-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
142 lines (104 loc) · 4.93 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from deap import base
from deap import creator
from deap import tools
import random
import matplotlib.pyplot as plt
# import seaborn as sns
# problem constants:
ONE_MAX_LENGTH = 100 # length of bit string to be optimized
# Genetic Algorithm constants:
POPULATION_SIZE = 200
P_CROSSOVER = 0.9 # probability for crossover
P_MUTATION = 0.1 # probability for mutating an individual
MAX_GENERATIONS = 50
# set the random seed:
RANDOM_SEED = 42
random.seed(RANDOM_SEED)
toolbox = base.Toolbox()
# create an operator that randomly returns 0 or 1:
toolbox.register("zeroOrOne", random.randint, 0, 1)
# define a single objective, maximizing fitness strategy:
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
# create the Individual class based on list:
creator.create("Individual", list, fitness=creator.FitnessMax)
#creator.create("Individual", array.array, typecode='b', fitness=creator.FitnessMax)
# create the individual operator to fill up an Individual instance:
toolbox.register("individualCreator", tools.initRepeat, creator.Individual, toolbox.zeroOrOne, ONE_MAX_LENGTH)
# create the population operator to generate a list of individuals:
toolbox.register("populationCreator", tools.initRepeat, list, toolbox.individualCreator)
# fitness calculation:
# compute the number of '1's in the individual
def oneMaxFitness(individual):
return sum(individual), # return a tuple
toolbox.register("evaluate", oneMaxFitness)
# genetic operators:
# Tournament selection with tournament size of 3:
toolbox.register("select", tools.selTournament, tournsize=3)
# Single-point crossover:
toolbox.register("mate", tools.cxOnePoint)
# Flip-bit mutation:
# indpb: Independent probability for each attribute to be flipped
toolbox.register("mutate", tools.mutFlipBit, indpb=1.0/ONE_MAX_LENGTH)
# Genetic Algorithm flow:
def main():
# create initial population (generation 0):
population = toolbox.populationCreator(n=POPULATION_SIZE)
generationCounter = 0
# calculate fitness tuple for each individual in the population:
fitnessValues = list(map(toolbox.evaluate, population))
for individual, fitnessValue in zip(population, fitnessValues):
print(individual.fitness.values)
print(fitnessValue)
individual.fitness.values = fitnessValue
# extract fitness values from all individuals in population:
fitnessValues = [individual.fitness.values[0] for individual in population]
# initialize statistics accumulators:
maxFitnessValues = []
meanFitnessValues = []
# main evolutionary loop:
# stop if max fitness value reached the known max value
# OR if number of generations exceeded the preset value:
while max(fitnessValues) < ONE_MAX_LENGTH and generationCounter < MAX_GENERATIONS:
# update counter:
generationCounter = generationCounter + 1
# apply the selection operator, to select the next generation's individuals:
offspring = toolbox.select(population, len(population))
# clone the selected individuals:
offspring = list(map(toolbox.clone, offspring))
# apply the crossover operator to pairs of offspring:
for child1, child2 in zip(offspring[::2], offspring[1::2]):
if random.random() < P_CROSSOVER:
toolbox.mate(child1, child2)
del child1.fitness.values
del child2.fitness.values
for mutant in offspring:
if random.random() < P_MUTATION:
toolbox.mutate(mutant)
del mutant.fitness.values
# calculate fitness for the individuals with no previous calculated fitness value:
freshIndividuals = [ind for ind in offspring if not ind.fitness.valid]
freshFitnessValues = list(map(toolbox.evaluate, freshIndividuals))
for individual, fitnessValue in zip(freshIndividuals, freshFitnessValues):
individual.fitness.values = fitnessValue
# replace the current population with the offspring:
population[:] = offspring
# collect fitnessValues into a list, update statistics and print:
fitnessValues = [ind.fitness.values[0] for ind in population]
maxFitness = max(fitnessValues)
meanFitness = sum(fitnessValues) / len(population)
maxFitnessValues.append(maxFitness)
meanFitnessValues.append(meanFitness)
print("- Generation {}: Max Fitness = {}, Avg Fitness = {}".format(generationCounter, maxFitness, meanFitness))
# find and print best individual:
best_index = fitnessValues.index(max(fitnessValues))
print("Best Individual = ", *population[best_index], "\n")
# Genetic Algorithm is done - plot statistics:
# sns.set_style("whitegrid")
# plt.plot(maxFitnessValues, color='red')
# plt.plot(meanFitnessValues, color='green')
# plt.xlabel('Generation')
# plt.ylabel('Max / Average Fitness')
# plt.title('Max and Average Fitness over Generations')
# plt.show()
if __name__ == '__main__':
main()