-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptim.py
505 lines (443 loc) · 17.3 KB
/
optim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import os, os.path as osp
import numpy as np
import cv2
import torch
import torch.nn as nn
from pix2latent import VariableManager, save_variables
from pix2latent.optimizer import BasinCMAOptimizer, GradientOptimizer
from pix2latent.tree import TreeFolder
from pix2latent.utils import image, video
import pix2latent.loss_functions as LF
import pix2latent.utils.function_hooks as hook
import pix2latent.distribution as dist
from pix2latent.config import cfg
from pix2latent.renderers import AlbedoRenderer, HighlightRenderer, DiffuseRenderer, TDiffRenderer, RimRenderer, THLRenderer
from pix2latent.utils.net_utils import load_network
def regnp(x):
if len(x.shape) == 2:
x = np.stack([x, x, x], axis=-1)
return x
def np2torch(x, batch=False):
# convert an image represented in the format of numpy array to torch tensor
# and normalize it to [-1, 1]
# if batch is True, then add a dim in the front
x = regnp(x)
x = torch.Tensor(x).cuda()
# x = x / 255.0 * 2 - 1
x = x * 2 - 1
try:
x = x.permute(2, 0, 1)
except:
x = x.permute(0, 3, 1, 2)
return x
if batch:
x = x[None]
return x
def torch2np(x):
x = x.permute(0, 2, 3, 1)
x = (x + 1.0) * 0.5
return x
def get_sphere_normal():
normal = np.load('./normal.npy')
normal = cv2.resize(normal, (256, 256))
normal = normal.reshape(-1, 3)
return torch.Tensor(normal).cuda()
normal = get_sphere_normal()
mask = (torch.norm(normal, dim=-1) > 0.1).reshape(256, 256)
renderers = {
'albedo': AlbedoRenderer(),
'diff': DiffuseRenderer(),
'highlight': HighlightRenderer(),
'tdiff': TDiffRenderer(),
'rim': RimRenderer()
}
import torch.nn.functional as F
TINY_NUMBER = 1e-8
class StCode():
def __init__(self, code):
self.code = code
self.n = len(code)
self.z_begin = [-1 for i in range(self.n)]
self.z_end = [-1 for i in range(self.n)]
self.z_len = 0
self.renderer = {
'diff': DiffuseRenderer(),
'highlight': HighlightRenderer(),
'albedo': AlbedoRenderer(),
'tdiff': TDiffRenderer(),
'rim': RimRenderer(),
'thl': THLRenderer()
}
for i in range(1, self.n):
if self.code[i] > 0: # leaf
self.z_begin[i] = self.z_len
self.z_len += len(self.renderer[cfg.symbols[self.code[i]]])
self.z_end[i] = self.z_len
def evaluate(self, z):
assert z.shape[-1] == self.z_len
ret = [None for _ in range(self.n)]
for i in range(1, self.n):
if self.code[i] > 0: # leaf, eval
this_renderer = self.renderer[cfg.symbols[self.code[i]]]
this_z = z[..., self.z_begin[i]:self.z_end[i]]
this_ret = this_renderer(this_z)
ret[i] = this_ret
return ret
def eval_node(self, idx, z):
assert self.code[idx] > 0
this_renderer = self.renderer[cfg.symbols[self.code[idx]]]
this_z = z[..., self.z_begin[idx]:self.z_end[idx]]
if len(this_z.shape) == 1:
this_z = this_z[None]
this_ret = this_renderer(this_z.cuda())
this_ret = this_ret.squeeze().permute(2, 0, 1).reshape(3, 256, 256)
this_ret *= mask
this_ret = this_ret * 2 - 1
return this_ret
class CompositeRenderer():
def __init__(self, stcode, param_save_path):
super().__init__()
self.code = StCode(stcode)
self.composite = {
'screen': self.screen,
'multiply': self.multiply,
'mix': self.mix
}
self.param_save_path = param_save_path
def screen(self, a, b):
return 1 - (1 - a) * (1 - b)
def multiply(self, a, b):
