diff --git a/models/moe_stabl_baseline/README.md b/models/moe_stabl_baseline/README.md new file mode 100644 index 0000000..9572ad3 --- /dev/null +++ b/models/moe_stabl_baseline/README.md @@ -0,0 +1,163 @@ +# MOE-STABL Baseline + +Regression models trained on Stabl-selected features from MOE (Molecular Operating Environment) molecular descriptors. + +## Description + +This baseline implements the Stabl feature selection framework (Discovery of sparse, reliable omic biomarkers with Stabl, J. Hédou et al., Nature Biotechnology, 2024) for sparse and interpretable feature selection. A set of regressors are then fitted to predict the antibody properties. + +Stabl is first called over all target properties to produce target-level lists of MOE features that should be later used for prediction. We loop through cross-validation folds and target properties to generate a ```stabl_feature_selection_results.pkl``` data structure that contains: +- For every GDPa1 fold and target property, a list of Stabl-selected features +- Derivation of the optimal threshold from the FDP plot (see ```build_stabl_features.ipynb``` and **Methods** section) +- Feature-level Stability paths (see ```build_stabl_features.ipynb``` and **Methods** section) + +At training time, we access the precomputed lists of features and fit a set of regressors with a randomized CV search to search for the best hyperparameters. Models, preprocessors and features selected are then stored in some ```artifact.pkl``` file. + +At inference time, we recover the trained models from the artifact file and make predictions. + +## Regression heads + +The following model have displayed highest performance: +- HIC: Ridge +- AC-SINS_pH7.4: LGBMRegressor +- PR_CHO: XGBRegressor +- Titer: LGBMRegressor +- Tm2: MLP + +## Results +The results reported for every target were obtained with the specified method which achieved optimal performance (in terms of average test spearman on test fold): + +| Target | AC-SINS_pH7.4 | HIC | PR_CHO | Titer | Tm2 | +| ------ | --------------| -----| ------ | ----- | --- | +| Models | LGBM | Ridge | XGB | LGBM | MLP | +| Spearman | 0.395 | 0.645 | 0.453 | 0.189 | 0.132 +| $N_{features}$ | 11 | 17 | 16 | 13 | 3 | + +## Requirements + +- Pre-computed MOE features in `../../data/features/processed_features/` + - `GDPa1/MOE_properties.csv` (training features) + - `heldout_test/MOE_properties.csv` (test features) + +- Stabl-selected features for every fold in ``` stabl_feature_selection_results.pkl```. + +MOE molecular descriptors computed from predicted antibody structures by Nels Thorsteinsen. + +## Installation + +### CLI Interface + +The baseline implements a standardized CLI interface. MOE features are loaded automatically from the centralized feature store. + +#### Train + +```bash +pixi run python -m moe_stabl_baseline train \ + --data ../../data/GDPa1_v1.2_20250814.csv \ + --run-dir ./runs/my_run \ + [--seed 42] +``` + +Trains 5 optimized models (one per property) and saves to `run-dir/model_artifacts.pkl`. + +#### Predict + +```bash +# Training data +pixi run python -m moe_stabl_baseline predict \ + --data ../../data/GDPa1_v1.2_20250814.csv \ + --run-dir ./runs/my_run \ + --out-dir ./outputs/train + +# Heldout test set +pixi run python -m moe_stabl_baseline predict \ + --data ../../data/heldout-set-sequences.csv \ + --run-dir ./runs/my_run \ + --out-dir ./outputs/heldout +``` + +Generates predictions for all samples and writes to `out-dir/predictions.csv`. + +### Full Workflow via Orchestrator + +From repository root: + +```bash +pixi run all +``` + +Automatically runs all models with 5-fold cross-validation and evaluation. + +## Methods +### MOE features + +MOE molecular descriptors capture structural, electrostatic, hydrophobic, geometric, and secondary structure properties computed from predicted antibody structures. The descriptor set includes ~246 features covering: +- **Structural**: radius of gyration, packing scores, surface areas +- **Electrostatic**: charge distribution, dipole moments, multipole moments +- **Hydrophobic**: patch hydrophobicity, hydrophobic moments +- **Secondary structure**: helicity, strand content +### Stabl feature selection + +Stabl was first developped in the context of single cell mass cytometry to allow for reliable and interpretable feature selection in high-dimensional datasets (where $n << p$). In this competition, we thought that Stabl could bring a nice additionnal layer of interpretability to our MOE-based models. + +**Steps**: Consider a trainset (or a fold) with $n$ observations and $p$ parameters. For every hyperparameter $\lambda \in [\lambda_{min}, \lambda_{max}]$, we train a set of LASSO estimators. + +- Generate $n_{bootstraps}$ bootstraps of the train fold +- Then generate $p$ artificial (uninformative) features from actual permutated features +- On every bootstrap with $2p$ features, run LASSO with hyperparameter $\lambda$. +- Report every selected features frequency across boostraps for this choice of hyperparmeter $\lambda$: $(f_i^{\lambda})_i$ +- Repeat previous steps for every $\lambda \in [\lambda_{min}, \lambda_{max}]$. + +For every $\lambda \in [\lambda_{min}, \lambda_{max}]$, the previous algorithm produces a list of per-feature selection frequency $(f_j^{\lambda})_j$, known as **stability paths**. Taking the max of these selection frequencies over all $\lambda$ values, we get a set of maximum selection frequencies $(\hat{f}_j)_j$. + +For any given threshold $t \in [0,1]$, we could apply a simple selection rule: select any "real" feature $j$ whose maximum selection frequency is larger than $t$. However, choosing one such threshold a priori would be totally arbitrary. We can in fact use the artificial features to tune an optimal threshold $t_{opt}$. + +More specifically, applying the previous selection rule, gives us a set of selected features $O_t$, which contains a possibly empty set $A_t$ of artificial features. We compute: +$$FDP_{+}(t) = \frac{1+\#A_t}{ \max(\#O_t,1)}$$ + +The Stabl paper gives nice theoretical guarantees that this quantity can serve as an estimator of the false discovery rate in this set of selected features. Moreover, we choose $t_{opt} = \arg \min_{t \in [0,1]} FDP_{+}(t)$ and derive our final selection method: + +$$\text{Choose feature across all real and artificial features only if their selection frequency is larger than }t_{opt}$$ + +### Regression Head Selection + +For each property, Ridge, XGBoost, LightGBM, and MLP models were compared across multiple feature sets. Best configurations were selected based on 5-fold cross-validation performance. + +### Prediction + +Features are standardized using training set statistics. Ridge models apply linear regression; MLP models use a single hidden layer with early stopping for Tm2. + +## Implementation + +This baseline implements the `BaseModel` interface from `abdev_core`: + +```python +from abdev_core import BaseModel, load_features + +class MoeStablBaselineModel(BaseModel): + + def train(self, df: pd.DataFrame, run_dir: Path, *, seed: int = 42) -> None: + # Load MOE features from centralized store + moe_features = load_features("MOE_properties") + # Train 5 separate models with optimized configs + # ... + + def predict(self, df: pd.DataFrame, run_dir: Path) -> pd.DataFrame: + # Load models and MOE features + # Generate predictions for all 5 properties + # ... +``` +Features are managed centrally by `abdev_core`. See the [abdev_core documentation](../../libs/abdev_core/README.md) for details. + +## Output + +Predictions are written to `/predictions.csv` with columns: +- `antibody_name` +- `vh_protein_sequence`, `vl_protein_sequence` +- Predicted values for: `HIC`, `Tm2`, `Titer`, `PR_CHO`, `AC-SINS_pH7.4` + +## References + +- **MOE descriptors**: Nels Thorsteinsen +- **Stabl selection**: Hédou et al. (2024), "Discovery of sparse, reliable omic biomarkers with Stabl", Nature Biotechnology +- **GDPa1 dataset**: [ginkgo-datapoints/GDPa1](https://huggingface.co/datasets/ginkgo-datapoints/GDPa1) diff --git a/models/moe_stabl_baseline/build_stabl_features.ipynb b/models/moe_stabl_baseline/build_stabl_features.ipynb new file mode 100644 index 0000000..9fed11c --- /dev/null +++ b/models/moe_stabl_baseline/build_stabl_features.ipynb @@ -0,0 +1,981 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "200e530a", + "metadata": {}, + "source": [ + "# Stabl per-fold feature selection" + ] + }, + { + "cell_type": "markdown", + "id": "5cc7b9d0", + "metadata": {}, + "source": [ + "## Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "2d07a731", + "metadata": {}, + "outputs": [], + "source": [ + "import pickle\n", + "import numpy as np\n", + "import pandas as pd\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from src.moe_stabl_baseline.stabl_proxy import select_stabl_features, stabl_preprocessor" + ] + }, + { + "cell_type": "markdown", + "id": "5d23e8bd", + "metadata": {}, + "source": [ + "## Set up" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "77df70c1", + "metadata": {}, + "outputs": [], + "source": [ + "path_to_gdpa1 = \"../../data/GDPa1_v1.2_20250814.csv\"\n", + "df_gdpa1 = pd.read_csv(path_to_gdpa1)\n", + "\n", + "path_to_moe_features = \"../../data/features/processed_features/GDPa1/MOE_properties.csv\"\n", + "df_moe_features = pd.read_csv(path_to_moe_features)\n", + "\n", + "df_merged = df_gdpa1.merge(df_moe_features, on=\"antibody_name\", how=\"left\")\n", + "\n", + "PROPERTIES = [\"HIC\", \"Titer\", \"PR_CHO\", \"AC-SINS_pH7.4\", \"Tm2\"]\n", + "df_targets = df_merged[[\"antibody_name\"] + PROPERTIES]\n", + "\n", + "FOLD_MODES = [\"all\", 0, 1, 2, 3, 4]\n", + "fold_label = \"hierarchical_cluster_IgG_isotype_stratified_fold\"\n", + "df_folds = df_merged[[\"antibody_name\", fold_label]]\n", + "\n", + "moe_features_intersect_merged = [col for col in df_moe_features.columns if col in df_merged.columns]\n", + "df_merged = df_merged[moe_features_intersect_merged]\n", + "df_merged = df_merged.drop(columns=[\"mseq\"], errors=\"ignore\")\n", + "\n", + "df_merged = df_merged.set_index(\"antibody_name\")\n", + "df_targets = df_targets.set_index(\"antibody_name\")\n", + "df_folds = df_folds.set_index(\"antibody_name\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "c292b613", + "metadata": {}, + "outputs": [], + "source": [ + "PARAMS_STABL = {\n", + " \"n_bootstraps\":500,\n", + " \"fraction\":1.0,\n", + " \"variance_threshold\":0.0,\n", + " \"scale\":True,\n", + " \"n_jobs\":-1,\n", + " \"fdp_grid_size\":1001,\n", + " \"alpha_grid\":np.linspace(0.01, 1.0, 100),\n", + " \"max_iter\":1000,\n", + "}\n", + "\n", + "seed = 42" + ] + }, + { + "cell_type": "markdown", + "id": "69a2d995", + "metadata": {}, + "source": [ + "## Visualization Helpers" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "f15972ca", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_fdp(fdp_info, title = None):\n", + " plt.figure(figsize=(8,6))\n", + " fdp = fdp_info[\"fdp\"]\n", + " t = fdp_info[\"t\"]\n", + " thr_opt = fdp_info[\"thr_opt\"]\n", + " plt.plot(t, fdp, label=\"Estimated FDP\")\n", + " plt.axvline(x=thr_opt, color=\"red\", linestyle=\"--\", label=\"Optimal threshold \"+f\"({thr_opt:.2f})\")\n", + " if title is not None:\n", + " plt.title(title)\n", + " plt.xlabel(\"Selection threshold\")\n", + " plt.ylabel(\"Estimated FDP\")\n", + " plt.legend()\n", + " plt.xlim(0, 1)\n", + " plt.ylim(0, 1)\n", + " plt.show()\n", + "\n", + "def plot_per_feature_freq(merged_freqs, selected_features, thr_opt, title = None):\n", + " plt.figure(figsize=(8,6))\n", + " for feature, data in merged_freqs.items():\n", + " if \"artificial\" in feature:\n", + " continue\n", + " inv_alpha = data[\"1/alpha\"]\n", + " freq = data[\"freq\"]\n", + " if feature in selected_features:\n", + " plt.plot(inv_alpha, freq, label=feature, linewidth=1., color = \"darkred\")\n", + " else:\n", + " plt.plot(inv_alpha, freq, linewidth=0.5, color = \"lightgray\")\n", + " if title is not None:\n", + " plt.title(title)\n", + " plt.xlabel(\"1/alpha\")\n", + " plt.ylabel(\"Selection frequency\")\n", + " plt.legend()\n", + " plt.axhline(y=thr_opt, color=\"red\", linestyle=\"--\", label=\"Optimal threshold \")\n", + " plt.ylim(0, 1)\n", + " plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "4181f6d0", + "metadata": {}, + "source": [ + "## Feature selection over all MOE features" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "344c300c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Processing target: HIC\n", + "Processing fold mode: all\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [00:59<00:00, 1.69it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 17 features for target HIC fold all\n", + "----\n", + "Processing target: HIC\n", + "Processing fold mode: 0\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [00:56<00:00, 1.76it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 14 features for target HIC fold 0\n", + "----\n", + "Processing target: HIC\n", + "Processing fold mode: 1\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [00:59<00:00, 1.69it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 16 features for target HIC fold 1\n", + "----\n", + "Processing target: HIC\n", + "Processing fold mode: 2\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [01:04<00:00, 1.54it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 17 features for target HIC fold 2\n", + "----\n", + "Processing target: HIC\n", + "Processing fold mode: 3\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [00:54<00:00, 1.83it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 17 features for target HIC fold 3\n", + "----\n", + "Processing target: HIC\n", + "Processing fold mode: 4\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [00:55<00:00, 1.80it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 19 features for target HIC fold 4\n", + "----\n", + "Processing target: Titer\n", + "Processing fold mode: all\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [02:27<00:00, 1.47s/it]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 13 features for target Titer fold all\n", + "----\n", + "Processing target: Titer\n", + "Processing fold mode: 0\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [02:04<00:00, 1.24s/it]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 12 features for target Titer fold 0\n", + "----\n", + "Processing target: Titer\n", + "Processing fold mode: 1\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [02:15<00:00, 1.36s/it]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 21 features for target Titer fold 1\n", + "----\n", + "Processing target: Titer\n", + "Processing fold mode: 2\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [02:04<00:00, 1.25s/it]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 15 features for target Titer fold 2\n", + "----\n", + "Processing target: Titer\n", + "Processing fold mode: 3\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [02:11<00:00, 1.31s/it]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 12 features for target Titer fold 3\n", + "----\n", + "Processing target: Titer\n", + "Processing fold mode: 4\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [02:06<00:00, 1.26s/it]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 12 features for target Titer fold 4\n", + "----\n", + "Processing target: PR_CHO\n", + "Processing fold mode: all\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [00:59<00:00, 1.67it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 16 features for target PR_CHO fold all\n", + "----\n", + "Processing target: PR_CHO\n", + "Processing fold mode: 0\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [01:03<00:00, 1.58it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 19 features for target PR_CHO fold 0\n", + "----\n", + "Processing target: PR_CHO\n", + "Processing fold mode: 1\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [00:55<00:00, 1.79it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 18 features for target PR_CHO fold 1\n", + "----\n", + "Processing target: PR_CHO\n", + "Processing fold mode: 2\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [00:53<00:00, 1.85it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 17 features for target PR_CHO fold 2\n", + "----\n", + "Processing target: PR_CHO\n", + "Processing fold mode: 3\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [00:52<00:00, 1.90it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 20 features for target PR_CHO fold 3\n", + "----\n", + "Processing target: PR_CHO\n", + "Processing fold mode: 4\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [00:53<00:00, 1.88it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 15 features for target PR_CHO fold 4\n", + "----\n", + "Processing target: AC-SINS_pH7.4\n", + "Processing fold mode: all\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [01:08<00:00, 1.46it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 11 features for target AC-SINS_pH7.4 fold all\n", + "----\n", + "Processing target: AC-SINS_pH7.4\n", + "Processing fold mode: 0\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [01:07<00:00, 1.48it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 13 features for target AC-SINS_pH7.4 fold 0\n", + "----\n", + "Processing target: AC-SINS_pH7.4\n", + "Processing fold mode: 1\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [01:05<00:00, 1.52it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 6 features for target AC-SINS_pH7.4 fold 1\n", + "----\n", + "Processing target: AC-SINS_pH7.4\n", + "Processing fold mode: 2\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [01:06<00:00, 1.51it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 8 features for target AC-SINS_pH7.4 fold 2\n", + "----\n", + "Processing target: AC-SINS_pH7.4\n", + "Processing fold mode: 3\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [01:06<00:00, 1.51it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 10 features for target AC-SINS_pH7.4 fold 