forked from poweic/libdnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn-train.cpp
214 lines (159 loc) · 6.05 KB
/
cnn-train.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#include <cuda_profiler_api.h>
#include <cmdparser.h>
#include <pbar.h>
#include <dataset.h>
#include <dnn.h>
#include <cnn.h>
vector<mat> getRandWeights(size_t input_dim, string structure, size_t output_dim);
size_t cnn_predict(const DNN& dnn, CNN& cnn, DataSet& data,
ERROR_MEASURE errorMeasure);
void cnn_train(DNN& dnn, CNN& cnn, DataSet& train, DataSet& valid,
size_t batchSize, ERROR_MEASURE errorMeasure);
void cuda_profiling_ground();
int main(int argc, char* argv[]) {
CmdParser cmd(argc, argv);
cmd.add("training_set_file")
.add("model_in", false)
.add("model_out", false);
cmd.addGroup("Feature options:")
.add("--input-dim", "specify the input dimension (dimension of feature).\n"
"For example: --input-dim 39x9 \n")
.add("--normalize", "Feature normalization: \n"
"0 -- Do not normalize.\n"
"1 -- Rescale each dimension to [0, 1] respectively.\n"
"2 -- Normalize to standard score. z = (x-u)/sigma ."
"filename -- Read mean and variance from file", "0")
.add("--base", "Label id starts from 0 or 1 ?", "0")
.add("--output-dim", "specify the output dimension (the # of class to predict).\n");
cmd.addGroup("Network structure:")
.add("--struct",
"Specify the structure of Convolutional neural network\n"
"For example: --struct=9x5x5-3s-4x3x3-2s-256-128\n"
"\"9x5x5-3s\" means a convolutional layer consists of 9 output feature maps\n"
"with a 5x5 kernel, which is followed by a sub-sampling layer with scale\n"
"of 3. After \"9x5x5-3s-4x3x3-2s\", a neural network of of 2 hidden layers\n"
"of width 256 and 128 is appended to it.\n"
"Each layer should be seperated by a hyphen \"-\".");
cmd.addGroup("Training options:")
.add("-v", "ratio of training set to validation set (split automatically)", "5")
.add("--batch-size", "number of data per mini-batch", "32");
cmd.addGroup("Example usage: cnn-train data/train3.dat --struct=12x5x5-2-8x3x3-2");
if (!cmd.isOptionLegal())
cmd.showUsageAndExit();
string train_fn = cmd[1];
string model_in = cmd[2];
string model_out = cmd[2];
string input_dim = cmd["--input-dim"];
NormType n_type = (NormType) (int) cmd["--normalize"];
int base = cmd["--base"];
string structure = cmd["--struct"];
size_t output_dim = cmd["--output-dim"];
int ratio = cmd["-v"];
size_t batchSize = cmd["--batch-size"];
// Parse input dimension
SIZE imgSize = parseInputDimension(input_dim);
printf("Image dimension = %ld x %lu\n", imgSize.m, imgSize.n);
// Load dataset
DataSet data(train_fn, imgSize.m * imgSize.n, base);
data.setNormType(n_type);
data.showSummary();
DataSet train, valid;
DataSet::split(data, train, valid, ratio);
// Parse structure
string cnn_struct, nn_struct;
parseNetworkStructure(structure, cnn_struct, nn_struct);
// Initialize CNN
CNN cnn;
if (model_in.empty())
cnn.init(cnn_struct, imgSize);
else
cnn.read(model_in);
DNN dnn;
dnn.init(getRandWeights(cnn.getOutputDimension(), nn_struct, output_dim));
// Show CNN status
cnn.status();
cnn_train(dnn, cnn, train, valid, batchSize, CROSS_ENTROPY);
if (model_out.empty())
model_out = train_fn.substr(train_fn.find_last_of('/') + 1) + ".model";
cout << "Leaving..." << endl;
return 0;
}
void cnn_train(DNN& dnn, CNN& cnn, DataSet& train, DataSet& valid,
size_t batchSize, ERROR_MEASURE errorMeasure) {
perf::Timer timer;
timer.start();
const size_t MAX_EPOCH = 1024;
size_t nTrain = train.size(),
nValid = valid.size();
mat fmiddle, fout;
float t_start = timer.getTime();
for (size_t epoch=0; epoch<MAX_EPOCH; ++epoch) {
Batches batches(batchSize, nTrain);
for (auto itr = batches.begin(); itr != batches.end(); ++itr) {
auto data = train[itr];
cnn.feedForward(fmiddle, data.x);
dnn.feedForward(fout, fmiddle);
// matlog(fmiddle);
// matlog(fout);
mat error = getError( data.y, fout, errorMeasure);
// matlog(error);
dnn.backPropagate(error, fmiddle, fout, 1.0f / itr->nData );
// matlog(error);
cnn.backPropagate(error, data.x, fmiddle, 1);
// matlog(error);
// exit(-1);
}
size_t Ein = cnn_predict(dnn, cnn, train, errorMeasure),
Eout = cnn_predict(dnn, cnn, valid, errorMeasure);
float trainAcc = 1.0f - (float) Ein / nTrain;
float validAcc = 1.0f - (float) Eout / nValid;
printf("Epoch #%lu: Training Accuracy = %.4f %% ( %lu / %lu ), Validation Accuracy = %.4f %% ( %lu / %lu ), elapsed %.3f seconds.\n",
epoch, trainAcc * 100, nTrain - Ein, nTrain, validAcc * 100, nValid - Eout, nValid, (timer.getTime() - t_start) / 1000);
t_start = timer.getTime();
}
timer.elapsed();
printf("# of total epoch = %lu\n", MAX_EPOCH);
}
vector<mat> getRandWeights(size_t input_dim, string structure, size_t output_dim) {
auto dims = splitAsInt(structure, '-');
dims.push_back(output_dim);
dims.insert(dims.begin(), input_dim);
for (size_t i=0; i<dims.size(); ++i)
dims[i] += 1;
size_t nWeights = dims.size() - 1;
vector<mat> weights(nWeights);
for (size_t i=0; i<nWeights; ++i) {
float coeff = (2 * sqrt(6.0f / (dims[i] + dims[i+1]) ) );
weights[i] = coeff * (rand(dims[i], dims[i+1]) - 0.5);
printf("Initialize a weights[%lu] using %.4f x (rand(%3lu,%3lu) - 0.5)\n", i,
coeff, dims[i], dims[i+1]);
}
CCE(cudaDeviceSynchronize());
return weights;
}
size_t cnn_predict(const DNN& dnn, CNN& cnn, DataSet& data,
ERROR_MEASURE errorMeasure) {
size_t nError = 0;
mat fmiddle;
Batches batches(2048, data.size());
for (Batches::iterator itr = batches.begin(); itr != batches.end(); ++itr) {
auto d = data[itr];
cnn.feedForward(fmiddle, d.x);
nError += zeroOneError(dnn.feedForward(fmiddle), d.y, errorMeasure);
}
return nError;
}
void cuda_profiling_ground() {
mat x = randn(128, 128),
h = randn(20, 20);
perf::Timer timer;
timer.start();
cudaProfilerStart();
mat z;
for (int i=0; i<10000; ++i) {
z = convn(x, h, "valid_shm");
}
CCE(cudaDeviceSynchronize());
cudaProfilerStop();
timer.elapsed();
}