the graph.
///
/// - parameter e: The edge to add.
public func addEdge(_ e: EdgeType) {
edges[e.u].append(e)
edges[e.v].append(e.reversed as! EdgeType)
}
}
/// This protocol is needed for Dijkstra's algorithm - we need weights in weighted graphs
/// to be able to be added together
public protocol Summable {
static func +(lhs: Self, rhs: Self) -> Self
}
extension Int: Summable {}
extension Double: Summable {}
extension Float: Summable {}
/// A weighted edge, who's weight subscribes to Comparable.
open class WeightedEdge<W: Comparable & Summable>: Edge, Comparable {
public var u: Int
public var v: Int
public let weight: W
public var reversed: Edge {
return WeightedEdge(u: v, v: u, weight: weight)
}
public init(u: Int, v: Int, weight: W) {
self.weight = weight
self.u = u
self.v = v
}
//Implement CustomStringConvertible protocol
public var description: String {
return "\(u) <\(weight)> \(v)"
}
//MARK: Operator Overloads for Comparable
static public func == <W>(lhs: WeightedEdge<W>, rhs: WeightedEdge<W>) -> Bool {
return lhs.u == rhs.u && lhs.v == rhs.v && lhs.weight == rhs.weight
}
static public func < <W>(lhs: WeightedEdge<W>, rhs: WeightedEdge<W>) -> Bool {
return lhs.weight < rhs.weight
}
}
/// A subclass of Graph that has convenience methods for adding and removing WeightedEdges. All added Edges should have the same generic Comparable type W as the WeightedGraph itself.
open class WeightedGraph<V: Equatable & Hashable, W: Comparable & Summable>: Graph {
var vertices: [V] = [V]()
var edges: [[WeightedEdge<W>]] = [[WeightedEdge<W>]]() //adjacency lists
public init() {
}
public init(vertices: [V]) {
for vertex in vertices {
_ = self.addVertex(vertex)
}
}
/// Find all of the neighbors of a vertex at a given index.
///
/// - parameter index: The index for the vertex to find the neighbors of.
/// - returns: An array of tuples including the vertices as the first element and the weights as the second element.
public func neighborsForIndexWithWeights(_ index: Int) -> [(V, W)] {
var distanceTuples: [(V, W)] = [(V, W)]()
for edge in edges[index] {
distanceTuples += [(vertices[edge.v], edge.weight)]
}
return distanceTuples
}
/// This is a convenience method that adds a weighted edge.
///
/// - parameter from: The starting vertex's index.
/// - parameter to: The ending vertex's index.
/// - parameter weight: the Weight of the edge to add.
public func addEdge(from: Int, to: Int, weight:W) {
addEdge(WeightedEdge<W>(u: from, v: to, weight: weight))
}
/// This is a convenience method that adds a weighted edge between the first occurence of two vertices. It takes O(n) time.
///
/// - parameter from: The starting vertex.
/// - parameter to: The ending vertex.
/// - parameter weight: the Weight of the edge to add.
public func addEdge(from: V, to: V, weight: W) {
if let u = indexOfVertex(from) {
if let v = indexOfVertex(to) {
addEdge(WeightedEdge<W>(u: u, v: v, weight:weight))
}
}
}
//Implement Printable protocol
public var description: String {
var d: String = ""
for i in 0..<vertices.count {
d += "\(vertices[i]) -> \(neighborsForIndexWithWeights(i))\n"
}
return d
}
}
let cityGraph2: WeightedGraph<String, Int> = WeightedGraph<String, Int>(vertices: ["Seattle", "San Francisco", "Los Angeles", "Riverside", "Phoenix", "Chicago", "Boston", "New York", "Atlanta", "Miami", "Dallas", "Houston", "Detroit", "Philadelphia", "Washington"])
cityGraph2.addEdge(from: "Seattle", to: "Chicago", weight: 1737)
cityGraph2.addEdge(from: "Seattle", to: "San Francisco", weight: 678)
cityGraph2.addEdge(from: "San Francisco", to: "Riverside", weight: 386)
cityGraph2.addEdge(from: "San Francisco", to: "Los Angeles", weight: 348)
cityGraph2.addEdge(from: "Los Angeles", to: "Riverside", weight: 50)
cityGraph2.addEdge(from: "Los Angeles", to: "Phoenix", weight: 357)
cityGraph2.addEdge(from: "Riverside", to: "Phoenix", weight: 307)
cityGraph2.addEdge(from: "Riverside", to: "Chicago", weight: 1704)
cityGraph2.addEdge(from: "Phoenix", to: "Dallas", weight: 887)
cityGraph2.addEdge(from: "Phoenix", to: "Houston", weight: 1015)