3\n", + "----\n", + "Processing target: AC-SINS_pH7.4\n", + "Processing fold mode: 4\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [01:02<00:00, 1.60it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 12 features for target AC-SINS_pH7.4 fold 4\n", + "----\n", + "Processing target: Tm2\n", + "Processing fold mode: all\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [01:02<00:00, 1.59it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 3 features for target Tm2 fold all\n", + "----\n", + "Processing target: Tm2\n", + "Processing fold mode: 0\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [00:53<00:00, 1.86it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 5 features for target Tm2 fold 0\n", + "----\n", + "Processing target: Tm2\n", + "Processing fold mode: 1\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [00:58<00:00, 1.70it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 7 features for target Tm2 fold 1\n", + "----\n", + "Processing target: Tm2\n", + "Processing fold mode: 2\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [00:55<00:00, 1.81it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 4 features for target Tm2 fold 2\n", + "----\n", + "Processing target: Tm2\n", + "Processing fold mode: 3\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [00:56<00:00, 1.76it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 6 features for target Tm2 fold 3\n", + "----\n", + "Processing target: Tm2\n", + "Processing fold mode: 4\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "STABL α-grid: 100%|██████████| 100/100 [00:54<00:00, 1.84it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selected 5 features for target Tm2 fold 4\n", + "----\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "results_dict = {}\n", + "\n", + "for target in PROPERTIES:\n", + " results_dict[target] = {}\n", + " for fold_mode in FOLD_MODES:\n", + " print(f\"Processing target: {target}\")\n", + " print(f\"Processing fold mode: {fold_mode}\")\n", + " y = df_targets[[target]]\n", + " if fold_mode == \"all\":\n", + " mask = y.notna().values.ravel()\n", + " else:\n", + " mask = (df_folds[fold_label] != fold_mode) & y.notna().values.ravel()\n", + "\n", + " X_train = df_merged.loc[mask]\n", + " y_train = y.loc[mask]\n", + "\n", + " preproc = stabl_preprocessor(scale=True)\n", + " X_proc = pd.DataFrame(preproc.fit_transform(X_train),\n", + " columns=X_train.columns, index=X_train.index)\n", + "\n", + " res = select_stabl_features(\n", + " X_proc, y_train,\n", + " n_bootstraps=PARAMS_STABL[\"n_bootstraps\"],\n", + " fraction=PARAMS_STABL[\"fraction\"],\n", + " alpha_grid=PARAMS_STABL[\"alpha_grid\"],\n", + " max_iter=1000,\n", + " fdp_grid_size=PARAMS_STABL[\"fdp_grid_size\"]\n", + " )\n", + "\n", + " results_dict[target][fold_mode] = res\n", + " print(f\"Selected {len(res['selected_features'])} features for target {target} fold {fold_mode}\")\n", + " print(\"----\")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "903f876f", + "metadata": {}, + "outputs": [], + "source": [ + "# save results to pkl file\n", + "with open(\"stabl_feature_selection_results.pkl\", \"wb\") as f:\n", + " pickle.dump(results_dict, f)" + ] + }, + { + "cell_type": "markdown", + "id": "ecbcca85", + "metadata": {}, + "source": [ + "## Diagnostic plots" + ] + }, + { + "cell_type": "markdown", + "id": "c083e44c", + "metadata": {}, + "source": [ + "How many features selected over each complete dataset run? " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "d12fb288", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "17 features selected for target HIC fold all\n", + "13 features selected for target Titer fold all\n", + "16 features selected for target PR_CHO fold all\n", + "11 features selected for target AC-SINS_pH7.4 fold all\n", + "3 features selected for target Tm2 fold all\n" + ] + } + ], + "source": [ + "for target in PROPERTIES:\n", + " print(len(results_dict[target][\"all\"][\"selected_features\"]), f\"features selected for target {target} fold all\")" + ] + }, + { + "cell_type": "markdown", + "id": "c65cb8fd", + "metadata": {}, + "source": [ + "Plotting False discovery proportion as a function of the feature frequency selection threshold. Well behaved FDP plots will exhibit a minimum that we use for feature selection. " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "bdbd5875", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr4AAAIjCAYAAADlfxjoAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbxlJREFUeJzt3Qd8U2X3wPHTvaDsvUG2DAVBUEQURUUcrwMnw/Wi4sCJi+FAX1HEgaLi/IsL3KCgIqgIigIiMpW9KaulLd33/zlPmpC0aUlXkub+vp9P6M3NTe7tvW05OTnPecIsy7IEAAAACHHhgT4AAAAAwB8IfAEAAGALBL4AAACwBQJfAAAA2AKBLwAAAGyBwBcAAAC2QOALAAAAWyDwBQAAgC0Q+AIAAMAWCHwBwEcTJ06Uli1bSkREhHTt2pXzFiLKcl1PP/10czuWBQsWSFhYmPlaHry93rBhw6R58+bl8vpAqCLwBSq5t99+2/wH6O02evRo13b6H6JzfXh4uFSvXl06deokN910k/z2229eX9v9tfQ5DRs2lLPPPrvc/vOuTL799lu577775JRTTpG33npLJkyYUKH7e//992Xy5MlSWZT0ePXn8fzzzy82qJs5c2ahn/M//vij0PZ//vmnXHPNNdKkSROJiYmRmjVrSv/+/c11ys3NDarrCiCwIgO8fwDl5NFHH5UWLVp4rDv++OM97ms26+677zbLhw8fljVr1siMGTPk9ddfl1GjRsmkSZMKve5ZZ50lQ4YMEcuyZNOmTfLyyy/LGWecIbNnz5Zzzz3XNtfvhx9+MMH/G2+8IdHR0X4JJP/++2+58847pTII1PFOmzZNRowYIfXq1ZNrr71WWrdubX62582bJ9dff73s2rVLHnzwwaC5rgACi8AXCBEahHbv3r3YbRo1amQyY+7+97//yVVXXSXPPfecCRpuvvlmj8fbtGnj8ZyLL75YOnfubLJ7gQx8c3JyJC8vz2/Byt69eyUuLq7c9qdvJDIyMsxrhuo5q2i//vqrCXp79eolX3/9tVStWtX1mAbgmh3WYNyf1xVAcKPUAbA5/U////7v/8zHw0888YQJyIqj5RG1a9c22d9j0RKK8847T2rUqCEJCQkmYH7++eePWR9ZsFZx8+bN5mPuZ555xgTcrVq1Mh9pL1++XCIjI2X8+PGFXmPdunXmOS+99JJr3aFDh0xA5PxI/LjjjjOBvwaDxdHX0Y/B09LSXKUf+tG7M5h87LHHXMekx60ZxszMTK8f7c+dO9e8QdHz/uqrr3rdn54Tzahv2bLFtT/n+cjKypIxY8ZIt27dpFq1aua89unTR+bPn+/xGkWds9WrV7vKCfQ4YmNjzWN6LOPGjTPPKei9994z+9Nj1p+TK664QrZt2+bT8VYkve66r+nTp3sEvU76/enPUkVeV2+2b98uF110kbk2devWNZ+m+PI8pefwlltukbZt25rzXatWLbnsssvM9QRQdmR8gRCRnJws+/bt81inAaovqlSpYjK5+nGvBkYdO3YsctuDBw+amwaNxfnuu+9MoNegQQO54447pH79+qa0YtasWeZ+aWiQollSrUvWYERfu2/fvvLxxx/L2LFjPbb96KOPzGAlDRpUenq62XbHjh3y3//+V5o2bSqLFi2SBx54wHwcXlx9qr4xeO2112TJkiXmo3XVu3dv8/WGG26Qd955Ry699FJTRqLB/pNPPmm+188++6xQMH7llVea/d94440muPHmoYceMtdTAyjNxDuvkUpJSTHHoK+jr6Ef6+t1GzBggDm+goOzCp4zDVz1DcM555xjzp8Gj1oHq6UyderUKXQs+mbokUcekcsvv9x8r0lJSfLiiy/KaaedZl5Ha8WLO97iZGdnF/qZVfpax6LXU8sZ9Dj0WpZGeV1Xd0eOHJEzzzxTtm7dKrfffrupi9f9aEmFL37//Xfzc6lvLho3bmwC3ldeecW8udDfzfj4+FJ9rwDyWQAqtbfeektTtF5v7po1a2YNHDiwyNd57rnnzHO++OIL1zq9f/3111tJSUnW3r17rd9++80688wzzfpnn322yNfKycmxWrRoYfZ58OBBj8fy8vJcy3379jW3goYOHWqe67Rp0yazz8TERHMc7l599VXz2MqVKz3Wd+jQwTrjjDNc9x977DErISHBWr9+vcd2o0ePtiIiIqytW7cW+f04j0mf7+7PP/80+77hhhs81t9zzz1m/Q8//OBap9+PrpszZ47lC71W7ufA/dxmZmZ6rNNzXK9ePeu6667z6ZwNGjTIio+Pt3bs2OFa988//1iRkZEePzebN2825+aJJ57weL6ea93WfX1Rx1sU5/ko7jZjxoxCP+e///67ub9ixQpz/4477rDKoqzXteDP8OTJk802H3/8sWtdWlqaddxxx5n18+fPL/Z40tPTC61bvHixee67777rWqevU/D1Cv7eACiMUgcgREyZMsVkWd1vJeHM0GkG0Z1mEzUTqB/Z9uzZU3755Re56667ih3EpJlALYXQbTQj6M7bR+m+uuSSSwplJf/zn/+YcgfN8DppXadmxwYPHuxap4P4tCRAyy40y+i86eh/zXj+9NNPJT4erStVej7cOQcQ6sf/7nTwoWZmy0Kz2M56VC3ROHDggPlYXj/WX7Zs2THPmX6v33//vfkoXrORTprBL1iz/emnn5p9aLbX/Zxp9l7rwQuWV5SU/jwV/JnVm5ZnHItmvpW3EoeyKul1LfhczaRrpthJs7SacfeFe823ZsT3799vro3+Hnm7vgBKhlIHIET06NHjmIPbipOamuo1kLjwwgtl5MiRJmDVx7QMQmsXi7NhwwavXSXKqmDXCmc5h360rOUOWpOpNAjWYFiDYqd//vlH/vrrL68f5zsHOZWU1mNqR4CCZR8aGGqgoo8f6/hLQz+Cf/bZZ2Xt2rUmOCru9Quu0+9TP473VqpScJ2eM038a5DrTVRUVBm+C8e10zceBem1O5bExESvb9TKQ0mva8Hn6vMKvsErqqylIL02WlKhJSpaluNec+9LCQiA4hH4AjCco98L/mevdYbegpPyoMGBt8F0RfVeLaoDgtZDDh8+3PRz1RpXDYI1GHavcdbMpbZm056t3mj3irJ8H74ojw4OOtBMB2xpxvbee+81mXjNAmuw5HzDUV771HOm39s333xj9lGQL3W8FUV/TjVAXrlyZYXtoyyfTpTWbbfdZoJe/bREu1XoAEY9Dv0ZP9YgTADHRuALwGR7dcCOdjto3759mc+IjoR3BtPFBc1adrBx48ZC64vLqHmjQaAOGHOWO6xfv94MWit4TPp9lmcQ36xZMxOMaGbU/bzt2bPHdJDQx8s76NJJHXSWMS1DcN+m4OC+omigrJ0c/v3330KPFVyn50zfmGjW+FhvDPwdJGr5gPaT1kFj2mFCf3aD4brqY/pzr+fN/ZzowEZf6PUdOnSoyeg76eBE3S+AsqPGF7A5/WhVG/9rraiOzi+PAObEE080wZJ2Sij4H7Z7hlcDK/24XjsFOK1YscLUEZeEfvystbOa6f3www9NDawGw+60TnXx4sWmnVhBeoxaJ1tS2qpNFewI4ZwIZODAgVJaWk7i7aNtZ+bV/TxqxwH93nyhz9fg//PPP5edO3d6BL2a2XWnpSK6vXZ+KJiZ1/taf3qs461IGuzrcejPr7NUx93SpUtNWYg/r6s+V8+r+6xz2oFCu0f4Qs93wXOtXTSONQMdAN+Q8QVsRGsG9aNypYGCDgDTQV+7d+82A3c0a1oetD5SWzANGjTIlB5oGYIO+NEgd9WqVa7g87rrrjPBhAatOsuW1p9OnTrV1BE7By/5Sgey6UQbOrOcvl7BQXVaFvDll1+aFmtaKqB9abV/q35UrkGKto3ytf2bU5cuXUx2ToMaDZ61XZq2xtJgSwPvfv36SWnp8WkGWwdYnXTSSaasQM+nHr9me7X9nAZgOohQz1mHDh28Bn/eaL9enapXp+nVCUs0qNJ+x1qTreUi7m9MHn/8cZM91/Oj35PWees+9RMCHbB1zz33FHu8FUlbj+mgTu17265dO4+Z27RPsV5vPf6SKst11RZzei51tkMNvPXnXtuZ+dqGTK+vbq8lDnpN9Q2NDkbUfr4AyoGXTg8AKpGCbZ58aR8VFhZm2lx17NjRuvHGG02bMm9021tvvbXUx7Zw4ULrrLPOsqpWrWpaRnXu3Nl68cUXPbZ57733rJYtW1rR0dFW165drblz5xbZzmzixIlF7islJcWKi4sz2+lrenP48GHrgQceMK2ldH+1a9e2evfubT3zzDNWVlZWidteqezsbGv8+PGmfVtUVJTVpEkTs4+MjIwStZMrKDU11brqqqus6tWrm+/JeT60HdyECRPM/ZiYGOuEE06wZs2aVeJzNm/ePPNcPQ+tWrWypk2bZt19991WbGxsoW0/+eQT69RTTzXfv97atWtnfi7WrVt3zOMtSnHnw9mqq7h2Zu6WLl1q9t2wYUNzDWrUqGHa7r3zzjtWbm5uhV5Xby35tmzZYl1wwQWmZZz+jGnLNW1j50s7M21NN3z4cPO8KlWqWAMGDLDWrl1rzpcea8FzRDszoGTC9J/yCKABAJWbZjM1I6+1rQAQiqjxBQCb1na702BXe9B6m0IaAEIFGV8AsCGtPdVaZ+0QoV00tCY7MzPTTD5SVN9eAKjsGNwGADZ0zjnnyAcffGAGNsbExJiesRMmTCDoBRDSAlrqoFOE6qhfnTZTWyhpe51j0ZG62ipJ/1BrA/O3337bL8cKAKFEJ0nQTg3aI1bbkM2ZM8f8bQWAUBbQwFdbCWnbGG1H4wttoaPte7SVjLbc0ZltbrjhBq99OQEAAICgrPHVjK/2hSzYdN7d/fffL7Nnz3ZNrap0Gkfts6jZCgAAACAkany1kXfB6Ua1Ub1mfouigzX05qTTUOoMVdoMPBDzsAMAAKB4mpfVyWi0HFYnRbJl4KuDMOrVq+exTu/rDE/amicuLq7Qc5588kkz3SYAAAAql23btknjxo3tGfiWhk61qVNoOukgjqZNm5oTmZiYGNBjAwAjO1tHmzmWhw8XiYrixACwhdl/7ZT7P1kpJ7esKdOGnuRar0nNJk2amGnSy1OlCnzr168ve/bs8Vin9zWA9ZbtVdr9QW8F6XMIfAEEhbQ0kXvvdSzffLNIQkKgjwgA/CIu4bCEx8RLVFyC17isvMtSK9XMbdpnct68eR7rvvvuO7MeAAAAlVOY+GfcVUAD39TUVNOWTG/OdmW6vHXrVleZwpAhQ1zbjxgxQjZu3Cj33XefrF27Vl5++WX5+OOPZdSoUQH7HgAAAFA6ljiai/mr30BAA98//vhDTjjhBHNTWoury2PGjDH3d+3a5QqCVYsWLUw7M83yav/fZ599VqZNm2Y6OwAAAKBysfzcVDegNb6nn366aVdRFG+zsulzdC55AAAqgv6/lJOTI7m5uZxgoAJFBWAgb6Ua3AYAQEXKysoynzamp6dzooEKpgPXoq1o17I/EPgCAJA/wZGONYmIiDBN86Ojo5noCKjAT1aSkpKkdnqyxEb4b0IxAl8ACDRtuThr1tFlBCzbq8Gv9g6Nj4/nKgAVrE6dOrL3QLLUiAv3U08HAl8ACLzISJGBAwN9FMhXntOjAiias7whPMwmXR0AAACAMD+dAkodACAYpiyePt2xfPXVTFkMABWEjC8ABFpWlsjw4Y6bLgNBQFuKVq9eXSqTynjMEL92dSDwBQCgkhs2bJgJHArezjnnHJ+e37x5c5k8ebLHusGDB8v69esl1IJVb+fp1FNP9fp4QkKCtG7d2pzfpUuXerzOggULPLatV6+eXHLJJWaGWQRvqQOBLwAAIUCDXO1B7H774IMPSv16cXFxUrduXQlFb731lsd5+vLLL70+vmrVKpkyZYqkpqZKz5495d133y30WuvWrZOdO3fKjBkzzPaDBg1i8pMgRuALAEAxvUbTs3ICcituZlNvYmJipH79+h63GjVquL6PcePGSdOmTc122qf49ttvd82IumXLFhk1apQre+ktE6vP79q1q7z55pvmdapUqSK33HKLCfKefvppsz8NlJ944gmP45o0aZJ06tTJZE+1VZw+RwNJZ9Z0+PDhkpyc7Nq37kdlZmbKPffcI40aNTLP1cBTt3enx6jHou3nLr74Ytm/f79P50q/L/fzVLNmTa+Payb87LPPlpkzZ8rVV18tI0eOlIMHD3psq99zgwYN5LTTTpMxY8bI6tWr5d9///X5usHBX10dGNwGAEARjmTnSocxcwNyflY/OkDio8vnv+lPPvlEnnvuOfnwww+lY8eOsnv3blmxYoV57NNPP5UuXbrITTfdJDfeeGOxr7Nhwwb55ptvZM6cOWb50ksvNR/tt2nTRn788UdZtGiRXHfdddK/f38TqDrbw73wwgvSokULs60Gvvfdd5+8/PLL0rt3b1NioQGjZk6VBtRKg0wNIvWYNVD/7LPPTFZ75cqVpvzgt99+k+uvv16efPJJueiii8wxjR07ViqKvjHQjO93330nl19+eZFZcmdPaJQUM7cBAAAfzZo1yxU0Oj344IPmtnXrVpPB1IA0KirKZEl79OhhttFsp85WV7VqVbNNcXSCD8346rYdOnSQfv36mYD166+/NgFu27Zt5X//+5/Mnz/fFfjeeeedrudrBvXxxx+XESNGmMBXZ8erVq2ayfS671uPV8sN9KsGvUqzvxrc6voJEybI888/bwJhDaKVBt8aeOs2x3LllVea79npvffeM8Fzcdq1a2e+bt682evjWhrxzDPPmAy1ngcEJzK+AAAUIS4qwmReA7XvktAg9JVXXvFY5/wI/7LLLjOZ1ZYtW5pg8bzzzjO1qJE6eUoJaOCqQa+TDujSANJ90g9dt3fvXtf977//3mRl165dKykpKZKTkyMZGRmSnp5e5Ax5mtXVEgoNZt1p+UOtWrXM8po1a0x5g7tevXr5FPhq9lvfBDhpqcKxOEtPCnYfaNy4saMkJj3dZM41u64BPUqGUgcAsAudpvjjj48uI2hokFNe5QYVTetgjzvuOK+PaW2tZmY1CNWP6rXcYOLEiaY8QTPAviq4rZ4fb+s0M+zMjp5//vly8803m9pfDcQXLlxoShS0HKCowFdrgDWg1k4K7plZVTCrXRqaXS7qXBVFA22lJRvufv75Z0lMTDS1vu5vClAyTGABAHahWbfLLgv0USDEaf2pZnn1duutt5qP7jWzeuKJJ5oMpWZYy5sGrhoEP/vss66s8MfON3n5vO37hBNOMOs0c9ynTx+vr92+fXtT5+vu119/lYqiGXMNcN0zxc5AmN7BpVeyIZxlVznexgIAgGJpGYAOWnOnpQy1a9c23Q80kNS6W82yak2rBsLNmjVzlTD89NNPcsUVV5iuD/qc8qBZ1ezsbHnxxRdNwP3LL7/I1KlTPbbRfWuGd968eaZUQI9PSxy0i8KQIUNM0KyBcFJSktmmc+fOMnDgQNOV4pRTTjF1tRdeeKHMnTvXpzIHXxw6dMicSz2n2sv41Vdflc8//9wMbiPIrdylDrQzA4BAy8kRmTHDcdNloBQ06NNaVfebc2IGDdZef/11Eyhq4KglD1999ZWrXvbRRx81ZQmtWrWSOnXqlNv510BW25npgLfjjz9epk+fbup93WlnBx3sphNm6L61NZrSQWwa+N59991msJgOPvv999/NwDx18sknm+9JB7npfr799lt5+OGHy+W4tcWanj/NimuZhpZXLFmyRK666qpyeX0UFuanYocwq6SNAis5LazXEaTaM1A/sgCAgEtL08JFx7L2N01ICPQR2ZIOuNq0aZP56Do2NjbQhwPY4ndu5dp/5M7ZO6RT0zoy9dpuFR6vkfEFAABAQFHqAAAAAFsIo8YXAAAAdhDmpxpfSh0AAABgCwS+AAAACCxKHQAAAGAHYX7aDxNYAECgRUdr09KjywBgF5Z/d0fgCwCBFhUlMmxYoI8CAAImzE9tHajxBQAAgC1KHQh8ASDQdJri2bMdN6YsRpAaN26cdO3aNWj3c/rpp8udd94p/ta8eXOZPHlymV5j2LBhZkrm8vj+TjvtNHn//fcl0FavXi2NGzeWNJ2Zshj+nj6YwBcAAi0zU+T88x03XQZKYdu2bXLddddJw4YNJTo6Wpo1ayZ33HGH7N+/v1QfO3/++ece6+655x6ZN29ewK/NggULzPEdOnQo0IcSdL788kvZs2ePXHHFFR7TAt96661Sq1YtqVKlilxyySVmG1+NGDHCnO+Cwf369evlwgsvlNq1a5sphU899VSZP3++6/EOHTrIySefLJMmTfJpP0xgAQAAfLJx40bp3r27/PPPP/LBBx/Iv//+K1OnTjWBaq9eveTAgQNlPpMaNGnwFEqys7MllLzwwgsyfPhwCQ8/mtccNWqUfPXVVzJjxgz58ccfZefOnfKf//zHp9f77LPP5NdffzVvpgo6//zzJScnR3744QdZunSpdOnSxazbvXu3axs9lldeecVsdyyUOgAAECz049qibhkZvm975Ihv25aQZvQ0y/vtt99K3759pWnTpnLuuefK999/Lzt27JCHHnrI46P5xx57TK688kpJSEiQRo0ayZQpUzweVxdffLHJ9DnvFyxBcH48P2HCBKlXr55Ur15dHn30URPk3HvvvVKzZk3zUfdbzo4l+e6//35p06aNxMfHS8uWLeWRRx7xOQDdvHmz9OvXzyzXqFHDHJ8eh1NeXp7cd999Zt/169c3x+xOt9dA7IILLjDf+xNPPGHWf/HFF3LiiSdKbGysOabx48e7gjXLsszr6DmNiYkxQeDtt9/u8brp6ekm2161alWz3Wuvvebx+MqVK+WMM86QuLg48+bhpptuktTU1CK/Ty0PGDJkiHmz0aBBA3n22WePeW6SkpJMEDpo0CDXuuTkZHnjjTdM1lX3361bN3M9Fi1aZALa4ujPzW233SbTp0+XKB2A62bfvn3mTdbo0aOlc+fO0rp1a3nqqafMefj7779d25111lnmTZcG3MGCUgcAAI6lSpWib5dc4rlt3bpFb3vuuZ7balDpbbsS0MBi7ty5csstt5jAyp0Gf1dffbV89NFHJoBzmjhxosnQLV++3AQvWhLx3Xffmcd+//1381UDpF27drnue6OBlmYQf/rpJxNcjR071mT9NCj97bffzMfk//3vf2X79u2u52hw+Pbbb5sa0Oeff15ef/11ee6553z6Xps0aSKffPKJWV63bp05Pn0Np3feeccEtLrvp59+2gTizu/LSYNYDeo1GNVg9eeffzZBpp4DPaZXX33VHJ8zKNb96fHpeg32tASkU6dOHq+pgalm3PV86nW4+eabzfE5g9gBAwaYc6LnUjOv+oZk5MiRRX6f+sZBg0UNyPXNjJZ3LFu2rNhzs3DhQvNmon379q51monVNxX9+/d3rWvXrp0JzhcvXlzka+kbiGuvvdYcR8eOHQs9rsF727Zt5d133zXfn75J0PNTt25dE1w76ZsxfbOk5zhYujroL4KtJCcn62+++QoAQSE1VUMSx02XERBHjhyxVq9ebb4W4rw+3m7nnee5bXx80dv27eu5be3a3rcrgV9//dX8v/bZZ595fXzSpEnm8T179pj7zZo1s8455xyPbQYPHmyde+65bt9u4dcbO3as1aVLF9f9oUOHmtfKzc11rWvbtq3Vp08f1/2cnBwrISHB+uCDD4o8/okTJ1rdunUrcj8FzZ8/3xzfwYMHPdb37dvXOvXUUz3WnXTSSdb999/v8X3deeedHtuceeaZ1oQJEzzW/d///Z/VoEEDs/zss89abdq0sbKysrwej56Da665xnU/Ly/Pqlu3rvXKK6+Y+6+99ppVo0YNK9Xtd3v27NlWeHi4tXv3bte5vPDCC83y4cOHrejoaOvjjz92bb9//34rLi7OuuOOO4o8L88995zVsmVLj3XTp083r1XQSSedZN13331Fvpaej7POOst8L87vUV/f3bZt28x1CwsLsyIiIsz5WrZsWaHXuvjii61hw4Z53Y/+rv22bIXV+/FvrFEfLvdLvEYfXwAAjqWYj6UlIsLz/t69RW/rVntpbN5cbufePaN7LFr3W/B+aToTaDbQvZ5USx6OP/541/2IiAiTHdzrdk40+6y1qBs2bDAf92u2UAdHlQf92N2dlgm471tpZtbdihUr5JdffnFleFVubq4ZFKYf3V922WXm3GgJxDnnnCPnnXeeKSeIjIz0ul/NXGqm3bnfNWvWmOy6ZqKdTjnlFJNV1aywnjN3el6ysrKkZ8+ernVauqEZ1uIcOXLElGqU1dKlS00WXTPMRWVh9WdNy2s0w6vZXP2kYdq0aea8aFZbz7uTPqbnMVhQ6gAAwLFo0FLUrWCwUdy2BUoRityuBI477jgToGiA5Y2u14/Z69SpU+7XuWDtpx6Ht3Ua5Cn9eF1LLzR4nDVrlikN0PpjDfQq6nic+3ZyD0CVBt9a0/vnn3+6bloGoWUNGkhqeYUGqC+//LIJ4rSUQVuGudcl+7LfiqbdFQ4ePOixTgNwPbcFO2Ds2bPHPOaNBrIatGs5hAb3etuyZYvcfffdrnpvLXHR6/fhhx+aIF7ro53nR8tNCpbi+PSz56dKBwJfAAg0nab4pZccN6YsRglpRlUHEWngoVk/dzrCXgcnDR482CN7V3Bgk953rw3VQE6znuVNB1VpmzUNdjXzqoOiNKgqCa0bVeV1fBq0aWCrbyAK3pzZbA3oNJupmWqtt9UAXoNjX+h51ayyez9bzTDra3vL4rZq1cqcf61TdtKAVtuHFeeEE04w19s9+NV6W30t9zZ069atk61btxbK+jtpbe9ff/3l8UZAB/Rpva/WkitnBtc92++8XzDg18FuemzHEuanyJfAFwACTbNFt97quBXIHAG+eOmllyQzM9MMotKBZtrTd86cOSYg1q4N7h/jOwMvHfylwZR2dNABVzq4y0kzexosFQykykoDXQ26NFOoH+lrIKkts0pCA2cN4jXjqJ0MiuuO4IsxY8aYQVqa9V21apXJkOvxPfzww+ZxHeimnRE0gNO2ce+9954JhPU4fKEZbs0cDx061LyG9rrVbgkaYBYsc1DayeH66683gaZmVvU52rmiYJBZkAaXmvXVa+tUrVo181p33XWX2e/SpUtNizENerXHrvuAN+d10DdSWq7iftPgWTPEzkBdn6+fIuj3pEG9/hzp8W7atEkGDhzo0YVDu0O4D64rCn18AQCAzwHlH3/8YepQL7/8cpM11JZZ2vpLs5NaI+pOP7bW7TVYevzxx01HBg2a3bsUaDcE/Zjfl2ydr7SNmPaV1Y4GOtpfM8DazqwkNJDXIFW7UWjgWFx3BF/o961BtHZPOOmkk0xAqF0cnIGttmnTzhP6kb7W8mpHBu2L62tPY+20oJlS/chfX//SSy+VM88807xZKYp23ejTp4/JMmvQqJNDuHdL8EbrqTWo1Qy/O/1etNOGTlxx2mmnmQD2008/9dhGs8Da+sxXGmDrGyt906Ft0jR7r10ltAuF1jM7aU/ps88+2+c3Cf4QpiPcxEZSUlLMOyC9wOVVTA8AZaIf2Trb/fTpU3iwFPxCBzNpxqpFixblMkgoWGk2V6e+DcT0vqhYmqHXAYc6MC3QwWZWVpZ5Q6bTJ+ubhqJ+5/5as15Gfb1TerdpIBMv61Lh8RpdHQAg0HQChPym/KZ7QAkHNwGA0myulmVoOUmgA9+tW7fKgw8+WGTQG6hSBwJfAACAEKGz6QWD4/IHCAYbAl8AAGxEBxwBwYauDgAAALCFMPr4AgDgfzYb8w0E9HdNf93y/PgrRx9fAADcZt8KpulVgVCWlZVlAt+0rDwGtwEA4E/aB1V7tup0rc7+q+6znQEoPzrDm05AciArTA5nacrXP79rDG4DgEDTTOPTTx9dRkDbQSln8Aug4uhsdFvSo8WfxUUEvgAQaNHRIvfeG+ijgBlgEyYNGjSQunXrSnZ2NucEqEDR0dEyZ9sGs0wfXwAAAlj2oDcAFcvKz/f6q6iIjC8ABMOUxcuWOZZPPJEpiwHYhuXnJioEvgAQDFMW9+jhWGbKYgA2FEYfXwAAAIQyK/8rM7cBAADAFrUOYWR8AQAAgPLDzG0AAAAIcKmDfxD4AgAAIKBdHfw1SyKBLwAAAALax9dfaGcGAIGm0xSPHXt0GQBQIQh8ASAYpiweNy7QRwEAASx18M/+KHUAAABAQPh54jYyvgAQcHl5ImvWOJbbtxcJJycBwF7C/NTXgVIHAAi0I0dEjj/escyUxQBsxKLUAQAAAHZg+bnYgc/TAAAAEFBMYAEAAIDQZjm+0NUBAAAAIc3fXR0odQAAAEBAMWUxAAAAQpqV39bBXzW+tDMDgEDTaYrvuefoMgDYrJ2Z+CnyJfAFgGCYsnjixEAfBQCEPGp8AQAAEBBHE77M3AYA9pmyeOtWx3LTpkxZDMA2LD+3M6PUAQCCYcriFi0cy0xZDMBGLGZuAwAAgJ2E+Wk/1PgCAADAFqUOBL4AAACwBQJfAAAABJS/ujoQ+AIAACCwM7dR6gAAAAA79PH1F9qZAUCgRUaK3HLL0WUAsJkwP+2Hv7AAEGgxMSJTpgT6KAAgYF0d/FXrEPAa3ylTpkjz5s0lNjZWevbsKUuWLCl2+8mTJ0vbtm0lLi5OmjRpIqNGjZKMjAy/HS8AAADKh60msPjoo4/krrvukrFjx8qyZcukS5cuMmDAANm7d6/X7d9//30ZPXq02X7NmjXyxhtvmNd48MEH/X7sAFCuKY+kJMfNlf4AAPsIs0PgO2nSJLnxxhtl+PDh0qFDB5k6darEx8fLm2++6XX7RYsWySmnnCJXXXWVyRKfffbZcuWVVx4zSwwAQS09XaRuXcdNlwHAJiy7TGCRlZUlS5culf79+x89mPBwc3/x4sVen9O7d2/zHGegu3HjRvn666/lvPPOK3I/mZmZkpKS4nEDAABA4Nmmq8O+ffskNzdX6tWr57Fe769du9brczTTq8879dRTTd+3nJwcGTFiRLGlDk8++aSMHz++3I8fAAAA5YMJLLxYsGCBTJgwQV5++WVTE/zpp5/K7Nmz5bHHHivyRD7wwAOSnJzsum3btq2cLhEAAAAqU6lDwDK+tWvXloiICNmzZ4/Her1fv359r8955JFH5Nprr5UbbrjB3O/UqZOkpaXJTTfdJA899JAplSgoJibG3AAAABBs8mdukxCv8Y2OjpZu3brJvHnzXOvy8vLM/V69enl9Tnp6eqHgVoNn9ynvAAAAUDlYfg7fAjqBhbYyGzp0qHTv3l169OhhevRqBle7PKghQ4ZIo0aNTJ2uGjRokOkEccIJJ5iev//++6/JAut6ZwAMAACAyiUs1Esd1ODBgyUpKUnGjBkju3fvlq5du8qcOXNcA962bt3qkeF9+OGHJSwszHzdsWOH1KlTxwS9TzzxRAC/CwAoI52meOjQo8sAYLsa3zC/7C/MslmNgLYzq1atmhnolpiYGOjDAQAAsK37Zq6Qj//YLvcOaCu39juuwuO1gE9ZDAAAAPgDn6kBQKDpB2/OGdvi4/1X7AYAAWabmdsAAPk06K1SxXFjymIANmL5eX8EvgAAAAgoZm4DAABASLModQAAAIAdWH4udqDUAQAAAAEV8lMWAwAAwOYsxxe6OgAAACCk+burA318ASDQIiJELr306DIA2EyYn4odCHwBINBiY0VmzAj0UQCA31n5bR0odQAAAEBIs/y8Pwa3AQAAIKB9fP2FwBcAAi0tzfE5n950GQBsJsxPtQ4EvgAAAAgIZ8KXPr4AAACwxeA2fyHjCwAAgICiqwMAAABCmpX/lVIHAAAAhDbLv7uj1AEAAAC26OrAzG0AEGg6TfF55x1dBgCbsPJTvv6q8SXwBYBgmLJ49uxAHwUA+B0TWAAAAMBWwvy0H2p8AQAAENiMLzO3AYBN6DTFCQmOG1MWA7Bhja+/UOMLAMEgPT3QRwAAAUOpAwAAAGxR6hDmp8iXGl8AAAAEeOY2/0S+BL4AAAAICNqZAQAAwFbCKHUAAABAaLP8OriNrg4AEGjh4SJ9+x5dBgCbsPzbzYzAFwACLi5OZMGCQB8FAAQMpQ4AAAAIaVb+V7o6AAAAIKRZfq51oJgMAAJNpymuU8dxY8piAHYU5p/dMLgNAILBvn2BPgIACGCpg3+Q8QUAAEBAMIEFAAAAbCXMT20dyPgCAAAgICh1AAAAgC1YdHUAAACAnYTR1QEAbEKnKe7e/egyANhMGIEvANhoyuLffw/0UQCA3zkrHZi5DQAAACHNcg1v8w8+UwMAAIAtSh0IfAEg0NLTRZo3d9x0GQBswvJvwpcpiwEgKP7yb9lydBkAbMLy8588Mr4AAAAIKGZuAwAAgC0Gt4X5aX9kfAEAABAQlDoAAADAVsLo6gAAAIBQZol/J7CI9MteAADFpzo6dDi6DAB2Yfl3dwS+ABBo8fEiq1YF+igAIGAodQAAAEBIs+jqAAAAADuwmMACAGxGpynu2NFxY8piAHYc3Bbmn/1R4wsAwZDyWL366DIA2E6YX/bCBBYAAAAICCv/zT6D2wAAABDSLD/vj4wvAAAAAspfHcwJfAEAABAQzmENYX6qdSDwBQAAgC1KHejqAACBppmOZs2OLgOAzYT5aT8EvgAQDFMWb94c6KMAAP+jqwMAAADswPLz/qjxBQAAQEDRxxcA7OLIEZGTTnLcdBkA7NbVQfxT5UuNLwAEWl6eyB9/HF0GAJuw/FzsQKkDAAAAbNHWgcAXAAAAAS518A8CXwAAAAQ08PUXAl8AAAAEhDPuZcpiAAAA2EKYn/ZDVwcACAa1awf6CADA7yw/z9xG4AsAgZaQIJKUFOijAICQR40vAAAAAspfE1gQ+AIAACCw7czo4wsANqHTFJ9+uuPGlMUAbMTy88xt1PgCQKDpNMU//nh0GQBsJsxP+6HUAQAAAIGdwCIYSx205cQ///wjq1atkpycnHI5gClTpkjz5s0lNjZWevbsKUuWLCl2+0OHDsmtt94qDRo0kJiYGGnTpo18/fXX5XIsAAAA8B8/T9zme+C7adMm6dy5s7Rr1858bdWqlfzxxx9l2vlHH30kd911l4wdO1aWLVsmXbp0kQEDBsjevXu9bp+VlSVnnXWWbN68WWbOnCnr1q2T119/XRo1alSm4wAAAEDgBF1Xh3vvvddked977z0TdDZu3Fj++9//lmnnkyZNkhtvvFGGDx8uHTp0kKlTp0p8fLy8+eabXrfX9QcOHJDPP/9cTjnlFJMp7tu3rwmYAQAAULlYwTqBxcKFC03Ae+qpp5r7J598sgl+09LSJEGbr5eQZm+XLl0qDzzwgGtdeHi49O/fXxYvXuz1OV9++aX06tXLlDp88cUXUqdOHbnqqqvk/vvvl4iICK/PyczMNDenlJSUEh8rAAAAbFTqoOUHrVu3dt3XGtu4uLgiyxKOZd++fZKbmyv16tXzWK/3d+/e7fU5GzduNMG3Pk/reh955BF59tln5fHHHy9yP08++aRUq1bNdWvSpEmpjhcAKlR8vOMGADYUJkGW8Q0LC5PU1FQT7LpnaA8fPuyRRU1MTJSKkpeXJ3Xr1pXXXnvNZHi7desmO3bskIkTJ5o6YW80o6x1xE56rAS/AIKKfmqWlhboowAA/3NNYBEWXIGv1mBoB4WC60444QTXsh60ZmN9Ubt2bRO87tmzx2O93q9fv77X52iWOSoqyqOsoX379iZDrKUT0dHRhZ6jnR/0BgAAAHuXOvgc+M6fP79cd6xBqmZs582bJxdddJEro6v3R44c6fU5OqDt/fffN9tptlmtX7/eBMTegl4AAAAELytYB7dp94TypiUIQ4cOle7du0uPHj1k8uTJZrCcdnlQQ4YMMa3KtE5X3XzzzfLSSy/JHXfcIbfddpvpKTxhwgS5/fbby/3YAMBvMjJELrnEsfzJJyKxsZx8ALYSFqxTFicnJ8t3331neulqaUOLFi1MJ4bS1PYOHjxYkpKSZMyYMaZcoWvXrjJnzhzXgLetW7e6MrtKa3Pnzp0ro0aNMr2ENSjWIFi7OgBApaUlYs6JeHwsFwOAUGDlf/VXxjfMcuaYfaA9fLUMoWBLMO2WoD14NZANdnrserwawFfkQDwA8JkObKtSxbGcmuoY7AYANnDa0/Nl64F0+eTmXtKtWc0Kj9d8bmemM6tpCYLW4y5fvlyOHDki6enpZva2QYMGybXXXisrVqwotwMDAACAXYQFV6nDiy++aILet99+22P9iSeeKO+++64Jgp9//vkiZ10DAAAA3Fn5xQ7+KnXwOeP7yy+/FDtF8YgRI8zsbgAAAIAvfC+49XPgu3PnzkJ9fN3pYzqZBAAAABCMXR18Dny1lCG2mBY7OklEhrbkAQAAAEqQ8Q26mduUthLTEXbeHDp0qLyOCQDsRbs4+PvzPgCwoRIFvjrZRHH8Fa0DAAAgdIQFW+Cr0wQDAAAAlXXKYp9rfAEAFUTHR1x2mePGWAkANmL5eX8+B76nnXaaRx3vl19+aSaxAACUkU5TPHOm48aUxQBsKMxPxQ4+B77aozcrK8t1/5prrpFdu3ZV1HEBAADANl0dJLhLHZw1GQAAAEBZZm7zF2p8AQAAEBD+zqOWuo+vdnmYN2+e/P333x7bXHDBBeV7hAAAAAhpYWGVoI/vf//730J9fHMZmAEAAAAfWH4e3EYf3yA166+dcjAtSy7p1ljio0v0/gQAAKBSsIK51AFHJadny6+b9pd6kJ9mx3u2qCnV46MLPfbX9kMy8v3lZjk1M1duPr0Vpx4IZfHxIqmpR5cBwGbCgrHUwa7Ss3Jk2ZZD0rZ+ValTNcasu/Oj5TJ/XVKZXrdP69ryf9f3LLR+xfZk1/Ifmw+ISPkEvhnZubIvNVNqJcRIXHREubwmgHL6i5+QwKkEYEOW+ZfAN0BSMrLll3/2SbsGidKituM/ovtm/iWz/toljWvEyU/39jPrlmzSgFSkS+NqEhVRsuYYuZYly7cekt82HpDMnFyJiYwwmeO0rFzz+N9uge+SzQdk3JerfH7tc46vLye3rFVo/eGMbOn3zI8m8K0eHyU/3H261EwonG0GAADwF0odAmz8l6vlk2XbpWpspCx9+CyJigiTH9c7MrvbDx6RjftS5XBGjglSYyLD5ZObe0tkCQNfDXK7P/697E/Lkgc+XSkdGiTKwn/3yQIvGWTd19uLNvv82t/8vUt+feBMU0rhbsW2ZBP0qkPp2SZw1yAZQBDIzNTRwo7lV18ViXF8sgQAdhEWbIPb7GLt7hRXwPnntkNyIC3LLDv1n/STa1mzwiUNepUGpT1a1JRv/t4tny7bIZ/KjkLb1K0aIw+f30HW7z7scwPoV3/cKHtSMmVncoY0qh7n9ftyWrb1oPQ+rnBmuGpMZKGgGUAFy8kReecdx/KUKQS+AGzD1dWBGt/A2JOS4Vq+/NXFxW57abfGpd7Pg+e1l9b1qsqP6/a6ano1WJ13d1+zrOUTEeFhIl18f835a5Nk9a4UGfvF31K/WqzHY39sPmi+1q4SYzK/r/200dwK6tashswc0YvgFwAAVDh/zwTsU8a3Ro0aPgdCBw44al8ro6ycPNmXmuWxTksdmtSIl5tOaymjP13pWq8Baqs6VUq9ryY14+Wus9pIw2qxsmK743U7NEyU2KjSDzrr3ryGCXy/X7O3yG3uOPM4eX7eP4W+T6elWw7KjkNHpHENRpYDAAD/CAumwHfy5Mmu5f3798vjjz8uAwYMkF69epl1ixcvNrO6PfLIIxIK2V4NdmeM6C1pmTnSsWGiq+XYml0p8s7iLWa5Ra3yGYHtPhCte7MaZXqtO85sLQ2rx5nuDd5oR4orT2oqV/dsJjl5hd9hXTjlF/M9/r0jhcAXAADYs9TBfca2Sy65RB599FEZOXKka93tt98uL730knz//fcyatQoqWxdHF6ev8F8PZCfBdUyga5Nqhfa9oY+LeWTZTvk7I71JFzLEMpB89oJZoBc0uFM6deuTpleq1aVGBnR17fWZ9Fejr9To0QT+N798Z/y8OeePxotayfIO9f1oA0aAACwT1cHzez+73//K7T+nHPOkdGjR0tl8+GSrTL1xw0e65oXkc3V8oQ/Hu5f4vZlx6J1tcGgX9u68vEf203HCmdrNSetC/51437p166uVCaa/dZ3kdoyDgAABKsg7epQq1Yt+eKLL+Tuu+/2WK/r9LHK5vf8QV/929eTzo2rmQFlAzs1KHL7stTgBrtzOzWQX0afYXr+untm7nr5fs0eWbUzOSgD33/3psqLP/wjretWkZFntHat/3tHslw6dZFEhofLV7ed6urLDAAAgmtwW1CVOrgbP3683HDDDbJgwQLp2dMx69hvv/0mc+bMkddff10qi/+8/ItExibIxn1p5v7Np7eUbs1qit052qB5tkLr0aKGCXw//H2brNnlW3u109vWkcu6NxF/eO2nDfLFnztdwbtz0OGCdXslIztPRPLk53+SCHwRvHSa4r35g1KZshiAjVh+3l+JA99hw4ZJ+/bt5YUXXpBPP/3UrNP7CxcudAXClcH6PakSHqNBkUithGjp2LBaoA8paDlLMXQCD735Yu6q3TKoS0O/ZMj1Wjqt233YFfhuTHK8qVH/uG0DBB1NddQpW40/AFTmyDfMT7sr1QQWGuBOnz5dKrPXh3SXhCpVzXKbelVCuoShrDQT/tq13WRX8tEex8WZ9N16ST6SLev3HJbOjQsPEizvj0g2JB0NatfuSpGzOtQzy+7rP/pjm4wd1KFUE44AAICK5a/Js0oV+G7YsEHeeust2bhxo2l1VrduXfnmm2+kadOm0rFjR6kMerWqJYmJiYE+jErj7I6+T2/83eo9ZgpmnZVu56GiM8T1EmPlhKa+D+yb/dcueWfRZsl1GwKaZ1keM+u98MO/5uatR/O0hZt87noB+H3K4rvucixPmsTMbQDs185MJDgD3x9//FHOPfdcOeWUU+Snn34yPX018F2xYoW88cYbMnPmzIo5UlQaOhGHBr5vL9psbsX5auSp0qmxb2Umz32/3gxk8yY+OsL80hTsRnFc3SqyaV+a5OZZZnIOIGinLH75Zcfy008T+AKwDSsYZ25zpy3LNNi96667pGpVR6mAOuOMM0wvX+CqHk1NmUOqWya2oM3708zscb9vPuBT4KsZ2835AxEnXtpZEuOiXI+F5dchV4mNzB/MdlTVmEj5ZcM+ufaNJbLRrfQBAAAEj6Dt6rBy5Up5//33C63XrO++ffvK67hQiemkHG8P73HMOuAX5v1jJszwxZb9aWa2uSoxkXJpt8ZF1gJ569frHOy2ZX+6ZOfmlXsfZgAAUNZShyCt8a1evbrs2rVLWrRo4bF++fLl0qhRo/I8NoSw9vUdnxZ8uWKnLNqw3+OxnLw8OZiebcoTCn4UoqULJS2Ar58Ya0oh0rNyZeuBdFcgDAAA7DVzW4lTX1dccYXcf//9snv3bhOA5OXlyS+//CL33HOPDBkypGKOEiFHSxNio8IlMydPdhw64nHbk5JpShs08HXenDGws2NDSej00i3rOCav2FBEjTAAAAicoC11mDBhgtx6663SpEkTyc3NlQ4dOpivV111lTz88MMVc5QIOXUTY+Wn+/rJzkOFW6RFhIVJ9fgoiYn0fF+mrchqJkSXan+a5f17R4pscOvtCwAAAsvy8xQWJQ58o6OjzQxtY8aMMfW+qampcsIJJ0jr1kenigV8UbdqrLn5Q8vajvKGRRv2mb7NvVvVlrhoejcDAOxp6/50Wb0rOdCH4VHWGJSB76OPPmrKGjTjqzenI0eOyMSJE01ADAQbrQ1WP/+zz9yG9mom4y88PtCHBTjExYls2nR0GQAqUFZOnpz/4s+SUkz3JX/z18DzMKuEDdQiIiLM4Dbt4uBu//79Zp2WPQSzlJQUqVatmiQnJzOBhY0cycqVe2euMG3WdIrjLk2qyxe3nhLowwIAwO8OpWdJ10e/c4258dfkEUXR/5MfHtjeY/B6RcVrJc74apzsbVS9TmBRs2bN8jouoFxpWcNLV50oa3enyDmTf5ZNSalF/iwDABDK8txSnjNH9LLV/4U+B741atQwJ0Zvbdq08ThJmuXVWt8RI0ZU1HEC5aJ5LUd3B/14Z82uw5IYF+n14xadThnwm6wskYceciw/8YQOpuDkA6gweW4f9tsp6C1R4Dt58mSTIbvuuutk/PjxJv3sPuCtefPm0qtXr4o6TqBcxEZFSKPqcaZt2nkv/FzkdiP6tpLR57bjrMM/srNFnnnGsTxuHIEvAL8EvuH2inlLFvgOHTrUfNWJK3r37i1RUUenjAUqk8u7N5GpP27weMfrpOuycy35cX0SgS8AICRZ+f/9hdss21uqGt++ffu6ljMyMiRLP6JzU54FyEBFuKN/a3PzZkNSqpz57I9mimRqgAEAoZ3xDRO7KXHviPT0dBk5cqTp4JCQkGBqf91vQGXWpEa8+ehHpzdOOpwZ6MMBAKDCeueG2S/uLXnge++998oPP/wgr7zyisTExMi0adNMzW/Dhg3l3XffrZijBPwkOjJcGtVw9FEd+tbvcu+MFZKTm8f5BwCEDMvGpQ4lDny/+uorefnll+WSSy6RyMhI6dOnj5mqWKcynj59esUcJeBHnRtXN1/X7EqRGUu3y7Kthzj/AICQkWfjwW0lDnwPHDggLVu2dNXz6n116qmnyk8//VT+Rwj42VP/6SSvD+kuxzdy1Ktv3p/GNQAAhFwf33AbRr4lDnw16N2UP7Vmu3bt5OOPP3ZlgqtXd2TKgMqsamyUnNWhnivzq/OZAxVKpyn++2/HjSmLAVSwPAa3+W748OFmljY1evRomTJlisTGxsqoUaNM/S8QKprXijdfv1u9x3R4ACpMeLhIx46Omy4DQAWybFzqUOJ2ZhrgOvXv31/Wrl0rS5culeOOO046d+5c3scHBEzTmo5Z3tbtOSxz/t4t53ZqwNUAAIROqUOY/SLfEge+BTVr1szcgFDTp3Vt1/Kf2w4R+KLiaD/0CRMcyw8+yMxtAPxS6hBG4Oub33//XebPny979+6VvDzPVk+TJk2qgEsE+F9CTKSMOb+DPDprtWw9QJ0vKnjK4vHjHctaMhYdzekGUGHy8kM3Sh18oG3LtH1Z27ZtpV69eh7vFuz4zgGhrWlNR50vgS8AIFTk2XhwW4lLHZ5//nl58803ZdiwYRVzREAQaZo/wG1jUpo8Pmu1a32dqjFy9cnNpEpMmauFAADwq6MTWNjvxJf4f+3w8HA55ZRTKuZogCCcwlhnczuSnSvTFjra+Dk9PXedq/NDp0bVZOJlXSQrJ8+USAAAEKzyqPEtWVcHbWE2efLkCrwkQHCIi46QV6/pJr9tckzUopKPZMsnS7dLVm6ebEhyTG6hXz//c6d59/z0pV3k0m6NA3jUAAD4UOoQbr+zVOLU1D333CMDBw6UVq1aSYcOHSQqKsrj8U8//bQ8jw8IuH7t6pqbu/sGtJX1ew6b5Qc+XSkb96W5WsQs2rCPwBcAELTyaGfmu9tvv910dOjXr5/UqlWLAW2wpRoJ0dKzZS2z3LJOgivwVYczcgJ4ZAAA+DqBRZjtTlWJM77vvPOOfPLJJybrC0CkUfU4j9NwOCOb04KSiY0VWbLk6DIAVKDc/JSvDePekge+NWvWNGUOABwa1fAMfFMzyfiihCIiRE46idMGwC/ybFzqUOKy5nHjxsnYsWMlPZ2G/oDq2LCax4mg1AEAUDlKHcR2SpzxfeGFF2TDhg1m8ormzZsXGty2bNmy8jw+IOj1blVLPrzpZFm3+7CM/XKVpFLji9JMWfz8847lO+5g5jYAFSrPxhnfEge+F110UcUcCVBJ6YyFJ7esJU1qxpvAl4wvSjVl8X33OZZvuYXAF0CFymNwm++0zAFAYVVjHe8jtb9vRnauxEZFcJoAAEEnz8Z9fG34LQMVIyH66AcoDHADAAT/lMVhYjeRvnZyWL9+vdSuXVtq1KhRbO/eAweOznAF2ElEeJhUiYk0Qe+h9CypXSUm0IcEAEAheUxZXLznnntOqlat6louLvAF7MwZ+I58f7nMufO0QB8OAADFDG4T2/Ep4zt06FDX8rBhwyryeIBK7eSWNeXzP3dK0uHMQB8KAABe5dl4cFuJa3wjIiJk7969hdbv37/fPAbY2ZhBHc3X/WlZkpmTG+jDAQCgEIs+viU/WQVlZmZKdHQ0P16wtRrxURIdGS5ZOXmyNyXTtDgDjkmnKZ4//+gyAPih1CHMhhnfyJJMXOE8SdOmTZMqVaq4HsvNzZWffvpJ2rVrVzFHCVQS+vtRPzFWth5Il90pGQS+8I1+Wnb66ZwtAH4udRDb8Tnw1UFtzozv1KlTPcoaNNOrs7jpesDu6ldzBL7fr9kjJzWvGejDAQDAQx7tzI5t06ZN5mu/fv3k008/NW3NABTWqHqc+frqjxvltjNam04PwDFnbnvtNcfyTTeJFJgKHgAqpsY3zHYntsT/I8931qG5lTmsXLlSmjVrRjAMiMiNfVrKZ8t3mHOx89ARWbk9Wb5csbPE56ZVnSry8MD2Em7Hz6LsJitLZORIx7J2ziHwBVCBcvNTvjaMe0se+N55553SqVMnuf76603Qe9ppp8nixYslPj5eZs2aJadTpwab69AwUdrWqyrr9hyW3ckZMu6rVXI4I6fEr/Pj+iT5z4mN5PhG1SrkOAEA9pRHqYPvZsyYIddcc41Z/uqrr2Tz5s2ydu1a+b//+z956KGH5JdffqmwCwVUFnUTY0zgu2ZXiivonXhpZ58/Vpo4d50ZHJeSkV3BRwoAsJs8Brf5Tvv11q9f3yx//fXXctlll0mbNm3kuuuuk+eff77CLhJQmdRLdLSkWrLJMYV3w2qxcln3Jj4//91ft5jANz2TXsAAgIqp8Y2wYSldiSewqFevnqxevdqUOcyZM0fOOusssz49PZ0JLIB82tJMLdnsCHyb1Uoo0blJiHZ0TUnLKnmJBAAAxcmjj6/vhg8fLpdffrk0aNDA9Czt37+/Wf/bb7/RxxfIV6+aI/B1ljk0r12yiSziox3l9+lZZHwBAOUrz8alDiXO+I4bN85MYHHTTTeZet6YmBizXvv6jh49ulQHMWXKFNMHODY2Vnr27ClLlizx6XkffvihCb4vuuiiUu0XqCjnHl9fzu5QT7o3qyF9WteWIb2al+j5VWLyM76ZZHwBAOUrj8FtJXPppZcWWjd06NBSnfyPPvpI7rrrLjP5hQa9kydPlgEDBsi6deukbt26RT5PB9Xdc8890qdPn1LtF6hItavEyGtDupf6+fH5vX/TqPG1B00gzJp1dBkAKpBl4z6+Pmd8zzvvPElOTnbdf+qpp+TQoUMeg946dOhQ4gOYNGmS3HjjjaaEQp+vAbC2RnvzzTeLfI7WF1999dUyfvx4admyZYn3CQQ7Z41vOjW+9hAZKTJwoOOmywBQgfJs3MfX58B37ty5kpmZ6bo/YcIEOXDAMXBH5eTkmCxtSWRlZcnSpUtddcLmgMLDzX3tDVyURx991GSDtZfwsegxp6SkeNyAYOes8WVwGwCgvOXZuNQhvKRp8aLul8a+fftM9lY7RbjT+7t37/b6nIULF8obb7whr7/+uk/7ePLJJ6VatWquW5MmvreUAgIlIb/Gl3ZmNpqy+O23HTddBoAKlMfgtsrh8OHDcu2115qgt3bt2j4954EHHjAlGs7btm3bKvw4gbIi42vDKYuHD3fcdBkAKpBl44yvz8Vk2j1BbwXXlYUGr9oNYs+ePR7r9b5zkgx3GzZsMIPaBg0a5FqXl5dnvkZGRppSi1atWnk8R7tOODtPAJUu40s7MwBABWV8wwh8i6alDcOGDXMFkRkZGTJixAhJSHA05nev//VVdHS0dOvWTebNm+dqSaaBrN4fOXJkoe3btWsnK1eu9Fj38MMPm0ywzhpHGQNCRUJ+ja9OeXzfzBWuLPCIvq2kfn6PYAAAylbjK7bjc8a3YLuya665ptA2Q4YMKfEBaCszfe3u3btLjx49TDuztLQ00+XB+ZqNGjUytbra5/f444/3eH716tXN14LrgVCY8nhfapZ8/Md21/q46Ai5/5x2ATwyAEDo1PiGid34HPi+9dZbFXIAgwcPlqSkJBkzZowZ0Na1a1czFbJzwNvWrVtNpwfATjo3ribPX9FVth88Yu4v3XJQfli7V3YnZ7ha0ejfKzt+TAUAKJ92ZuE2DK+ComGkljV4K21QCxYsKPa5b+soaCDEaEB7YddGrvszl243ge++1EwTBA99c4kkxkbKrNv7SM2E6IAeKwCgcpY6hNkweWLDWB+ofGpXiXaVPsxbs0dSM3NkZ3KGrNxxdFIZAAB8kWfjdmZBkfEFcOwpkNX+1EzZciDdtf4IXR9Cgw4a/vjjo8sAUIGs/MA3woYZXwJfoDIFvmlZsikpzbX+SHZOAI8K5UanKb7sMk4oAL/Io9QBQDCrlV/qkJtnyfo9h13rj2Q5+lgDAOCrPBt3daDGF6gEoiLCpUF+/94c51t1k/HNDeBRodzk5IjMmOG46TIAVKA8+vgCCHYvXXWCzF+bZJY/W75Ddhw6IkeyCJJCgk4AdPnljuXUVEfpAwBUcI1vuA1Ht/HXFagkujWraW5Kuzq8vWgzGV8AQBmmLBbbodQBqIR0BjeVTlcHAECpSx3CbHfuCHyBSig+yhH4ZlDjCwAooTwb9/El8AUqccaXPr4AgJKyyPgCqExi8zO+lDoAAEpf4xtmu5NHxheohOKdGV9KHQAAJZRn41IHujoAlVAcNb6hJTpa5K23ji4DQAXKs3GpA4EvUAnF0tUhtERFiQwbFuijAGATefmRLxlfAJWqq8PW/elyx4fLXev13ft/TmwkfVrXCeDRAQCCWZ6Na3zJ+AKVUL1Ex/TFhzNz5Is/d3o8tmpnsnw7qm+AjgylotMUz53rWB4wgJnbAFSoPEodAFQmzWsnyJvDusvGpDTXuv1pWfLKgg2SdDgzoMeGUk5ZfP75jmWmLAbgp4xvhA1bHJDxBSqpM9rVkzPaHb2/93CGCXyTj2Sb+i07zsEOADg2y8YZXxvG+kBoqh4X7foIKyUjO9CHAwAIUnk2rvEl8AVCRHRkuFSJcXyIcyAtK9CHAwAI+hpfsR0CXyCEVI+PMl8PppPxBQAcawKLMNudIgJfIITUiHeUOxxKJ+MLAPDOYuY2AKGU8f35n32SnZt3zO07Na4ujarH+eHIAAD+sCv5iKzYdqjYbXYeyrBtjS9dHYAQUivBkfF9e9FmczuWulVj5LcHz7TlH7+gotMUv/TS0WUAKKVLXl4kO5Mdge2xREXY728/gS8QQob2bi5JqZmSmV18tleru5ZuOSh7D2dKWlaua1AcAjhl8a23cvoBlLmEwRn0dmlSXaKKGb1Wq0q0aYtpN/xvB4SQE5rWkOk3nOzTH8c2D38j2bmWpBzJJvAFgBCQ62zXICLvDD9JqueP+8BRDG4DbEhLG6rFOeqBdcILBFhursiCBY6bLgNAKeS4Bb6RdpyWzQdkfAGbSoyNkn2pWSbjiwDLyBDp1+/olMUJCYE+IgCVPOMbaccmvT7g7QBgU4lkfAEgZDO+EQS+XhH4AjblLHVIycgJ9KEAAMo54xtBtx6vCHwBmyLjCwChJSfP0dFHk73hZHy9IvAFbKpanKPEnxpfAAgNObmOjG9kOOFdURjcBth4cJv6bPkOWbUz2bX+7I715fLuTQJ4ZACAspQ6UN9bNAJfwKaa1Yo3X7ceSDc3p0Ub9hP4AkAl5BzcRkeHohH4AjZ18QmNTdbX2cc3MydPxn65StKzciUjO1dioyICfYj2mrnt6aePLgNAKeTm1/hG2HAqYl8R+AI2FR0ZLud2auC6n5dnybivVolliRzOyCHw9evFiBa5916/7hJAKGd8qfEtCmcGgOOPQXiYa+rilAwmtQCAyju4jYxvUQh8ARQa8KYZX/iRTlP8+++OG1MWAyjtnxIGtx0TpQ4AXKrGlr3F2TuLNsuLP/wreVozEWQ6NkyUt4adFHxz2OuUxT16OJaZshhAWUsdqPEtEoEvgHLN+E7/bYvsS80MyrP68z/7ZPP+NDmubtVAHwoAlDsyvsdG4AvAJTGubDW+OkBuy35Ha7T/u76H1E+MDZqze+0bS2R3SgZlHABCVk6uo6sDNb5FI/AF4FLVlfEtXeC793CmaYumzdNPbllLooKopKB6fJQJfFMzqV8GENqlDhF0dSgSgS+AQjW+WhIQJiUfFbzj0BHztXGNuKAKehUD9wDYpdSBjG/RCHwBuNRKiHEFvnorrRa1E4LurFbJD+pT6VgBIOQzvrQzKwqBLwCXK3s0kf1pmWWqg9VMw9DezYPurDp7FB/OzJEDaVmyZNMBEfHsPNGsVoK0b5AYoCMEgPKZuS2Krg5FIvAF4FI3MVYevfD4kDwj7hnfEf+3VJZs1sDXkyZJFt5/hjSsHuffg9NpiseOPboMAKVAxvfYCHwB2EJVt1np/tpxyCx3aVzNVYv8985kycjOk20H0v0f+OqUxePG+XefAEK4xje4xlgEEwJfALbgLHXYmJRqAlzN7s68ubcr8B304kJZuSNZ0rLo+gCgck9ZTI1v0Qh8AdiCs9Rh9a4U81Wzuu6dJxJiIszX1Mxc/x+c1uWtWeNYbt9ehGwNgFKgq8OxEfgCsFWP4j0pjlnlmtWK95oRTg9En98jR0SOz6+tZspiAKWUnT+4jYxv0SgCAWALLWp7BrqdGlX3uJ+QH/gywQWASp/xpatDkcj4ArCFE5vWkM9u6W0yvjFR4dKrZS2vgW9aIEodAKBca3zJaxaFwBeALYSFhckJTWsU+biz1IHBbQAqK2p8j423BACgGd9oSh0AhEYfX6YsLhqBLwC4dXVIC8TgNgAox5nbqPEtGoEvALiXOhD4AqikmLnt2KjxBQC3wW3Odmd+pdMU33PP0WUAKAVmbjs2Al8AcMv46uxtv23cLz0LdH2o8CmLJ07kOgAoEzK+x0apAwCISJcmR/v6/rU9mXMCoNLJyc2v8dU52eEVgS8AiEjNhGi5vHtjcy6y8v/z8BsdkLJ5s+OWPzgFAEqKjO+xUeoAAPmiIhy5gGx/B746ZXGLFo5lpiwGUEr08T02Al8AKBD4Omc/AoBgDXDv+HC5/Ls31WP97pQM85WZ24pG4AsA+aIjA5TxBYASWLs7RWb9tavIx5vViud8FoHAFwDyRUWEBabGFwBKICPb8TeqbtUYmXR5V4/HEuMipVOjapzPIhD4AoDzD2I4GV8AwS8rxxH4JsZFyamtawf6cCoVujoAQMFShxxqfAEEL+enUs5xCfAdZwwACpQ6ZNNSDEAlyPg636zDd5Q6AEChdmZ+zvhGRorccsvRZQAohnMAbgwZ3xLjLywAFAx887MpfhMTIzJlCtcBgE/I+JYeOXIAKFjqQFcHAEGMwLf0yPgCQIGMr9/bmVmWyL59juXatUXCHAE4AHiTmf83KppShxIj8AWAQM/clp4uUreuY5kpiwEcAxnf0qPUAQAKDW5jAgsAwYvAt/QIfAEgX3QkNb4AKk/gSx/fkiPwBYACM7dl+bvUAQBKICs313yNoY9viRH4AkA+Sh0AVAaUOpQegS8AFCh1yKHGF0AQc06yQ1eHkiPwBYBAz9wGACWQyZTFpUY7MwAIdB9fnaZ46NCjywBQDEodSo+/sAAQ6JnbdMrit9/mOgDwifPNOaUOJUfgCwAFSx3yP0bUWt/Xft4oe1MyizxHOsnaoC4N5cSmNTiPAPwiK8fR1SGarg6VM/CdMmWKTJw4UXbv3i1dunSRF198UXr06OF129dff13effdd+fvvv839bt26yYQJE4rcHgBKHPjmOWp8569LkqfnrDvm8/7YfFC+uu3Usk1ZrLO3qfh4piwGUCxKHSpx4PvRRx/JXXfdJVOnTpWePXvK5MmTZcCAAbJu3Tqp65zC082CBQvkyiuvlN69e0tsbKz873//k7PPPltWrVoljRo1Csj3ACD02plZliVrd6WY+8c3SpTT2xT+e7QrOUM+WbZdUjKyy7ZjDXqrVHEsM2UxgGOg1KESB76TJk2SG2+8UYYPH27uawA8e/ZsefPNN2X06NGFtp8+fbrH/WnTpsknn3wi8+bNkyFDhvjtuAGEHme9nCZgc/Ms+Wdvqrk/sFNDufn0VoW2/3PbIRP45tAFAoAfkfGtpIFvVlaWLF26VB544AHXuvDwcOnfv78sXrzYp9dIT0+X7OxsqVmzptfHMzMzzc0pJcWRwQGAgiLzB7epYW/9Lit3JJvl4+pW8b59eH7f3zw/D4YDQtS63Ydl0nfr5Eg2v1PFWbv7sPnK4LZKFvju27dPcnNzpV69eh7r9f7atWt9eo37779fGjZsaIJlb5588kkZP358uRwvgNAWGxUh1eOj5FB6tiz8d59ZFxEeZkodiguUyfgC5WP6b1tk7qo9nE4fNagey7mqbKUOZfHUU0/Jhx9+aOp+td7XG80maw2xe8a3SZMmfjxKAJWFBrmf3NxbVmw75FrXsk4VaVAtzuv2keFHa4IBlF1qRo75ekGXhnJ62zqc0mI0rB4nHRtW4xxVpsC3du3aEhERIXv2eL670/v169cv9rnPPPOMCXy///576dy5c5HbxcTEmBsA+KJVnSrmVpK+vzn5XSAAlE16lqNN10ktasp/TmzM6URoTVkcHR1t2pHpwDSnvLw8c79Xr15FPu/pp5+Wxx57TObMmSPdu3f309ECgKfI/MFwlDoA5eNItiPwjYuK4JQiNEsdtAxh6NChJoDVXrzaziwtLc3V5UE7NWibMq3VVdq+bMyYMfL+++9L8+bNTe9fVaVKFXMDAH8pt8FtEREil156dBmweeAbH83vAUI08B08eLAkJSWZYFaD2K5du5pMrnPA29atW02nB6dXXnnFdIO41PmfRL6xY8fKuHHj/H78AOzLGfhqpUNeniXh+fdLTMcozJhRvgcHVEJH8ksdyPgiZANfNXLkSHPzRgeuudu8ebOfjgoAfCt1UNl5eRITTpYKKI+Mr3ZYAUKuxhcAKjPn4DZFnS9QjhlfSh1QQQh8AaCUnO3MytzZIS1NJCzMcdNlwKao8UVFI/AFgDLW+KocevkCZUaNLyoagS8AlPYPaHiYOGNfevkCZWNZFjW+qHAEvgBQDgPcmL0NKJuM7KNtAWlnhopC4AsAZRDl7OWby+xtQHnU9yq6OqCiEPgCQBlEuCaxIPAFyiPwjY4Md/1eASHZxxcAKqso57TFZZ29DajE1u5Okc37ytaRZHdyhvnK5BWoSAS+AFCWP6IR5VDqoNMUn3fe0WWgEtGAdeALCyW3nD71qBJDaIKKw08XAJRDL98yDW7TKYtnz+Y6oFLadjDdBL0xkeHSqVG1Mr2WtrK+rHuTcjs2oCACXwAoh9nbyivbBVQ2qRk55mvrelVk5s29A304QLEIfAGgDJyDcLJLUOqwMSlVdh5y1DPWTYyRNvWqcg1QaR3OdAS+lCigMiDwBQA/Dm7TAUD9J/0o7gniz4d1ka7d2jru7N0rkpDANUGlcTgj23ytGhsV6EMBjol2ZgDgx8FtS7ccNEGvZscSoh0D2bYeSBdJz78BlbTUoSqD0lAJEPgCgB8Ht63fe9h8vfiERnJyy1pmOdNtxiqgsjnsDHxj+RAZwY/AFwD8NLjtQFqWvPrjRrPcpl4ViYliumNUfqnOGl8CX1QCBL4AUB6D23wIfN/7dYtruVPj6hKdXx+clUPGF6GQ8aXGF8GPwBcAymNwmw+lDit3JJuv3ZvVkK5NqpupWVUmgS9CYHAbXR1QGVCQAwBl+SMaXvzgttU7U2TrAcdUrn9tP2S+3jPA0cGBwBfeHErPkt82HRDLqhy9oc3gTGp8UUkQ+AJAWf6IutqZFQ5Sth1Il0EvFZ7KtX2DRPM1JtLR1SFLk8V9+zoezB8sB/sa+f5yWfjvPqlsEuModUDwI/AFgPLI+Hrp46tZOw16q8dHyXF1qph1/drVlWr5AYIz45sWESWyYAHXAcaGpFTztUODRInPb3kX7BpWj5Ne+V1KgGBG4AsA5ZDxXbk9Web8vcvjsTl/7zZfLzmxsTxyfodCz2VwG4rq/qFevbabNKkZz0kCyhGBLwCUQWx+1nbG0u3m5k3nxtW8rne2M6OrA5yOZOW6BjvqJwUAyheBLwCUwVU9m8qu5AzJyM71+nj9arFydof6Xh9zZnyt1DSROnUcKzdvZspiGzuYnuXqD02XBKD8EfgCQBmc0LSGvHdDz1I9NyY/W5ylrdD2Vb7BTKi4wLd6fLSEhTnqxwGUH4YPA0CAuLo6+DjdMULfoXRHT9walDkAFYKMLwAEiLOrQ1aO9zIJhHIdr/drvuPgEVfGF0D5I/AFgIAHvmR87WLemj0y4r2lkl3EhCdONQl8gQpBqQMABIirxpfA1zZ0YopjBb06sO3M9nX9dkyAnZDxBYAAYcpi+9l7ONN8fXhgexnWu7nXbXRQW0T+xCgAyheBLwAEiLOdWaZWOnTv7ljJlMUhLSnFEfjWS4x1TX4CwH8IfAEgQGKiHF0dDodFifz+O9fBBpJSHYFv3aoxgT4UwJZ4uwkAgc74UuNrG3tTMszXuomxgT4UwJbI+AJAgGt8k49kyR0fLpfLuzeRU46rzfWoYLuTM+T5ef9IamaOX891nmVJWpajjRkZXyAwCHwBIEBqJUSbQUwRGUfk3v+eI1EaCG/bIBIfzzWpQNN/2yIfLNkasHNcp2qMJMTw3y8QCPzmAUCA1EiIluk39JQflm6UxpP2OlZaxbe6Qtlt2Z9uvp7Tsb70bFnT76f05Ja1/L5PAA4EvgAQQBoExWU5ZuuCf+w45Djfg7o0lIGdG3DaARthcBsABJgpcYDfOKcFblQjjrMO2AwZXwAIsGh695bJ0i0H5Ye1e3zaVitJ9hx2dFZoVJ3AF7AbAl8ACJLuDiidke8vk13JjmDWV1VjIqV2lWhOOWAzBL4AEGAEvqWXnJ7tCnp1CuAwH2f6Pb1tXTM1MAB7IfAFgACLjIyQ9bWamuXjLAZflMSm/Wnma73EGBl3QccKuT4AQgeBLwAEWHRiFTn7hpfN8rrYWGEyW999u2q3+dq8VkIFXR0AoYTCMgAIkqmLVRbTF/ts7+EMeXnBBrPcsg6BL4BjI/AFgACLcgt8s3OZwMJXf21Ldi1fe3Lzcr8uAEIPpQ4AEGA6ZfG3b9wiYolk3bFcJMH/s4lVRuv2HDZfL+raUDo0TAz04QCoBAh8ASDQLEva7NtqFrdl5wb6aILOvtRMuePD5bI/Nctj/e4URzeHtvUJegH4hsAXAIJIVm5eoA8h6MxasVN++Xd/kY/3bEmGHIBvCHwBIIgQ+Ba2Yrujlndw9yYyqEtDj8fqVI2RtvWr+unqAKjsCHwBIIjkVIKM7ysLNshHv2/VkmS/cE5QcU6n+nJq69p+2iuAUETgCwBBJNgzvtm5efLCvH/kiJ9rkXWK4ROb1PDrPgGEHgJfAAgi2QHs43soPUt+23RALKvoXO72g0dM0Fs9PkreGNrdb8fWtGaCVIuP8tv+AIQmAl8ACLSwMNlTs74JejPzAtfH97YPlsvP/+zzadsezWtKt2YMKgNQuRD4AkCgxcfLiMdmyvKth+S1qNhiN00+ki2HM7LL/RCOZOXKL/86gt5uzWpIWDHbxkSFyy39jiv3YwCAikbgCwBBNHtbcTW+f20