-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsvm.py
76 lines (56 loc) · 2.1 KB
/
svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
import numpy as np
from sklearn.decomposition import PCA
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
from definitions import antibiotics, bacteria_antibiotics, bacteria_list
import processing
np.random.seed(2021)
dataset_folder = os.path.join(os.getcwd(), 'dataset', 'bacteria')
output_folder = os.path.join(os.getcwd(), 'output', 'svm')
X, y = processing.preprocess_dataset('finetune', dataset_folder, classes=bacteria_list.keys())
num_classes = len(set(y))
input_shape = (X.shape[1], 1)
X_test, y_test = processing.preprocess_dataset('test', dataset_folder, classes=bacteria_list.keys())
print(set(y_test))
# ------------------
print('### PCA ###')
pca = PCA(n_components=20)
pca.fit(X)
X = pca.transform(X)
X_test = pca.transform(X_test)
print('### SVM Model ###')
metric = 'accuracy'
tuned_parameters = [
{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4], 'C': [1, 10, 100, 1000]},
{'kernel': ['linear'], 'C': [1, 10, 100, 1000]}
]
print('> Grid search:')
print(' - Tuning hyper-parameters for \'{}\' metric\n'.format(metric))
grid_search = GridSearchCV(SVC(), tuned_parameters, cv=2, verbose=2, scoring=metric, refit=False)
grid_search.fit(X, y)
processing.grid_search_summary(grid_search)
print('\n - Fitting SVM with best parameters from grid search')
classifier = SVC()
classifier.set_params(**grid_search.best_params_)
classifier.fit(X, y)
print('\n> Predicting 15 class isolates')
y_predicted = list(map(int, classifier.predict(X_test)))
y_test = list(map(int, y_test))
processing.performance_summary(
y_test,
y_predicted,
output_folder,
y_mapping=lambda x: bacteria_list[x],
y_labels=bacteria_list.values()
)
print('\n> Predicting antibiotic treatments')
antibiotic_predicted = list(map(lambda x: bacteria_antibiotics[x], y_predicted))
antibiotic_test = list(map(lambda x: bacteria_antibiotics[x], y_test))
processing.performance_summary(
antibiotic_predicted,
antibiotic_test,
y_mapping=lambda x: antibiotics[x],
y_labels=np.take(list(antibiotics.values()), list(set(antibiotic_test))),
output=os.path.join(output_folder, 'antibiotic')
)