-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
46 lines (30 loc) · 1.17 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import math
import os
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
from tensorflow.python.keras.utils.np_utils import normalize
def load_dataset(filename, folder):
return np.load(os.path.join(folder, filename))
def shuffle(X, y):
permutation = np.random.permutation(X.shape[0])
return X[permutation], y[permutation]
def extract_subset_by_classes(X_in, y_in, classes):
X_out, y_out = [], []
for (value, label) in zip(X_in, y_in):
if label in classes:
X_out.append(value)
y_out.append(label)
return np.array(X_out), np.array(y_out)
def plot_confusion_matrix(y_true, y_predicted, labels=[], ax=None, output=None):
if ax is None:
_, ax = plt.subplots(1, 1, figsize=(8, 8))
cm = confusion_matrix(y_true, y_predicted)
cm = 100 * cm / cm.sum(axis=1)[:, np.newaxis]
# ax.xaxis.tick_top()
ConfusionMatrixDisplay(
confusion_matrix=cm,
display_labels=labels,
).plot(include_values=True, cmap=plt.cm.Blues, values_format='0.0f', ax=ax, xticks_rotation='vertical')
if output is not None:
plt.savefig(output)