/JP95eZHkVGBWuFWdBPnk5t4V9voAEEgEvgAQBGIi8wNfLzW+mTm58s+eVHlz4SYT9EaEh0lkeHE52dIH39ef2rLcXxcAggWBLwAE2pEj8ujjwyUlI0f+GTir0MM3vrtUflqf5Lo/bWh36de2rp8PEgAqPwJfAAi0vDxpsXmNWXxl9W7Znnn0Ic0Aa9AbFiZSr2qsdGiYKKceRy9bACgNAl8ACCI/rkuSOZsOF1qvwe7/Xd8zIMcEAKGCwBcAgsgVPRpLdmx8odrbIb2aB+yYACBUEPgCQBAZO+h4kYSEQB8GAIQkxzBiAAAAIMQR+AIAAMAWKHUAgGBQm04NAFDRCHwBINC0pjfpaJ9eAEDFoNQBAAAAtkDgCwAAAFsg8AWAQDtyROT00x03XQYAVAhqfAEg0PLyRH788egyAKBCkPEFAACALRD4AgAAwBYIfAEAAGALBL4AAACwBQJfAAAA2AJdHQAgGMTHB/oIACDkEfgCQDBMWZyWFuijAICQR6kDAAAAbIHAFwAAALZA4AsAgZaRITJwoOOmywCACkGNLwAEWm6uyNdfH10GAFQIMr4AAACwBQJfAAAA2EJQBL5TpkyR5s2bS2xsrPTs2VOWLFlS7PYzZsyQdu3ame07deokXzs/IgQAAACCNfD96KOP5K677pKxY8fKsmXLpEuXLjJgwADZu3ev1+0XLVokV155pVx//fWyfPlyueiii8zt77//9vuxAwAAoPIIsyzLCuQBaIb3pJNOkpdeesncz8vLkyZNmshtt90mo0ePLrT94MGDJS0tTWbNmuVad/LJJ0vXrl1l6tSpx9xfSkqKVKtWTZKTkyUxMbGcvxsAKAWdvKJKFcdyaqpjQgsAsLGUCorXAtrVISsrS5YuXSoPPPCAa114eLj0799fFi9e7PU5ul4zxO40Q/z555973T4zM9PcnPQEOk8oAAQF91nb9G8TnR0A2FxKfpxW3vnZgAa++/btk9zcXKlXr57Her2/du1ar8/ZvXu31+11vTdPPvmkjB8/vtB6zSoDQNBp2DDQRwAAQWP//v0m81teQr6Pr2aT3TPEhw4dkmbNmsnWrVvL9UQieN8x6pucbdu2UdpiA1xve+F62wvX216Sk5OladOmUrNmzXJ93YAGvrVr15aIiAjZs2ePx3q9X79+fa/P0fUl2T4mJsbcCtKglxpf+9BrzfW2D663vXC97YXrbS/h4eGh09UhOjpaunXrJvPmzXOt08Fter9Xr15en6Pr3bdX3333XZHbAwAAAEFR6qBlCEOHDpXu3btLjx49ZPLkyaZrw/Dhw83jQ4YMkUaNGplaXXXHHXdI37595dlnn5WBAwfKhx9+KH/88Ye89tprAf5OAAAAEMwCHvhqe7KkpCQZM2aMGaCmbcnmzJnjGsCmtbjuae7evXvL+++/Lw8//LA8+OCD0rp1a9PR4fjjj/dpf1r2oD2DvZU/IPRwve2F620vXG974XrbS0wFxWsB7+MLAAAA2GLmNgAAAMAfCHwBAABgCwS+AAAAsAUCXwAAANhCSAa+U6ZMkebNm0tsbKz07NlTlixZUuz2M2bMkHbt2pntO3XqJF9//bXfjhX+vd6vv/669OnTR2rUqGFu/fv3P+bPByr377eTtj4MCwuTiy66qMKPEYG73jo756233ioNGjQwo8HbtGnD3/QQvt7aArVt27YSFxdnZukcNWqUZGRk+O14UXo//fSTDBo0SBo2bGj+NmuHrmNZsGCBnHjiieZ3+7jjjpO333675Du2QsyHH35oRUdHW2+++aa1atUq68Ybb7SqV69u7dmzx+v2v/zyixUREWE9/fTT1urVq62HH37YioqKslauXOn3Y0fFX++rrrrKmjJlirV8+XJrzZo11rBhw6xq1apZ27dv5/SH4PV22rRpk9WoUSOrT58+1oUXXui344V/r3dmZqbVvXt367zzzrMWLlxorvuCBQusP//8k0sRgtd7+vTpVkxMjPmq13ru3LlWgwYNrFGjRvn92FFyX3/9tfXQQw9Zn376qXYXsz777LNit9+4caMVHx9v3XXXXSZee/HFF038NmfOnBLtN+QC3x49eli33nqr635ubq7VsGFD68knn/S6/eWXX24NHDjQY13Pnj2t//73vxV+rPD/9S4oJyfHqlq1qvXOO+9wOUL0eus17t27tzVt2jRr6NChBL4hfL1feeUVq2XLllZWVpYfjxKBut667RlnnOGxToOiU045hYtSyYgPge99991ndezY0WPd4MGDrQEDBpRoXyFV6pCVlSVLly41H1876eQXen/x4sVen6Pr3bdXAwYMKHJ7VO7rXVB6erpkZ2dLzZo1K/BIEcjr/eijj0rdunXl+uuv50KE+PX+8ssvzfT1WuqgkyDpxEYTJkyQ3NxcPx45/HW9dUIrfY6zHGLjxo2mrOW8887jIoSgxeUUrwV85rbytG/fPvMHzjnrm5PeX7t2rdfn6Gxx3rbX9Qi9613Q/fffb+qLCv4yITSu98KFC+WNN96QP//8009HiUBebw18fvjhB7n66qtNAPTvv//KLbfcYt7c6gxQCK3rfdVVV5nnnXrqqfrpteTk5MiIESPMrK4IPbuLiNdSUlLkyJEjps7bFyGV8QVK4qmnnjIDnj777DMzkAKh5fDhw3LttdeaAY21a9cO9OHAD/Ly8kx2/7XXXpNu3brJ4MGD5aGHHpKpU6dy/kOQDnTSjP7LL78sy5Ytk08//VRmz54tjz32WKAPDUEspDK++p9bRESE7Nmzx2O93q9fv77X5+j6kmyPyn29nZ555hkT+H7//ffSuXPnCj5SBOJ6b9iwQTZv3mxGDbsHRioyMlLWrVsnrVq14uKE0O+3dnKIiooyz3Nq3769yRTpR+nR0dEVftzw3/V+5JFHzJvbG264wdzXrkxpaWly0003mTc8WiqB0FG/iHgtMTHR52yvCqmfCv2jpu/y582b5/Efnd7Xui9vdL379uq7774rcntU7uutnn76aZMRmDNnjnTv3t1PRwt/X29tUbhy5UpT5uC8XXDBBdKvXz+zrK2PEFq/36eccoopb3C+wVHr1683ATFBb+hdbx2jUTC4db7pcYyXQijpVV7xmhWC7VC0vcnbb79t2l3cdNNNph3K7t27zePXXnutNXr0aI92ZpGRkdYzzzxj2luNHTuWdmYhfL2feuop0y5n5syZ1q5du1y3w4cPB/C7QEVd74Lo6hDa13vr1q2mS8vIkSOtdevWWbNmzbLq1q1rPf744wH8LlBR11v/v9br/cEHH5hWV99++63VqlUr060Jwe/w4cOmtajeNBydNGmSWd6yZYt5XK+1XvOC7czuvfdeE69pa1LameXT3m5NmzY1AY62R/n1119dJ65v377mPz93H3/8sdWmTRuzvbbKmD17tn+uOvx+vZs1a2Z+wQre9A8oQvP32x2Bb+hf70WLFpmWlBpAaWuzJ554wrS0Q+hd7+zsbGvcuHEm2I2NjbWaNGli3XLLLdbBgwcDdPQoifnz53v9/9h5jfWrXvOCz+natav5+dDf77feessqqTD9p3yT0QAAAEDwCakaXwAAAKAoBL4AAACwBQJfAAAA2AKBLwAAAGyBwBcAAAC2QOALAAAAWyDwBQAAgC0Q+AIAAMAWCHwB2N64ceOka9euFX4ewsLC5PPPPw/I+Q7Evjdv3mz2++eff5bpdZo3by6TJ08O2nMLoPIg8AVQqSUlJcnNN98sTZs2lZiYGKlfv74MGDBAfvnll6ALpHft2iXnnntuQPYNABCJ5CQAqMwuueQSycrKknfeeUdatmwpe/bskXnz5sn+/fsl2GhQXlnobPa5ubkSGcl/EwBCBxlfAJXWoUOH5Oeff5b//e9/0q9fP2nWrJn06NFDHnjgAbngggs8trvhhhukTp06kpiYKGeccYasWLGi2NeeNm2atG/fXmJjY6Vdu3by8ssvezy+fft2ufLKK6VmzZqSkJAg3bt3l99++03efvttGT9+vHl9/fhdb7rO28fxK1euNMcSFxcntWrVkptuuklSU1Ndjw8bNkwuuugieeaZZ6RBgwZmm1tvvVWys7O9HnNx+1b79u2Tiy++WOLj46V169by5Zdfuh5bsGCB2f6bb76Rbt26mez5woULJS8vT5588klp0aKFOc4uXbrIzJkzXc87ePCgXH311ebc6uP6um+99ZbHcW3cuNFcH92vPn/x4sUej3/yySfSsWNHs08ta3j22WeLvTb//POPnHbaaebadOjQQb777rtitwcAJ97KA6i0qlSpYm4aTJ588skmcPLmsssuM0GZBnXVqlWTV199Vc4880xZv369CVwLmj59uowZM0ZeeuklOeGEE2T58uVy4403mgB36NChJjjt27evNGrUyASPmsldtmyZCRIHDx4sf//9t8yZM0e+//5783q6z4LS0tJMSUavXr3k999/l71795rgfOTIkR7B6vz5803Qq1///fdf8/payqDHU9Cx9q1B8dNPPy0TJ06UF1980QSsW7Zs8TgHo0ePNoG2Zs9r1Khhgt733ntPpk6daoLan376Sa655hoT6Oo5eOSRR2T16tXm3NauXdsc45EjRzyO66GHHjKvqc/XZX3DoNtpNnnp0qVy+eWXmxINPf5FixbJLbfcYoJ8DfwL0nP8n//8R+rVq2feaCQnJ8udd95Z5M8IAHiwAKASmzlzplWjRg0rNjbW6t27t/XAAw9YK1ascD3+888/W4mJiVZGRobH81q1amW9+uqrZnns2LFWly5dPB57//33PbZ/7LHHrF69epllfV7VqlWt/fv3ez2mgq/npH9yP/vsM7P82muvmeNOTU11PT579mwrPDzc2r17t7k/dOhQq1mzZlZOTo5rm8suu8waPHhwkeejuH0//PDDrvu6X133zTffmPvz58839z///HPXNnrO4uPjrUWLFnm81vXXX29deeWVZnnQoEHW8OHDvR7Lpk2bzGtOmzbNtW7VqlVm3Zo1a8z9q666yjrrrLM8nnfvvfdaHTp0cN3Xc/Dcc8+Z5blz51qRkZHWjh07XI/r9+B+bgGgKJQ6AKj0Nb47d+40mddzzjnHfGR/4oknurKm+rG/Zmg1g+jMEOtt06ZNsmHDBq+ZWF1//fXXe2z/+OOPu7bXLgWaCfaWLfbVmjVrzMf+mkV2OuWUU0xGc926da51WgIQERHhuq/ZX80Ol0bnzp1dy7pfLfso+FpasuGkWdn09HQ566yzPM7Fu+++6zoXOrDwww8/NFno++67z2Rsi9uvHr9y7lfPg37f7vS+ljNojXFBun2TJk2kYcOGrnWaNQcAX1DqAKDS01pPDc70ph+9a8nA2LFjzUflGvRqsKUBcUHVq1cvtM5ZY/v6669Lz549PR5zBqBaNuEvUVFRHve1DleD44p6LfdA3HkuZs+ebco63DnLSrRLhZZLfP3116bWVktItA5ZSxu87Vf3qUr7PQBAWRD4Agg5OuDJOYhMs7+7d+829aQ6cOpYtHZUs4k6IEtrYL3RDKYOfjtw4IDXrG90dLTXbKU7HTinWWnNMDuDTW3BFh4eLm3btpXS8mXfJTmPGuBu3brV1PMWRet9tfZZb3369JF7773XI/A91nko2HpO77dp08Yj0+2+/bZt20xrOGf2+Ndffy3x9wbAnih1AFBpacsy7Yqgg6/++usvU74wY8YMM4DrwgsvNNv079/ffBSu3RG+/fZbM6mCfhyvg6z++OMPr6+rg8B0UNcLL7xgBsBp9wXtVDBp0iTzuA7O0gFt+poapGmQrJ0JnN0KNMDWY9GSCO2kkJmZWWgfGlRrplqDRR2QpoPXbrvtNrn22mtN8F1avuzbV1WrVpV77rlHRo0aZdrFaXmDDuLTgXF6X+kgwC+++MKURaxatUpmzZplglNf3X333ab93GOPPWbOtb6uDirU/Xqj11ODYj1vWsaiXT30WgKALwh8AVRaWm+q5QjPPfecaW91/PHHm1IH7XigwZPzo3X9GF4fHz58uAmarrjiCvPxfFEBppZKaEZXg91OnTqZbKdmZ7WllzOrqkF03bp15bzzzjPbPPXUU64MpdYda72xtvDSbOgHH3xQaB/a2mvu3Lkma3zSSSfJpZdeasoEnMddWr7suyQ0INVzqm8ENKDV19bSB/dzoe3jNAuu51jPgdb8+koz8h9//LF5jl4/DaQfffRRrx0dlGbEP/vsM9M5QlvX6bV64oknyvQ9ArCPMB3hFuiDAAAAACoaGV8AAADYAoEvAAAAbIHAFwAAALZA4AsAAABbIPAFAACALRD4AgAAwBYIfAEAAGALBL4AAACwBQJfAAAA2AKBLwAAAGyBwBcAAABiB/8Pwa7OGyXW98oAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr4AAAIjCAYAAADlfxjoAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWQpJREFUeJzt3Qd4FGXXxvGTntBCr9KRXqVJFwRRFMXXgqA0UV4QUEFFkF4ECyAqKAIK+lkQELAhiAgqRVBAXkSKdKT3QAJJSPa7zqO77oZNSMJOssn8f9e1kt2dnZmdCXLvs2fOE+BwOBwCAAAAZHOBmb0DAAAAQEYg+AIAAMAWCL4AAACwBYIvAAAAbIHgCwAAAFsg+AIAAMAWCL4AAACwBYIvAAAAbIHgCwAAAFsg+AKAF6+++qqUK1dOgoKCpHbt2hwji+3fv18CAgJkzpw5mX6s/+///k8qV64sISEhkjdv3jS9tnv37lKmTJkMf7/e1jdq1CjzGIB/EXyBLET/UdN/yLzdBg8e7FpO/+F1Ph4YGGj+8a5Ro4b06tVL1q9f73Xd7uvS1xQvXlxuu+02WbVqldjNt99+K4MGDZImTZrI7NmzZfz48ZZu7+OPP5YpU6ZIVpHa/XUGr2vdbrnlFq+vX7JkiVlHRtqxY4cJr+XLl5eZM2fKjBkzMnT7AKwVbPH6AVhgzJgxUrZsWY/Hqlev7nFfRymfeeYZ8/OFCxdk+/btMn/+fPOP+YABA2Ty5MlXrbdNmzbStWtXcTgcsm/fPnnrrbekVatW8vXXX8sdd9xhm3P5/fffm/D/7rvvSmhoaIYEyd9//12efvppyQpSu7//+c9/pEKFCq77Fy9elD59+si9995rnnMqUqSIlC5dWi5dumRGWd2D77Rp0zI0/OoHvcTERHn99dc99h1A9kDwBbIgDaH16tVLcZkSJUrII4884vHYyy+/LJ07d5bXXntNbrzxRhNC3FWsWNHjNRpQatasaUb3MjP4XrlyxYSRjAih6sSJExIREeGz7ekHicuXL5t1Ztdj5o3+7ujN6dSpU+Z3Th9L+rupwsPDLd+na50LPfcqrSUOALIGSh0AG9F/7LV+MX/+/PLiiy+aEJASLY8oWLCgGf29Fi2haNeuneTLl09y5sxpwo2Omjnp19nevtJOWhPprFWcOHGiCdz6lXNYWJhs3rxZgoODZfTo0VetY+fOneY1U6dOdT127tw5MyJZsmRJ83odvdPgr2EwJboeLW+Ijo52fRXvrJvUMDl27FjXPul+v/DCCxIbG+uxDn38rrvukmXLlpkPKHrc33nnHa/b02OiI+oHDhxwbc95POLi4mTEiBFSt25diYyMNMe1WbNmsnLlSo91JHfM/vjjD9copu6HBkt9TvclufrPDz/80GxP91l/Tx566CE5dOhQqvbXlzWq+nuho73KvSzCSc+jvtdq1aqZ96Wjxv/973/l7Nmz6T4XuuzIkSPNz4UKFTLbcx9t1m9AdHt6bLUUqG/fvub37Fp0GX0/eg41UHfr1i1Vr1NnzpyRZ5991vxdzJUrl+TJk8d8CN2yZUuqXg/AEyO+QBZ0/vx5M3rmTgNqaug/njqSq1/jazDSf8iToyFCb9f6ynf58uUmXBQrVkyeeuopKVq0qCmt+Oqrr8z99NDwqSNzWpesQUPX3aJFC5k3b54rnDh9+umn5iK0Bx54wNyPiYkxyx4+fNiEoVKlSsnatWtlyJAhcvTo0RTrU/WDgdZ1btiwQWbNmmUea9y4sfnzsccek/fff1/uv/9+U0aiYX/ChAnmvS5atOiqMN6pUyez/ccff1wqVarkdXtDhw415/Ovv/4yI/HOc6SioqLMPuh6dB1asqLnrW3btmb/kl50l/SYaXDVDwy33367OX76oSEhIcGUymiwS0o/DA0fPlwefPBB815Pnjwpb775pjRv3tysR0NbSvvrS3rcjhw5Yn639Jx4e15Dco8ePeTJJ580H870g4/u55o1azxKJlJ7LvT34oMPPjDn8u233zbvyzlirQFYj1/r1q3NqLWuU5f55ZdfrtqeO/1wec8998jq1auld+/eUqVKFbN+Db+psXfvXlm8eLH53dbypuPHj5vgrr/f+vdXAziANHAAyDJmz56tQ7Reb+5Kly7tuPPOO5Ndz2uvvWZe8/nnn7se0/s9e/Z0nDx50nHixAnH+vXrHbfeeqt5fNKkScmu68qVK46yZcuabZ49e9bjucTERNfPLVq0MLekunXrZl7rtG/fPrPNPHnymP1w984775jntm7d6vF41apVHa1atXLdHzt2rCNnzpyOXbt2eSw3ePBgR1BQkOPgwYPJvh/nPunr3f32229m24899pjH488++6x5/Pvvv3c9pu9HH1u6dKkjNfRcuR8D92MbGxvr8Zge4yJFijgeffTRVB2z9u3bO3LkyOE4fPiw67E///zTERwc7PF7s3//fnNsXnzxRY/X67HWZd0fT25/r0V/t3SbI0eOvOo553vQ33Gnvn37XvW7rX766Sfz+EcffeTxuB7vpI+n9Vzovunyuq9OekxDQ0Mdt912myMhIcH1+NSpU82y7733XrK/z4sXLzbLvPLKKx7ntVmzZle9X28uX77ssU3nsQoLC3OMGTPG47Gk63O+FwD/otQByIL0K2AdCXO/pYVzhE5HEN3paKKOBBYuXFgaNmxoRrIGDhyY4kVMOsKmo226TNK6yOtppXTfffddNSqpF0RpuYOO8DrpRVY68tWxY0fXY3oRn5YEaNmFjow7bzpapyOeP/74Y5r3Ry+0Uno83DkvINSv/93p6JyOzF4PHcV21ujqV/v6tbeWW+hX9ps2bbrmMdP3+t1330mHDh08RgZ1BD9pzfbChQvNNnS01/2Y6ei91oMnLa/ITHp+tWxAL8Z031ct0dDf7aT7er3nQo+hlp3o77he9Oiko8daepD03Cf9vdHfWfd6ej2v/fv3T9W2deTeuU09n6dPnzbvUUetvf0OAEgZpQ5AFtSgQYNrXtyWEr26XuXOndvjcf1Ktl+/fiaw6nNaBqF1pSnZs2eP164S1ytp1wpnOcett95qyh201lZpCNZg4d4l4M8//5T//e9/Xr/Od7+AKS20plUDSNKyDw2GGvj1+Wvtf3poacWkSZNMm634+PgU15/0MX2f2inBW6lK0sf0mOnAv4Zcb5L7Kj8z6L5quYV+QEvN+b3ec+E8t0lLJPRDifZ6Tnruk75Wy0ySloMkV26RlLPDhNYX6wdMDb9OBQoUSOM7AUDwBWxIR0m9hZ8bbrjBjIpaQcO0t4vp3P8hd5fcVfd6sZXWdf7222+mxlVDsIZh9xpnDQs6Gqi9eL3R7hXX8z5SwxcdHPRCM70oSkdsn3vuORP0dLRQ64qdHzh8tU09ZvrevvnmG7ONpKyo472efdVj8dFHH3l9PukHnozspuFr2kNa664fffRR82FP67b1A5iOPl/rQk0AVyP4Ajajo716cY12O9ALba6XdglwhumUQrOWHeiFOkmlNFrmjYZAvUjJWe6wa9cuc9Fa0n3S9+nLEK99ZjVo6Gij+3HTi430Cn193tdhesGCBWZEUcsQ3JdJenFfcjQcaseD3bt3X/Vc0sf0mOkHEx0dvdYHg4yaDSy57ei+avmBTjCSEaHWeW71gjY9H05a/qCjsCn9nulrV6xYYX4f3T886LpSQ38HWrZsacqQ3OnvXGovaAXwL2p8ARvRr727dOliakX16nxfBJibbrrJhCW9Ij5piyb3EV4NK/p1vXYKcNKWTFpHnBZaVqD1mjrSO3fuXPN1s4Zhd1qnum7dOtPCKindR62TTStt1aaSdoRwTgRy5513SnppOYl+dZ+Uc+TV/ThqJwl9b6mhr9dQpl0BtEOCe+jVkV13Wiqiy2vngqQj83pfa0uvtb++5iyzSfp7pedXvylwlru403Ob2lZhqaXHUH/P3njjDY9jo2FUj0NK515/b3SftAOEk+67dstIDT0nSc+H1jhrxxIAaceIL5BN6T+M+lW50tEmvQBM/8E8duyYuSBLR019Qb921X/U27dvb0oPtAxBaxo15G7bts0VPvWrWg2JGlp79uxp6jCnT59u6oi1bVda6IVsOgGC1j3q+pJeVKdlAV988YVpsaalAnrRk/bl3bp1qxlB056xaR0tq1WrlmlBpa3ONFhpOyltKaY1uBq8dVQuvXT/dARbL5yrX7++GRnU46n7r6O92n5Ow5WOLuoxq1q1qqtO+1q0DZdOwayjo3qBlYYubfulNdlaLuL+wWTcuHFm9FyPj74nrfPWbeo3BNoiTfvJprS/vqbbUdquTM+zhkAtddFjr7+/WvKh70Gn1tYaZB2N199xrYnVlnO+oqUTelz0Q4G2hrv77rvNiK3+/un79zYZh5MeFz32OqW4Hlc9d3pOU/vBQX8HtP2c/r3Stnr6O6wlHu4jzwDSwK3DA4As0s7sl19+SXE5ZwsnvQUEBJg2V9WqVXM8/vjjpk2ZN7qsto9Kr9WrVzvatGnjyJ07t2kFVrNmTcebb77pscyHH37oKFeunGkNVbt2bceyZcuSbWf26quvJrutqKgoR0REhFlO1+nNhQsXHEOGDHFUqFDBbK9gwYKOxo0bOyZOnOiIi4tLczszFR8f7xg9erRp3xYSEuIoWbKk2Ya2nEpLO7mkLl686OjcubMjb9685j05j4e2gxs/fry5r+2r6tSp4/jqq6/SfMxWrFhhXqvHoXz58o5Zs2Y5nnnmGUd4ePhVy3722WeOpk2bmvevt8qVK5vfi507d15zf33dzkzbfvXv399RqFAh83uc9J+sGTNmOOrWrWt+F/T3rkaNGo5BgwY5jhw5ku5z4a2dmXv7Mj0eeu61pVyfPn2uauGX9Nyo06dPO7p06WL+HkZGRpqfN2/enOp2ZnquihUrZt5nkyZNHOvWrbuqPSDtzIDUCdD/pCUoAwCyPh3R1RF5HSUFALugxhcAbFDb7U7DrvaX9TaFNABkZ4z4AkA2pzXXWuvs7DmrNdmxsbFm8pHk+vYCQHbExW0AkM3pBVmffPKJubBRZwJr1KiR6Q9L6AVgN5la6qDThuoVrzqVprZV0pY717Jq1SrTPkn/563N9+fMmZMh+woAWdXs2bNNR4HLly+bbgJLly41/x8FALvJ1OCr7YW0RdC0adNStby21dGWPto2SFvY6Mw1jz32mNdenQAAAIBf1vjqiK/2ikzaiN7d888/L19//bVrulWlPR21p6aOYAAAAADZosZXZytKOjWkNjXXkd/k6AUcenPSKUd11qoCBQpk2LSbAAAASD0dl71w4YIph9WJkmwZfPXCjCJFing8pvd11idt1+Ntznad2Udn2wEAAEDWcujQIbnhhhvsGXzTQ6eZ1Gk1nfTCjlKlSpkDmSdPnkzdNwAAACQRHy9Rb78tJYcPN1On+1KWCr5FixaV48ePezym9zXAehvtVdr9QW9J6WsIvgAAAH4mOlpk+HDzo6/LUrPUzG3ae3LFihUejy1fvtw8DgAAAPht8L148aJpS6Y3Z7sy/fngwYOuMoWuXbu6lu/du7fs3btXBg0aJDt27JC33npL5s2bJwMGDMi09wAAAICsIVOD76+//ip16tQxN6W1uPrziBEjzP2jR4+6QrAqW7asaWemo7za/3fSpEkya9Ys09kBAAAAyBJ9fDOKdoCIjIw0F7lR4wsASEr/Wbxy5YokJCRwcAALhYSESFBQ0NVPREdLVK5cEvlPUwJf5rUsdXEbAABWiouLM982xsTEcKABi+mFa9qqLFeuXJJRCL4AAPwzwZFea6IjUNo0PzQ0lImOAAu/WTl58qT89ddfcuONN3of+bUAwRcAgH9GezX8lixZUnLkyMExASxWqFAh2b9/v8THx3sGX21DO2+eyIMP+nybWaqdGQAAVvPl9KgAkpdsj97gYBGLGhfwtxsAAAC2QPAFAACA/4iPF/noI0tWTfAFAABXmTNnjuTNmzdLHZmsuM/wIi5O5IknxAoEXwAAsrju3bubesmkt9tvvz1Vry9TpoxMmTLF47GOHTvKrl27JLuFVW/HqWnTpl6fz5kzp+k4oMd348aNHutZtWqVx7JFihSR++67z8wwC/9F8AUAIBvQkKs9iN1vn3zySbrXFxERIYULF5bsaPbs2R7H6YsvvvD6/LZt22TatGly8eJFadiwoXzwwQdXrWvnzp1y5MgRmT9/vlm+ffv2TH7ixwi+AACk0Gs0Ju5KptzSOrFqWFiYFC1a1OOWL18+1/sYNWqUlCpVyiynfYqffPJJ89wtt9wiBw4ckAEDBrhGL72NxOrra9euLe+9955Zj0468MQTT5iQ98orr5jtaVB+8cUXPfZr8uTJUqNGDTN6qq3i9DUaJJ2jpj169DCzczm3rdtRsbGx8uyzz0qJEiXMazV46vLudB91X7T93L333iunT59O1bHS9+V+nPLnz+/1eR0Jv+2222TBggXy8MMPS79+/eTs2bMey+p7LlasmDRv3lxGjBghf/zxh+zevTvV5w0Ziz6+AAAk41J8glQdsSxTjs8fY9pKjlDf/DP92WefyWuvvSZz586VatWqybFjx2TLli3muYULF0qtWrWkV69e8vjjj6e4nj179sg333wjS5cuNT/ff//95qv9ihUryg8//CBr166VRx99VFq3bm2CqrM93BtvvCFly5Y1y2rwHTRokLz11lvSuHFjU2KhgVFHTpVzFi8NmRoidZ81qC9atMiMam/dutWUH6xfv1569uwpEyZMkA4dOph9GjlypFhFPxjoiO/y5cvlwWT6y+ooubMnNPwTwRcAgGzgq6++umrq1xdeeMHcDh48aEYwNZCGhISYUdIGDRqYZXS0UycPyJ07t1kmJTrBh4746rJVq1aVli1bmsC6ZMkSE3ArVaokL7/8sqxcudIVfJ9++mnX63UEddy4cdK7d28TfHV2vMjISDPS675t3V8tN9A/NfQqHf3VcKuPjx8/Xl5//XUThDVEKw3fGrx1mWvp1KmTx4QJH374oQnPKalcubL5Uydc8EZLIyZOnGhGqPU4wD8RfAEASEZESJAZec2sbaeFhtC3337b4zHnV/gPPPCAGVktV66cCYvt2rUztajBOlFAGmhw1dDrpBd0aYB0n/RDHztx4oTr/nfffWdGZXfs2CFRUVFy5coVuXz5ssTExCQ7Q56O6moJhYZZd1r+UKBAAfPz9u3bTXmDu0aNGqUq+Orot34IcNJShWtxlp4knXThhhtu+LskJibGjJzr6LoGevgngi8AAMnQkOOrcgOraR1shQoVvD6ntbU6MqshVL+q13KDV1991ZQn6AhwaiVdVo+Pt8d0ZNg5OnrXXXdJnz59TO2vBvHVq1ebEgUtB0gu+GoNsAZq7aTgMZWtWynE9dDR5eSOVXI0aCst2XD3008/SZ48eUytr/uHAlwHnbJ4zhxtVyK+ljX+NgMAgOui9ac6yqu3vn37mq/udWT1pptuMiOUOsLqaxpcNQRPmjTJNSo8b948j2W8bbtOnTrmMR05btasmdd1V6lSxdT5uvv555/FKjpirgHXfaTYGYTpHexj+k2EjuYTfAEAgDdaBqAXrXnmh2ApWLCg6X6gQVLrbnWUVWtaNQiXLl3aVcLw448/ykMPPWS6PuhrfEFHVePj4+XNN980gXvNmjUyffp0j2V02zrCu2LFClMqoPunJQ7aRaFr164mNGsQPnnypFmmZs2acuedd5quFE2aNDF1tffcc48sW7YsVWUOqXHu3DlzLPWYai/jd955RxYvXmwubiPkZm20MwMAIBvQ0Ke1qu4358QMGtZmzpxpgqIGRy15+PLLL131smPGjDFlCeXLl5dChQr5bJ80yGo7M73grXr16vLRRx+Zel932tlBL3bTCTN029oaTelFbBp8n3nmGXOxmF589ssvv5gL89TNN99s3pNe5Kbb+fbbb2XYsGE+2W9tsabHT0fFtUxDyys2bNggnTt39sn6cQ1XrogsWiRWCHCktVFgFqeF9XoFqfYM1K8sAABQesHVvn37zFfX4eHhHBQgs/7ORUdLVK5cEini87zGiC8AAABsgeALAAAAWyD4AgAAwBYIvgAAALAFgi8AAABsgeALAAAAWyD4AgAAwH+Ehoq89ZYlqyb4AgAAwH+EhIg8/LAlqyb4AgAAwBYIvgAA4JpGjRoltWvX9tvt3HLLLfL0009LRitTpoxMmTLlutbRvXt3MyWzL95f8+bN5eOPP5bM9scff8gNN9wg0dHR6ZuyeNkyK3aL4AsAQHZw6NAhefTRR6V48eISGhoqpUuXlqeeekpOnz6d5nUFBATI4sWLPR579tlnZcWKFZLZVq1aZfbv3Llzmb0rfueLL76Q48ePy0MPPeR6bMaMGSY067S/AWk4btOmTTOhXqcSbtiwoWzYsOGq6Yb79u0rBQoUkFy5csl9991ntu1UtWpVufnmm2Xy5MlpfyOxsSIPPihWYMQXAIAsbu/evVKvXj35888/5ZNPPpHdu3fL9OnTTVBt1KiRnDlz5rq3oeFGQ052Eh8fL9nJG2+8IT169JDAwH/jXUxMjNx+++3ywgsvpHo9n376qQwcOFBGjhwpmzZtklq1aknbtm3lxIkTrmUGDBggX375pcyfP19++OEHOXLkiPznP//xWI/uy9tvvy1XdATXTxB8AQC4Fv26Nrnb5cupX/bSpdQtm0Y68qajvN9++620aNFCSpUqJXfccYd89913cvjwYRk6dKhrWR3FGzt2rHTq1Ely5swpJUqUMKN77s+re++914wQOu8nLUFwfj0/fvx4KVKkiOTNm1fGjBljQs5zzz0n+fPnN191z54922Nfn3/+ealYsaLkyJFDypUrJ8OHD091AN2/f7+0bNnS/JwvXz6zf7ofTomJiTJo0CCz7aJFi5p9dqfLaxC7++67zXt/8cUXzeOff/653HTTTWZ0U/dp9OjRrrDmcDjMevSYhoWFmRH1J5980mO9Gi51tD137txmOR1ldbd161Zp1aqVREREmA8PvXr1kosXLyb7PrU8oGvXrubDRrFixWTSpEnXPDYnT56U77//Xtq3b+/xuJZHDB482Iy+ppaO0j7++OMmuOrIrX6I0vP13nvvmefPnz8v7777rllO31fdunXNeV67dq38/PPPrvW0adPGfOjSYOwvCL4AAFxLrlzJ3+67z3PZwoWTX/aOOzyX1VDpbbk00GCxbNkyeeKJJ0ywcqfh7+GHHzYjeBrgnF599VUzird582YTirQkYvny5ea5X375xfypQebo0aOu+95o0NKRvh9//NGEIB0hvOuuu0woXb9+vfTu3Vv++9//yl9//eV6jYbDOXPmmBrQ119/XWbOnCmvvfZaqt5ryZIl5bPPPjM/79y50+yfrsPp/fffN4FWt/3KK6+YIO58X04aYjXUaxjVsPrTTz+ZkKnHQPfpnXfeMfvnDMW6Pd0/fVxH1LUEpEaNGh7r1GCqI+56PPU89OnTx+yfM8TqaKkeEz2WOkKqH0j69euX7PvUDw4aFjWQ64cZLe/QkdeUrF692oTTKlWqyPWIi4uTjRs3SuvWrV2P6Qiy3l+3bp25r8/rhxX3ZSpXrmxCv3MZpR/G9MOSHmN/QfAFACAL0zCmoTa5wKOPnz171owIOjVp0sQEXh157d+/v9x///2u8FmoUCHzp47ganB23vdGR1b16/VKlSqZEKl/6uinfq1+4403ypAhQ0z40VDmNGzYMGncuLEZSdbRSa0dnjdvXqrea1BQkNmmKly4sNm/yMhI1/M1a9Y04Vu3rWFWw2jSuuTOnTubkUwd2dWgpqO7eiy6detmHtNRSh0R16CrDh48aLajIU+Xb9CggRkNddeuXTsTeCtUqGBGtAsWLCgrV640z+mFZloP+8EHH0j16tXNCOnUqVPl//7v/zxqYp10JFhHUydOnCi33nqrCdka6K9VLnDgwAEz8u5e5pAep06dkoSEBLMud3r/2LFj5mf9U8+r/o4kt4yTjpDrvvmL4MzeAQAA/F4KX0tLUJDnfbc6yKskDSX794uvuI/oXovW/Sa9n57OBNWqVfMIWhp8NNy5B1X9at+9NlRHnzUs79mzx4Q8DXR64ZUvaPB1p2UC7ttWGobdbdmyRdasWeMa4VUa/DSsaoh/4IEHzLHRUKy1shpyNbAHBwd73a6WU2hQdm53+/btZnRdR6LdP3hoWYaOCicNmHpcdNRVLyhz0rCvHypScunSJVOq4W8iIiLMcfQXjPgCAHAtGlqSuyUNGyktm6QUIdnl0kBHGTVsacDyRh/Xr9lTGrlNrxCdaMCN7oe3xzTkKf0aXEsvNDx+9dVXpjRA64816Fm1P85tO7kHUKXhW0d9f/vtN9dNyyB0JF2DpJZXaEB96623TIjTkV1tGeZel5ya7VpNR5l1ZN8X6wkKCrpqNFrva6BX+qees6QdItyXcS/FseJ3L70IvgAAZGE6oqpfz2sw01E/d/q180cffSQdO3Y0YczJ/QIk5333UgkNcjrq6Wt68ZO2WdOwqyOvWpKQ1q/B9St25av904vaNNjqB4ikN+dotgZeHeXVkWqtt9UAr+E4NfS46qiyez9bHWHWdXsbxS1fvrw5/lqn7KSBdteuXSlup06dOuZ8X2/4DQ0NNReruZeIaIh3dghR+rzuo/syegy1LCTptwm///672bc07oQWoosVCL4AAGRxWjMaGxtrLqLSC820p+/SpUtNINauDe5f4zuDl178pWFKOzroBVd6cZeT1t9qqPFFkHKnQVfD0dy5c81X+hokFy1alKZ1aHDWEK8jxlq3nFJ3hNQYMWKEqb/VUd9t27aZEXLdP61FVnqhm9bcaoDTtnEffvihCcK6H6mhI9w6cqw1xLoOrf3VuuouXbpcVeagtJNDz549zQVuevGgvkY7V1yrdlfDpY7W6rl1p+dQR7G1xZ3SwK733VvcaS2x/g45aSszvehQa4v1eOjFehrctTZaaV217qMup+9HL3bT5zT0uneP0C4c2lXE/SK4VNER9F69xAoEXwAAsjgNlL/++qupQ33wwQfNqKG2zNLWXzo66bwgzOmZZ54xy2tYGjdunOnIoKHZvUuBdkPQr/nTPFqXAm0jpv1ftaOBXu2vI8DaziwtNMg7L0jT4JhSd4TU0PetIVq7J9SvX98EN73Qzxls9QIuDYFal6u1vNqRQfvXpransXZa0K4bGjR1/XohYdKgmZR23WjWrJkZZdbQ2LRpUzPKmhItT9DwqSP87rQVmZ5D5wV5zZs3N/d1sgsn/RCiF7U56TcEenGdfijQ86RBWT9IuQd1PUbawUMnrtB1aonDwoULPbatPaVvu+22VH9IyAgBjrRUw2cDUVFR5pOK9qDzVTE9ACDr04uZ9u3bJ2XLlvXLi4R8RUdztbdrZkzvC2vp6K5ecKitzzI7bMbFxZkPZNrVQj80pOnvXEKCRC1dKpF33eXzvMaILwAAQDago65alqHlJJnt4MGDpq1dcqE3RTopzF13WbFbtDMDAADILnQ2PX9Q4Z8LBP0NfXwBALARveAIsCtKHQAAAGALBF8AANzY7JpvwFZ/1wi+AAC4zb7lT9OrAtlZ3D8z9mkrtoxCjS8AAP/846s9W0+cOOHqv+o+2xkA39HZ4HQCEv17FhyccXGU4AsAgFs7KOUMvwCso7PRlSpV6uoPmPrty5gxOq2ez7