return a * b
def mix(self, a, b, p):
assert p.min() >= 0 and p.max() <= 1
return p * b + (1 - p) * a
def calc(self, idx, leaves, input):
self.input = input
if self.code.code[idx] > 0:
return leaves[idx]
else:
compose = self.composite[cfg.ops[-self.code.code[idx]]]
return compose(self.calc(idx*2, leaves, input), self.calc(idx*2+1, leaves, input))
def forward(self, z, img):
img = torch.cat([img] * z.shape[0], dim=0)
leaves = self.code.evaluate(z)
return self.calc(1, leaves, img)
class Warper(nn.Module):
def __init__(self, stcode, ppath):
super().__init__()
self.model = CompositeRenderer(stcode, ppath)
def assign_img(self, img):
self.input = img
def forward(self, z):
ret = self.model.forward(z, self.input) # of shape (N, P, 3)
ret = torch.Tensor(ret).cuda()
ret = ret.permute(0, 3, 1, 2).reshape(ret.shape[0], 3, 256, 256)
ret = ret * mask
assert ret.max() <= 1 and ret.min() >= 0
ret = (ret - 0.5) * 2
return ret
class TreeWarper(nn.Module):
"""
used in whole tree optimization
"""
def __init__(self, treefolder, rt_id):
super().__init__()
self.tf = TreeFolder(treefolder)
self.default_z = self.tf.get_optim_info(rt_id, renderers)
self.z_len = self.default_z.shape[0]
self.rt_id = rt_id
def forward(self, z):
if len(z.shape) == 2:
rets = []
for i in range((z.shape[0])):
self.tf.set_leaf_param(renderers, z[i], self.rt_id)
ret = self.tf.btcalc(renderers, self.rt_id)
ret = ret.reshape(3, 256, 256)
rets.append(ret)
rets = torch.stack(rets)
return rets
loss_fn = LF.ProjectionLoss()
def optim(fp, name, meta_steps=30, optimizer='basincma'):
target = image.read(fp, as_transformed_tensor=True, im_size=256)
model.assign_img(target[None])
save_dir = f'./results/{cfg.exp_name}/{name}'
os.makedirs(save_dir, exist_ok=True)
var_manager = VariableManager()
z_len = model.model.code.z_len
# (4) define input output variable structure. the variable name must match
# the argument name of the model and loss function call
var_manager.register(
variable_name='z',
shape=(z_len,),
grad_free=True,
# grad_free=False,
distribution=dist.TruncatedNormalModulo(
sigma=1.0,
trunc=cfg.truncate
),
var_type='input',
learning_rate=cfg.lr,
hook_fn=hook.Clamp(cfg.truncate),
)
var_manager.register(
variable_name='target',
shape=(3, 256, 256),
requires_grad=False,
default=target,
var_type='output'
)
### ---- optimize --- ###
if optimizer == 'basincma':
opt = BasinCMAOptimizer(
model, var_manager, loss_fn,
max_batch_size=cfg.max_minibatch,
log=cfg.make_video,
log_dir=save_dir
)
vars, out, loss = opt.optimize(meta_steps=meta_steps, grad_steps=30, last_grad_steps=300)
elif optimizer == 'adam':
opt = GradientOptimizer(
model, var_manager, loss_fn,
max_batch_size=cfg.max_minibatch,
log=cfg.make_video,
log_dir=save_dir
)
vars, out, loss = opt.optimize(num_samples=20, grad_steps=500)
### ---- save results ---- #
image.save(osp.join(save_dir, 'target.jpg'), target)
image.save(osp.join(save_dir, 'out.jpg'), out[-1])
# cv2.imwrite(osp.join(save_dir, 'out.png'), out[-1].permute(1, 2, 0).cpu().numpy() * 255)
np.save(osp.join(save_dir, 'tracked.npy'), opt.tracked)
if cfg.make_video:
video.make_video(osp.join(save_dir, 'out.mp4'), out)
out = opt.tracked['z'][-1]
vars.loss = loss
save_variables(osp.join(save_dir, 'vars.npy'), vars)
min_loss_idx = torch.Tensor(loss[-1][-1]['loss']).argmin()
min_loss = loss[-1][-1]['loss'][min_loss_idx]
