-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathglobal_search.py
282 lines (222 loc) · 9.74 KB
/
global_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# from data.BraggnnDataset import setup_data_loaders
import torch
import torch.nn as nn
import optuna
from models.blocks import *
from utils.bops import *
from utils.processor import evaluate_BraggNN, evaluate_deepsets
import yaml
import os
from data.BraggnnDataset import *
from data.DeepsetsDataset import *
"""
Optuna Objective to evaluate a trial
1) Samples architecture from hierarchical search space
2) Trains Model
3) Evaluates Mean Distance, bops, param count, inference time, and val loss
Saves all information in global_search.txt
"""
def load_configs(task="deepsets", config_dir="examples/"):
"""Load YAML configuration files based on specified task.
Args:
task (str): Task to load configs for. Either "deepsets" or "braggnn".
config_dir (str): Directory containing config files.
Returns:
tuple: (task_configs, search_space) containing model configs and search space for specified task
Raises:
ValueError: If task is not "deepsets" or "braggnn"
"""
if task not in ["deepsets", "braggnn"]:
raise ValueError('Task must be either "deepsets" or "braggnn"')
if task == "deepsets":
with open(os.path.join(config_dir, "DeepSets/deepsets_search_space.yaml"), "r") as f:
search_space = yaml.safe_load(f)
with open(os.path.join(config_dir, "DeepSets/deepsets_model_example_configs.yaml"), "r") as f:
task_configs = yaml.safe_load(f)
else: # task == "braggnn"
with open(os.path.join(config_dir, "BraggNN/braggnn_search_space.yaml"), "r") as f:
search_space = yaml.safe_load(f)
with open(os.path.join(config_dir, "BraggNN/bragg_model_example_configs.yaml"), "r") as f:
task_configs = yaml.safe_load(f)
return task_configs, search_space
def BraggNN_objective(trial):
"""BraggNN objective using search space config"""
task_configs, search_space = load_configs(task="braggnn")
spaces = search_space["search_spaces"]
hyper_params = search_space["hyperparameters"]
num_blocks = hyper_params["num_blocks"]
img_size = hyper_params["initial_img_size"]
output_dim = hyper_params["output_dim"]
# Sample first channel dimension
block_channels = [spaces["channel_space"][
trial.suggest_int("Proj_outchannel", 0, len(spaces["channel_space"]) - 1)
]]
# Sample Block Types
b = [trial.suggest_categorical(f"b{i}", spaces["block_types"])
for i in range(num_blocks)]
Blocks = []
bops = 0
# Build Blocks
for i, block_type in enumerate(b):
if block_type == "Conv":
channels, kernels, acts, norms = sample_ConvBlock(
trial,
f"b{i}_Conv",
block_channels[-1],
search_space=spaces, # Pass search space
num_layers=2
)
reduce_img_size = 2 * sum([1 if k == 3 else 0 for k in kernels])
while img_size - reduce_img_size <= 0:
kernels[kernels.index(3)] = 1
reduce_img_size = 2 * sum([1 if k == 3 else 0 for k in kernels])
Blocks.append(ConvBlock(channels, kernels, acts, norms, img_size))
bops += get_Conv_bops(Blocks[-1], input_shape=[batch_size, channels[0], img_size, img_size], bit_width=32)
img_size -= reduce_img_size
block_channels.append(channels[-1])
elif block_type == "ConvAttn":
hidden_channels, act = sample_ConvAttn(
trial,
f"b{i}_ConvAttn",
search_space=spaces # Pass search space
)
Blocks.append(ConvAttn(block_channels[-1], hidden_channels, act))
bops += get_ConvAttn_bops(
Blocks[-1],
input_shape=[batch_size, block_channels[-1], img_size, img_size],
bit_width=32
)
# Build MLP
in_dim = block_channels[-1] * img_size**2
widths, acts, norms = sample_MLP(
trial,
in_dim,
output_dim,
"MLP",
search_space=spaces, # Pass search space
num_layers=3
)
mlp = MLP(widths, acts, norms)
bops += get_MLP_bops(mlp, bit_width=32)
# Initialize Model
Blocks = nn.Sequential(*Blocks)
model = CandidateArchitecture(Blocks, mlp, block_channels[0])
bops += get_conv2d_bops(
model.conv,
input_shape=[batch_size, 1, 11, 11],
bit_width=32
)
print(model)
print("BOPs:", bops)
print("Trial ", trial.number, " begins evaluation...")
