-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy patheval.py
163 lines (134 loc) · 5.88 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import re
import time
import shutil
import random
import argparse
import warnings
from tqdm import tqdm
import numpy as np
import cv2
import torch
from torch.utils.data import DataLoader
from utils import Meter, UnetResNet, FPN, TTAWrapper, load_train_config, CityscapesTestDataset, torch2np, \
KittiTrainDataset, KittiTestDataset, KittiLaneDataset, \
CityscapesTrainDataset, CityscapesDataset, open_img
warnings.filterwarnings("ignore")
seed = 69
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
parser = argparse.ArgumentParser()
parser.add_argument('--config_path', type=str, required=True)
args = parser.parse_args()
config = load_train_config(args.config_path)
globals().update(config)
if __name__ == "__main__":
global_start = time.time()
if not EVAL["test_mode"]:
if TARGET == "kitti":
train_dataset = KittiTrainDataset(**PATHS["KITTI"])
trainset, valset = train_dataset.get_paths()
image_dataset = KittiLaneDataset(**DATASET)
elif TARGET == "cityscapes":
train_dataset = CityscapesTrainDataset(**PATHS["CITYSCAPES"])
trainset, valset = train_dataset.get_paths()
image_dataset = CityscapesDataset(**DATASET)
image_dataset.set_phase("val", valset)
else:
if TARGET == "kitti":
testset = KittiTestDataset(PATHS["KITTI"]["test_root_path"])
image_dataset = KittiLaneDataset(**DATASET)
elif TARGET == "cityscapes":
testset = CityscapesTestDataset(PATHS["CITYSCAPES"]["test_root_path"])
image_dataset = CityscapesDataset(**DATASET)
image_dataset.set_phase("test", testset)
dataloader = DataLoader(
image_dataset,
batch_size=1,
num_workers=2,
pin_memory=True,
shuffle=True,
)
if MODEL["mode"] == "UNET":
model = UnetResNet(encoder_name=MODEL["backbone"],
num_classes=MODEL["num_classes"],
input_channels=3,
num_filters=32,
Dropout=0.2,
res_blocks_dec=MODEL["unet_res_blocks_decoder"])
elif MODEL["mode"] == "FPN":
model = FPN(encoder_name=MODEL["backbone"],
decoder_pyramid_channels=256,
decoder_segmentation_channels=128,
classes=MODEL["num_classes"],
dropout=0.2,
activation='sigmoid',
final_upsampling=4,
decoder_merge_policy='add')
else:
raise ValueError('Model type is not correct: `{}`.'.format(MODEL["mode"]))
device = torch.device(EVAL["device"])
model.to(device)
model.eval()
state = torch.load(EVAL["model_path"], map_location=lambda storage, loc: storage)
model.load_state_dict(state["state_dict"])
if EVAL["apply_tta"]:
TTAModel = TTAWrapper(model, merge_mode="mean")
if not EVAL["test_mode"]:
meter = Meter(base_threshold=EVAL["base_threshold"], get_class_metric=True)
images_path = EVAL["eval_images_path"] if not EVAL["test_mode"] else EVAL["test_images_path"]
try:
shutil.rmtree(images_path)
except:
pass
os.mkdir(images_path)
start = time.time()
for batch in tqdm(dataloader):
images, targets, image_id = batch
images = images.to(device)
if EVAL["apply_tta"]:
outputs = TTAModel(images)
else:
outputs = model(images)
if EVAL["activate"]:
outputs = torch.sigmoid(outputs)
if DATASET["resize"]:
outputs = torch.nn.functional.interpolate(outputs, size=DATASET["orig_size"], mode='bilinear', align_corners=True)
outputs = outputs.detach().cpu()
if not EVAL["test_mode"]:
meter.update("val", targets, outputs)
# dump predictions as images
outputs = (outputs > EVAL["base_threshold"]).int() # thresholding
outputs = torch2np(outputs)
pic = image_dataset.label_encoder.class2color(outputs, clean_up_clusters=EVAL["drop_clusters"],
mode="catId" if DATASET["train_on_cats"] else "trainId")
if EVAL["images_morphing"]:
# Add here image+mask morphing
orig_image = open_img(image_id[0])
alpha = 0.5
if (TARGET == "kitti") and (orig_image.shape[:2] != pic.shape[:2]):
orig_image = cv2.resize(orig_image, (DATASET["orig_size"][1], DATASET["orig_size"][0]), cv2.INTER_LANCZOS4)
pic = cv2.addWeighted(orig_image, (1 - alpha), pic, alpha, 0)
pred_name = "_".join(re.split("\.|_", image_id[0].split("/")[-1])[:-1]) + "_predicted_mask.png"
cv2.imwrite(os.path.join(images_path, pred_name), pic)
torch.cuda.empty_cache()
if not EVAL["test_mode"]:
dices, iou = meter.get_metrics("val")
print("***** Prediction done in {} sec.; IoU: {}, Dice: {} ***** \n(total elapsed time: {} sec.) ".\
format(int(time.time()-start), iou, dices[0]["dice_all"], int(time.time()-global_start)))
if TARGET == "cityscapes" and len(dices[0]) > 1:
labels_df = image_dataset.label_encoder.cityscapes_labels_df
if DATASET["train_on_cats"]:
cat, name = "catId", "category"
else:
cat, name = "trainId", "name"
print("***** Class metrics: *****")
for k, v in dices[0].items():
if k != "dice_all":
print(labels_df[labels_df[cat] == int(k)][name].iloc[0], " : ", v)
else:
print("***** Prediction on test set done in {} sec. ***** \n(total elapsed time: {} sec.) ".\
format(int(time.time()-start), int(time.time()-global_start)))