-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatbot.py
42 lines (34 loc) · 1.2 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import random
import json
import pickle
import numpy as np
import nltk
from nltk.stem import WordNetLemmatizer
from tensorflow.eras.models import load_model
lemmatizer = WordNetLemmatizer()
intents = json.loads(open('intents.json').read())
words = pickle.load(open('word.pkl', 'rb'))
classes = pickle.load(open('classes.pkl', 'rb'))
model = load_model('chatbotmodel.h5')
def clean_up_sentence(sentence):
sentence_words = nltk.word_tokenize(sentence)
sentence_words = [lemmatizer.limmatize(word) for word in sentence_words]
return sentence_word
def bag_of_words(sentence):
sentence_word = clean_up_sentence(sentence)
bag = [0] * len(words)
for w in sentence_words:
for i, word in enumerate(words):
if word == w:
bag[i] = 1
return np.array(bag)
def predict_class(sentence):
bow = bag_of_words(sentence)
res = mode.predict(np.array([bow]))[0]
ERROR THRESHOLD = 0.25
result = [[i, r] for i, r in enumerate(res) if r > ERROR THRESHOLD]
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append({'intent': classes[r[0], 'probabil': str(r[1])]})
return return_list