-
-
Notifications
You must be signed in to change notification settings - Fork 250
/
Copy pathnlp.py
128 lines (104 loc) · 4.16 KB
/
nlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# MIT License
# Copyright (c) 2019 Georgios Papachristou
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the 'Software'), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import re
import nltk
import logging
class NLP:
def __init__(self):
pass
@staticmethod
def is_positive_answer(answer):
return answer in ['yes', 'y', 'oui', 'true']
@staticmethod
def is_negative_answer(answer):
return answer in ['no', 'n']
@staticmethod
def create_parts_of_speech(text):
tokens = nltk.word_tokenize(text)
return nltk.pos_tag(tokens)
@staticmethod
def is_question_with_modal(parts_of_speech):
grammar = 'QS: {<MD><PRP><VB>}'
cp = nltk.RegexpParser(grammar)
result = cp.parse(parts_of_speech)
for subtree in result.subtrees():
if subtree.label() in ['MD', 'WD', 'QS']:
return True
@staticmethod
def is_question_with_inversion(parts_of_speech):
grammar = 'QS: {<VBP><PRP>}'
cp = nltk.RegexpParser(grammar)
result = cp.parse(parts_of_speech)
for subtree in result.subtrees():
if subtree.label() in ['QS']:
return True
@staticmethod
def _extract_verb(parts_of_speech):
for part in parts_of_speech:
if part[1] in ['VB']:
return part[0]
return ' '
@staticmethod
def _extract_modal(parts_of_speech):
for part in parts_of_speech:
if part[1] in ['MD']:
return part[0]
return ' '
@staticmethod
def _extract_noun(parts_of_speech):
for part in parts_of_speech:
if part[1] in ['NN', 'NNS', 'NNP', 'NNPS']:
return part[0]
return ' '
class ResponseCreator(NLP):
def __init__(self):
super().__init__()
def create_positive_response(self, sentence):
positive_response = self._create_response(sentence)
if positive_response:
return 'Yes, ' + positive_response
def create_negative_response(self, sentence):
negative_response = self._create_response(sentence)
if negative_response:
return 'No, ' + negative_response
def _create_response(self, sentence):
"""
Construct Response Body
:param sentence: string
:return: string
"""
parts_of_speech = self.create_parts_of_speech(sentence)
# --------------------
# Extract speech parts
# --------------------
verb = self._extract_verb(parts_of_speech)
modal = self._extract_modal(parts_of_speech)
noun = self._extract_noun(parts_of_speech)
# ----------------------------
# Command type classification
# ----------------------------
if self.is_question_with_modal(parts_of_speech):
logging.info('The user speech has a modal question')
answer = 'I ' + modal + ' ' + verb + ' ' + noun
elif self.is_question_with_inversion(parts_of_speech):
logging.info('The user speech has an inverse question')
answer = 'I ' + ' ' + verb + ' ' + noun
else:
logging.info('Unclassified user command..')
answer = ''
return re.sub('\s\s+', ' ', answer)