return vars['input']['z']['data'][min_loss_idx], min_loss
def optim_tree(fp, name, meta_steps=30):
target = image.read(fp, as_transformed_tensor=True, im_size=256)
save_dir = f'./results/{cfg.exp_name}/{name}'
os.makedirs(save_dir, exist_ok=True)
var_manager = VariableManager()
z_len = model.z_len
# (4) define input output variable structure. the variable name must match
# the argument name of the model and loss function call
var_manager.register(
variable_name='z',
shape=(z_len,),
grad_free=True,
distribution=dist.TruncatedNormalModulo(
sigma=1.0,
trunc=cfg.truncate
),
var_type='input',
learning_rate=cfg.lr,
hook_fn=hook.Clamp(cfg.truncate),
# default=torch.Tensor(model.default_z).cuda()
)
var_manager.register(
variable_name='target',
shape=(3, 256, 256),
requires_grad=False,
default=target,
var_type='output'
)
### ---- optimize --- ###
opt = BasinCMAOptimizer(
model, var_manager, loss_fn,
max_batch_size=cfg.max_minibatch,
log=cfg.make_video,
log_dir=save_dir
)
vars, out, loss = opt.optimize(meta_steps=meta_steps, grad_steps=30, last_grad_steps=300)
### ---- save results ---- #
image.save(osp.join(save_dir, 'target.jpg'), target)
image.save(osp.join(save_dir, 'out.jpg'), out[-1])
# cv2.imwrite(osp.join(save_dir, 'out.png'), out[-1].permute(1, 2, 0).cpu().numpy() * 255)
np.save(osp.join(save_dir, 'tracked.npy'), opt.tracked)
if cfg.make_video:
video.make_video(osp.join(save_dir, 'out.mp4'), out)
out = opt.tracked['z'][-1]
vars.loss = loss
save_variables(osp.join(save_dir, 'vars.npy'), vars)
min_loss_idx = torch.Tensor(loss[-1][-1]['loss']).argmin()
min_loss = loss[-1][-1]['loss'][min_loss_idx]
return vars['input']['z']['data'][min_loss_idx], min_loss
structures_human = [
['highlight'],
['albedo'],
['diff'],
['rim'],
['tdiff'],
['multiply', 'diff', 'albedo'],
['screen', 'rim', 'albedo']
]
msteps = {
'albedo': 20,
'diff': 15,
'highlight': 20,
'rim': 5,
'tdiff': 15,
}
structures = []
for s in structures_human:
ns = [-1]
for ss in s:
if ss in cfg.ops:
ns.append(-cfg.ops.index(ss))
elif ss in cfg.symbols:
ns.append(cfg.symbols.index(ss))
else:
raise NotImplementedError
structures.append(ns)
tree = TreeFolder(cfg.result)
if cfg.mode == 'inter':
for st_id, st in enumerate(structures):
gstcode = StCode(st)
tree = TreeFolder(cfg.result)
N = len(tree.nodes)
leaf_type = st[-1]
leaf_type_name = cfg.symbols[leaf_type]
Msteps = 30
if leaf_type_name in msteps and len(st) == 2:
Msteps = msteps[leaf_type_name]
print("Msteps = {}".format(Msteps))
for i in range(N):
if not i % cfg.np == cfg.pid:
continue
if tree.nodes[i].type == -100 or (not tree.nodes[i].is_leaf() and not tree.nodes[i].has_all_child()):
print("Optimizing for node {} using structure {}".format(i, st_id))
pre_path = osp.join('results', cfg.exp_name, '%d_%06d' % (st_id, i), 'vars.npy')
ppath = osp.join('results', cfg.exp_name, '%d_%06d' % (st_id, i))
if osp.exists(pre_path):
var = np.load(pre_path, allow_pickle=True).item()
loss = torch.Tensor(var['loss'][-1][1]['loss'])
min_loss_idx = loss.argmin()
error = loss[min_loss_idx]
z = var['input']['z']['data'][min_loss_idx]
print('loaded from %s' % pre_path)
else:
model = Warper(st, ppath)
z, error = optim(
osp.join(cfg.result, 'images', '%06d.png'%i), '%s_%06d'%(st_id, i), meta_steps=Msteps
)
if error < 1.6:
tree.set_structure(gstcode, z, 1, i, ppath)