cityGraph2.addEdge(from: "Dallas", to: "Chicago", weight: 805)
cityGraph2.addEdge(from: "Dallas", to: "Atlanta", weight: 721)
cityGraph2.addEdge(from: "Dallas", to: "Houston", weight: 225)
cityGraph2.addEdge(from: "Houston", to: "Atlanta", weight: 702)
cityGraph2.addEdge(from: "Houston", to: "Miami", weight: 968)
cityGraph2.addEdge(from: "Atlanta", to: "Chicago", weight: 588)
cityGraph2.addEdge(from: "Atlanta", to: "Washington", weight: 543)
cityGraph2.addEdge(from: "Atlanta", to: "Miami", weight: 604)
cityGraph2.addEdge(from: "Miami", to: "Washington", weight: 923)
cityGraph2.addEdge(from: "Chicago", to: "Detroit", weight: 238)
cityGraph2.addEdge(from: "Detroit", to: "Boston", weight: 613)
cityGraph2.addEdge(from: "Detroit", to: "Washington", weight: 396)
cityGraph2.addEdge(from: "Detroit", to: "New York", weight: 482)
cityGraph2.addEdge(from: "Boston", to: "New York", weight: 190)
cityGraph2.addEdge(from: "New York", to: "Philadelphia", weight: 81)
cityGraph2.addEdge(from: "Philadelphia", to: "Washington", weight: 123)
// Find the total weight of an array of weighted edges
/// - parameter edges The edge array to find the total weight of.
public func totalWeight<W>(_ edges: [WeightedEdge<W>]) -> W? {
guard let firstWeight = edges.first?.weight else { return nil }
return edges.dropFirst().reduce(firstWeight) { (result, next) -> W in
return result + next.weight
}
}
/// A PriorityQueue takes objects to be pushed of any type that implements Comparable.
/// It will pop the objects in the order that they would be sorted. A pop() or a push()
/// can be accomplished in O(lg n) time. It can be specified whether the objects should
/// be popped in ascending or descending order (Max Priority Queue or Min Priority Queue)
/// at the time of initialization.
public struct PriorityQueue<T: Comparable> {
fileprivate var heap = [T]()
private let ordered: (T, T) -> Bool
public init(ascending: Bool = false, startingValues: [T] = []) {
self.init(order: ascending ? { $0 > $1 } : { $0 < $1 }, startingValues: startingValues)
}
/// Creates a new PriorityQueue with the given ordering.
///
/// - parameter order: A function that specifies whether its first argument should
/// come after the second argument in the PriorityQueue.
/// - parameter startingValues: An array of elements to initialize the PriorityQueue with.
public init(order: @escaping (T, T) -> Bool, startingValues: [T] = []) {
ordered = order
// Based on "Heap construction" from Sedgewick p 323
heap = startingValues
var i = heap.count/2 - 1
while i >= 0 {
sink(i)
i -= 1
}
}
/// How many elements the Priority Queue stores
public var count: Int { return heap.count }
/// true if and only if the Priority Queue is empty
public var isEmpty: Bool { return heap.isEmpty }
/// Add a new element onto the Priority Queue. O(lg n)
///
/// - parameter element: The element to be inserted into the Priority Queue.
public mutating func push(_ element: T) {
heap.append(element)
swim(heap.count - 1)
}
/// Remove and return the element with the highest priority (or lowest if ascending). O(lg n)
///
/// - returns: The element with the highest priority in the Priority Queue, or nil if the PriorityQueue is empty.
public mutating func pop() -> T? {
if heap.isEmpty { return nil }
if heap.count == 1 { return heap.removeFirst() } // added for Swift 2 compatibility
// so as not to call swap() with two instances of the same location
heap.swapAt(0, heap.count - 1)
let temp = heap.removeLast()
sink(0)
return temp
}
/// Removes the first occurence of a particular item. Finds it by value comparison using ==. O(n)
/// Silently exits if no occurrence found.
///
/// - parameter item: The item to remove the first occurrence of.
public mutating func remove(_ item: T) {
if let index = heap.firstIndex(of: item) {
heap.swapAt(index, heap.count - 1)
heap.removeLast()
swim(index)
sink(index)
}
}
/// Removes all occurences of a particular item. Finds it by value comparison using ==. O(n)
/// Silently exits if no occurrence found.