mean_distance, inference_time, validation_loss, param_count = evaluate_BraggNN(model, train_loader, val_loader, device)
with open("./global_search.txt", "a") as file:
file.write(
f"Trial {trial.number}, Mean Distance: {mean_distance}, BOPs: {bops}, "
f"Inference time: {inference_time}, Validation Loss: {validation_loss}, "
f"Param Count: {param_count}, Hyperparams: {trial.params}\n"
)
return mean_distance, bops
def Deepsets_objective(trial):
"""DeepSets objective using search space config"""
task_configs, search_space = load_configs(task="deepsets")
spaces = search_space["search_spaces"]
hyper_params = search_space["hyperparameters"]
bops = 0
in_dim, out_dim = 3, 5 #3 kinematic features input, 5 possible particle decay classes
# Sample architecture parameters
bottleneck_dim = 2 ** trial.suggest_int("bottleneck_dim",
*spaces["bottleneck_range"])
aggregator_type = trial.suggest_categorical("aggregator_type",
spaces["aggregator_space"])
aggregator_type = trial.suggest_categorical("aggregator_type", spaces["aggregator_space"])
if aggregator_type == "mean":
aggregator = lambda x: torch.mean(x, dim=2)
bops += get_AvgPool_bops(input_shape=(8, bottleneck_dim), bit_width=8)
elif aggregator_type == "max":
aggregator = lambda x: torch.max(x, dim=2)[0]
bops += get_MaxPool_bops(input_shape=(8, bottleneck_dim), bit_width=8)
# Initialize networks
phi_len = trial.suggest_int("phi_len", *hyper_params["phi_len_range"])
# def sample_MLP(trial, in_dim, out_dim, prefix, search_space, num_layers=3):
phi_widths, phi_acts, phi_norms = sample_MLP(
trial = trial,
in_dim = in_dim,
out_dim = bottleneck_dim,
prefix ="phi_MLP",
search_space=spaces,
num_layers=phi_len
)
phi = ConvPhi(phi_widths, phi_acts, phi_norms)
bops += get_MLP_bops(phi, bit_width=8)
rho_len = trial.suggest_int("rho_len", *hyper_params["rho_len_range"])
rho_widths, rho_acts, rho_norms = sample_MLP(
trial,
bottleneck_dim,
out_dim,
"rho_MLP",
search_space=spaces,
num_layers=rho_len
)
rho = Rho(rho_widths, rho_acts, rho_norms)
bops += get_MLP_bops(rho, bit_width=8)
model = DeepSetsArchitecture(phi, rho, aggregator)
print(model)
print("BOPs:", bops)
print("Trial ", trial.number, " begins evaluation...")
metrics = evaluate_deepsets(model, train_loader, val_loader, test_loader, device)
accuracy = metrics['val_accuracy']
inference_time = metrics['inference_time']
validation_loss = metrics['val_loss']
param_count = metrics['param_count']
with open("./Results/global_search.txt", "a") as file:
file.write(
f"Trial {trial.number}, Accuracy: {accuracy}, BOPs: {bops}, "
f"Inference time: {inference_time}, Validation Loss: {validation_loss}, "
f"Param Count: {param_count}, Hyperparams: {trial.params}\n"
)
return accuracy, bops
if __name__ == "__main__":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
batch_size = 4096
num_workers = 4
os.makedirs("./Results", exist_ok=True)
# BraggNN optimization
if False: # Change this flag to switch between tasks
# BraggNN data setup
braggnn_configs, braggnn_search_space = load_configs(task="braggnn")
train_loader, val_loader, test_loader = setup_data_loaders_braggnn(
batch_size, IMG_SIZE=11, aug=1, num_workers=4,
pin_memory=False, prefetch_factor=2,
data_folder="/home/users/ddemler/dima_stuff/Morph/data/"
)
study = optuna.create_study(
sampler=optuna.samplers.NSGAIISampler(population_size=20),
directions=['minimize', 'minimize']
)
# Queue example architectures from config
study.enqueue_trial(braggnn_configs['openhls'])
study.enqueue_trial(braggnn_configs['braggnn'])
study.optimize(BraggNN_objective, n_trials=5)
else:
# Deepsets optimization
deepsets_configs, deepsets_search_space = load_configs(task="deepsets")
base_file_name = "jet_images_c8_minpt2_ptetaphi_robust_fast"
train_loader, val_loader, test_loader = setup_data_loaders_deepsets(
base_file_name,
batch_size=batch_size,
num_workers=num_workers,
prefetch_factor=2,
pin_memory=True
)
study = optuna.create_study(
sampler=optuna.samplers.NSGAIISampler(population_size=20),
directions=["maximize", "minimize"]
)
# Queue example architectures from config
study.enqueue_trial(deepsets_configs['base'])
study.enqueue_trial(deepsets_configs['large'])
study.enqueue_trial(deepsets_configs['medium'])
study.enqueue_trial(deepsets_configs['small'])
study.enqueue_trial(deepsets_configs['tiny'])
study.optimize(Deepsets_objective, n_trials=1000)