-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcleftTracker.py
executable file
·265 lines (207 loc) · 9.31 KB
/
cleftTracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/env python
'''
Lucas-Kanade tracker
====================
Lucas-Kanade sparse optical flow demo. Uses goodFeaturesToTrack
for track initialization and back-tracking for match verification
between frames.
Usage
-----
lk_track.py [<video_source>]
Keys
----
ESC - exit
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2
import video
from common import anorm2, draw_str
#from time import clock
import cmath
from scipy.signal import argrelextrema
#lk_params = dict( winSize = (15, 15),
lk_params = dict( winSize = (30, 30),
# maxLevel = 2,
maxLevel = 5,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
feature_params = dict( maxCorners = 500,
qualityLevel = 0.3,
minDistance = 7,
blockSize = 7 )
#new_tracks = []
def goodCleftsToTrack(frame_gray):
_, thresh = cv2.threshold(frame_gray,127,255,cv2.THRESH_BINARY_INV)
contours,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
tamanhao = 0
## contours tem um array com vários outros arrays da árvore de contornos
## Aqui soma os tamanhos de todos os arrays contendo contornos
for i in range(len(contours)):
tamanhao = tamanhao + len(contours[i])
# tamanhao tem o número de pontos que tem o contorno detectado
b = [0] * tamanhao # cria uma lista (array python) b com o tamanho do total de pontos do contorno detectado
k = 0
for j in range(len(contours)):
for i in range(len(contours[j])):
#print(contours[3][i][0][0], contours[3][i][0][1])
b[k] = list(contours[j][i][0]) ## copia os pontos de contours para b
k = k + 1
a=np.array(b) # copia o conteudo da lista b para um np.array a
#print("Shape of the array (frame_gray) = ",np.shape(frame_gray));
#print("Shape of the array (contours) = ",np.shape(contours));
#print("Shape of the array (b) = ",np.shape(b));
#print("Shape of the array (a) = ",np.shape(a));
a=a[np.argsort(a[:, 1])] # ordena o a em funcao da coluna 1
minimos = argrelextrema(a[:,0], np.less, order = 2)
x = a[:,1]
y = a[:,0]
p = np.array(list(zip(y[minimos],x[minimos])))
#print("Shape of the array (p) = ",np.shape(p));
#if np.any(contours) == False:
# print(p)
# print("Shape of the array (p) = ",np.shape(p));
# #return p
return p
#p = cv2.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params)
def cart2pol(x, y):
rho = np.sqrt(x**2 + y**2)
phi = np.arctan2(y, x)
return(rho, phi)
def pol2cart(rho, phi):
x = rho * np.cos(phi)
y = rho * np.sin(phi)
return(x, y)
def goodCleftsToTrackPolar(frame_gray):
_, thresh = cv2.threshold(frame_gray,127,255,cv2.THRESH_BINARY_INV)
contours,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
height = frame_gray.shape[0] ## acha a altura da imagem para inversoes translacoes
tamanhao = 0
## contours tem um array com vários outros arrays da árvore de contornos
## Aqui soma os tamanhos de todos os arrays contendo contornos
for i in range(len(contours)):
tamanhao = tamanhao + len(contours[i])
# tamanhao tem o número de pontos que tem o contorno detectado
b = [0] * tamanhao # cria uma lista (array python) b com o tamanho do total de pontos do contorno detectado
k = 0
for j in range(len(contours)):
for i in range(len(contours[j])):
#print(contours[3][i][0][0], contours[3][i][0][1])
b[k] = list(contours[j][i][0]) ## copia os pontos de contours para b
k = k + 1
a=np.array(b) # copia o conteudo da lista b para um np.array a
a[:,1]=np.invert(a[:,1])+height
print(np.size(a[:,1]))
c = np.zeros(shape=(len(a),2))
d = np.zeros(shape=(len(a),2))