print("Error={} is acceptable.".format(error))
else:
print("Error={} is not acceptable.".format(error))
if cfg.np == 1:
try:
if cfg.save_res:
tree.dump_json()
except:
import time
time.sleep(1)
if cfg.save_res:
tree.dump_json()
elif cfg.mode == 'leaf':
for st_id, st in enumerate(structures):
# for st_id in st_leaves_idx:
st = structures[st_id]
if len(st) != 2:
continue
gstcode = StCode(st)
leaf_type = st[-1]
leaf_type_name = cfg.symbols[leaf_type]
Msteps = 30
if leaf_type_name in msteps:
Msteps = msteps[leaf_type_name]
tree = TreeFolder(cfg.result)
N = len(tree.nodes)
for i in range(N):
if i % cfg.np != cfg.pid:
continue
ppath = osp.join('results', cfg.exp_name, '%d_%06d' % (st_id, i))
if tree.nodes[i].type == leaf_type and (tree.nodes[i].btimg is None or tree.nodes[i].z is None):
print("Optimizing for node {} using structure {}".format(i, st_id))
pre_path = osp.join('results', cfg.exp_name, '%d_%06d' % (st_id, i), 'vars.npy')
if osp.exists(pre_path):
var = np.load(pre_path, allow_pickle=True).item()
loss = torch.Tensor(var['loss'][-1][1]['loss'])
min_loss_idx = loss.argmin()
error = loss[min_loss_idx]
z = var['input']['z']['data'][min_loss_idx]
print('loaded from %s' % pre_path)
else:
model = Warper(st, ppath)
imgpath = osp.join(cfg.result, 'images', '%06d.png'%i)
if not osp.exists(imgpath):
imgpath = osp.join(cfg.result, 'bt_images', '%06d.png'%i)
z, error = optim(
imgpath,
'%d_%06d'%(st_id, i),
meta_steps=Msteps
)
tree.set_structure(gstcode, z, 1, i, ppath)
if cfg.np == 1:
tree.dump_json()
breakpoint()
elif cfg.mode == 'other_leaf':
# choose the closest structure
tree = TreeFolder(cfg.result)
N = len(tree.nodes)
for i in range(N):
if not i % cfg.np == cfg.pid:
continue
if tree.nodes[i].type == -100 or (not tree.nodes[i].is_leaf() and not tree.nodes[i].has_all_child()):
best_error = 10000
best_z = None
best_st = None
ppaths = []
best_id = None
for st_id, st in enumerate(structures):
ppath = osp.join('results', cfg.exp_name, '%d_%06d' % (st_id, i))
if len(st) != 2:
continue
pre_path = osp.join('results', cfg.exp_name, '%d_%06d' % (st_id, i), 'vars.npy')
if osp.exists(pre_path):
var = np.load(pre_path, allow_pickle=True).item()
loss = torch.Tensor(var['loss'][-1][1]['loss'])
min_loss_idx = loss.argmin()
error = loss[min_loss_idx]
z = var['input']['z']['data'][min_loss_idx]
print('loaded from %s' % pre_path)
else:
model = Warper(st, ppath)
imgpath = osp.join(cfg.result, 'images', '%06d.png'%i)
if not osp.exists(imgpath):
imgpath = osp.join(cfg.result, 'bt_images', '%06d.png'%i)
z, error = optim(
imgpath,
'%d_%06d'%(st_id, i),
meta_steps=30
)
var = np.load(pre_path, allow_pickle=True).item()
loss = torch.Tensor(var['loss'][-1][1]['loss'])
min_loss_idx = loss.argmin()
error = loss[min_loss_idx]
z = var['input']['z']['data'][min_loss_idx]
print('loaded from %s' % pre_path)
if error < best_error:
best_error = error
best_z = z
best_st = st
best_id = st_id
ppaths.append(ppath)
gstcode = StCode(best_st)
tree.set_structure(gstcode, best_z, 1, i, ppaths[best_id])
if cfg.np == 1:
tree.dump_json()
elif cfg.mode == 'bt':
tree = TreeFolder(cfg.result)
N = len(tree.nodes)
breakpoint()
for i in range(N):
if tree.nodes[i].btimg is None:
tree.calc_btimg(i, renderers = renderers)
tree.dump_json()
tree.render_graph()
else:
raise NotImplementedError