///
/// - parameter item: The item to remove.
public mutating func removeAll(_ item: T) {
var lastCount = heap.count
remove(item)
while (heap.count < lastCount) {
lastCount = heap.count
remove(item)
}
}
/// Get a look at the current highest priority item, without removing it. O(1)
///
/// - returns: The element with the highest priority in the PriorityQueue, or nil if the PriorityQueue is empty.
public func peek() -> T? {
return heap.first
}
/// Eliminate all of the elements from the Priority Queue.
public mutating func clear() {
heap.removeAll(keepingCapacity: false)
}
// Based on example from Sedgewick p 316
private mutating func sink(_ index: Int) {
var index = index
while 2 * index + 1 < heap.count {
var j = 2 * index + 1
if j < (heap.count - 1) && ordered(heap[j], heap[j + 1]) { j += 1 }
if !ordered(heap[index], heap[j]) { break }
heap.swapAt(index, j)
index = j
}
}
// Based on example from Sedgewick p 316
private mutating func swim(_ index: Int) {
var index = index
while index > 0 && ordered(heap[(index - 1) / 2], heap[index]) {
heap.swapAt((index - 1) / 2, index)
index = (index - 1) / 2
}
}
}
// MARK: - GeneratorType
extension PriorityQueue: IteratorProtocol {
public typealias Element = T
mutating public func next() -> Element? { return pop() }
}
// MARK: - SequenceType
extension PriorityQueue: Sequence {
public typealias Iterator = PriorityQueue
public func makeIterator() -> Iterator { return self }
}
// MARK: - CollectionType
extension PriorityQueue: Collection {
public typealias Index = Int
public var startIndex: Int { return heap.startIndex }
public var endIndex: Int { return heap.endIndex }
public subscript(i: Int) -> T { return heap[i] }
public func index(after i: PriorityQueue.Index) -> PriorityQueue.Index {
return heap.index(after: i)
}
}
// MARK: - CustomStringConvertible, CustomDebugStringConvertible
extension PriorityQueue: CustomStringConvertible, CustomDebugStringConvertible {
public var description: String { return heap.description }
public var debugDescription: String { return heap.debugDescription }
}
/// Extensions to WeightedGraph for building a Minimum-Spanning Tree (MST)
public extension WeightedGraph {
typealias WeightedPath = [WeightedEdge<W>]
// Citation: Based on Algorithms 4th Edition by Sedgewick, Wayne pg 619
/// Find the minimum spanning tree in a weighted graph. This is the set of edges
/// that touches every vertex in the graph and is of minimal combined weight. This function
/// uses Jarnik's Algorithm (aka Prim's Algorithm) and so assumes the graph has
/// undirected edges. For a graph with directed edges, the result may be incorrect. Also,
/// if the graph is not fully connected, the tree will only span the connected component from which
/// the starting vertex belongs.
///
/// - parameter start: The index of the vertex to start creating the MST from.
/// - returns: An array of WeightedEdges containing the minimum spanning tree, or nil if the starting vertex is invalid. If there are is only one vertex connected to the starting vertex, an empty list is returned.
func mst(start: Int = 0) -> WeightedPath? {
if start > (vertexCount - 1) || start < 0 { return nil }
var result: [WeightedEdge<W>] = [WeightedEdge<W>]() // the final MST goes in here
var pq: PriorityQueue<WeightedEdge<W>> = PriorityQueue<WeightedEdge<W>>(ascending: true) // minPQ
var visited: [Bool] = Array<Bool>(repeating: false, count: vertexCount) // already been to these
func visit(_ index: Int) {
visited[index] = true // mark as visited
for edge in edgesForIndex(index) { // add all edges coming from here to pq
if !visited[edge.v] { pq.push(edge) }
}
}
visit(start) // the first vertex is where everything begins
while let edge = pq.pop() { // keep going as long as there are edges to process
if visited[edge.v] { continue } // if we've been here, ignore
result.append(edge) // otherwise this is the current smallest so add it to the result set
visit(edge.v) // visit where this connects
}
return result
}
/// Pretty-print an edge list returned from an MST
/// - parameter edges The edge array representing the MST
func printWeightedPath(_ weightedPath: WeightedPath) {
for edge in weightedPath {
print("\(vertexAtIndex(edge.u)) \(edge.weight)> \(vertexAtIndex(edge.v))")
}
if let tw = totalWeight(weightedPath) {
print("Total Weight: \(tw)")
}
}
}
print("== Minimum spanning tree ==")
if let mst = cityGraph2.mst() {
cityGraph2.printWeightedPath(mst)
}