d[:,0]=a[:,0]
d[:,1]=a[:,1]
a_polar = cart2pol(d[:,0], d[:,1])
c[:,1]=a_polar[1]
c[:,0]=a_polar[0]
c=c[np.argsort(c[:, 1])]
xLine = c[:,0]
yLine = c[:,1]
minimos = argrelextrema(xLine, np.less, order = 10)
a_cart = pol2cart(xLine[minimos], yLine[minimos])
p = np.array(list(zip(a_cart[0], a_cart[1])))
p[:,1] = p[:,1]-height
p[:,1] = np.invert(p[:,1].astype(int))
return p
#p = cv2.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params)
class App:
def __init__(self, video_src):
self.track_len = 10
self.detect_interval = 1
self.tracks = []
self.cam = video.create_capture(video_src)
self.frame_idx = 0
def run(self):
ret, frame = self.cam.read()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
total = frame_gray
vis = frame.copy()
vis_gray = cv2.cvtColor(vis, cv2.COLOR_BGR2GRAY)
trail_mask = np.zeros_like(vis_gray)
trail_mask = (255 - trail_mask)
trail_channels = trail_mask
output_frame_idx=0
while True:
ch = cv2.waitKey(1)
#ch = 32 ## uncoment to force not to wait
if ch == 27:
break
if ch == 32:
ret, frame = self.cam.read()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
vis = frame.copy()
if len(self.tracks) > 0:
img0, img1 = self.prev_gray, frame_gray
p0 = np.float32([tr[-1] for tr in self.tracks]).reshape(-1, 1, 2)
p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
d = abs(p0-p0r).reshape(-1, 2).max(-1)
good = d < 1
new_tracks = []
#print("passei new") ## O problema é nas imagens, que não gera corretamente
for tr, (x, y), good_flag in zip(self.tracks, p1.reshape(-1, 2), good):
if not good_flag:
continue
tr.append((x, y))
if len(tr) > self.track_len:
del tr[0]
new_tracks.append(tr)
cv2.circle(vis, (int(x), int(y)), 2, (0, 255, 0), -1)
self.tracks = new_tracks
#print("passei assign")
cv2.polylines(vis, [np.int32(tr) for tr in self.tracks], False, (0, 0, 0))
cv2.polylines(trail_channels, [np.int32(tr) for tr in self.tracks], False, (0, 0, 0))
#draw_str(vis, (20, 20), 'track count: %d' % len(self.tracks))
#draw_str(trail_channels, (20, 20), 'track count: %d' % len(self.tracks))
#print('track count: %d ' % len(self.tracks))
if (len(self.tracks)<10):
print('frame: %d ' % self.frame_idx)
print('track count: %d ' % len(self.tracks))
print('')
if self.frame_idx % self.detect_interval == 0:
mask = np.zeros_like(frame_gray)
mask[:] = 255
for x, y in [np.int32(tr[-1]) for tr in self.tracks]:
cv2.circle(mask, (x, y), 5, 0, -1)
###################### Aqui que se escolhe o metodo ###
#p = cv2.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params)
p = goodCleftsToTrack(frame_gray)
#p = goodCleftsToTrackPolar(frame_gray)
#######################################################
if p is not None:
for x, y in np.float32(p).reshape(-1, 2):
self.tracks.append([(x, y)])
vis_gray = cv2.cvtColor(vis, cv2.COLOR_BGR2GRAY)
trail_mask = np.bitwise_and(trail_mask, trail_channels)#<<<<<<<<<<
##trail_mask = np.bitwise_and(trail_mask, vis_gray)#<<<<<<<<<<
##print(vis_gray.shape)
#print(output_frame_idx)
output_frame_idx = output_frame_idx + 1
self.frame_idx += 1
# Descomentar para usar overlay
#total = total & frame_gray
self.prev_gray = frame_gray
# Uncoment to save images
fn = './resultados/tracks_%04d.png' % self.frame_idx
#cv2.imwrite(fn, trail_mask)
cv2.imwrite(fn, total & trail_mask)
##cv2.imshow('lk_track', vis)
cv2.imshow('lk_track', total & trail_mask)
###cv2.imshow('lk_track', trail_mask)
###cv2.imshow('lk_track', trail_channels)
def main():
import sys
try:
video_src = sys.argv[1]
except:
video_src = 0
print(__doc__)
App(video_src).run()
cv2.destroyAllWindows()
if __name__ == '__main__':
main()