fJBBYAACSRkJAg8fHxHBfAQqGhoclOxWzVhGOM+AIA4KXsISPrDgFkDC5uAwAAgP9ISBDZuNGSVRN8AQAA4D90yuJWrSxZNcEXAAAAtkDwBQAAgC0QfAEAAGALBF8AAADYAsEXAAAAtkDwBQAAgC0QfAEAAOA/dMriwYMtWTXBFwAAAP4jNFRkyBBLVk3wBQAAgC0QfAEAAOA/EhNFtm+3ZNUEXwAAAPiPS5dEbr7ZklUTfAEAAGALBF8AAADYAsEXAAAAtkDwBQAAgC0QfAEAAGALBF8AAADYAsEXAAAA/jVlcf/+lqya4AsAAAD/mrJ43DhLVk3wBQAAgC0QfAEAAOBfUxYfOGDJqgm+AAAA8K8pi2vWtGTVBF8AAADYAsEXAAAAtkDwBQAAgC0QfAEAAGALBF8AAADYAsEXAAAAtkDwBQAAgP8IDhZ57DFLVk3wBQAAgP8ICxOZNCl7Bt9p06ZJmTJlJDw8XBo2bCgbNmxIcfkpU6ZIpUqVJCIiQkqWLCkDBgyQy5cvZ9j+AgAAIGvK1OD76aefysCBA2XkyJGyadMmqVWrlrRt21ZOnDjhdfmPP/5YBg8ebJbfvn27vPvuu2YdL7zwQobvOwAAACzgcIicOmXFmiXA4dC1Zw4d4a1fv75MnTrV3E9MTDSjuP379zcBN6l+/fqZwLtixQrXY88884ysX79eVq9enaptRkVFSWRkpJw/f17y5Mnjw3cDAACA6xYdLVG5ckmkiM/zWqaN+MbFxcnGjRuldevW/+5MYKC5v27dOq+vady4sXmNsxxi7969smTJEmnXrl2y24mNjTVh1/0GAAAA+wnOrA2fOnVKEhISpEiRIh6P6/0dO3Z4fU3nzp3N65o2bSo6UH3lyhXp3bt3iqUOEyZMkNGjR/t8/wEAAJC1ZPrFbWmxatUqGT9+vLz11lumJnjhwoXy9ddfy9ixY5N9zZAhQ8wwufN26NChDN1nAAAA2HzEt2DBghIUFCTHjx/3eFzvFy1a1Otrhg8fLl26dJHH/untVqNGDYmOjpZevXrJ0KFDTalEUmFhYeYGAAAAe8u0Ed/Q0FCpW7eux4VqenGb3m/UqJHX18TExFwVbjU8q0y8Rg8AAABZQKaN+CptZdatWzepV6+eNGjQwPTo1RHcHj16mOe7du0qJUqUMHW6qn379jJ58mSpU6eO6Qixe/duMwqsjzsDMAAAAOB3wbdjx45y8uRJGTFihBw7dkxq164tS5cudV3wdvDgQY8R3mHDhklAQID58/Dhw1KoUCETel988cVMfBcAAADw6ZTFnTqJfPKJZKs+vpmBPr4AAAD2zGtZqqsDAAAAkF4EXwAAAPgPLUaIjrZk1QRfAAAA+I+YGJHixS1ZNcEXAAAAtkDwBQAAgC0QfAEAAGALBF8AAADYAsEXAAAAtkDwBQAAgC0QfAEAAOA/goJE7rnHklUTfAEAAOA/wsNFPvjAklUTfAEAAGALBF8AAADYAsEXAAAA/iM6WiQy0pJVE3wBAABgCwRfAAAA2ALBFwAAALZA8AUAAIAtEHwBAABgCwRfAAAA2ALBFwAAAP41ZXGbNpasmuALAAAA/5qyeMECS1ZN8AUAAIAtEHwBAABgCwRfAAAA+NeUxUWLWrJqgi8AAAD8y6VLlqyW4AsAAABbIPgCAADAFgi+AAAAsAWCLwAAAGyB4AsAAABbIPgCAADAfwQGijRpYs2qLVkrAAAAkB4RESJLlogVCL4AAACwBYIvAAAAbIHgCwAAAP+asrhsWUtWTfAFAACAfzlzxpLVEnwBAABgCwRfAAAA2ALBFwAAALZA8AUAAIAtEHwBAABgCwRfAAAA+NeUxXXqWLNqS9YKAAAApHfK4lWrLDl2BF8AAADYAsEXAAAAtkDwBQAAgP+IiRGpXt2SVRN8AQAA4D8cDpFDhyxZNcEXAAAAtkDwBQAAgC0QfAEAAGALBF8AAADYAsEXAAAAtkDwBQAAgP8ICBCpVMmSVRN8AQAA4D9y5BDZsMGSVRN8AQAAYAsEXwAAANgCwRcAAAD+NWVxgwaWrJrgCwAAAP+asnjnTktWTfAFAACALRB8AQAAYAsEXwAAANgCwRcAAAC2QPAFAACALRB8AQAA4F9TFpcsacmqCb4AAADwrymLf//dklUTfAEAAGALBF8AAADYAsEXAAAA/uPSJZFbbrFk1QRfAAAA+I/ERJHNmy1ZNcEXAAAAtkDwBQAAgC0QfAEAAGALBF8AAADYAsEXAAAAtkDwBQAAgH/Jn9+S1RJ8AQAA4D9y5hTZt8+SVRN8AQAAYAsEXwAAANgCwRcAAAD+NWVxu3aWrJrgCwAAAP+asnjNGktWTfAFAACALaQp+DocDvnzzz9l27ZtcuXKFZ/swLRp06RMmTISHh4uDRs2lA0bNqS4/Llz56Rv375SrFgxCQsLk4oVK8qSJUt8si8AAADIvlIdfPft2yc1a9aUypUrmz/Lly8vv/7663Vt/NNPP5WBAwfKyJEjZdOmTVKrVi1p27atnDhxwuvycXFx0qZNG9m/f78sWLBAdu7cKTNnzpQSJUpc134AAAAg+wtw6DBuKtx///1mpHfEiBFmdHbixIly+fJl2bhxY7o3riO89evXl6lTp5r7iYmJUrJkSenfv78MHjz4quWnT58ur776quzYsUNCQkLStc2oqCiJjIyU8+fPS548edK97wAAALBAdLRE5colkSI+z2upDr5FixY1o6xNmzY1948ePSo33HCDCZI5tdFwGunobY4cOcw6O3To4Hq8W7duppzh888/v+o17dq1k/z585vX6fOFChWSzp07y/PPPy9BQUFetxMbG2tuTrq/Gq4JvgAAAPYKvqkuddDygxtvvNF1X2tsIyIiki1LuJZTp05JQkKCFClSxONxvX/s2DGvr9m7d68Jyvo6resdPny4TJo0ScaNG5fsdiZMmGBGeJ03Db0AAADwYxERlqw21cE3ICBALl68aEZMnbfAwEC5cOGCx2NW0lKIwoULy4wZM6Ru3brSsWNHGTp0qCmBSM6QIUPMpwXn7dChQ5buIwAAAK6DVhIkMwh6vYJTu6BWRGgHhaSP1alTx/WzhmMdjU2NggULmvKE48ePezyu97WswhsdZdbaXveyhipVqpgRYi2dCA0Nveo12vlBbwAAALC3VAfflStX+nTDGlJ11HbFihWuGl8d0dX7/fr18/qaJk2ayMcff2yW09FmtWvXLhOIvYVeAAAAIM3Bt0WLFuJr2spML2arV6+eNGjQQKZMmSLR0dHSo0cP83zXrl1NqzKt01V9+vQxHSCeeuop0/lBewqPHz9ennzySZ/vGwAAADLB5cvaTixzg6+T1skuX77c9NLV0oayZctK69at03XFndbonjx50rRI03KF2rVry9KlS10XvB08eNA1sqv0wrRly5bJgAEDTC9hDcUagrWrAwAAALKBhASR5cstWXWq25mpDz/80JQhJL2ITbsl6AVmGmT9HX18AQAA/Jg/tDPTmdW0BEHrcTdv3iyXLl2SmJgYM3tb+/btpUuXLrJlyxaf7RgAAACQKSO+Gnq1ndn8+fOTndlNE/l7770n/owRXwAAAD/mDyO+a9askf/+97/JPt+7d29ZvXq1r/YLAAAA8KlUB98jR45c1cfXnT53+PBhX+0XAAAAkDnBV+t5w8PDk31eJ4m4rO0nAAAAAD+UpnZm2kpMOzh4c+7cOV/tEwAAAOw8ZfH589o2LHODr042kRLt6wsAAAD4o1QHX50mGAAAAMj2Nb4AAACA5fSasa5dMzf4Nm/e3KOO94svvjCTWAAAAAA+nbL4888lU4Ov9uiNi4tz3X/kkUfk6NGjluwUAAAA4DelDqmc8A0AAADwC9T4AgAAwBbS3cdXuzysWLFCfv/9d49l7r77bt/uIQAAAOADAY5U1iwEBl57cFj7+CZoQbIfi4qKMuH9/PnzkidPnszeHQAAALiLjpaoXLlEh1p9ndfo4wsAAABboMYXAAAA/iNHDpEjRyxZNcEXAAAA/iMgQCRnTktWTfAFAACALRB8AQAA4D9iY0V697Zk1QRfAAAA+I8rV0Q++STz+/gCAABkpl3HL8hPf57KkG0FiEjLyoWlbEFr6k2R8VIVfPPly2d69KbGmTNnrnefAAAArqJTD/SY/YscPncpw47OvF8PydKnm3M27BR8p0yZ4vr59OnTMm7cOGnbtq00atTIPLZu3Tozq9vw4cOt21MAAGBrf529ZEJvcGCAtKtRzNJt6exeX/3viOw4dkFOXLgshXOHW7o9+NnMbU733XeftGzZUvr16+fx+NSpU+W7776TxYsXiz9j5jYAVtt94qJ8+PMBiUtI5GADPnT03CVZufOk1LohUj7v19TyY3vH6z/J9qNREhkRIsXzRsicHvWlSB4CsC1mbnPSkd2XX375qsdvv/12GTx4sK/2CwCyrJe+2S7fbT+R2bsBZFv1y+TPkO3cUb2oCb7nL8Wb29f/OyqPNi2bIduGNdIcfAsUKCCff/65PPPMMx6P62P6HADYmX6J9uuBs+bn7o3LSP6coZm9S0C2EhESJA/UuyFDttW/VQW5q2YxmfvLIZnx415Zuu2YFM/794hvlWJ5pHSBjLvobfLyXbJw01/pfn1IUKA8e1slubOmtSUi2S74jh49Wh577DFZtWqVNGzY0Dy2fv16Wbp0qcycOdOKfQRgU1sOnZORX2yTy/EJklUkJDrkXEy8hAUHygvtqkhoMF0jgaxKL+wvVyiXtK1WxATfDfvOmJvKEx4s619oLRGhQZbvR+yVBHl71W6JT0hTdepVZv60N2sEX52yeM8ekfLlMz/4du/eXapUqSJvvPGGLFy40Dym91evXu0KwgDgC3PW7pffDp3LkgezSYWChF4gm6hTMp88cnMp2XH0grm/7UiURF2+Yv7/1Ki89d9263Y19ObNESKzu9dP8+tPX4yTxz74VbYdOS9Hzl2SgrnC/Pv/T9pJrGBB/7i4Lavj4rbsIz4h0fxlRvZ1//S15iruYXdWkcpFfXdxg9UCA0RqlcwrOcNolQ5kR30/3mTqfasV13KHHF6XCQoMlO6NS0vd0vlNCdTgz7bK6t3p6z98KT5BzkTHSfOKheSDRxuk+fW6/XrjvpPT0X//m1k4d5gsH9jCXLRnt7yWrv8r79mzR2bPni179+41rc4KFy4s33zzjZQqVUqqVavms50DkhN3JVFue+0H2X86hoOUzekH/wfrl5Q84f77P2gA9tK0QkETfHXkV2/J0dHVz/o0Ni3YPv310HVvt0XFQuku2Xj45tLy1srdciXRIScuxJqSjTZVi4jfTlmc5FqyTAu+P/zwg9xxxx3SpEkT+fHHH01PXw2+W7ZskXfffVcWLFhgyY4C7rYePucKvSFBqZtcBVlTh9olCL0A/Mr9dW+QHKFBEnUp3uvzF2MT5OWlO2TrX+fNNQpbDp03j1cqklteub9muraptcQ3Fs6V7n0e2KaiuQ1asEXm/fqXfLvtmKlTLhoZnqEX6aV6yuJZs/wj+GrLMg27AwcOlNy5c7seb9Wqlenlm1XMXrNXInL+u//IWjYd+LvuUy84eKdLvczeHQCAjWiHhHtql0ixtODd1fvk1MVYqT3mW3PRq6pfNp8pg8pMtUvmM8F3/sa/b1qatezp5nJjEXtkojQH361bt8rHH3981eM66nvqVMbMne0Lk779UwLDvNflIOvIqF6OAACkpbSgXY2i8sG6A3I5PtFVttW6SuaXFrSrUVS+3HLEzEanJQ8XLl8xtccE32TkzZtXjh49KmXLejZw3rx5s5QokfynH3/TvlYxCcuR/q8MkPnyRoRKx/olM3s3AAC4yui7q0nvFuVdo716sas/9PXOmyNUPul1s/n5jRV/mv7A2qqty82lJTgofZ0etJyj5/u/mAvOJz1YS6oV1znXssmI70MPPSTPP/+8zJ8/33yiSUxMlDVr1sizzz4rXbt2laxiwn9q+vQqQQAAACfNSDrNsT+r/U/ZxdHzl80kHY/cXDpd69G2bmt2nzY/L9x02K+Db5qj/fjx46Vy5cpSsmRJuXjxolStWlWaN28ujRs3lmHDhlmzlwAAAPCpRm49iHce+7tHcXq4X+S363j61+OXI76hoaFmhrYRI0aYel8Nv3Xq1JEbb7zRmj0EAACAJRfpje1QXYYv/l2OR11O93p0Mg+nP45EydLfj5qftVtErrBgM3GGqlMqnxTJ8/eUz1km+I4ZM8aUNeiIr96cLl26JK+++qoJxAAAAPB/RXKHmT+PX4hN9zouXP53xFcnyej94Savy1UonEu+G9ji2iuMiBD53/9Eaqav9ZtPSx1Gjx5tRnmTiomJMc8BAAAgayjyzwjs8fPpH/HVzhBO9UrnMzftc5zU7hMXJcotJCcrMFCkdPrqja+56rS+QHvTacF2UjqBRf78tJYCAADIKopG/h18T16MlfV7T5sZ3XSmufTU+PZqXk4W9GlsbrVu+LdfcYGcoWaaZLX3ZLRkiVKHfPnymcCrt4oVK3qE34SEBDMK3Lt3b6v2EwAAAD5WIGeomcRC2651nPGzeSw4MEB+GNRSSqSyK4VzxFdngnPKn+vf1m3axq1Q7jDTN3juhoOm5jc0KFBuq1pUInN4mY4+Lk7EooYJqQ6+U6ZMMaO9jz76qClpiIyM9LjgrUyZMtKoUSNLdhIAAAC+FxwUKE/cUkGW/HNB2uGzlyT2SqLsPBaV+uAb+/eIb+7wEI9A7R58dbrltXtOm7ZpelNbbj4n4zrUMPlyxOfbZOfxCzLkjspSp0CoyJtvSqYG327dupk/deIKbV0WEuIloQMAACBLebZtJXNT3WdvkFU7T8rJNFzsFnXp7xHf3O4jvm7Bt0CuUHm0aVnT/SEm7oqcuhgnGw+cla2Ho8zze05elP/7+YD5ee6GQ1LnjvLiN10dWrT492q8y5cvS5wOR7thUggAAICsqfA/tbgnomI9ZmYb+fk2OerW8ixnaJA8f3tlKZg7zEx5rPK4j/jmCvv355xhprXZax1rm/s7jkXJ7VN+kr0nL5rR3p3H/m2acN6tJ7BfBF/t3jBo0CCZN2+enD799ywd7rTeFwAAAFlP4dx/X+ym9bhOy/84Lp/++nd5QtKOEM6L45TW8SZX6uCuTIGcopeKaW2whubf/+nzq1LV9SEjuzo899xz8v3338vbb78tYWFhMmvWLFPzW7x4cfnggw+s2UsAAABYrnCef0Z8L/w7uusMpi0qFpLJD9aSLv9Mbawjt1sOnTM/lyuYU2re8O/1X1WL5THhVlUv4TmFcXhIkJTMl8P83OXdDfL2qj1eW6P5xYjvl19+aQLuLbfcIj169JBmzZpJhQoVpHTp0vLRRx/Jww8/bM2eAgAAIENKHZZtO25qb/NGhMg7P+w1j91Rvaj856YbpGKR3KYmd/vRC6bkQY3rUN2j41eZgjll7eBWcikuQcoVynXVdvQitlmr98lvh86ZjhIZNeKb5uB75swZKVeunKueV++rpk2bSp8+fXy/hwAAAMgQlYvmcf08/9e/xCH/htJaJfO6ZmALCgww9bjOmtyqxf99nVOxyOS7QtxRo5i5aejVOt/dJy+aul+rR3zTXOqgoXffvn3m58qVK5taX+dIcN68/zYrBgAAQNZSpmBOebxZWfPz9qNRsvng36UMTSsUlCrF8rhKFQa2qWjKGfTWt2V5yZvDs443tTRAa0u1yIgQ12QYjvBwkZ//7imc6SO+Wt6gs7Rpd4fBgwdL+/btZerUqRIfHy+TJ0+2ZCcBAACQMW6vXkxm/rRPtvx1TuKuJJrHht9V1WOZvi0rmJuvOHsAX0l0yKUEh0iVKuIXwXfAgAGun1u3bi07duyQjRs3mjrfmjVr+nr/AAAAkIEqF81tZm87F/N3GYPW8ZYvlNPSbeo2dAY5LffVcofUTZ2RAcE3Kb2oTW8AAADI+nKGBcuUh2rLmt1/t61tXaWwKUewkl4Yp6O+WjP80++H5bYvZ/lP8P3ll19k5cqVcuLECUlM/HsI3IlyBwAAgKztrprFzS0j6SizmvH9TrntpZes2UZaXzB+/HgZNmyYVKpUSYoUKeLRusL9ZwAAACC1nm5TUYYv/l2slObg+/rrr8t7770n3bt3t2aPAAAAYDu1b/i7O1h8gmc1gS+luWAjMDBQmjRpYs3eAAAAwJZCggP8L/hqV4dp06ZZszcAAACwpZB/LqCLv/LvpBmZXurw7LPPyp133inly5eXqlWrSkjI333XnBYuXOjL/QMAAIANhDqDr/bx9Zfg++STT5qODi1btpQCBQpwQRsAAAB8N+JrYalDmoPv+++/L5999pkZ9QUAAAB8ISTo7xrf6MBgcaxYIXLrrZLpNb758+c3ZQ4AAACAr4QE/x1LEwODJL72TWKFNAffUaNGyciRIyUmJsaSHQIAAIB9a3ytLHdIc6nDG2+8IXv27DGTV5QpU+aqi9s2bdrky/0DAACAjWp8QxLiJfCN1/0j+Hbo0MGSHQEAAIB9BQUGiM5aHJyQIBHjxvhH8NUyBwAAAMDXgt3KHaxg7doBAACAdNT5ZtqIr3Zy2LVrlxQsWFDy5cuXYu/eM2fO+HL/AAAAYKOWZgmZHXxfe+01yZ07t+vnlIIvAAAAkN4L3C5LJgffbt26uX7u3r27hbsDAAAAu3d2sEqa1x4UFCQnTpy46vHTp0+b5wAAAID0CP1nEgurpHntDofD6+OxsbESGhrqi30CAACATWt8Y4ND5I8ZH2duOzOduEJpfe+sWbMkV65crucSEhLkxx9/lMqVK1uykwAAALBHqUNiYJCcvqlB5gZfvajNOeI7ffp0j7IGHenVWdz0cQAAAOB6anzjE7xXGGRY8N23b5/5s2XLlrJw4ULT1gwAAADwZR/f4IQrUmzeB+IXNb4rV670CL1a5vDbb7/J2bNnfb1vAAAAsJGQ4AAJSbgiVSaN9Y/g+/TTT8u7777rCr3NmzeXm266SUqWLCmrVq2yYh8BAABgAyH+1s5s/vz5UqtWLfPzl19+Kfv375cdO3bIgAEDZOjQoVbsIwAAAGwgONDPgq/26y1atKj5ecmSJfLAAw9IxYoV5dFHH5WtW7dasY8AAACwgdDgAP8KvkWKFJE//vjDlDksXbpU2rRpYx6PiYlhAgsAAABkn1KHHj16yIMPPijVq1c3PX1bt25tHl+/fj19fAEAAJBuFQr9O0+EXwTfUaNGmQksevXqJWvWrJGwsDDzuPb1HTx4cLp2Ytq0aaYPcHh4uDRs2FA2bNiQqtfNnTvXhO8OHTqka7sAAADwH/1aVbB0/QGO5OYgziCffvqpdO3a1Ux+oaF3ypQp5gK6nTt3SuHChZN9nV5U17RpUylXrpzkz59fFi9enKrtRUVFSWRkpJw/f17y5Mnjw3cCAACA61X1ha+kzh9r5OPPX/J5Xkv1iG+7du3Mxp1eeuklOXfunMdFb1WrVk3zDkyePFkef/xxU0Khr9cAnCNHDnnvvfeSfY3WFz/88MMyevRoE3wBAACQPQQEB8tPZW+yZN2pDr7Lli2T2NhY1/3x48fLmTNnXPevXLliRmnTIi4uTjZu3OiqEzY7FBho7q9bty7Z140ZM8aMBvfs2fOa29B91lFe9xsAAAD8U1CgdZ0dUh18k1ZE+KJC4tSpU2b0VjtFuNP7x44d8/qa1atXmwk0Zs6cmaptTJgwwZQ2OG860QYAAAD8U4Qkyj3bVlqybmt7RvjYhQsXpEuXLib0FixYMFWvGTJkiCnRcN4OHTpk+X4CAAAgfcIcV+TF5W+LFYJTu6B2T9Bb0seuh4ZX7QZx/Phxj8f1vnOSDHd79uwxF7W1b9/e9VhiYqL5Mzg42JRalC9f3uM12nXC2XkCAAAA9u3lm+rgq6UN3bt3d4XIy5cvS+/evSVnzpzmvnv9b2qFhoZK3bp1ZcWKFa6WZBpk9X6/fv2uWr5y5cpXzQ43bNgwMxL8+uuvU8YAAACQxQVZWOOb6uDbrVs3j/uPPPLIVctoW7K0GjhwoFl3vXr1pEGDBqadWXR0tOny4FxniRIlTK2u9vnViTPc5c2b1/yZ9HEAAABkPcH+EHxnz55tyQ507NhRTp48KSNGjDAXtNWuXdtMhey84O3gwYOm0wMAAACyv2ALg2+mT2CR0ZjAAgAAwH/d+8q38v7zbSVSJPMmsAAAAACsFhzkB318AQAAAKs5QkNlYLsBlqyb4AsAAAC/ERgSKt9WbGTNui1ZKwAAAJAOlDoAAADAFkIcCXLbrnWWrJsRXwAAAPiNCEeCTF7ymiXrJvgCAADAFjO3EXwBAADgN0IIvgAAALCDIAtn7GXEFwAAAH6DEV8AAADYQiClDgAAALCD4CDr1k2pAwAAAPxGQGiYDG3Tx5J1E3wBAADgNwJCQ+Xzai0tWTfBFwAAAH4jJIg+vgAAALCBYEeiNNu3yZJ1M+ILAAAAvxGeGC9vf/6SJesm+AIAAMBvBAVQ6gAAAAAbCAli5jYAAADYQBATWAAAAMAOggm+AAAAsINggi8AAADsIIgaXwAAANhBSESYjGv5qCXrpp0ZAAAA/EbL6iXk5ENdLFk3wRcAAAB+o0CuMHn9oZssWTfBFwAAAP4jIUHkp58sWTXBFwAAAP7j8mWRu+6yZNUEXwAAANgCwRcAAAC2QPAFAACALRB8AQAAYAsEXwAAANgCwRcAAAC2QPAFAACA/wgJERkzxpJVE3wBAADgP0JDRZ56ypJVE3wBAABgCwRfAAAA+NeUxRs3WrJqgi8AAAD8a8riVq0sWTXBFwAAALZA8AUAAIAtEHwBAABgCwRfAAAA2ALBFwAAALZA8AUAAIAtEHwBAADgX1MWDx5syaoJvgAAAPCvKYuHDLFk1QRfAAAA2ALBFwAAAP4jMVFk+3ZLVk3wBQAAgP+4dEnk5pstWTXBFwAAALZA8AUAAIAtEHwBAABgCwRfAAAA2ALBFwAAALZA8AUAAIAtEHwBAADgX1MW9+9vyaoJvgAAAPCvKYvHjbNk1QRfAAAA2ALBFwAAAP41ZfGBA5asmuALAAAA/5qyuGZNS1ZN8AUAAIAtEHwBAABgCwRfAAAA2ALBFwAAALZA8AUAAIAtEHwBAABgCwRfAAAA+I/gYJHHHrNk1QRfAAAA+I+wMJFJkyxZNcEXAAAAtkDwBQAAgP9wOEROnbJk1QRfAAAA+I+YGJHy5S1ZNcEXAAAAtkDwBQAAgC0QfAEAAGALBF8AAADYAsEXAAAAtkDwBQAAgC0QfAEAAOBfUxZ36mTJqgm+AAAA8K8pi6dPt2TVBF8AAADYgl8E32nTpkmZMmUkPDxcGjZsKBs2bEh22ZkzZ0qzZs0kX7585ta6desUlwcAAEAWolMWR0dnz+D76aefysCBA2XkyJGyadMmqVWrlrRt21ZOnDjhdflVq1ZJp06dZOXKlbJu3TopWbKk3HbbbXL48OEM33cAAABYMGVx8eJihQCHQ2N15tER3vr168vUqVPN/cTERBNm+/fvL4MHD77m6xMSEszIr76+a9eu11w+KipKIiMj5fz585InTx6fvAcAAAD4SHS0ROXKJZEiPs9rmTriGxcXJxs3bjTlCq4dCgw093U0NzViYmIkPj5e8ufP7/X52NhYE3bdbwAAALCfTA2+p06dMiO2RYoU8Xhc7x87dixV63j++eelePHiHuHZ3YQJE8wIr/Omo8kAAACwn0yv8b0eL730ksydO1cWLVpkLozzZsiQIWaY3Hk7dOhQhu8nAAAAMl9wZm68YMGCEhQUJMePH/d4XO8XLVo0xddOnDjRBN/vvvtOatasmexyYWFh5gYAAAB7y9QR39DQUKlbt66sWLHC9Zhe3Kb3GzVqlOzrXnnlFRk7dqwsXbpU6tWrl0F7CwAAgKws00sdtJWZ9uZ9//33Zfv27dKnTx+Jjo6WHj16mOe1U4OWKzi9/PLLMnz4cHnvvfdM71+tBdbbxYsXM/FdAAAAwCeCgkTuuUeyXamD6tixo5w8eVJGjBhhAmzt2rXNSK7zgreDBw+aTg9Ob7/9tukGcf/993usR/sAjxo1KsP3HwAAAD6k12198IFIpDY0y2Z9fDMafXwBAADsmdcyvdQBAAAAyAgEXwAAAPiP6GhLyhwUwRcAAAC2QPAFAACALRB8AQAAYAsEXwAAANgCwRcAAAC2QPAFAACALRB8AQAA4F9TFrdpY8mqCb4AAADwrymLFyywZNUEXwAAANgCwRcAAAC2QPAFAACAf01ZXLSoJasm+AIAAMC/XLpkyWoJvgAAALAFgi8AAABsgeALAAAAWyD4AgAAwBYIvgAAALAFgi8AAAD8R2CgSJMm1qzakrUCAAAA6RERIbJkiViB4AsAAABbIPgCAADAFgi+AAAA8K8pi8uWtWTVBF8AAAD4lzNnLFktwRcAAAC2QPAFAACALRB8AQAAYAsEXwAAANgCwRcAAAC2QPAFAACAf01ZXKeONau2ZK0AAABAeqcsXrVKrEDwBQAAgC0QfAEAAGALBF8AAAD4j5gYkerVLVk1wRcAAAD+w+EQOXTIklUTfAEAAGALBF8AAADYAsEXAAAAtkDwBQAAgC0QfAEAAGALBF8AAAD4j4AAkUqVLFk1wRcAAAD+I0cOkQ0bLFk1wRcAAAC2QPAFAACALRB8AQAA4F9TFjdoYMmqCb4AAADwrymLd+60ZNUEXwAAANgCwRcAAAC2QPAFAACALRB8AQAAYAsEXwAAANgCwRcAAAD+NWVxyZKWrJrgCwAAAP+asvj33y1ZNcEXAAAAtkDwBQAAgC0QfAEAAOA/Ll0SueUWS1ZN8AUAAID/SEwU2bzZklUTfAEAAGALBF8AAADYAsEXAAAAtkDwBQAAgC0QfAEAAGALBF8AAAD4l/z5LVktwRcAAAD+I2dOkX37LFk1wRcAAAC2QPAFAACALRB8AQAA4F9TFrdrZ8mqCb4AAADwrymL16yxZNUEXwAAANgCwRcAAAC2QPAFAACALRB8AQAAYAsEXwAAANgCwRcAAAD+JSLCktUSfAEAAOBfUxYfO2bJqgm+AAAAsAWCLwAAAGyB4AsAAAD/cfmyyP33W7Jqgi8AAAD8R0KCyPLllqya4AsAAABbIPgCAADAFvwi+E6bNk3KlCkj4eHh0rBhQ9mwYUOKy8+fP18qV65slq9Ro4YsWbIkw/YVAAAAWVOmB99PP/1UBg4cKCNHjpRNmzZJrVq1pG3btnLixAmvy69du1Y6deokPXv2lM2bN0uHDh3M7ffff8/wfQcAAEDWEeBwOByZuQM6wlu/fn2ZOnWquZ+YmCglS5aU/v37y+DBg69avmPHjhIdHS1fffWV67Gbb75ZateuLdOnT7/m9qKioiQyMlLOnz8vefLk8fG7AQAAwHWJjpaoXLkkUsTneS1YMlFcXJxs3LhRhgwZ4nosMDBQWrduLevWrfP6Gn1cR4jd6Qjx4sWLvS4fGxtrbk56AJ0BGAAAAH4YfP/50dfjs5kafE+dOiUJCQlSpEgRj8f1/o4dO7y+5tixY16X18e9mTBhgowePfqqx3VUGQAAAP7r9OnT5pv6bBF8M4KOJruPEJ87d05Kly4tBw8e9OmBhH/SkX39kHPo0CFKW2yA820vnG974Xzby/nz56VUqVKSP39+n643U4NvwYIFJSgoSI4fP+7xuN4vWrSo19fo42lZPiwszNyS0tBLja996LnmfNsH59teON/2wvm2l8DAwOzT1SE0NFTq1q0rK1ascD2mF7fp/UaNGnl9jT7uvrxavnx5sssDAAAAflHqoGUI3bp1k3r16kmDBg1kypQppmtDjx49zPNdu3aVEiVKmFpd9dRTT0mLFi1k0qRJcuedd8rcuXPl119/lRkzZmTyOwEAAIA/y/Tgq+3JTp48KSNGjDAXqGlbsqVLl7ouYNNaXPdh7saNG8vHH38sw4YNkxdeeEFuvPFG09GhevXqqdqelj1oz2Bv5Q/Ifjjf9sL5thfOt71wvu0lzKK8lul9fAEAAABbzNwGAAAAZASCLwAAAGyB4AsAAABbIPgCAADAFrJl8J02bZqUKVNGwsPDpWHDhrJhw4YUl58/f75UrlzZLF+jRg1ZsmRJhu0rMvZ8z5w5U5o1ayb58uUzt9atW1/z9wNZ+++3k7Y+DAgIkA4dOli+j8i8862zc/bt21eKFStmrgavWLEi/0/PxudbW6BWqlRJIiIizCydAwYMkMuXL2fY/iL9fvzxR2nfvr0UL17c/L9ZO3Rdy6pVq+Smm24yf7crVKggc+bMSfuGHdnM3LlzHaGhoY733nvPsW3bNsfjjz/uyJs3r+P48eNel1+zZo0jKCjI8corrzj++OMPx7BhwxwhISGOrVu3Zvi+w/rz3blzZ8e0adMcmzdvdmzfvt3RvXt3R2RkpOOvv/7i8GfD8+20b98+R4kSJRzNmjVz3HPPPRm2v8jY8x0bG+uoV6+eo127do7Vq1eb875q1SrHb7/9xqnIhuf7o48+coSFhZk/9VwvW7bMUaxYMceAAQMyfN+RdkuWLHEMHTrUsXDhQu0u5li0aFGKy+/du9eRI0cOx8CBA01ee/PNN01+W7p0aZq2m+2Cb4MGDRx9+/Z13U9ISHAUL17cMWHCBK/LP/jgg44777zT47GGDRs6/vvf/1q+r8j4853UlStXHLlz53a8//77nI5ser71HDdu3Ngxa9YsR7du3Qi+2fh8v/32245y5co54uLiMnAvkVnnW5dt1aqVx2Maipo0acJJyWIkFcF30KBBjmrVqnk81rFjR0fbtm3TtK1sVeoQFxcnGzduNF9fO+nkF3p/3bp1Xl+jj7svr9q2bZvs8sja5zupmJgYiY+Pl/z581u4p8jM8z1mzBgpXLiw9OzZkxORzc/3F198Yaav11IHnQRJJzYaP368JCQkZOCeI6POt05opa9xlkPs3bvXlLW0a9eOk5ANrfNRXsv0mdt86dSpU+Z/cM5Z35z0/o4dO7y+RmeL87a8Po7sd76Tev755019UdK/TMge53v16tXy7rvvym+//ZZBe4nMPN8afL7//nt5+OGHTQDavXu3PPHEE+bDrc4Ahex1vjt37mxe17RpU/32Wq5cuSK9e/c2s7oi+zmWTF6LioqSS5cumTrv1MhWI75AWrz00kvmgqdFixaZCymQvVy4cEG6dOliLmgsWLBgZu8OMkBiYqIZ3Z8xY4bUrVtXOnbsKEOHDpXp06dz/LMhvdBJR/Tfeust2bRpkyxcuFC+/vprGTt2bGbvGvxYthrx1X/cgoKC5Pjx4x6P6/2iRYt6fY0+npblkbXPt9PEiRNN8P3uu++kZs2aFu8pMuN879mzR/bv32+uGnYPRio4OFh27twp5cuX5+Rko7/f2skhJCTEvM6pSpUqZqRIv0oPDQ21fL+Rced7+PDh5sPtY489Zu5rV6bo6Gjp1auX+cCjpRLIPoomk9fy5MmT6tFela1+K/R/avopf8WKFR7/0Ol9rfvyRh93X14tX7482eWRtc+3euWVV8yIwNKlS6VevXoZtLfI6POtLQq3bt1qyhyct7vvvltatmxpftbWR8hef7+bNGliyhucH3DUrl27TCAm9Ga/863XaCQNt84PPX9fL4XspJGv8pojG7ZD0fYmc+bMMe0uevXqZdqhHDt2zDzfpUsXx+DBgz3amQUHBzsmTpxo2luNHDmSdmbZ+Hy/9NJLpl3OggULHEePHnXdLly4kInvAlad76To6pC9z/fBgwdNl5Z+/fo5du7c6fjqq68chQsXdowbNy4T3wWsOt/677We708++cS0uvr2228d5cuXN92a4P8uXLhgWovqTePo5MmTzc8HDhwwz+u51nOetJ3Zc889Z/Katialndk/tLdbqVKlTMDR9ig///yz68C1aNHC/OPnbt68eY6KFSua5bVVxtdff50xZx0Zfr5Lly5t/oIlven/QJE9/367I/hm//O9du1a05JSA5S2NnvxxRdNSztkv/MdHx/vGDVqlAm74eHhjpIlSzqeeOIJx9mzZzNp75EWK1eu9PrvsfMc6596zpO+pnbt2ub3Q/9+z54925FWAfof3w5GAwAAAP4nW9X4AgAAAMkh+AIAAMAWCL4AAACwBYIvAAAAbIHgCwAAAFsg+AIAAMAWCL4AAACwBYIvAAAAbIHgC8D2Ro0aJbVr17b8OAQEBMjixYsz5Xhnxrb3799vtvvbb79d13rKlCkjU6ZM8dtjCyDrIPgCyNJOnjwpffr0kVKlSklYWJgULVpU2rZtK2vWrPG7IH306FG54447MmXbAACRYA4CgKzsvvvuk7i4OHn//felXLlycvz4cVmxYoWcPn1a/I2G8qxCZ7NPSEiQ4GD+mQCQfTDiCyDLOnfunPz000/y8ssvS8uWLaV06dLSoEEDGTJkiNx9990eyz322GNSqFAhyZMnj7Rq1Uq2bNmS4rpnzZolVapUkfDwcKlcubK89dZbHs//9ddf0qlTJ8mfP7/kzJlT6tWrJ+vXr5c5c+bI6NGjzfr163e96WPevo7funWr2ZeIiAgpUKCA9OrVSy5evOh6vnv37tKhQweZOHGiFCtWzCzTt29fiY+P97rPKW1bnTp1Su69917JkSOH3HjjjfLFF1+4nlu1apVZ/ptvvpG6deua0fPVq1dLYmKiTJgwQcqWLWv2s1atWrJgwQLX686ePSsPP/ywObb6vK539uzZHvu1d+9ec350u/r6devWeTz/2WefSbVq1cw2taxh0qRJKZ6bP//8U5o3b27OTdWqVWX58uUpLg8ATnyUB5Bl5cqVy9w0TN58880mOHnzwAMPmFCmoS4yMlLeeecdufXWW2XXrl0muCb10UcfyYgRI2Tq1KlSp04d2bx5szz++OMm4Hbr1s2E0xYtWkiJEiVMeNSR3E2bNpmQ2LFjR/n9999l6dKl8t1335n16TaTio6ONiUZjRo1kl9++UVOnDhhwnm/fv08wurKlStN6NU/d+/ebdavpQy6P0lda9sail955RV59dVX5c033zSB9cCBAx7HYPDgwSZo6+h5vnz5TOj98MMPZfr06SbU/vjjj/LII4+YoKvHYPjw4fLHH3+YY1uwYEGzj5cuXfLYr6FDh5p16uv1Z/3AoMvpaPLGjRvlwQcfNCUauv9r166VJ554woR8Df5J6TH+z3/+I0WKFDEfNM6fPy9PP/10sr8jAODBAQBZ2IIFCxz58uVzhIeHOxo3buwYMmSIY8uWLa7nf/rpJ0eePHkcly9f9nhd+fLlHe+88475eeTIkY5atWp5PPfxxx97LD927FhHo0aNzM/6uty5cztOnz7tdZ+Srs9J/5e7aNEi8/OMGTPMfl+8eNH1/Ndff+0IDAx0HDt2zNzv1q2bo3Tp0o4rV664lnnggQccHTt2TPZ4pLTtYcOGue7rdvWxb775xtxfuXKlub948WLXMnrMcuTI4Vi7dq3Hunr27Ono1KmT+bl9+/aOHj16eN2Xffv2mXXOmjXL9di2bdvMY9u3bzf3O3fu7GjTpo3H65577jlH1apVXff1GLz22mvm52XLljmCg4Mdhw8fdj2v78H92AJAcih1AJDla3yPHDliRl5vv/1285X9TTfd5Bo11a/9dYRWRxCdI8R627dvn+zZs8frSKw+3rNnT4/lx40b51peuxToSLC30eLU2r59u/naX0eRnZo0aWJGNHfu3Ol6TEsAgoKCXPd19FdHh9OjZs2arp91u1r2kXRdWrLhpKOyMTEx0qZNG49j8cEHH7iOhV5YOHfuXDMKPWjQIDNim9J2df+Vc7t6HPR9u9P7Ws6gNcZJ6fIlS5aU4sWLux7TUXMASA1KHQBkeVrrqeFMb/rVu5YMjBw50nxVrqFXw5YG4qTy5s171WPOGtuZM2dKw4YNPZ5zBlAtm8goISEhHve1DlfDsVXrcg/izmPx9ddfm7IOd86yEu1SoeUSS5YsMbW2WkKidcha2uBtu7pNld73AADXg+ALINvRC56cF5Hp6O+xY8dMPaleOHUtWjuqo4l6QZbWwHqjI5h68duZM2e8jvqGhoZ6Ha10pxfO6ai0jjA7w6a2YAsMDJRKlSpJeqVm22k5jhpwDx48aOp5k6P1vlr7rLdmzZrJc8895xF8r3Uckrae0/sVK1b0GOl2X/7QoUOmNZxz9Pjnn39O83sDYE+UOgDIsrRlmXZF0Iuv/ve//5nyhfnz55sLuO655x6zTOvWrc1X4dod4dtvvzWTKujX8XqR1a+//up1vXoRmF7U9cYbb5gL4LT7gnYqmDx5snleL87SC9p0nRrSNCRrZwJntwIN2LovWhKhnRRiY2Ov2oaGah2p1rCoF6TpxWv9+/eXLl26mPCdXqnZdmrlzp1bnn32WRkwYIBpF6flDXoRn14Yp/eVXgT4+eefm7KIbdu2yVdffWXCaWo988wzpv3c2LFjzbHW9epFhbpdb/R8aijW46ZlLNrVQ88lAKQGwRdAlqX1plqO8Nprr5n2VtWrVzelDtrxQMOT86t1/Rpen+/Ro4cJTQ899JD5ej65gKmlEjqiq2G3Ro0aZrRTR2e1pZdzVFVDdOHChaVdu3ZmmZdeesk1Qql1x1pvrC28dDT0k08+uWob2tpr2bJlZtS4fv36cv/995syAed+p1dqtp0WGkj1mOoHAQ20um4tfXA/Fto+TkfB9RjrMdCa39TSEfl58+aZ1+j50yA9ZswYrx0dlI6IL1q0yHSO0NZ1eq5efPHF63qPAOwjQK9wy+ydAAAAAKzGiC8AAABsgeALAAAAWyD4AgAAwBYIvgAAALAFgi8AAABsgeALAAAAWyD4AgAAwBYIvgAAALAFgi8AAABsgeALAAAAWyD4AgAAQOzg/wGpuaKxrTag/QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr4AAAIjCAYAAADlfxjoAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAb8ZJREFUeJzt3Qd4FNUWwPGTHhIIvXcQpHdBmlhQFJ+KFStFRBEriAqKFAv4RBELioqCPrEr6lMEEUGlKwoPqUoHCR1Cepv3nbvZZTdsQsom2/6/71szO5ndnczsytkz554bYlmWJQAAAECAC/X2DgAAAAClgcAXAAAAQYHAFwAAAEGBwBcAAABBgcAXAAAAQYHAFwAAAEGBwBcAAABBgcAXAAAAQYHAFwAAAEGBwBdAwJoyZYo0atRIwsLCpF27dt7eHQS4+fPnm/dZdHS0hISEyPHjxwv82AkTJpjHFIRup9t7Su7nmz17tlm3c+dOj70G4CsIfIFSZv9Hxd1t9OjRju0aNGjgWB8aGioVKlSQ1q1by5133imrVq1y+9zOz6WPqVWrllxyySWyZMkSCTbff/+9PPLII9K9e3eZNWuWTJo0qURf74MPPpBp06aJvyjs/jq/H/VWrVo16dmzp8ydO9dlu/PPP99luzJlykibNm3Ma2VnZxd5f/V1LrvsMqlSpYpERkaa9/YNN9wgP/74o2MbfZ/ra3722Wdun2PQoEFStmzZ09ZbliX/+c9/5LzzzjOfs5iYGPNZe/LJJyUpKalA+3fkyBGzP/r3Tp8+3TxfbGxskf9eACUjvISeF8AZ6D+qDRs2dFnXqlUrl/uaPXrooYfM8smTJ2XTpk3y6aefyltvvSUjRoyQqVOnnva8F198sQwYMMD8Y75jxw557bXX5MILL5Rvv/3WBA7BQgMiDf7ffvttEyiVRiD5559/yoMPPij+oCj76/x+/Oeff+SNN96Qa665Rl5//XUZNmyYY7s6derI5MmTzfLhw4fNa+n79dChQ/LMM88Uaj/1fXz77bebL4zt27eXkSNHSo0aNWT//v0mGL7oootk2bJl0q1bNymKrKwsufnmm+WTTz4xgbxmPjXw/eWXX2TixInm8/bDDz9I9erV832eX3/91XxGn3rqKendu3eR9gVAySPwBbxEg9BOnTrlu03t2rXl1ltvdVn373//2/xD/eKLL0qTJk3k7rvvdvl906ZNXR5z9dVXOzJu3gx8MzMzTcavNIJQdfDgQZN989TraQCWmppqnjNQj9mZ5H4/6hess846y7wXnQPf8uXLu2ynv2vWrJm88sor5guflp4U1AsvvGCCXg3Q9YuecznA448/bjKr4eFF/6fsueeeM0HvqFGjTGmMnV5Z0Qxuv379TKb4u+++O+P7TWnGGIDvotQB8DMaeOk/9pUqVTLZMw3I8qOXbPXysGZ/z0RLKPr27SsVK1Y0l2k1YH7ppZdcLmPrLTcNDPRSuJ3WBmqA8vzzz5uAu3HjxhIVFSV//PGHCVI0k5bbli1bzGNeffVVxzqtkdSAp27duubxGmRp4H+mS+b6PFreoJep7ZfcNXiyB5OalbPvk+73Y489JmlpaS7Poev/9a9/yYIFC8wXFD3umuF0R4+JZtR37drleD378UhPT5dx48ZJx44dTUCox1Uzi4sXL3Z5jryO2caNGx2X8XU/tH5Uf6f7kldd6Pvvv29eT/dZ3yc33nij7Nmzp0D7WxiaeW3evPkZ31u6z+ecc47JiNoDxIJISUkxmWMNmvW4uPtbb7vtNuncuXOh993+/Brs6pdFe4ba2RVXXCEDBw40tbsrV67M83n0eOp2Sv9O3U/9TNhp1th+PvSzqF8K9u3bd8b90/ekZsqrVq0q5cqVkyuvvFL27t1boL+toO87INiQ8QW85MSJE+YysDP9R7EgtE5RM7l6GV8Do5YtW+a57bFjx8xNg8b8LFy40AR6NWvWlAceeMAENVpa8c0335j7RaHBp2ZJNXumQZw+d69evUyGbfz48S7bfvzxxyYTeP3115v7ycnJZlsNEO666y6pV6+eLF++XMaMGWMuc+dXn6pfDN58801ZvXq1zJw506yzXwq/44475N1335XrrrvOXLbXYF+DHv1bc9erajB+0003mdcfOnSonH322W5fTzOPej41KNHsp7LXkiYkJJh90OfR59DgT89bnz59zP7lHnSX+5hp4KpfGC699FJz/PRLg16e18ypBkS56ZehJ554wmQr9W/V8gLNtGr9qj6PZiTz29/CyMjIMAF15cqVz7itPbAvTEZ06dKlcvToUfPlpzBZYj3GuT9bKveXG31+/Wzo+zuvrLFmtfWc6Ofg3HPPdbuNHk99b+h7zl7CpF9OlH7hGjx4sAmI9X124MAB82VSyzPs5yMvev70S4xe4dH3r5bvXH755QU6BoV93wFBwwJQqmbNmqUpWrc3Z/Xr17cuv/zyPJ/nxRdfNI/56quvHOv0/pAhQ6xDhw5ZBw8etFatWmVddNFFZv0LL7yQ53NlZmZaDRs2NK957Ngxl99lZ2c7lnv16mVuuQ0cONA81m7Hjh3mNePi4sx+OHvjjTfM79avX++yvkWLFtaFF17ouP/UU09ZsbGx1tatW122Gz16tBUWFmbt3r07z7/Hvk/6eGdr1641r33HHXe4rB81apRZ/+OPPzrW6d+j6+bPn28VhJ4r52PgfGzT0tJc1ukxrl69unX77bcX6JhdccUVVkxMjLVv3z7Hur/++ssKDw93ed/s3LnTHJtnnnnG5fF6rHVb5/V57W9edNtLLrnEvLf0tm7dOuvGG280r3/fffc5ttP3R7NmzRzbbd682Xr44YfNdvm9n9156aWXzOPmzp1boO0XL16c52fLfnN+T0ybNu2Mz3/06FGzzTXXXFOgz/Wvv/7qWJeenm5Vq1bNatWqlZWSkuJY/80335htx40b51g3fvx4l3Npf68OHz7c5XVuvvlms163z09B33cq9/PZ/xZ9TwKBhlIHwEt05LdmWZ1vhWHP0Gkmx5lmdTQTqKPuu3TpYjJLOiAov0FMmnnSy9W6Te4MVEFbLLlz7bXXnpaV1MFQml3TDK+dDrLSzHX//v1dLg/rpVktu9Dsnf2mA4c04/nzzz8Xen/mzZtnfurxcGYfsKWX/51p5k4zZMWhmUp7ja6WaGgGU8sttGzh999/P+Mx079VB1dpral2MrDTDH7umu0vvvjCvIZme52PmWbvtR68uJe5tVOG7pve2rZta86Rlhpo+YmzzZs3O7bTMgUtJ9DL9PZyk4LSrKXSy/yFoZf4c3+29KYdTpzZPzv5Pb/9d/Z9KYzffvvNlHYMHz7clHvYadZWj0vu95u79+r999/vsr6ggxEL+74DggWlDoCXaF3imQa35ScxMdHtP9pXXXWV3HvvvSZg1d9pGcSZ2ipt27bNbVeJ4srdtcJezqEj8bXcQWttlQbBGgxrUGz3119/yf/+9z+3l/NVYWpF7bSmVTs95C770MBQA379/Zn2vyi0tEIHaWlAqOUB+T1/7nX6d2otqrtSldzr9JhpAk+DXHciIiKK8VeI+SL19NNPm/eWdj7Q+l53l+q1Xlg7j2jApe8tLb/Qkgvn4K8g4uLi3H65OxOta3fXWUHLBpzZPzv5PX9BguO82N9P7kpkNPDVUoszvVftJRN2eZXbFPd9BwQLAl/AT2mW1F3wo62kSqqdkgY87gbTaVbSnbw6IOhgK617XLt2rak11CBYg2HnGmcNmrQ1m/bidUcHJBXn7ygIT3Rw0GBLBzppxvbhhx82mXjNxmm9p/0Lh6deU4+Z/m3agcBdTWxR6nid6fkpyHtLv2g5b6e9lDt06GAGEb788ssFfj0NDtX69evN8fM0DdyVfsHK6/n1d6pFixbiTwr7vgOCBYEv4Ic026sDsbTbgf0f7+KwZ5U0mM4vsNGyg+3bt5+2Pnem9Ez0H2MdMGYvd9i6dasZtJZ7n/Tv9GQQX79+fRMcambU+bjpgCPtIKG/93QwrZMp6OxxWobgvE3uwX150YBFM6V///33ab/LvU6PmX4x0Yzemb4YFKeEpbC0O4h2MtBOFNo2TAcqFkSPHj3Me+7DDz80QXNhBrgV9Pk1Y619hnWAmrvnf++998xPHfhZWPb3kw6S1F7aznRdfu83+3tVg1TnLK8+riCK+74DAhU1voCf0cveWlepNXv6j7UnAhjNxmmwpJ0Sck+z6pzh1cBKL5vqZWu7devWmTriwtBgQ2tnNdP70UcfmVrE3Bk3rVNdsWKFaSeWm+6j1isWlrZqU7k7QtgnAinoiPm8spzaKSE3ezDlfBy1k4T+bQWhj9fg/8svvzSTRjgHvbl7y2qpiG6vnR9yZ+b1vs4udqb9LSmaudfL7e4mXcmLllM8+uijpuOG/nR3tUEzm9qloCj0+TUQ12BSP0u5aQ2u1iXrezWvjg750VIm/eIyY8YMl44Set70b8rv/Wav386dIS/obHvFfd8BgYqML+DDtJWXvS5Rs586AEwHFMXHx5sBWZo19QStJdTZt7RvqZYeaBmCts7SIHfDhg2O4FNn0NLARQOBIUOGmPpT/Udd64gLO/hHB7JpFlBnltPny10rqpdnv/76a5Np00u22o9U+/LqZW/NZml7rIK2f7PTAVnab1XbTmnwrO3SNGjSWkgNvC+44AIpKt0/zWDrwDltXaVlBXo8df8166bt5zTQ0UGEesz00rm9TvtMtF+vDizTkgGdsERLS7TfsdZka7mI8xcTrcHV7LkeH/2btDZVX1OvEGiLNA308tvfkqJ/r37x0BZb2m6tIC3Q7O8DfQ9qraoOztM2dFqTrZ8B/TKg50/b3BWVThOugzt1gJ4GhTq4UMtNtP5WP3t6ZUDfH0WhNdX6vPp50veathaztzPTOmjt0ZsX/Rzq9vr50C8o2s5s0aJFbjP/7njifQcEJG+3lQCCjbu2R+7Y22npLSQkxLS5atmypTV06FDTpswd3faee+4p8r4tXbrUuvjii61y5cqZtk9t2rSxXnnlFZdt3n//fatRo0ZWZGSk1a5dO2vBggV5tjObMmVKnq+VkJBglSlTxmynz+nOyZMnrTFjxlhnnXWWeb0qVapY3bp1s55//nnTKqqw7cxURkaGNXHiRNO+LSIiwqpbt655jdTU1EK1k8stMTHRtJqqUKGC+Zvsx0PbwU2aNMncj4qKstq3b2/aWRX2mC1atMg8Vo9D48aNrZkzZ1oPPfSQFR0dfdq2n3/+udWjRw/z9+tN24vp+2LLli1n3N+8FPR4aDszfZ+6s2TJkgK14nLns88+M+3UKlWqZFqz1axZ0+rfv795ztztzD799NNCvSeysrLM57J79+7mc6bHVP8GfZ/ocSru5/rjjz82507Pv+7/LbfcYu3du9dlm9ztzJS2QLv//vutypUrm/3WtnZ79uwp0DEs6PtO0c4MwSRE/+Pt4BsAUHia0dVsqNYsAwDOjBpfAPCT2m5nGuxqr1d3U0gDANwj4wsAfkBrrrXWWUfqaxcNrcnWAVNan5pX315fpgMk82qDp3TAo07XDACeROALAH5AB0jp4C4d1BUVFSVdu3aVSZMmmY4c/kgHd+XXBk8Hgy1ZsqRU9wlA4PNq4KtTjupUlmvWrJH9+/ebUcdnalKu/yPUUcha16Y9TMeOHWuyIAAA/6Et8HKXbzjT/r3aeQIAAqadmbYm0vZC2iLJearSvGg7Fm3LMmzYMJkzZ45p7XLHHXeYS4DaDgkA4B+0NRsABG2pgzbhP1PGVxuYa0Nx+1St9qlPtR/n/PnzS2lPAQAA4I/8agILbS6ee/pSzfQ++OCDeT5GB384z5ijU0DqjFfaPL00p+wEAABAwWhe9uTJk1KrVi0zyVJQBr46qKN69eou6/S+zhiltWI6205ukydPNtN3AgAAwL/s2bNH6tSpE5yBb1Ho1J06GM5Op36sV6+eOZBxcXFe3TcEmIwMkVmzbMuDB+t8pd7eIwAAStyaXUdl4Du/Sv3KMfLt/T098pya1NQmBjrtuif5VeCr87PrPOfO9L4GsO6yvUrb/ugtN30MgS88KilJ5OGHbct33y0SG8sBBgAEvNiymRIaFSPh0bEej608XZbqVzO3ad9K7eTgbOHChWY9AAAAvCfEDw6+VwPfxMREWbt2rbnZ25Xp8u7dux1lCgMGDHBsr23Mtm/fLo888ohs3rxZXnvtNfnkk09kxIgRXvsbAAAAgpllbxDmB5GvVwPf3377Tdq3b29uSmtxdXncuHHmvk5qYQ+CVcOGDU07M83yav/fF154QWbOnEkPXwAAAC+x/OjIe7XG9/zzzz/1LcGN2bNnu32Mzk0PAAAA3xEivs+vanwBAADgWyx7pYMfzI9A4AsAAIAis/yo2MGv2pkBPk3b5n3zzallAACCSIj4PgJfwGOfpnCRyy/neAIAgotl++EHlQ6UOgAAAKDo7IUOIX6Q8yXjC3hyyuI5c2zLt9zClMUAAPgYAl/AU9LTRQYPti1ffz2BLwAgyLo6iM+jqwMAAACCoqsDgS8AAACCAoEvAAAAiowJLAAAABBkXR18HxlfAAAABAUCXwAAABSZlVPr4A9dHWhnBniKTlP8ySenlgEACKZShxDxeQS+gMc+TeG2/r0AAAQTS/wGpQ4AAAAoNqYsBoJJZqbI3Lm25auvtmWAAQAIkgksQih1AIJIWprIDTfYlhMTCXwBAEHVx9cfUOoAAACAYvODhC+BLwAAADyQ8fWDWgcyvgAAACgyZm4DAAAAfAwZXwAAAATFzG0EvgAAAAiKUgcajQKeEhkpMmvWqWUAAOBTCHwBT4mIEBk0iOMJAAjKrg4hflDrQKkDAAAAiiGnxld8HxlfwJNTFi9YYFvu04eZ2wAA8DEEvoAnpyz+179sy0xZDAAIulIH8XmUOgAAAMADXR18P/Il8AUAAEBQIPAFAABAsUsd/CDhS+ALAACAorP8qKsDGV8AAAAUP+PrBwh8AQAAUGz+0NWBdmaAp+g0xa++emoZAIAgYPlRVwcCX8CTUxbfcw/HEwAQVKycWgd/yPhS6gAAAICgQMYX8JSsLJFffrEt9+wpEhbGsQUABI0QP8j4EvgCnpKaKnLBBaemLI6N5dgCAIJnymLx/ciXUgcAAAAEBQJfAAAAFH8CC99P+BL4AgAAoOiYwAIAAADwMZQ6AAAAoPiD2/yg1oHAFwAAAB6Yuc330c4M8OTMbc89d2oZAAD4FAJfwFMiI0UefpjjCQAIKhZTFgMAACAYWDk/KXUAgm3K4t9/ty136MCUxQAA+BhKHQBPTlncubNtmSmLAQDBwrL9oKsDAAAAgmPmNvF9tDMDAACAB/r4is8j8AUAAEBQIPAFAABAsbs6+EOxA4EvAAAAioxSBwAAAMDH0M4M8BSdpnj8+FPLAAAEAcuPujoQ+AKenLJ4wgSOJwAgqFh0dQAAAAB8CxlfwFOys0U2bbItN28uEsrYUQBA8HR1CPGDYgcCX8BTUlJEWrWyLTNlMQAgyGodQnw/7qWdGQAAAIID12IBAABQ/FIHMr4AAAAIiq4O4vuRLxlfAAAABAUCXwAAABSZdSrl6/MIfAEAAOCBdma+j3ZmgKfoNMWjRp1aBgAgiIT4weg2Al/Ak1MWT5nC8QQABBXLnvL1A5Q6AAAAoMgodQCCdcri3btty/XqMWUxACCoBreF+H6lA6UOgEenLG7Y0LbMlMUAAPgcSh0AAABQbH6Q8CXwBQAAQNE52vj6Qa0DGV8AAAAEBQJfAAAAFJmV09fB9/O9BL4AAADwRB9fP4h8yfgCAAAgKDBzG+CxT1O4yPDhp5YBAAgCVs7PED9I+fKvM+ApUVEi06dzPAEAQdrVQXye10sdpk+fLg0aNJDo6Gjp0qWLrF69Ot/tp02bJmeffbaUKVNG6tatKyNGjJDU1NRS218AAAD4J68Gvh9//LGMHDlSxo8fL7///ru0bdtW+vTpIwcPHnS7/QcffCCjR48222/atEnefvtt8xyPPfZYqe874PYr76FDtpuj0h8AgMBm0dWhYKZOnSpDhw6VwYMHS4sWLWTGjBkSExMj77zzjtvtly9fLt27d5ebb77ZZIkvueQSuemmm86YJQZKRXKySLVqtpsuAwAQBCxKHc4sPT1d1qxZI71793asCw0NNfdXrFjh9jHdunUzj7EHutu3b5d58+ZJ375983ydtLQ0SUhIcLkBAAAg+HhtcNvhw4clKytLqlev7rJe72/evNntYzTTq4/r0aOHWJYlmZmZMmzYsHxLHSZPniwTJ070+P4DAADgFH/o6uD1wW2FsWTJEpk0aZK89tprpib4iy++kG+//VaeeuqpPB8zZswYOXHihOO2Z8+eUt1nAACAQGbl1Dr4Q1cHr2V8q1SpImFhYXLgwAGX9Xq/Ro0abh/zxBNPyG233SZ33HGHud+6dWtJSkqSO++8Ux5//HFTKpFbVFSUuQEAAKDk+EPg67WMb2RkpHTs2FEWLVrkWJednW3ud+3a1e1jkpOTTwtuNXh2/rYBAACA0mP5UQjm1QkstJXZwIEDpVOnTtK5c2fTo1czuNrlQQ0YMEBq165t6nTVFVdcYTpBtG/f3vT8/fvvv00WWNfbA2AAAACUHsux5PspX68Gvv3795dDhw7JuHHjJD4+Xtq1ayfz5893DHjbvXu3S4Z37NixEhISYn7u27dPqlataoLeZ555xot/BSCnpikeOPDUMgAAQSTE9+NeCbGCrEZA25mVL1/eDHSLi4vz9u4AAAD4tZd++Ete/GGr3Nylnky6urVPx2t+1dUBAAAAvsXyo5nbuB4LeIpePLHP2BYT4x/XfAAAKCZmbgOCkQa9ZcvabkxZDACAz6HUAQAAAEVmHyzGzG0AAAAIbJb/zNxGxhcAAABBgcAXAAAAHih18H0EvgAAAPBAVwffD30JfAEAABAU6OMLeEpYmMh1151aBgAgiCaw8AcEvoCnREeLfPopxxMAEFQsR6mD+DxKHQAAAFBs9PEFAABAQLPEf5DxBTwlKcl2nUdvugwAQBCwKHUAAABAMAkR30fGFwAAAEHR1YHAFwAAAEVHqQMAAACCSYgf9DMj4wsAAIAi859CBwJfAAAAFIOV09bB9/O9zNwGeI5OU9y376llAACCqJ2Z+EHky5TFgCenLP72W44nAAA+ihpfAAAAFNmphK/vp3wJfAEAAFBkzNwGBCOdpjg21nZjymIAAHwONb6AJyUnczwBAEE5c1uI+D5KHQAAAFBklDoAAAAgqIT4Qc6XjC8AAACCAoEvAAAAij9zm+8nfAl8AQAAUHx+EPfS1QHwmNBQkV69Ti0DABBEE1j4A9qZAZ5SpozIkiUcTwBAUHZ1ED+odSAtBQAAgGLz/bCXwBcAAAAemMDCH5DxBTxFpymuWtV2Y8piAECQsCy/qXSgxhfwqMOHOaAAgKAU4gfFDmR8AQAAUGT+U+hA4AsAAIAgKXUg4wsAAIBiyJm5TXwfgS8AAACCAoEvAAAAgqLUgZnbAE/RaYo7dTq1DABAUAW+IeLrCHwBT05Z/OuvHE8AAHwUaSkAAAAUGTO3AQAAIChYflTjS8YX8JTkZJEGDWw3XQYAIIiE+EFDM2p8AU9+5d2169QyAABBwBL/QcYXAAAARUapAwAAAIJKiPg+Mr4AAAAoMro6AAAAIDhYth90dQAAAEBQCPGDYge6OgCeol91W7Q4tQwAQBCwxH8Q+AKeEhMjsmEDxxMAEFSsnLYO/pDzYXAbAAAAggKBLwAAAIKi1IHAF/AUnaa4ZUvbjSmLAQBBN4FFiPg6anwBT37yN248tQwAQBCwcn76fthLxhcAAAAe4AcJX0odAAAAUPyuDv6AGl8AAAAUGaUOAAAACCohflDrQMYXAAAARec/lQ50dQA8Rr/p1q9/ahkAgCBg5US+/vBPH+3MAE9OWbxzJ8cTABCUQsT3UeoAAACAIvOjpg4EvgAAAPBA4OsHtQ5kfAFPSUkROecc202XAQAIIiHi+6jxBTwlO1vkt99OLQMAEESD2/wBGV8AAAAUu9TBDyodCHwBAABQfCF+UOxAxhcAAABF5j+FDgS+AAAAKAZKHQAAABBUQsT30dUB8KQqVTieAIAgY/nN4DYCX8BTYmNFDh3ieAIAgorlR0W+DG4DAABAsdHVAQAAAAHNkfD1g1IHMr6Ap+g0xeefb7sxZTEAIEhYflTrQI0v4Ck6TfFPP51aBgAgCFj+k/Al4wsAAIDiC/GDtg6hhU1l//XXX7JhwwbJzMz0yA5Mnz5dGjRoINHR0dKlSxdZvXp1vtsfP35c7rnnHqlZs6ZERUVJ06ZNZd68eR7ZFwAAABSOH1U6FDzw3bFjh7Rp00aaNWtmfjZu3Fh+++23Yr34xx9/LCNHjpTx48fL77//Lm3btpU+ffrIwYMH3W6fnp4uF198sezcuVM+++wz2bJli7z11ltSu3btYu0HAAAAiiYgSx0efvhhk+V9//33TdBZp04dueuuu4r14lOnTpWhQ4fK4MGDpUWLFjJjxgyJiYmRd955x+32uv7o0aPy5ZdfSvfu3U2muFevXiZgBgAAgPeEhATQ4LalS5eagLdHjx7m/rnnnmuC36SkJInVxv2FpNnbNWvWyJgxYxzrQkNDpXfv3rJixQq3j/n666+la9euptThq6++kqpVq8rNN98sjz76qISFhbl9TFpamrnZJSQkFHpfAQAA4P9dHQqc8dXygyZNmjjua41tmTJl8ixLOJPDhw9LVlaWVK9e3WW93o+Pj3f7mO3bt5vgWx+ndb1PPPGEvPDCC/L000/n+TqTJ0+W8uXLO25169Yt0v4CBRITY7sBABBkQgIp46sj9RITE02w65yhPXnypEsWNS4uTkpKdna2VKtWTd58802T4e3YsaPs27dPpkyZYuqE3dGMstYR2+m+EvyiROiVj6QkDi4AICiF+EGVb3hh0tjaQSH3uvbt2zuWNTjWbGxBVKlSxQSvBw4ccFmv92vUqOH2MZpljoiIcClraN68uckQa+lEZGTkaY/Rzg96AwAAgOf5UaVDwQPfxYsXe/SFNUjVjO2iRYukX79+joyu3r/33nvdPkYHtH3wwQdmO802q61bt5qA2F3QCwAAgJJl5fR1CKhSB+2e4GlagjBw4EDp1KmTdO7cWaZNm2YGy2mXBzVgwADTqkzrdNXdd98tr776qjzwwANy3333mZ7CkyZNkvvvv9/j+wYUWmqqyLXX2pY//1wkOpqDCACAP09ZfOLECVm4cKHppaulDQ0bNjSdGIpS29u/f385dOiQjBs3zpQrtGvXTubPn+8Y8LZ7925HZldpbe6CBQtkxIgRppewBsUaBGtXB8DrtMzHPplKAUt+AAAIlFKHED9I+RYq8NUevlqGkLslmHZL0B68GsgWlj5fXqUNS5YsOW2dtjNbuXJloV8HAAAAwV3jW+B2ZjqzmpYgaD3uH3/8ISkpKZKcnGxmb7viiivktttuk3Xr1pXs3gIAAMAnhYgETsb3lVdeMUHv7NmzXdZ36NBB3nvvPRMEv/TSS3nOugYAAIDAY/nR4LYCZ3yXLVuW7xTFw4YNM7O7AQAAIHhYgVjq8M8//5zWx9eZ/k4nkwAAAEDwCfGDYocCB75ayhCdT3smnSQiVds5AQAAIGhYOT/9odShUF0dtJWYdnBw5/jx457aJ8B/pyz2p+s9AAB4gh/901eowFcnm8iPP/RvAwAAQAkMbpMACnx1mmAAAADAHX/Ifxa4xhfAGWiN+/XX227UuwMAgoTlR6UOBQ58zzvvPJc63q+//tpMYgFATk1T/NlnthtTFgMAgoTlWAoJnMBXe/Smp6c77t96662yf//+ktovAAAA+JGQQC51sPwprw0AAIAS4U8xITW+AAAAKH4fXwngPr7a5WHRokXy559/umxz5ZVXenYPAQAA4PNC/KDWoVh9fO+6667T/uAsBvUAAAAEDSsn5ev7YS99fAEAAFAM/lPhW8iML4B8xMSIJCaeWgYAIIiE+EHKl8AX8OQnPjaW4wkACMpahxACX9+373iKPPrZ/+R4SrrERIbLhCtaSotacd7eLQAAAL9gif8I+nZm36z7R5b+fVj+3Jcgq3ccldnLd3j7nMBfpaWJDBpku+kyAABBJMQPhrcFfeC7/0SqORCNq9ouUa/YfkTW7DomJ5IzvHxq4HcyM0Xefdd202UAAIKAY/4K3497qfE9kGALfK9qV1te/GGr7DmaIte+vlxqVygjPz9ygYSFFv4sxp9IldSMrDx/X6diGQkPC/rvHAAAIABYflTsUKDBbRUrVixwU+KjR4+KP4nPCXybVi8rd53XWOat3y//HE8xtb+b4xOkZa3ysvSvw/LOsh2SmX36ib28dQ3pf049x/33VuyUcV9tyPc1O9SrIF8M714Cfw0AAIB3hARK4Dtt2jTH8pEjR+Tpp5+WPn36SNeuXc26FStWmFndnnjiCfE3B3JKHarFRcvoy2rK6MuayYB3VsvPWw/J/R/+IT+M7CUvL/pLVu90H9Cv2n5ErulQRyJyMriLNh00P6MjQiUi9PSs7sm0TPl993E5nJgmVcpGlejfBgAAUGoTWISEBEbg6zxj27XXXitPPvmk3HvvvY51999/v7z66qvyww8/yIgRI8RffLV2n/yTE/jWiIt2rD+3USUT+G47lCTL/j4i+xNSzPoHLmoi9Suf6s86/usNcjI1U7bEn5RWtW1TOW/cn2B+fjD0XOlQr+Jpr9l76k/y98FE+WrtPzK4WwMJLUIpBQAAgM/V+EoA9vHVzO6///3v09ZfeumlMnr0aPEn7y7f6ViuVu5U9nVg1wby3PwtZnnVjiNyMME2Qv/aDnWknlPgO/ePffLLX4fl7jlrJC46wpz4QyfTTB+7ZjXKuX3NNrXLm8D3qW82yvq9x2Xaje1L8C8EAAAoWVbOT39I5RV6hFXlypXlq6++Om29rtPf+Yv0zGxTcqDm3d/TZbBZbFS4TL6mtVn+cfNBScvMNsvV4lxLE3o2qWJ+6oC4Df8kOLK9bepUMD2B3bm+U13H8qLNByXbTd0wAACAvwkJCcCM78SJE+WOO+6QJUuWSJcuXcy6VatWyfz58+Wtt94SfzHg7VXmZ4WYCGle8/Ts7DkNbGUKGtCqctHhEh0R5rLN7d0bSvt6FSU5/VQHBz3nbetUyPN1uzauLH89c5m0HL/AlEms33dC6lZynd4227LM6x5JPNULNivbknV7j5ufUeFh8sHq3SZoblaznHx+dzezDl6m0xQftNV4M2UxACBYWH5U61DowHfQoEHSvHlzefnll+WLL74w6/T+0qVLHYGwP9iwP0FCImPkX21qui3Gbly1rFSMiZBjOf18qzqVQthplvicBpUK/do6EK5FzThZu+e4XDV9mRSHTryx7WASs835An0fVa3q7b0AAMArQvyg2KHQga/SAHfOnDniz/TLSZ0KZeTpfraShtw0GO7UoJIs3HjA3K9e7tTgN0+4rmMd2fDPCcnIcv8tSYNuHTDnHJTrgDtnVcpGyuHEdDmZmvdkG3uPJct/Vuwy5RpaqjG0ZyNHBwoAAABPCchSB7Vt2zaZNWuWbN++3bQ6q1atmnz33XdSr149admypfiLTjnlDHkZfn5jSU7PNOUFw85v7NHXvvXc+nJLl1P9f93JnYnWwFdbrdkH49WsUCYn8M17lrDXlmyTD1btdtzXQXcXNqte7P2HGzpN8ciRtuWpU0WiaFcHAAiidmbi+wqd+vvpp5+kdevWpq73888/l8TERLN+3bp1Mn78ePEXHetVlCE9Gua7jdbvzrnjXPnozq7Sq6nnL2FrYJvfLbcWteIcy02ql5W4aNv3lpNpeWd8neuEVfwJ1/vwIJ2m+LXXbDemLAYABAnLj2ZuK3Tgqy3LdAKLhQsXSmRkpGP9hRdeKCtXrhR/8e6Qzqb7gj/RCS+0l3DXRpXlngvOMgPuVH4Z36Q028C7yHDbqT6WnF5KewsAAIJKiAReqcP69evlgw8+OG29ljscPnzYU/uFPIy4uKlj+cs/9p0x8E1Ms/2uTsUysv1QkkxZsEVS0rPkoUua+sUMKwAAwF9KHUIk4DK+FSpUkP3795+2/o8//pDatWt7ar9QAOWiI8zPhHwGtyU5At9TLdNeXfy3bD1gK1EBAAAoDv8pdChC4HvjjTfKo48+KvHx8SZjmJ2dLcuWLZNRo0bJgAEDSmYv4VbBSh1OZXzzq/0FAAAoDn+4kFzowHfSpEnSrFkzqVu3rhnY1qJFCznvvPOkW7duMnbs2JLZS+Sb8U0sQKlDXaeMrzqekneWGAAAoLATWPhB3Fv4Gl8d0KYztI0bN87U+2rw2759e2nSpEnJ7CHOmPHdcThJ5v+p5Sch0rF+RcdkG/pGTMqZVa5WBdc+xMdzJuZQ8SdSzQxyXRpVkricYBoAAAQG7en/574TJfb89iSbBGLg++STT5qyBs346s0uJSVFpkyZYgJilI4KZWxBqgatw97/3Sy3rl1e/ntfD7OcmpFtehDbO0I4O55yqrvD9W8slz1HU6RPy+ryxm2dOH1FVaaMyI4dp5YBAPAyjQP6TV9m+v6XNJ3RNuAC34kTJ8qwYcMkJsb10nlycrL5HYFv6el+VhW5vE1NOXAiVbItS37ffdzMBpeakSXREWEu38C0BdqArvXlw9W7zWxxJ3IyvidSMkzQq37beawU9z4AhYaKNGjg7b0AAMAhIyvbEfS2r1dBwkqoELde5RhpU6d84AW+evncXRssncCiUqVKntovFEBsVLhMv7mD47y0mfi9Gei260iynF2jnGNgW2xkmISGhsiTV7UyM749//1WR6nD7iPJLnW/+gFhSmMAAAKr1Ziac0cXiYks0qS9AaPAf33FihUdM4o1beraAzYrK8vU+momGN6h5+OsamXlj93H5f2Vu6RZzXKmdtceINuVj4l0KXXYdTTJ5XLI/uOp5lsbiiA9XeTxx23LzzyjBfEcRgCAV+kVYbtQf2i74CuB77Rp00xW8fbbbzclDeXLl3cZ8NagQQPp2rVrSe0nCqBJTuD7n5W7XNaXz6kFdq4LXvb3Ebnq1aWn1fy8/tM2mXxNa453UWRkiDz/vG15wgQCXwCATwW+IcS9BQ98Bw4caH42bNjQtC6LiGD0v6+587zGkp6ZLSkZtk4O9m9313eq47ivWWGl9b/r9p4+wlNrgJ/u10rCQvl0AADg73LGuBuhRL6Fr/Ht1auXYzk1NVXS9fKuk7i4uGKeIhSVBrXTbmyf7zbNa8bJdw/0lP0nbAPaVGxkuGmBduELPzmCYucsMQAA8O8euyqUwLfwga92b3jkkUfkk08+kSNHjpz2e633hW/T4FdvuUVHhJoWaAkpGQS+AAAEAHtbUxXKxdzCz9z28MMPy48//iivv/66REVFycyZM03Nb61ateS9997z9PlCKbJPXpGQyqxuAAAEWqlDCBnfwmd8//vf/5oA9/zzz5fBgwdLz5495ayzzpL69evLnDlz5JZbbvHwKUNpiSsTIQdPpsnRpHRZtf2IpGZmm/WtasVJ5VwTYAAAAP8pdSDbW8TA9+jRo9KoUSNHPa/eVz169JC77767sE8HHxKXMwXypHmbZdP+BMf6hlViZfGo8724ZwAAoDgZXwatF7HUQYPeHTnTsjZr1szU+tozwRUqVCjs08HHMr7KHvTWrmCbdnfH4SQ5SfnDmek0xX/+absxZTEAwIfamVHmUMTAV8sbdJY2NXr0aJk+fbpER0fLiBEjTP0v/Fe5nBpfuynXtXFkgffnTIaBM0xZ3LKl7abLAAD4SOBLqUMRSx00wLXr3bu3bN68WdasWWPqfNu0aVPYp4MPsQe5dnUrxUitCmUkIf6k/HM8RZpWL+e1fQMAAIVn72ZGKzObYk/YrIPa9IbAKXWw1wLVLB9tyh02m8CXjO8ZaU/rSZNsy489xsxtAAAfyvjSy6zIge+vv/4qixcvloMHD0p2tm3kv93UqVM9cZ7gBTXiol0GtIWHhUrNCrZ1j81dL9d0qC3REWGcm/ymLJ440basZT+RkRwrAIBPDG4j7i1i4Dtp0iQZO3asnH322VK9enWXYmkKp/3bdR3rSEZWtiSkZsolLaqbdZ0bVpb3V+42y2v3HJdzG1X28l4CAICCIuNbzMD3pZdeknfeeUcGDRpU2IfCx8VGhcsdPW2t6uyubFtLXly41XR2iGeAGwAAfoU+vq4KPfQ8NDRUunfvXtiHwY+1r2drU0dnBwAA/LPUgRrfIga+2tVBW5gheOggN7X/RIq3dwUAABQCfXyLWeowatQoufzyy6Vx48bSokULiYhw7f36xRdfFPYp4eNqlLdNZPHlH/tkwhUtJZRmgAAA+AV7DwL+6S5ixvf+++83HR2aNm0qlStXlvLly7vcEHhq53R20EFv//3fP97eHQAAUEAMbitmxvfdd9+Vzz//3GR9ERy6Na7iWNaevld5dW98WHS0yOrVp5YBAPAyZm4rZsa3UqVKpswBwUN79z56aTOzfIDODnkLCxM55xzbTZcBAPCZPr5MYFGkwHfChAkyfvx4SU5O9vjJge+qUT7K/IxPYAY3AAD8LuNb6IgvMBW61OHll1+Wbdu2mckrGjRocNrgtt9//92T+wcfUT1nVjcC3zNMWfzSS7blBx5g5jYAgM/08Q0j41u0wLdfv36FfQgCaDrjf46nyBs/bZMeTapIy1oMZjxtyuJHHrEtDx9O4AsA8Dr6+BYz8NUyBwSfGuWjJSw0RFIzsmXyd5ulzsoysvTRC729WwAAIB/ZOZEvCV8bKj5QIDGR4TLlujZyVbta5v7eYymSnpnTHBAAAPgkMr5FyPhqJ4etW7dKlSpVpGLFivmODDx69GhBnhJ+6JoOdeTq9rVl3vr9kpFlyaHENKldwTa5BQAA8N0aX6YsLkTg++KLL0q5cuUcy7TECF567quVi5Z9x1PkQEIqgS8AAH7Rzszbe+JHge/AgQMdy4MGDSrJ/YEfqBYXZQLfg7Q2AwDApzFzWzFrfMPCwuTgwYOnrT9y5Ij5HQJf9XK2Dg8/bT0sq7YfcRTOAwAA30If32IGvvZakdzS0tIkMjKysE8HP+3woD5cvVv6v7lSFm0+/YtQUNJpihcvtt2YshgA4APsYRs1voVsZ6YTV9hrPGfOnClly5Z1/C4rK0t+/vlnadbMNq0tAttNnevJ9sNJsml/ghw6mSZb4hPk4hbVvb1b3qdXPM4/39t7AQDAaRlfxmcVMvDVQW32jO+MGTNcyho006uzuOl6BL6za5ST927vLM/N3yyvLdlmgl8AAODL7cy8vSd+Fvju2LHD/Lzgggvkiy++MG3NENyqlYsyPw8S+J6aue3NN23Ld94pkms6bwAAShuD24pZ47t48WKXoFfLHNauXSvHjh0r7FPBz1XLmcaYwDdHerrIvffabroMAICX2Qegk/EtYuD74IMPyttvv+0Ies877zzp0KGD1K1bV5YsWVLYp0NAZHxTvb0rAAAg3z6+1DoUKfD99NNPpW3btmb5v//9r+zcuVM2b94sI0aMkMcff5w3XRCpmhP46vTF3Z/9UaYv/tvbuwQAANyWOnBYzHEo7GHQfr01atQwy/PmzZPrr79emjZtKrfffrusX7+eoxpEapYvY4Jf/UzphBbvLLXVgQMAAN8KfMOIfIsW+FavXl02btxoyhzmz58vF198sVmfnJzMBBZBJjI8VBY91EveH9LF3D+anC6ZWdne3i0AAJCDPr5F7OpgN3jwYLnhhhukZs2apl6kd+/eZv2qVavo4xuE4qIjpGvjyuYSitYRHU1Kdwx6AwAA3kUf32JmfCdMmGAmsLjzzjtl2bJlEhVlq/PUvr6jR4+Wopg+fbrpAxwdHS1dunSR1atXF+hxH330kQm++/XrV6TXhWfo5ZNKsbb3waFEevoCAOAr6ONbzIyvuu66605bN3DgwKI8lXz88ccycuRIM/mFBr3Tpk2TPn36yJYtW6RatWp5Pk4H1Y0aNUp69uxZpNeFZ2mt7+HEtOCezEK/BH7zzallAAC8jD6+Rcz49u3bV06cOOG4/+yzz8rx48ddBr21aNFCCmvq1KkydOhQU0Khj9cAOCYmRt555508H6P1xbfccotMnDhRGjVqVOjXRMl1eNBBbkErPFzk8sttN10GAMDLdMZdxdi2Qga+CxYskLS0U9m8SZMmydGjRx33MzMzTZa2MNLT02XNmjWOOmGzQ6Gh5v6KFSvyfNyTTz5pssFDhgw542voPickJLjc4HlVykaan4/P/VNSM7I4xAAA+AD6+BYx8LV/Y8jrflEcPnzYZG+1U4QzvR8fH+/2MUuXLjUTaLz11lsFeo3JkydL+fLlHTedaAOe17dVTcfyriPJwTtl8ezZtpsuAwDgZfTxLebgNm86efKk3HbbbSborVKlSoEeM2bMGFOiYb/t2bOnxPczGPVuUV2aVCtrlrXWNyjpNMWDB9tuTFkMAPCpwW3MYKEKXIio3RNyT3dX3OnvNHjVbhAHDhxwWa/37ZNkONu2bZsZ1HbFFVc41mVn2/rGhoeHm1KLxo0buzxGu07YO0+gZFUuGyl/HQziwBcAAJ+t8SXwLVTgqwdu0KBBjiAyNTVVhg0bJrGxsea+c/1vQUVGRkrHjh1l0aJFjpZkGsjq/Xvvvfe07Zs1a3ba7HBjx441meCXXnqJMgYvq1zW9t44kpju7V0BAAAmrrIFvsS9hQx8c7cru/XWW0/bZsCAAVJY2spMn7tTp07SuXNn084sKSnJdHmwP2ft2rVNra72+W3VqpXL4ytUqGB+5l6P0lc1J/Al4wsAgG+g1KGIge+sWbOkJPTv318OHTok48aNMwPa2rVrZ6ZCtg942717t+n0AN9XOdbW2UF7+WblfNKYGxwAAO9hcJsrn2g2qmUN7kob1JIlS/J97GwdQQ+fKnX4dM1ec1N39GgoY/9V+P7OAACg+JjAwhWpVHhM54YVJTYyzGXdwk2uAxcBAEDpoY+vD2Z8ERjOqlZO1jxxsZnAYnP8SbnxzZWSkh5Ek1nowM9PPjm1DACAj2R8w0h1GgS+8KjoiDBzq5YzhXFQBb46TfH113t7LwAAcLDPN0Y7Mxvif5SImEjbd6oUpi8GAMAH2pnRx1eR8UWJKBNhq/XNzLYkIytbIoLhGktmpsjcubblq6+2ZYABAPCJdmacBsW/zCgR0ZGnAl3N+gZF4KuTuNxwg205MZHAFwDgdXR1cBUE0Qi8ITIs1NHDN6jqfAEA8Mkpi729J76BwBclQmuJ7OUOBL4AAHgH7cxcEfiixGh3B8UANwAAvINSB1cEvigxMTmTWSRT6gAAgFcwuM0VgS9KjL3UQSe0AAAAXqzxpcjXIPBFiYnOyfhS4wsAgHdLHWjja0M7M5SYmJyMb3KwZHwjI0VmzTq1DACAz5Q60NZBEfiixJTJyfimBkuNb0SEyKBB3t4LAAAcsnIiXyodbAh8UeKB7/urdsmybYddfte1UWW5sXM9jj4AAKXSx5eMryLwRYmpXi7a/Pzf3hPm5uyb/+2Xfu1rO1qeBcyUxQsW2Jb79GHmNgCA19HH1xWBL0rM/RedJY2qxp7W1eHpbzeZSy/a5iygAl+dsvhf/7ItM2UxAMCHBreFkfE1CHxRYirERMqt59Y/bf1z87dIelY2E1sAAFDC6OPrinZmKHVREba3Hf19AQAoWfTxdUXgi1LHxBYAAJQO+vi6IvBFqbPX9aZmZHP0AQAoQfTxdUXgi1IXTakDAAClmvGlj68Ng9tQ6ih1AACg4P4+eFL+PphYpEO291iK+UkfXxsCX5S6qEAtddBpil999dQyAADFdDw5Xfq+tNR0QyqOcFK+BoEvvFjjmxV4Uxbfc4+39wIAEEAOJ6aZoDcsNETa161Q5PaifVrV8Pi++SMCX5S66HBbaXlKoAW+AAB4WGbO6LSKMRHy2d3dOL7FROCLUlcmMkAzvllZIr/8Ylvu2VMkLIBmpQMAeEVmli3wDQ+lH4EnEPii1EWH2wLCtMwAq/FNTRW54IJTUxbHxnp7jwAAfi4rJ+OrpQ4oPr4+oNTRzgwAgMKVOoSHEfh6AoEvSl10TqlDSnqAlToAAOBhZHw9i8AXXit1SM0k8AUAID+Z2bayQNqReQY1vvBaO7Pfdh6TKQs2S1hIiFzVvrY0rlqWswEAgJvBbWEMbvMIAl+UukqxEebn5viT5qbW7j0h793embMBAICbUgcyvp5B4ItSd3mbWnIgIU2OJadL/IlU+e7PeIk/YZtSEQAAnD64ja4OnkHgi1JXNipc7r+oiVlev/eECXxPpGQExsxtzz13ahkAgGLKosbXowh84VXly9gCxIAIfCMjRR5+2Nt7AQAIILQz8yy6OsAnAt/UjGxJo8sDAAB51PgSsnkCRxFeVS46XEJyenL7fdZXpyz+9VfbTZcBAPBYVwcmsPAESh3gVaGhIVIuKlwSUjMlISVDqpWL9u8pizvndKZgymIAgAfQ1cGzyPjC68rHBFCdLwAAHkRXB88i4wufqPPdIymybs8JiQgLddQyNatRzmSEAQCQYJ+5LYx/Dz2BwBdeV6FMpPn55DcbXdYP7FpfJl7Vykt7BQCA9zFzm2cR+MLr+p9TV3YfTZbMLNu32tTMbDmalC4b9yd4e9cAAPAqanw9i8AXXndF21rmZrf0r8Ny69urJCEl06v7BQCAt1Hj61kMboNPtjhTJ1MZ7AYACG72mdsiqPH1CDK+8DlxOZNaaIszv6LTFI8ff2oZAIBiIuPrWQS+8DlxORnfxLRMU9vkN027dcriCRO8vRcAgADCzG2eRakDfE656FPZ0kR/y/oCAOBBZHw9i8AXPicyPFSiI2xvzQR/qvPVOqwNG2y3nJosAACKg64OnkWpA3w265uakeZfgW9KikirnL7DTFkMAPCAjJxWn35T9ufjyPjCp+t8T1LqAAAIYmR8PYvAFz5d55uQ4kcZXwAASqzGl5DNEziK8El+29IMAAAPysqyBb7h9PH1CAJf+HipAxlfAEDwsmd8w6nx9QgCX/h4qQMZXwBA8LLP3MbgNs8g8IVPiitDxhcAADK+nkU7M/ikOHvG159KHXSa4lGjTi0DAOChrg5hYeQqPYHAFz4pv3Zm+j+BWct2yIGE1NN+V6VslAzq3kCiwsPEK1MWT5lS+q8LAAhYZHw9i8AXvl3j6ybju3jzQXn62015PrZupRjp27pmie4fAAClIZMJLDyKwBc+XePrbnDbxv0J5meLmnHSs0kVx/rFWw7K1gOJ8s/xFPEKHYCwe7dtuV49EXouAgCKiYyvZxH4wqczvu7amW09cNL8vLJdLRnWq7FjfVpmtgl8jyali9emLG7Y0LbMlMUAAE/W+NLOzCMIfOHTg9v2HEuRS6f97PK7XUeSzc+m1cu6rK8UG2l+Hkv2UuALAAhoM3/ZLp+t2Vuqr2n/Ny+cq4geQeALn1SrQrTERIZJcnqWbI63ZXidRYaHSuvaFVzWVcwJfI8kEvgCADxvxk/b5XBimlcObb1KMV553UBD4AufLXX4YWQv2X4oye3v61eOkarlolzWVc4JfL1W6gAACGhpGVnm5/PXt5UacdGl9ro1ykfJWdXKldrrBTICX/isWhXKmFtBVYzJCXwpdQAAlIC0nA4LXRtXltqF+PcJvoNuyAgYlcvaAl/NEq/ecdTbuwMACCCWZUl6pi3wjQgL8fbuoIgIfBEwnL99f17Kgw8AAIEtI8vWXUFFhXlhkiR4BKUOCBixUeFyzwWNZfribZKYdnr/3xIXHi4yfPipZQBAwMjIKXOwD7CGf+JfZwSUBpVjzU+vBL5RUSLTp5f+6wIASpy9zEER+PovvrIg4LK+KjndC4EvACBgpTtNHcxkEv6LjC8CMvBNTLO1nClVliVy+LBtuUoVkRAGPwBAoGV8I8PIGfozAl8ElLJRtgEHSd4odUhOFqlWzbbMlMUAEFDS7IEv9b1+ja8tCCgxkZQ6AABKMONL4OvXCHwRUMo6Sh2o8QUAeL7Gl1IH/0bgi4Cs8U3NyJZMp9YzAAAUBxnfwEDgi4ASm1Pjq5Jz5lQHAKC4GNwWGAh8EVD0ElR4aIj3BrgBAAJ6AgtqfP0bXR0QUEJCQky5w4mUDFnwZ7zUKB9t1peJDJdujStLBG1oAABFQFeHwEDgi4ATV8YW+E7470aX9aMvaybDejUuuRfWaYoHDjy1DAAIGAxuCwz864yA88BFTeXjX3eb+STU/hOpsu94iuw4lFTyUxbPnl2yrwEA8AoGtwUGAl8EnOs61jE3u/dW7JRxX22Qk2kZXt0vAID/IvANDD4xuG369OnSoEEDiY6Oli5dusjq1avz3Patt96Snj17SsWKFc2td+/e+W4PlIu2fb9LSCnhwW6aYk5Kst3s6WYAQEBIz7R1CmJwm3/zeuD78ccfy8iRI2X8+PHy+++/S9u2baVPnz5y8OBBt9svWbJEbrrpJlm8eLGsWLFC6tatK5dccons27ev1Pcd/iEuOsL8TEjNKPkpi8uWtd10GQAQMKjxDQxeD3ynTp0qQ4cOlcGDB0uLFi1kxowZEhMTI++8847b7efMmSPDhw+Xdu3aSbNmzWTmzJmSnZ0tixYtKvV9h38olxP4nkylvRkAoGjo4xsYvFrjm56eLmvWrJExY8Y41oWGhpryBc3mFkRycrJkZGRIpUqV3P4+LS3N3OwSEhI8sOfwty4PKiHl9Izvyu1H5K2ft0tGtq00IS46XMb0bS61K5Qp9f0EgEC152iyPPvdZjnpx/3Vdx2xDZCm1MG/eTXwPXz4sGRlZUn16tVd1uv9zZs3F+g5Hn30UalVq5YJlt2ZPHmyTJw40SP7C/8uddCMr2VZptev3YsLt8qqHUddtm9eM07uueCsUt9PAAhUn63ZK9+u3y+BoGYFW394+Ce/7urw7LPPykcffWTqfnVgnDuaTdYaYueMr9YFI/gGt2l9ljYgj46wTWusQfCWAyfN8qOXNpPVO47I4i2H3GaGAQBFl5iT6b2oWTW5vE1Nvz2UMZHhcv7ZVb29G/DXwLdKlSoSFhYmBw4ccFmv92vUqJHvY59//nkT+P7www/Spk2bPLeLiooyNwSv2Mhw0VmMtZph3Z7jUik20qw/npIhx5MzJCw0RAZ3byBpmVkm8LX/DxoA4BkpGbaOCG3qVJBrOpxqNwkEVeAbGRkpHTt2NAPT+vXrZ9bZB6rde++9eT7uueeek2eeeUYWLFggnTp1KsU9hj8KDQ0xA9x0Nrf+b6487fcNKseYLHDZKNvHgcAXADwrJd0W+JaJ9PqYegQ5r5c6aBnCwIEDTQDbuXNnmTZtmiQlJZkuD2rAgAFSu3ZtU6ur/v3vf8u4cePkgw8+ML1/4+PjzfqyZcuaG+DOzV3qySe/7pHc3XVDQ0JkYLcGZjk2J/BNKmrGNyxM5LrrTi0DAHIFvl4POxDkvP4O7N+/vxw6dMgEsxrEapuy+fPnOwa87d6923R6sHv99ddNN4jr7AFGDu0DPGHChFLff/gHreHVW35ii5vx1TrzTz8t2mMBIAhKHcrkjLEAgjbwVVrWkFdpgw5cc7Zz585S2isEm7JRtv8hJ6XZ/gcNAPBwxpfAF15GsQ2QIzaymKUOAIB8M74xkWR84V0EvkCOsjltz4rcYD0pSUR7BOtNlwEALoGvvZ0k4C0EvkAOe1cHMr4AUDKlDmR84W0EvkCuwW3J6VmSnTOFMQDAg4PbKHWAl/nE4DbAlzK+atj7ayQ8zDa1cfkykTLqkqZSuSwToQBAUTC4Db6CwBfIERUeamZ1O5qULt9vdJ1NsFmNco5+vwCAgtPp4cn4wlcQ+AI5QkJC5IOhXWT1jqOOY/L12n/kt13H5GRqBscJAIogNSPbsUw7M3gbgS/gpFmNOHOz234oyQS+zv/jBgBnqRlZsnzbYUnP5P8T7iQ69UanqwO8jcAXyEdURKjjH7Yz0mmK+/Y9tQwgKDz73WaZvZzJlc5Es71hobaxE4C3EPgC+YgOtwWwqZlZBZuy+NtvOZ5AkNlx2Na3u2GVWKkcG+nt3fFZl7Wu6e1dAAh8gfzYL8tR6gAgL4k5k948eunZcmkrgjvAl9HHF8hHdGFKHQAEpcRUW+BbNirC27sC4AwIfIF82EcgFyjw1WmKY2NtN6YsBoKGvetLuZxpzwH4Lj6lgCdLHZKTOZ5AkDmZU+pQlsAX8HlkfIF8UOoAID86vbm9xpeML+D7CHyBfERFFKKrA4Cgk5yRJZZlWy5HjS/g8wh8gYK0M2MCCwD5DGwLDw1xXCEC4Lv4lAL5oNQBQEEGtml9r057DsC3MbgNKMDgtgMJqbJgQ7xYliWNq5aVJtXLcdyAPGpeV+04KidS0oPi+Ow4bBvQSn0v4B8IfIECBL4ZWZbc9Z81tg9NaIiseuwiqVw2ynXj0FCRXr1OLQNBaP6GeBk+53cJNnHR9PAF/AGBL5APdzV7mdmWHEhIOz3wLVNGZMkSjieC2t8HE83PquWipH6lGAkGoaEhMqhbA2/vBoACIPAFCjCBhT0IrhwbJfuOp0gaXR4At44m2Uocru1QR0Zf1oyjBMCncD0WKECpg2pRM86RAU7LLOCEFkCQOZ5sC3wrxXLpH4DvIfAFzhD4PnRxU+naqLKMuuRsicppb+Y28NVpiqtWtd2YshhB6liyrctBhZhIb+8KAJyGUgfgDO67qIm5qSh7xjcjjwktDh/meCKo2TO+FQl8AfggMr5AIUSFU+oAFCTjS6kDAF9ExhcohHxLHYAglJqRZW52x3IGt1HqAMAXEfgCRcr45lHqAASRP/edkOtmLHc7pXclSh0A+CBKHYBCiMrp8pDm5h96INis3H7EbdB7bqNKUiGGrg4AfA8ZX6AQqPEFTjl0Ms381Mkbxl7e3LE+LDREQkJCOFQAfA6BL1DEUofsbEumfL9Fdh5OMusi0lNlVKMWUi0uWqKZshhB4GBO4FujfLSEh3EBEYDvI/AFiji4bdWOo/L6km0uv//6+udkQNf68qROXwwESca3Wrlc03cDgI8i8AUK4VQf32xZt/e4WW5Xt4Jc27GOLP3rkCzYcECS0hj4huBw8GSq+VmtXLQEmuzsbElPt3WoAFAyIiMjJbSUr5AS+AJFKHV4Z9kOx7pLW9WQ286tLxmZ2Sbwzchi4Bu8Y/6f8fLt+v2l9nq7jiSbn9XiAivjqwHvjh07TPALoORo0NuwYUMTAJcWAl+gCKUOzs5pUNH8jM5Mk6Wv3y5lIsNErvpbJCaGY4tSNfbL9XI4sXSzlJHhoVKzfOBkfC3Lkv3790tYWJjUrVu31LNRQLDIzs6Wf/75x3ze6tWrV2oDYgl8gSJkfO3euK2jdKxfyfa70BCpk3DQ9gvL4riiVCWlZTqC3sf7NpfwsNL5R6R17fJSLjpwWpdlZmZKcnKy1KpVS2L48gqUqKpVq5rgVz93ERGl8/8RAl+gCDW+qkO9CtKnZQ3H/Yhw2jfBe/YdTzE/46LDZeh5jTgVRZSVZavRL81Lr0Cwisz5nOnnrrQCX67hAEUsdahd0bWUIYJLovCifcdS3L4vUTT0IQYC83NGxhcoYqlD7QquLcsi6GMadP6397h8v+GAWOL90pZN+0+6fV8CAE4h8AUKwXka1oZVcmV8S6mmEr7jwY/WyvacCUx8Re73JVBUs2fPlgcffFCOH7e1bvQH/rjPKF0EvkAhdG1UWR7r28z08b2ybe3TRrcjeKRmZMmOI7ag99Zz6/lExj8mMkwGdm3g7d2AFwwaNEjefffd09b36dNH5s+ff8bHN2jQwASMerPr37+/9O3bVwItWHV3eb179+6ydOnS036vAxx1oKP+/r777pOOHTs6frdkyRK54IILHPerVasmPXr0kClTpkijRtTZ+yoCX6AwH5iwULnzvMZufxcRHiZbK9eTyPAQaeCFuiWUrt1Hk03zjnLR4fLUVa2oCYXXXXrppTJr1iyXdVFRRe+xXKZMGXMLRHqc9HjZ5R7MaP99amqqbN26Vd58803p0qWLvPPOOzJgwACXbbds2SLlypWTv/76S+6880654oor5H//+59piQff4/0UBRAgwsrGyiV3vCa3jXyHHr4BKi0zSxZvOSjz/9wvX63dZ9Y1rBJL0BvAtK9vcnqmV2762oWhQW6NGjVcbhUr2vqM63NNmDDB9EvV7TSLef/995vfnX/++bJr1y4ZMWKEeS/bM56aia1QoYLj+fXx7dq1M8GfPk/ZsmVl+PDhZkT+c889Z15Ps57PPPOMy35NnTpVWrduLbGxsaY3sj4mMTHRkTUdPHiwnDhxwvHa+joqLS1NRo0aJbVr1zaP1cBTt3em+6j7opnZq6++Wo4cOVKgY6V/l/NxqlSpktvfayb8kksukc8++0xuueUWuffee+XYsWMu2+rfXLNmTTnvvPNk3LhxsnHjRvn7778LfN5Qusj4Ah5iv9SdnslsT4Fq+uJt8vKiv1zWaeCLwJWSkSUtxi3wymtvfLKPxER65p/pzz//XF588UX56KOPpGXLlhIfHy/r1q0zv/viiy+kbdu2Jls5dOjQfJ9n27Zt8t1335nyCV2+7rrrZPv27dK0aVP56aefZPny5XL77bdL7969TaCqdBKQl19+2czQpdtq4PvII4/Ia6+9Jt26dZNp06aZgFEzp0oDaqVBpgaRus8aqM+dO9dkYdevXy9NmjSRVatWyZAhQ2Ty5MnSr18/s0/jx4+XkqJfDN577z1ZuHCh3HDDDW63sWfIme7adxH4Ah7u+JCR5f0R/igZv+08an42rhorFWMiJToiTG7v3pDDDZ/wzTffOIJGu8cee8zcdu/ebTKYGpBqv1TNknbu3Nlso9lOvSyvl+t1mzPNtqUZX922RYsWpsZVA9Z58+aZAPfss8+Wf//737J48WJH4OtcN6wZ1KefflqGDRtmAl8tMShfvrzJ9Dq/tu6vlhvoTw16lWZ/NbjV9ZMmTZKXXnrJBMIaRCsNvjXwLkhN80033eRSivD++++b4Dk/zZo1Mz937tzp9vc6A9nzzz9vMtR6HOCbCHwBD4lMS5XvZw4X0873oU2UOwQYvVS8Od7WMmxa//bSuk55b+8SSkGZiDCTefXWaxeGBqGvv/66yzr7Jfzrr7/eZFZ10JUGizpoTWtRw8MLFwZo4KpBr1316tVNAOk8tbOuO3gwZxZLEfnhhx9MVnbz5s2SkJBgZunS2lmdIS+v2fE0q6slFBrMOtPyh8qVK5vlTZs2mfIGZ127di1Q4KvZb/0SYKelCmdiLz3JPTiuTp06tpKY5GSTOdfsOhOg+C4CX8BDtJ1Z/SO7bXeYstin/WfFTpmzKudcFZCe0qNJ6RIaItKkumtWDYFLgxxPlRuUNK2DPeuss9z+TmtrNTOrQaheqtdyA+0+oOUJhZkxK/e2enzcrdPMsD07+q9//UvuvvtuU/urgbh2T9ASBS0HyCvw1RpgDajXrFlz2iCx3FntotDscl7HKi8aaCst2XD2yy+/SFxcnKn1df5SAN/kH59mwA+EO/Xx1W//9HXwTXpuXli4VY4nZxTp8W3rVjAlDoC/0fpTzfLq7Z577jGX7jWz2qFDB5OhtE/X7EkauGoQ/MILLziywp988onLNu5eu3379madZo579uzp9rmbN29u6nydrVy5UkqKZsw1wHXOFNsDYedBgPBtBL6Ah0Q69XHNyrb4cPlwGzINevV8zRzYSUIL0XpON6XEAb5KywB00JozLWWoUqWK6X6ggaTW3WqWVWtaNRCuX7++o4Th559/lhtvvNF0fdDHeIJmVTMyMuSVV14xAfeyZctkxowZLtvoa2uGd9GiRaZUQPdPSxy0i4K2DtOgWQPhQ4cOmW3atGkjl19+uelKof11ta72qquukgULFhSozKEgtKewHks9ptrO7I033pAvv/zSDG4jyPVvBL6AhzhPYKED3MIDMFP60KfrZM0u11Y+/iYl3ZZZal4rTs5rWtXbuwN4jAZ9uWtVdZCV1tZqsPbss8/KyJEjTQCs7cX++9//Oupln3zySbnrrrukcePGJtgrbCu1vGggq+3MdMDbmDFjTMsvrfd17oWrnR10sJtOmKHtyLQzg7Y000FsOhDuoYcekn379plg/NxzzzWlE0qX33rrLbO9doXQTOzYsWPlqaeeKvZ+a4s1FR0dbQar6cQUq1evNtlx+LcQy1Pvbj+hhfU6glR7BuolC8BTMhJOSkR523vqxKFjUr5KYF362hyfIJdO+0UCxf0XNZGRF7sOnAF00NWOHTvM5WsNegB45/NWUvFaoCWlAK8J11FPOQKll+/x5HRZteOoyf4s32ZrDN+xfkUzbbM/iwoPk+Y1+eILAMGGwBfwkJDQUNlbvpqIJRKWHRgXUu778A/55a/DLuvOb1pVOtZ3neUIAAB/QOALeEpMjPS5/11JSs+Sn6KiXQa67T+R4pe1sMv+PuzI8mo+u0JMhPQ/p663dw0AgCIh8AU8PMBNA9+MrFOlDrfOXCUrthds/nhfpLOUfX53N2/vBgAAxUbgC3hQRE5Ls437T0pqRrYcOpnmCHrtUxr7298zpEcjb+8GAAAeQeALeEpKirw7414zsO2GjGclLSLK8aueTarIf4bY5q0HAADeQeALeEp2tjTfu8Us1iwXKamRtjrf6IhQGdarMccZAAAvI/AFSsCShy8QiY3l2AIA4EP8r+gQAAAAKAICXwAAcEY6jXC7du189nXOP/98efDBB6W0NWjQQKZNm1as5xg0aJD069fPI3+fTgv9wQcfiC9Mod2uXTvJzvatCZ0IfAEACAB79uyR22+/XWrVqiWRkZFSv359eeCBB+TIkcK3UwwJCZEvv/zSZd2oUaNk0aJF4m1Lliwx+3f8+HFv74rP+frrr+XAgQNy4403ukwLfM8990jlypWlbNmycu2115pt8pKRkSGPPvqotG7dWmJjY837acCAAfLPP/+43T4tLc0EuHpO1q5d61h/6aWXSkREhMyZM0d8CYEvAAB+bvv27dKpUyf566+/5MMPP5S///5bZsyYYQLVrl27ytGjR4v9Gho0afAUSDTICyQvv/yyDB48WEJDT4V3I0aMkP/+97/y6aefyk8//WQC2GuuuSbP50hOTpbff/9dnnjiCfPziy++kC1btsiVV17pdvtHHnnEBMd5ZbJ1n3wJgS/gSVWq2G4AAktSUt631NSCb5uSaxbHvLYrJM3oaZb3+++/l169ekm9evXksssukx9++EH27dsnjz/+uMul+aeeekpuuukmk9GrXbu2TJ8+3eX36uqrrzZZPPv93CUI9svzkyZNkurVq0uFChXkySeflMzMTHn44YelUqVKUqdOHZk1a5bLvmo2sWnTphITEyONGjUyAVZBA9CdO3fKBRdcYJYrVqxo9k/3w04vq2sgpq9do0YNs8/OdPvXX3/dBHH6tz/zzDNm/VdffSUdOnSQ6Ohos08TJ040f4eyLMs8jx7TqKgoE+Tdf//9pwWLmm0vV66c2e7NN990+f369evlwgsvlDJlypgvD3feeackJibm+XcmJSWZLKt+2ahZs6a88MILZzw2hw4dkh9//FGuuOIKx7oTJ07I22+/LVOnTjWv37FjR3M+li9fLitXrnT7POXLl5eFCxfKDTfcIGeffbace+658uqrr8qaNWtk9+7dLtt+99135j33/PPPu30u3ZfffvtNtm3bJr6CwBfwFO3icOiQ7UZHByCwlC2b9+3aa123rVYt720vu8x1Ww0q3W1XCJrNXbBggQwfPtwEVs40+Lvlllvk448/NgGc3ZQpU6Rt27byxx9/yOjRo01JhAY76tdffzU/NUDav3+/4747GmhpBvHnn382wdX48ePlX//6lwlKV61aJcOGDZO77rpL9u7d63iMBoezZ8+WjRs3yksvvSRvvfWWvPjiiwX6W+vWrSuff/65WdYspO6fPofdu+++awJafe3nnnvOBOL2v8tOg1gN6jUY1WD1l19+MUGmHgPdpzfeeMPsnz0o1tfT/dP1mlHXEhAtA3Cmgalm3PV46nm4++67zf7Zg9g+ffqYY6LHUjOv+oXk3nvvzfPv1C8Omp3VgFwDSy3v0OxrfpYuXWq+TDRv3tyxToNV/VLRu3dvx7pmzZqZ4HzFihVSUBpA65cG/XJjp+USQ4cOlf/85z/mdd3R19EvRXqMfYYVZE6cOKGffPMTAABnKSkp1saNG81PF/rPZV63vn1dt42JyXvbXr1ct61Sxf12hbBy5Urz79rcuXPd/n7q1Knm9wcOHDD369evb1166aUu2/Tv39+67LLLnP7c059v/PjxVtu2bR33Bw4caJ4rKyvLse7ss8+2evbs6bifmZlpxcbGWh9++GGe+z9lyhSrY8eOeb5ObosXLzb7d+zYMZf1vXr1snr06OGy7pxzzrEeffRRl7/rwQcfdNnmoosusiZNmuSy7j//+Y9Vs2ZNs/zCCy9YTZs2tdLT093ujx6DW2+91XE/OzvbqlatmvX666+b+2+++aZVsWJFKzEx0bHNt99+a4WGhlrx8fGOY3nVVVeZ5ZMnT1qRkZHWJ5984tj+yJEjVpkyZawHHnggz+Py4osvWo0aNXJZN2fOHPNcuZ1zzjnWI488YhWEfhY6dOhg3XzzzS5/o76HnnrqKXN/x44d5tj+8ccfpz2+ffv21oQJEwr3eSvBeI0+vgAAnEk+l6UlLMz1/sGDeW/rVHtp7NzpsWPvnNE9E637zX2/KJ0JWrZs6VJPqtm9Vq1aOe6HhYWZS/sHnY6JZp+17lMvf+vlfi0piIuLE09o06aNy30tE3B+baWZWWfr1q2TZcuWOTK8KisrywwK0xKG66+/3hwbLYHQAVt9+/Y1l/DDw8Pdvq5mRjXTbn/dTZs2mey6ZqLtunfvbsoyNCusx8yZHpf09HTp0uXUbJ9auqFlB/lJSUkxpRqelJGRYUoe9L2lJSJ2r7zyipw8eVLGjBlzxufQqxB6HH0FpQ6Ap2jt3vnn22656/gA+DcNWvK65Q428ts2VylCntsVwllnnWWCLQ2w3NH1epm9atWq4mk6at+Z7oe7dfaWVnp5XUsvNHj85ptvTGmA1h9roFdS+5O7nZZzAKo0+NaaXu1IYL9pGYSWNWggqeUVGqC+9tprJojTUgZtGeZcl1yQ1y1pVapUkWPHjrms0wBcj23uDhgHDhwwvytI0Ltr1y5TLuL85URLXPRcas2zfgHQ96D9S8XAgQNPK8UpifdeURH4Ap6i/5P76Sfbzcf6FgIIXJpRvfjii01gplk/Z/Hx8aadVP/+/U0wZpd7YJPed64N1UBOs56epoOqtM2aBrsaJDVp0sQEVoWhg/iUp/ZPB7VpYKvBW+6bPZutAa9meTVTrfW2GvRpcFwQelw1q6y1vnaaYdbndpfFbdy4sTn+WqdspwHt1q1b832d9u3bm/PtHPzqYDZ9Luc2dFu2bDGD1HJn/d0FvRr8az1y7m4eehz0b7J/UZg3b54jm++cOdesuWawdd98BYEvAAB+Tkfdaz9VHUSlA820p69OIKABsXZtcA5G7IGXDv7SYEo7OuiAKx3cZaedHDRYyh1IFZcGuhp0ffTRRyYg0gBq7ty5hXoODZw1iNeMsXYyyK87QkGMGzdO3nvvPZP13bBhg8mQ6/6NHTvW/F4HumlnhD///NO0jXv//fdNIKz7URCa4dbMsWZC9TkWL14s9913n9x2222nlTko7eQwZMgQM8BNM6v6GO1c4VxS4o4Gl5r11XPr3KFBn2vkyJHmddesWWPanWnQq90anAe82c+DBr3XXXed6cagX5r0C4a+D/Rmz8zroDUtabHftEuHPWjXTh7OX6g0K5xfkF3aCHwBAPBzGlBqoKJ1qJqp0wBEW2Zp6y/NTmqNqLOHHnrIbK/B0tNPP206MmjQ7NylQC9v62V+T2brtI2Y9pXVjgbaGk0zwNrOrDA0kNcgVbtRaOCYX3eEgtC/W4No7Z5wzjnnmIBQuzjYA1vtZKCdJ7QuV2t5NQOqfXEL2tNYOx5o1w295K/Pr0HlRRddZL6s5EW7bvTs2dNkmbUjQ48ePUz2Nj9aT61Bbe4JI/Rv0U4bOnHFeeedZ0octDevM80Ca+cGpe3vdCIM7cSh50jrpO03PV+FoT2lNfDPq+uDN4ToCDcJIgkJCeYbkJ5gTxXTA4ZexrK3IdIMBC3NAL+jl2Z37NghDRs29PhAIV+h2Vyd+tYb0/uiZGlWVgccauuzgmakS8rhw4dNKYd+wdLPU2E/byUVr5HxBQAACACazdWyjNwTTXjDzp07Td15XkGvt9DODAAAIEDobHq+oFOnTqe1jvMFBL6AJ/lQHRMA5JWJA4IVgS/gKVrT69SuBgAA+BZqfAEAyCXIxn0DQfM5I/AFAMCpJZTy1ExiAPJm/5zZP3elgVIHwFNSU0Wuvda2/Pnnp09jCsDn6fSr2nNUJ0bQGa/ONGkAgKLRKZ31c6afN/3clRYCX8BTdPrMnGkbzTIAv6Mzgmmjfu0tWtipdAEUjn6x1FngnKfTLmkEvgAAOImMjDQzoVHuAJT8Z620r6oQ+AIAkIv+YxyoM7cBwcwnipemT59uplDU/8l06dJFVq9ene/2n376qTRr1sxs37p1a5lnv7wMAAAA+Grg+/HHH8vIkSNl/PjxZm7ptm3bSp8+feTgwYNut1++fLncdNNNMmTIEPnjjz/MDCV6+/PPP0t93wEAAOA/QiwvNyvUDO8555wjr776qmOUX926deW+++6T0aNHn7Z9//79JSkpSb755hvHunPPPVfatWsnM2bMOOPrJSQkSPny5eXEiRMSFxfn4b8GQU0nryhb1racmGib0AIAABRaScVrXq3x1YEDa9askTFjxrjUVfXu3VtWrFjh9jG6XjPEzjRD/OWXX7rdPi0tzdzs9ADaDyjgUc6ztun7i84OAAAUiT1O83R+1quB7+HDhyUrK0uqV6/usl7vb9682e1j4uPj3W6v692ZPHmyTJw48bT1mlUGSkytWhxcAACK6ciRIybz6ykB39VBs8nOGeLjx49L/fr1Zffu3R49kPDdb4z6JWfPnj2UtgQBzndw4XwHF853cDlx4oTp8VupUiWPPq9XA98qVaqYaeoOHDjgsl7v16hRw+1jdH1hto+KijK33DTopcY3eOi55nwHD853cOF8BxfOd3AJ9XCf31BvNy7u2LGjLFq0yLFOB7fp/a5du7p9jK533l4tXLgwz+0BAAAAnyh10DKEgQMHSqdOnaRz584ybdo007Vh8ODB5vcDBgyQ2rVrm1pd9cADD0ivXr3khRdekMsvv1w++ugj+e233+TNN9/08l8CAAAAX+b1wFfbkx06dEjGjRtnBqhpW7L58+c7BrBpLa5zmrtbt27ywQcfyNixY+Wxxx4z00pqR4dWrVoV6PW07EF7Brsrf0Dg4XwHF853cOF8BxfOd3CJKqF4zet9fAEAAICgmLkNAAAAKA0EvgAAAAgKBL4AAAAICgS+AAAACAoBGfhOnz5dGjRoINHR0dKlSxdZvXp1vtt/+umn0qxZM7N969atZd68eaW2ryjd8/3WW29Jz549pWLFiubWu3fvM74/4N+fbzttfRgSEiL9+vUr8X2E9863zs55zz33SM2aNc1o8KZNm/L/9AA+39oC9eyzz5YyZcqYWTpHjBghqamppba/KLqff/5ZrrjiCqlVq5b5f7N26DqTJUuWSIcOHcxn+6yzzpLZs2cX/oWtAPPRRx9ZkZGR1jvvvGNt2LDBGjp0qFWhQgXrwIEDbrdftmyZFRYWZj333HPWxo0brbFjx1oRERHW+vXrS33fUfLn++abb7amT59u/fHHH9amTZusQYMGWeXLl7f27t3L4Q/A8223Y8cOq3bt2lbPnj2tq666qtT2F6V7vtPS0qxOnTpZffv2tZYuXWrO+5IlS6y1a9dyKgLwfM+ZM8eKiooyP/VcL1iwwKpZs6Y1YsSIUt93FN68efOsxx9/3Priiy+0u5g1d+7cfLffvn27FRMTY40cOdLEa6+88oqJ3+bPn1+o1w24wLdz587WPffc47iflZVl1apVy5o8ebLb7W+44Qbr8ssvd1nXpUsX66677irxfUXpn+/cMjMzrXLlylnvvvsupyNAz7ee427dulkzZ860Bg4cSOAbwOf79ddftxo1amSlp6eX4l7CW+dbt73wwgtd1mlQ1L17d06Kn5ECBL6PPPKI1bJlS5d1/fv3t/r06VOo1wqoUof09HRZs2aNuXxtp5Nf6P0VK1a4fYyud95e9enTJ8/t4d/nO7fk5GTJyMiQSpUqleCewpvn+8knn5Rq1arJkCFDOBEBfr6//vprM329ljroJEg6sdGkSZMkKyurFPccpXW+dUIrfYy9HGL79u2mrKVv376chAC0wkPxmtdnbvOkw4cPm//B2Wd9s9P7mzdvdvsYnS3O3fa6HoF3vnN79NFHTX1R7g8TAuN8L126VN5++21Zu3ZtKe0lvHm+NfD58ccf5ZZbbjEB0N9//y3Dhw83X251BigE1vm++eabzeN69OihV68lMzNThg0bZmZ1ReCJzyNeS0hIkJSUFFPnXRABlfEFCuPZZ581A57mzp1rBlIgsJw8eVJuu+02M6CxSpUq3t4dlILs7GyT3X/zzTelY8eO0r9/f3n88cdlxowZHP8ApAOdNKP/2muvye+//y5ffPGFfPvtt/LUU095e9fgwwIq46v/uIWFhcmBAwdc1uv9GjVquH2Mri/M9vDv8233/PPPm8D3hx9+kDZt2pTwnsIb53vbtm2yc+dOM2rYOTBS4eHhsmXLFmncuDEnJ4A+39rJISIiwjzOrnnz5iZTpJfSIyMjS3y/UXrn+4knnjBfbu+44w5zX7syJSUlyZ133mm+8GipBAJHjTzitbi4uAJne1VAvSv0f2r6LX/RokUu/9Dpfa37ckfXO2+vFi5cmOf28O/zrZ577jmTEZg/f7506tSplPYWpX2+tUXh+vXrTZmD/XbllVfKBRdcYJa19REC6/PdvXt3U95g/4Kjtm7dagJigt7AO986RiN3cGv/0mMbL4VA0tVT8ZoVgO1QtL3J7NmzTbuLO++807RDiY+PN7+/7bbbrNGjR7u0MwsPD7eef/55095q/PjxtDML4PP97LPPmnY5n332mbV//37H7eTJk178K1BS5zs3ujoE9vnevXu36dJy7733Wlu2bLG++eYbq1q1atbTTz/txb8CJXW+9d9rPd8ffvihaXX1/fffW40bNzbdmuD7Tp48aVqL6k3D0alTp5rlXbt2md/rudZznrud2cMPP2ziNW1NSjuzHNrbrV69eibA0fYoK1eudBy4Xr16mX/8nH3yySdW06ZNzfbaKuPbb78tnbOOUj/f9evXNx+w3Df9HygC8/PtjMA38M/38uXLTUtKDaC0tdkzzzxjWtoh8M53RkaGNWHCBBPsRkdHW3Xr1rWGDx9uHTt2zEt7j8JYvHix23+P7edYf+o5z/2Ydu3amfeHfr5nzZplFVaI/sezyWgAAADA9wRUjS8AAACQFwJfAAAABAUCXwAAAAQFAl8AAAAEBQJfAAAABAUCXwAAAAQFAl8AAAAEBQJfAAAABAUCXwBBb8KECdKuXbsSPw4hISHy5ZdfeuV4e+O1d+7caV537dq1xXqeBg0ayLRp03z22ALwHwS+APzaoUOH5O6775Z69epJVFSU1KhRQ/r06SPLli3zuUB6//79ctlll3nltQEAIuEcBAD+7Nprr5X09HR59913pVGjRnLgwAFZtGiRHDlyRHyNBuX+Qmezz8rKkvBw/pkAEDjI+ALwW8ePH5dffvlF/v3vf8sFF1wg9evXl86dO8uYMWPkyiuvdNnujjvukKpVq0pcXJxceOGFsm7dunyfe+bMmdK8eXOJjo6WZs2ayWuvveby+71798pNN90klSpVktjYWOnUqZOsWrVKZs+eLRMnTjTPr5ff9abr3F2OX79+vdmXMmXKSOXKleXOO++UxMREx+8HDRok/fr1k+eff15q1qxptrnnnnskIyPD7T7n99rq8OHDcvXVV0tMTIw0adJEvv76a8fvlixZYrb/7rvvpGPHjiZ7vnTpUsnOzpbJkydLw4YNzX62bdtWPvvsM8fjjh07Jrfccos5tvp7fd5Zs2a57Nf27dvN+dHX1cevWLHC5feff/65tGzZ0rymljW88MIL+Z6bv/76S8477zxzblq0aCELFy7Md3sAsOOrPAC/VbZsWXPTYPLcc881gZM7119/vQnKNKgrX768vPHGG3LRRRfJ1q1bTeCa25w5c2TcuHHy6quvSvv27eWPP/6QoUOHmgB34MCBJjjt1auX1K5d2wSPmsn9/fffTZDYv39/+fPPP2X+/Pnyww8/mOfT18wtKSnJlGR07dpVfv31Vzl48KAJzu+9916XYHXx4sUm6NWff//9t3l+LWXQ/cntTK+tQfFzzz0nU6ZMkVdeecUErLt27XI5BqNHjzaBtmbPK1asaILe999/X2bMmGGC2p9//lluvfVWE+jqMXjiiSdk48aN5thWqVLF7GNKSorLfj3++OPmOfXxuqxfGHQ7zSavWbNGbrjhBlOiofu/fPlyGT58uAnyNfDPTY/xNddcI9WrVzdfNE6cOCEPPvhgnu8RAHBhAYAf++yzz6yKFSta0dHRVrdu3awxY8ZY69atc/z+l19+seLi4qzU1FSXxzVu3Nh64403zPL48eOttm3buvzugw8+cNn+qaeesrp27WqW9XHlypWzjhw54nafcj+fnf4vd+7cuWb5zTffNPudmJjo+P23335rhYaGWvHx8eb+wIEDrfr161uZmZmOba6//nqrf//+eR6P/F577Nixjvv6urruu+++M/cXL15s7n/55ZeObfSYxcTEWMuXL3d5riFDhlg33XSTWb7iiiuswYMHu92XHTt2mOecOXOmY92GDRvMuk2bNpn7N998s3XxxRe7PO7hhx+2WrRo4bivx+DFF180ywsWLLDCw8Otffv2OX6vf4PzsQWAvFDqAMDva3z/+ecfk3m99NJLzSX7Dh06OLKmetlfM7SaQbRniPW2Y8cO2bZtm9tMrK4fMmSIy/ZPP/20Y3vtUqCZYHfZ4oLatGmTueyvWWS77t27m4zmli1bHOu0BCAsLMxxX7O/mh0uijZt2jiW9XW17CP3c2nJhp1mZZOTk+Xiiy92ORbvvfee41jowMKPPvrIZKEfeeQRk7HN73V1/5X9dfU46N/tTO9rOYPWGOem29etW1dq1arlWKdZcwAoCEodAPg9rfXU4ExveuldSwbGjx9vLpVr0KvBlgbEuVWoUOG0dfYa27feeku6dOni8jt7AKplE6UlIiLC5b7W4WpwXFLP5RyI24/Ft99+a8o6nNnLSrRLhZZLzJs3z9TaagmJ1iFraYO719XXVEX9GwCgOAh8AQQcHfBkH0Sm2d/4+HhTT6oDp85Ea0c1m6gDsrQG1h3NYOrgt6NHj7rN+kZGRrrNVjrTgXOaldYMsz3Y1BZsoaGhcvbZZ0tRFeS1C3McNcDdvXu3qefNi9b7au2z3nr27CkPP/ywS+B7puOQu/Wc3m/atKlLptt5+z179pjWcPbs8cqVKwv9twEITpQ6APBb2rJMuyLo4Kv//e9/pnzh008/NQO4rrrqKrNN7969zaVw7Y7w/fffm0kV9HK8DrL67bff3D6vDgLTQV0vv/yyGQCn3Re0U8HUqVPN73Vwlg5o0+fUIE2DZO1MYO9WoAG27ouWRGgnhbS0tNNeQ4NqzVRrsKgD0nTw2n333Se33XabCb6LqiCvXVDlypWTUaNGyYgRI0y7OC1v0EF8OjBO7ysdBPjVV1+ZsogNGzbIN998Y4LTgnrooYdM+7mnnnrKHGt9Xh1UqK/rjp5PDYr1uGkZi3b10HMJAAVB4AvAb2m9qZYjvPjii6a9VatWrUypg3Y80ODJfmldL8Pr7wcPHmyCphtvvNFcns8rwNRSCc3oarDbunVrk+3U7Ky29LJnVTWIrlatmvTt29ds8+yzzzoylFp3rPXG2sJLs6Effvjhaa+hrb0WLFhgssbnnHOOXHfddaZMwL7fRVWQ1y4MDUj1mOoXAQ1o9bm19MH5WGj7OM2C6zHWY6A1vwWlGflPPvnEPEbPnwbSTz75pNuODkoz4nPnzjWdI7R1nZ6rZ555plh/I4DgEaIj3Ly9EwAAAEBJI+MLAACAoEDgCwAAgKBA4AsAAICgQOALAACAoEDgCwAAgKBA4AsAAICgQOALAACAoEDgCwAAgKBA4AsAAICgQOALAACAoEDgCwAAAAkG/wcc7W4Jt+DJCwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr4AAAIjCAYAAADlfxjoAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbVVJREFUeJzt3Qd4U+X3wPHTXcreS/aQJXsPEUVx4fgpoijLLeAAFyoyHIAiiAPFifoXFwouEEQElSHIUmTKRmSUDS3d9/+cNyRNStompWmS5vt5nsjNzU1yc5PYk3PPe94wy7IsAQAAAAq5cH/vAAAAAFAQCHwBAAAQEgh8AQAAEBIIfAEAABASCHwBAAAQEgh8AQAAEBIIfAEAABASCHwBAAAQEgh8AQAAEBIIfAEUmAkTJkjt2rUlIiJCmjdvzpEHztGBAwfkxhtvlLJly0pYWJhMnjzZ4/vu3LnT3OeDDz7IddsBAwZIzZo1z3Fvc3483ZfRo0fn23MA7hD4IuTp//T1f7juLsOHD3ccH/2ftH19eHi4lCpVSi644AK5++67Zfny5W6Po/Nj6X2qVKkil112mSxatCjkjvuPP/4ojz32mHTq1EmmTZsmY8eO9enzffLJJ14FAf6W1/1NT083nyv9jP3www85bjtr1iy54oorpFy5chIdHW3ud9NNN8nPP//s0XOtW7fOBFk1atSQ2NhYqVq1qlx66aXy2muvuWyn35Wrr77aZZ39ezBx4sRsv4MrV650Wb948WKzv/o8+nzVq1eXnj17mmPlC/ZA8KWXXnJ7uwZlevuhQ4fc/n8h66VevXpePf+xY8ekQoUK5r5ffvmlR/cZOnSozJs3T5544gn5v//7P7n88su9ek4g1ET6eweAQPHMM89IrVq1XNY1adLE5bpmKR9++GGzfPLkSdm4caPMmDFD3nnnHfMHaNKkSWc9rgYG/fr1E8uyZMeOHfLGG2/IxRdfLLNnzzZ/1EOFBlca/L/33nsm6PI1DY7+/vtveeihhyQY5HV/9bju27fPBGDTp093+5nSz97tt99uAswWLVrIsGHDpFKlSuZ+GgxfcsklsmTJEunYsWO2z7N06VLp1q2bCT7vuusuc/89e/bI77//Lq+88orcf//9Hmf977vvPomLi8txO/1e9e7d23znHnzwQSldurT5/vz666/m+9anTx8JBPpj5dSpUy7rdu3aJSNGjDA/cr0xcuRISUxM9Pr9v/baa+WRRx7x6n5AqCLwBc7QgKF169Y5Hg/NPN12220u61544QXzR/jll182GR79o+6sfv36Lve5/vrrpWnTpuYPpj8D37S0NMnIyCiQIFQdPHhQihQpkm/Pp8FcUlKSeczCesw88fHHH0vLli2lf//+8uSTT0pCQoIULVrUZRvNsmrQq0G1/jjTjKLdU089ZTKFkZE5/zl4/vnnpWTJkvLHH3+Ysx1Z31tPaBC7du1amTp1qgm+c6LZ1UaNGpnAOuvx9vT5CsJ111131rrnnnvO/Hvrrbd6/Dj6o+fNN980wa9ePKXHIuv7ASB7lDoA50gDLw0cypQpY4IDDchyouUReqpZs1e50RKKK6+80mS7NJjRgFmza3YXXXSRueRWP+d8ClcD7jp16khMTIysWbPGBDxjxow56zE2b95s7vP666+7nIrV4KlatWrm/nXr1jWBvwaDOdHH0fIGDcrsp4HtdYUaTD777LOOfdL91gAuOTnZ7elzPa2rP1D0uL/11ltun0+PiWbUNfNmfz778UhJSTGBRatWrUwgp8e1S5cusnDhQpfHyO6Ybdiwwdyu5Sq6H3oKXm/TfbGfCncXnOrz6T7r5+Tmm2822VJP9jcnp0+fNhlbfTwtWdDr33zzzVnbjBs3Tho0aGBei7v969u3r7Rt2zbH59q2bZs0btzYbZClp+c9oWUuerbjxRdfNPuV2/O1adPG7Y8MT5/P+fjq2ZtVq1aZrLa+D3p2RwNwX2Xv9fFzyqBnpVlt/VGsn0VP2MtD9P83U6ZMcXxu7LZv3y69evUynzfNrrdv3958xjzx9ddfm+Oln239Vz9jntLP31VXXWXKaPT7ot8N/X5rSQ4QCMj4AmccP37cpXZPaYDqiWLFipk/WnoaXwMjDRCyc/ToUXPRoDEn8+fPN4Fe5cqVzR9FPbWspRXff/+9uZ4XGnxqllTrkvWPkj52165d5YsvvpBRo0a5bPv555+bQWj6x1PpKVjddu/evXLPPfeYU956+ltrC/WUeU71qfrD4O2335YVK1bIu+++a9bZg4I777xTPvzwQ1M7qmUkGuxroKavNesfXA3Gb7nlFvP8err9/PPPd/t8msXU9/Pff/81mXj7e6ROnDhh9kEfRx9DS1b0fevRo4fZv6yD7rIeMw0k9AeD1lLq8dMfDfpHXUtlypcvf9a+6I+hp59+2gSm+lrj4+NNTeyFF15oHkcDyZz2NyfffvutOc2uga9+PjTA03IH5zIArZM9cuSI+cGi72deaV3vsmXLTGYyawmQN/THgb52zW7mlPXV51uwYIE5Juedd56cK/3O6Y9IfR/0vdfPvJ6d0cBay0Cc6Wc96/8L7Otzo++pfnb1PfWUlnXod0nvpz+4PKHHUL9X+qPFXk7lPOBNv1+6vw888IAZ+KbfsWuuucbUDuv/q3Kqxb/hhhtMtl2/h4cPH5aBAwd6/B5oQK6fXX1v9V8txdAfmvq90zIXwO8sIMRNmzZNU7RuL85q1KhhXXXVVdk+zssvv2zu88033zjW6fU77rjDio+Ptw4ePGgtX77cuuSSS8z6iRMnZvtYaWlpVq1atcxzHj161OW2jIwMx3LXrl3NJav+/fub+9rt2LHDPGeJEiXMfjh76623zG3r1q1zWd+oUSPr4osvdlx/9tlnraJFi1pbtmxx2W748OFWRESEtXv37mxfj32f9P7O1q5da577zjvvdFn/yCOPmPU///yzY52+Hl03d+5cyxP6XjkfA+djm5yc7LJOj3HFihWt22+/3aNj1rNnTysuLs7au3evY90///xjRUZGunxudu7caY7N888/73J/Pda6rfP67PY3J1dffbXVqVMnx/W3337bPK7z/r7yyitmn2bNmmWdix9//NG8Fr106NDBeuyxx6x58+ZZKSkpZ23r7rui+zB48GCz3K1bN6tSpUpWYmKiy3fwjz/+cGz/3nvvmXXR0dFm+6efftr67bffrPT0dK/3Xb8jWb9z+hlo3ry5VaFCBcdrsL/nuV30+5ydhx9+2GyzYcMGj/ZNj0H16tWtJ554wlxfuHChuf+MGTM8ur/zcbV76KGHzHo9XnYnT540/0+pWbOm4xjaX68efzs9JpUrV7aOHTvm8t7rdp58Pu3vqbN77rnHfF+SkpKy/X+U/bWMGjXKo9cN5BWlDsAZerpQs6zOF2/YM3SaQXSm2UTNBOrp2Xbt2plBRJoNyWkQk2aNtBRCt8l6atndqWpPaSYna1byf//7nyl30AyvnWb1NHOtg4ucs1J6GlbLLjQbZr90797dZDx10JG35syZY/7NmvmzDyDMempWTx9rZvZcaNbTfvpcSzQ0G6rlFlq2sHr16lyPmb7Wn376ydR26ulcO83gZ63ZnjlzpnkOzTI6HzPNzmo9eNbyCm9oJk7LPjR76byv+vnQbKadZtpU8eLF5VxoVlEzvpo1/PPPP025gr4XWveumWdvs7779+/PsdRAs7Bz5841WWzNWuvpcv386XHT7Ki39DOuZwrs9DOg17VGVksgnGl2P+v/C/Si2dWc6Hv92WefmQGEDRs29Gi/xo8fL6mpqaa8J7/o90pLVzp37uzy/yd9XZpRtpfrZKVnbrQGW+vFtQzI+b3XDLAnnGvu9f+F+nnX902zz5s2bTqn1wXkB0odgDP0D0Vug9tyYh/ZnTXA0BHXQ4YMMQGJ3qZlEFkHH7mrb1TnckrZnaxdK+zlHDqqX4MlDS6UBsEaKGhQbPfPP//IX3/95fZ0fl4HHGlNq3Z6yFr2oYGhBvx6e277nxd62lcHfOkfYg06cnr8rOv0dWp9qrtSlazr9JhpIiu7tlZRUVF5fg36Hum+a5C1detWx3r9caXlDoMHDzbXS5Qo4fYHmTsa1GsphjMt7bD/UNCaWw3mtU5ag18tRdHSDC1T0YDJ0+BIT9NrhwgNnu+9995st9PAWi8aNGlwqq9Zg2UtAdL3zptaX/2RkvV7pwNPlQaDWgNrp++X/qDLSgPwnPzyyy+mFEg7vHhCn1dP/+uPbk9KWzyl3xv9HGRlD8b1dnf/b7F/39x9XrWsyN0Pw6zWr19vOlpoiYP9R5edlvMA/kbgC+QTzZK6C360Ns7dH9H8YB/cklV2A0my64CgNaJax6fBi9a4ahCswbBzjbNmszTzo7143bEHEXl9HZ7Ijw4OOtBMB/9pxvbRRx81wZNmgbWe0f6DI7+eU4+Zvb+uu/racwl2NLi1DxhzRwc36WQhOqjN3oPXXQcCZzrgLmugr1nprAMoNRDWIFgv+r7rZ0fPCGStE8+JbquPq4MCc+tKoIOzNGuoF/1Mal21HlPNTAYSfU/0h5xzFj4nWvuqGXM9DvbaXs2EK/0Bouu0ll4fMxjo4FcdB6A/trTmXQe26QA5DZgff/zxXAfBAgWBwBfIB5rt1eyXdjvw9BRnTvQPhj2Yzilo1rIDDXCyypopzY0GRHra117usGXLFjNoLes+6evMzyBeBzDpH0PNjDofNx2co39E9fb8DqZ1cI8GhJq5dN7G06BNA2X9Y+6cZbXLuk6Pmf4w0WAytx8G3pSwaBmMnu7XMwkaaDjT46mn5LWzgGbe9HS3fk4+/fRTczo9pwFummnPWuLTrFmzHPfFfpZET5N7Q/dbAz7tCuJN+668Pt9///13Vqs3/Zyr/JiRTLuQfPXVV+Y1OZfA5GT37t3mM6Ofx6wGDRrkGJTnbbsy/d7oQNCs7KUG2X2v7Ov1+5iVu8fLSjudaAmOfrc0q2/nSQcboKAEx89IIIDpaW8NNLRWVEdyn0sNrp32ZdVgSTslaADozDnDq4GV/jFzPj2tp6C1jtgb+odVTylrpldrFDWjlzU7qHWqWuOpdaVZ6T5qnay3dJS9ytoRwj4RiLZFyisNcNydWrUHfs7HUTtJ6GvzhN5fg39t+aTBlJ0GMFlnTtNSEd1eM5RZM/N6XYOE3PY3p2yvZt+1zMD5ou+TBpX2bTRbqtk27Rig/7o7Q6BZcO1ooQG9vjbniwbN9syvu/va67Sz67DhSa2vdvzISjs6uJPX59PPp3P7Oy3X0OtauqOt5s6V7pd+D3Lq3avfVQ12nfv96g9m54u93EjfW72eW1lUdt8rfT+dP9Ma9Otx1iA/u5IU7VKiZ3y0FMj5s6g/hrKrC87tu6XHWSftAQIFGV/AC1q/p0GC0uyn/jHQU7z6x1sHZDkPnjkXempT2z3p9Kz6h0hPJesfJf3DqTV09uBTBwBpkKhB6x133GHqT7UGUuuIs9bX5UYHsulEG/pHSh8va5ZJywJ0EJPWV2qpgAYL+sdUT6FrFlVPy3ra/s05m6inq/UPsv00qf7B1j+8GnhrHWhe6f5pBlsHzukpeS0r0OOp+68ZKW3ppIG1ZqP0mGkwkHUGrpwCNm37pGUG2hJLS0u037HWTWq5iPMPEw1uNHuux0dfk9Z563NqUKODjewzbmW3v+5oUKufCz3D4I4OQNOZ1PQUs/6I0vdOPzda16wBrAbImt3Vz60G8HrMcxswpo+ntbZ63LR8QgMavY/uswZT+hn1lr7fetHa2Ky0Nl5//Okx0OOonzUdVPjdd9+Z45PdscmOZmE1u6zvg2bfdb/1vdLP3rnUWju/J9ruTgcYZkfPaujrtU9Z7jz4zM7+vdPXmFtpSnZ0qnXN8OtgS21npnXa+p3Sz51mpXMqndCSH/1e6L7p/1/0B72239P/p+T2/dAWavpDSb/T+ryaBNCWa7n1NgcKVJ77QQCFhLtWSu7Y22npJSwszLS5aty4sXXXXXeZNmWethryxuLFi61LL73UKl68uGkF1rRpU+u1115z2ebjjz+2ateubdo+aSsibTGVXTuzCRMmZPtcJ06csIoUKWK208d0R1siadulunXrmucrV66c1bFjR+ull15y29Yqt3ZmKjU11RozZoxptRQVFWVVq1bNPIdz6yNP2sllderUKatPnz5WqVKlXFoxaTu4sWPHmusxMTFWixYtrO+//97rY7ZgwQJzXz0OderUsd59913Tyio2Nvasbb/66iurc+fO5vXrpUGDBuZzsXnz5lz3N6tVq1aZ27W9V3a0jZpuM3ToUJf1X375pXXZZZdZZcqUMW3PtG1V7969rUWLFuV6PH/44QfT7k33vVixYuZ16+fg/vvvtw4cOOBVOzNn9vZdWb+Dn376qXXzzTebY6ufSz2u2mLvqaeeMp9Vb9uZ6Xd15cqVphWbPpbu4+uvv+6yXW7vubbactfO7Pjx4+Yx//e//+W4H3pfd+0HneVHOzO1bds268YbbzSfJ923tm3bms+5M3ftzOyf14YNG5rvhx7zmTNnum0/5s6SJUus9u3bm/esSpUqjrZ3+jz62uxoZwZ/CdP/FGyoDQCFk2boNLPqrkYS/qN1t9pWyz4AFUDoosYXAPIg65S7Guxqnae7KaQBAIGBGl8AyAMdia+1zvqvdtHQmmwdFJhduzfkP60/1VrjnAZbZdd3GkBoIvAFgDy4/PLLzQAiHSCmg5o6dOggY8eOzXayCuQ/7ZrhbmCcc3sue39cAFB+rfHVKU511hqdkUd7Muoo59xGsepoWB31rHV0OqJZ+1Rq1gUAEFr0b4f2uc2OTj6S3QQfAEKTXzO+2p5G2xlpyxTnqVGzo61YtM2KTnGprWO0z+Odd95p2jxp+yUAQOjIj/67AEJLwHR10H5/uWV8tfn67NmzXUbm6lSr2v9z7ty5BbSnAAAACEZBVeOrs9BknS5VM70PPfRQjtNI6sV5Ok8dEFG2bNl8mWELAAAA+UvzsidPnjSTz+Q06UqhDnx1EEnFihVd1ul1naFKWwtpPZe7WWh0ulAAAAAElz179sh5550XmoFvXuhUoToYzk7nH69evbo5kCVKlPDrvgEAABRqqaki06bZlnVqcw+nCNekpjYx0Gne81NQBb46t/yBAwdc1ul1DWDdZXuVthnSS1Z6HwJfAAAAH0pIEHn0UdvyffeJFC3q1d3zuyw1qGZu0z6Z2snB2fz58816AAAAIGAD31OnTsnatWvNxd6uTJd3797tKFPo16+fY3ttY7Z9+3YzM9KmTZvkjTfekC+++EKGDh3qt9cAAACA4ODXwHflypXSokULc1Fai6vLI0eONNd1Ugt7EKxq1apl2plpllf7/06cOFHeffddevgCAAAgePr4FhQtli5ZsqQZ5JZdja8ekrS0NElPTy/w/QNCRUREhERGRtJWEAAKe41vsWK25VOnPK7x9SReK/SD2wpCSkqKyTQnJib6e1eAQi8uLs7MvBgdHe3vXQEAhAACXyc6uYXWGWsmShsm6x9jJrkA8p+eVdEfmfHx8eY7V69evXxtUA4AgDsEvk70D7EGv9o3TjNRAHxHWxBGRUXJrl27zHcvNjaWww0AhU1MjMj332cu+xmBrxtknoCCwXcNAAq5yEiRq66SQMG5RQAAAIQEMr4AAADw3ZTF06fblm+91eMpi32FjC+y9cEHH0ipUqWC6ggF4z4DAFBopaSIDBxou+iynxH4FhIDBgwwHSiyXi6//HKP7l+zZk2ZPHmyy7revXvLli1bpLAFq+6OU+fOnd3eXrRoUdNxQI/vqlWrXB5n0aJFLttWrFhRbrjhBjO7IAAACDwEvoWIBrnag9j58umnn57TqPsKFSpIYTRt2jSX4/Ttt9+6vX39+vUyZcoUM712u3bt5KOPPjrrsTZv3iz//fefzJgxw2zfs2dPJj8BACAAEfh60G80MSXNLxdvJ9WLiYmRSpUquVxKly7teB2jR4+W6tWrm+20T/EDDzxgbrvoootMS6mhQ4c6spfuMrF6/+bNm8v7779vHqdYsWIyaNAgE+S9+OKL5vk0UH7++edd9mvSpElywQUXmOyptorT+2ggac+aDhw40MzMYn9ufR6VnJwsjzzyiFStWtXcVwNP3d6Z7qPui7afu/766+Xw4cMeHSt9Xc7HqUyZMm5v10z4ZZddJl9++aXceuutMmTIEDl69KjLtvqadRKGCy+80Ey3vWHDBtm6davH7xsAACgYDG7LxenUdGk0cp74w4ZnekhcdP68RV999ZW8/PLL8tlnn0njxo1l//798ueff5rbZs6cKc2aNZO7775b7rrrrhwfZ9u2bfLDDz/I3LlzzfKNN95oTu3Xr19ffvnlF1m6dKncfvvt0r17dxOo2ltWvfrqq1KrVi2zrQa+jz32mLzxxhvSsWNHU2KhAaNmTpUG1EqDTA0idZ81UJ81a5bJaq9bt86UHyxfvlzuuOMOGTdunFx33XVmn0aNGiW+oj8MNOM7f/58uemmm7LNkivtSwsAAAILgW8h8v333zuCRrsnn3zSXHbv3m0ymBqQ6qQBmiVt27at2UaznTpbXfHixc02OdEJPjTjq9s2atRIunXrZgLWOXPmmAD3/PPPlxdeeEEWLlzoCHwfeughx/01g/rcc8/JvffeawJfnR1P5+LWTK/zc+v+armB/qtBr9Lsrwa3un7s2LHyyiuvmEBYg2ilwbcG3rpNbm655Rbzmu0+/vhjEzznpEGDBubfnTt3ur1dSyNeeuklk6HW4wAAAAILgW8uikRFmMyrv57bGxqEvvnmmy7r7Kfwe/XqZTKrtWvXNsHilVdeaWpRI7WxtBc0cNWg104HdGkA6TwRga47ePCg4/pPP/1ksrKbNm2SEydOSFpamiQlJUliYmK2M+RpVldLKDSYdablD2XLljXLGzduNOUNzjp06OBR4KvZb/0RYKelCrmxl55kncb6vPPOs5XEJCaazLlm1zWgBwAAgYXANxca5ORXuYGvaR1s3bp13d6mtbWamdUgVE/Va7nBhAkTTHmCZoA9lXVbPT7u1mlm2J4dvfrqq+W+++4ztb8aiC9evNiUKGg5QHaBr9YAa0CtnRScM7Mqa1Y7LzS7nN2xyo4G2kpLNpz99ttvUqJECVPr6/yjAACAkBcTI/LFF7bDwJTFKEhaf6pZXr0MHjzYnLrXzGrLli1NhlIzrPlNA1cNgidOnOjICn9h/wKc4e65W7RoYdZp5rhLly5uH7thw4amztfZ77//Lr6iGXMNcJ0zxfZAmN7BAAC4oWeWe/WSQBEcqUx4RMsAdNCaMy1lKFeunOl+oIGk1t1qllVrWjUQrlGjhqOE4ddff5Wbb77ZdH3Q++QHzaqmpqbKa6+9ZgLuJUuWyNSpU1220efWDO+CBQtMqYDun5Y4aBeFfv36maBZA+H4+HizTdOmTeWqq64yXSk6depk6mqvvfZamTdvnkdlDp44duyYOZZ6TLWX8VtvvSVff/21GdxGkAsAQHCinVkhokGf1qo6X+wTM2iw9s4775hAUQNHLXn47rvvHPWyzzzzjClLqFOnjpQvXz7f9kkDWW1npgPemjRpItOnTzf1vs60s4MOdtMJM/S5tTWa0kFsGvg+/PDDZrCYDj77448/zMA81b59e/OadJCbPs+PP/4oI0aMyJf91hZrevw0K65lGlpesWLFCunTp0++PD4AACEhLU1kxgzbRZf9LMzytllskNPBVdpFQPvG6mlrZzrgaseOHebUdWxsrN/2EQgVfOcAoJBLSNDBObZl7eFftOg5x2vngowvAAAAQgKBLwAAAEICgS8AAABCAoEvAAAAQgKBLwAAAEICgS8AAABCAhNYAAAAwDeio7Uxf+aynxH4AgAAwDeiokQGDJBAQakDAAAAQgKBLzw2evRoad68ecA+z0UXXSQPPfSQFLSaNWvK5MmTz+kxBgwYYKZkzo/Xd+GFF8onn3wi/nbo0CGpUKGC/Pvvv/7eFQCAv6SlicyebbsEwJTFBL6FyJ49e+T222+XKlWqSHR0tNSoUUMefPBBOXz4sNePFRYWJl9//bXLukceeUQWLFgg/rZo0SKzf8eOHfP3rgScb7/9Vg4cOCA333yzy7TAgwcPlrJly0qxYsXkhhtuMNvkRG/XYFw/S3FxcXL55ZfLP//847LN/v37pW/fvlKpUiUpWrSotGzZUr766ivH7eXKlZN+/frJqFGjfPBKAQBBITlZ5OqrbRdd9jMC30Ji+/bt0rp1axOcfPrpp7J161aZOnWqCVQ7dOggR44cOefn0KBJg6fCJDU1VQqTV199VQYOHCjh4Zlf7aFDh8p3330nM2bMkF9++UX+++8/+d///pftY1iWZbLP+pn65ptvZM2aNeZHVPfu3SVB51w/Q4PazZs3m2B73bp15jFvuukms72d7sv06dPz5fMHAMC5IvD1lP7Bz+6SlOT5tqdPe7atlzSjp1neH3/8Ubp27SrVq1eXK664Qn766SfZu3evPPXUUy6n5p999lm55ZZbTKauatWqMmXKFJfb1fXXX28yq/brWUsQ7Kfnx44dKxUrVpRSpUrJM888I2lpafLoo49KmTJl5LzzzpNp9tGcZzz++ONSv359k0msXbu2PP300x4HoDt37pRu3bqZ5dKlS5v90/2wy8jIkMcee8w8t2YidZ+d6fZvvvmmXHPNNea1P//882a9BniasYyNjTX7NGbMGPM67IGgPo4e05iYGJMFfeCBB1weNzEx0WTbixcvbrZ7++23XW7XwPDiiy+WIkWKmB8Pd999t5w6dSrb16kBpgaW+mOjcuXKMnHixFyPTXx8vPz888/Ss2dPx7rjx4/Le++9J5MmTTLP36pVK/N+LF26VH7//Xe3j6M/nvQ2PU5t2rSR888/3yyfPn3a/Kiy08e4//77pW3btuaYjRgxwnwGVq1a5dimcePG5njNmjUr1/0HAMDXCHw9VaxY9pcbbnDdtkKF7Le94grXbTWodLedFzSbNm/ePBk0aJAJrJxp8HfrrbfK559/bgI4uwkTJkizZs1Mdm748OGmJGL+/Pnmtj/++MP8qwHSvn37HNfd0UBLM4i//vqrCa70tPbVV19tgtLly5fLvffeK/fcc49LnacGhx988IFs2LBBXnnlFXnnnXfk5Zdf9ui1VqtWzXE6XbONun/6GHYffvihCWj1uV988UUTiNtfl50GsRrUazCqwepvv/1mgkw9BrpPb731ltk/e1Csz6f7p+s1KNQSkAsuuMDlMTUw1Yy7Hk99H+677z6zf/YgtkePHuaY6LHUzKv+IBkyZEi2r1N/OGh2VgNy/TGj5R2rV6/O8dgsXrzY/Jho2LChY50GofqjQrO1dg0aNDDB+bJly9w+TvKZU1H6I8BOM8ga9Otz2HXs2NF8rvTzpz84PvvsM1NWobXIzjQw1mMMAIDfWSHm+PHjGv2Zf7M6ffq0tWHDBvPvWfRQZXe58krXbePist+2a1fXbcuVc7+dF37//XfzmmbNmuX29kmTJpnbDxw4YK7XqFHDuvzyy1226d27t3XFFVc4vdyzH2/UqFFWs2bNHNf79+9vHis9Pd2x7vzzz7e6dOniuJ6WlmYVLVrU+vTTT7Pd/wkTJlitWrXK9nmyWrhwodm/o0ePuqzv2rWr1blzZ5d1bdq0sR5//HGX1/XQQw+5bHPJJZdYY8eOdVn3f//3f1blypXN8sSJE6369etbKSkpbvdHj8Ftt93muJ6RkWFVqFDBevPNN831t99+2ypdurR16tQpxzazZ8+2wsPDrf379zuO5bXXXmuWT548aUVHR1tffPGFY/vDhw9bRYoUsR588MFsj8vLL79s1a5d22Xd9OnTzWNlpcflsccec/s4+jqrV69u9erVyzpy5IiVnJxsjR8/3hy7yy67zLGdHn+9rusjIyOtEiVKWPPmzTvr8YYOHWpddNFFbp8rx+8cACD4nTqVGds4/R08l3jtXNDH11M5nJaWiAjX6wcPZr+tU+2lsXOn5BfnjG5utO436/W8dCbQU9nO9aRa8tCkSRPH9YiICHNq/6DTMdEsodaibtu2zZzu15KCEiVKSH5o2rSpy3UtE3B+bqWZWWd//vmnLFmyxJHhVenp6SZ7qSUMvXr1MsdGT+frIK8rr7zSlBNERka6fV4tp9BMu/15N27caLLrmom269Spk8mSalZYj5kzPS4pKSnSrl07xzot3dCSg5xoKYJzljavoqKiZObMmXLHHXeY59X3UDPGWjrj/BnTEhUdYKjZax3IpplwrfHV7K5zRlzPQuhxBADA3wh8PeUUtPht22zUrVvXBFsaYOkp/Kx0vZ5mL1++vOQ3DZKc6X64W6dBntLT61p6oTW0evq/ZMmS5hS5JzWsed0f+3PbOQegSoNv3R93A740kNTyCg1QNcDTsgktZdBSES1FsD+fJ8/raxp8Hj161GWdBuAaRGuAqvW3zl0b9LbsaC3w2rVrTY2w3l8/OxqI2380aHD++uuvy99//21+/CgN7jXo1XpxHVhpp6UQvvjsAQDgLWp8CwHNqF566aXyxhtvmKxf1pZTOqq+d+/eJhizyzqwSa8714ZqIKdZz/ymA6K0Q4AOttMgql69erJr1y6vHkMH8an82j8d1KaBrf6AyHqxZ7M1a6lZXs1Ua72tBvBaI+wJPa6aVXbuiKAZZn1sd1ncOnXqmOOvdcp2GtBu2bIlx+dp0aKFeb+dg18NYPWxnNvQ6WvdvXv3WVl/d/SHiQatWtu8cuVKufbaa816ewbXOduvNDucNeDX4Fj3DQAQgqKjRV5/3XYJgCmLCXwLCc2+6aAkzaLqQDPt6Tt37lwTEGvXBufT+PbASwd/aTClGTodcKWDu+y0k4MGS1kDqXOlga4GXZrl1ayhBpLejvjXwFmD+O+//950MsipO4InRo4cKR999JHJ+q5fv95kyHX/tEuB0oFu2hlBAzht8fXxxx+bQFj3wxOa4dbMcf/+/c1jLFy40HRD0B64WcsclHZy0DIDHeCmgwf1Ptq5ImuQmZUGl5r11ffWOXDVxxo2bJh5Xh3spi3GNOht3769y4A35/dBPw8a4NtbmunnSDt4XHbZZY7t9YeBDlxcsWKFeS81a68ZceeJODRA1ue03w8AEGKiorT1lO2S5eyoPxD4FhIaUGpGTutQtc5Ss4baMktbf2l2Ums1nT388MNmew2WnnvuOdORQYNmO3sQo6f58zNbp23EtK+sdjTQ1miaAdZaUW9oIK9Bqnaj0MAxp+4IntDXrUG0dk/Q9l0aEGoXB3tgqyUC2nlC63K1lldLHrQvrqc9jbXTgnbd0FP++vg33nijXHLJJebHSna0lKJLly4my6z1tZ07dzbZ25xottXeN9eZvhbttKETV+isblrioDW8zjQLrGUNdtotQwNzDXC1dZsuO7cy0yzynDlzTDZY91GPi/540K4aWgNtp0GzdpDQ1wIAgL+F6Qg3CSEnTpwwWTD9I591QJUOZtqxY4fUqlUrXwYJBSrN5urUt/6Y3he+pRl6rbnV1meeZqR9SX9EaODcp08ft7eHyncOAEJWerqIvaWlJkGyNgTIQ7x2LhjcBhQims3VsgwtJ/F34Hvo0CEzYFAnSgEAhKikJJEzE0+ZDln5MKj/XBD4AoWMc42tP2m9sc6iBwBAoCDwDUE67S8AAECoYXAbAAAAQgKBrxshNt4P8Bu+awCAgkTg68Q++xbTqwIFw/5dyzrzHQAAvkCNb5Y+qNqz9eDBg47+q86znQHIv0yvBr36XdPvnH73AADwNQJfN+2glD34BeA7GvTav3MAgEIoKkrkxRczl/2MCSyykZ6eLqmpqQX7bgAhRMsbyPQCANxhAosCpn+Q+aMMAABQeFDqAAAAAN9NWbx6tW25ZUuPpyz2FQJfAAAA+G7K4rZtA2bKYtqZAQAAICQQ+AIAACAkEPgCAAAgJBD4AgAAICQQ+AIAACAkEPgCAAAgJNDODAAAAL6h0xSPGpW57GcEvgAAAPCN6GiR0aMlUFDqAAAAgJBAxhcAAAC+kZEhsnGjbblhQ5Fw/+ZcCXwBAADgG6dPizRpYltmymIAAACgYFDjCwAAgJBA4AsAAICQQOALAACAkEDgCwAAgJBA4AsAAICQQDszAAAA+IZOU/zII5nLfkbgCwAAAN9NWTxhggQKSh0AAAAQEsj4AgAAwHdTFu/ebVuuXp0piwEAAFCIpyyuVcu2zJTFAAAAQMGgxhcAAAAhgcAXAAAAIYHAFwAAACGBwBcAAAAhgcAXAAAAIYE+vgAAAPCNyEiRQYMyl/3M/3sAAACAwikmRmTKFAkUfi91mDJlitSsWVNiY2OlXbt2smLFihy3nzx5spx//vlSpEgRqVatmgwdOlSSkpIKbH8BAAAQnPwa+H7++ecybNgwGTVqlKxevVqaNWsmPXr0kIMHD7rd/pNPPpHhw4eb7Tdu3CjvvfeeeYwnn3yywPcdAAAAubAskfh420WXQznwnTRpktx1110ycOBAadSokUydOlXi4uLk/fffd7v90qVLpVOnTtKnTx+TJb7sssvklltuyTVLDAAAAD9ITBSpUMF20eVQDXxTUlJk1apV0r1798ydCQ8315ctW+b2Ph07djT3sQe627dvlzlz5siVV16Z7fMkJyfLiRMnXC4AAAAIPX4b3Hbo0CFJT0+XihUruqzX65s2bXJ7H8306v06d+4slmVJWlqa3HvvvTmWOowbN07GjBmT7/sPAACA4OL3wW3eWLRokYwdO1beeOMNUxM8c+ZMmT17tjz77LPZ3ueJJ56Q48ePOy579uwp0H0GAABAiGd8y5UrJxEREXLgwAGX9Xq9UqVKbu/z9NNPS9++feXOO+801y+44AJJSEiQu+++W5566ilTKpFVTEyMuQAAACC0+S3jGx0dLa1atZIFCxY41mVkZJjrHTp0cHufxMTEs4JbDZ6Vlj4AAAAAATmBhbYy69+/v7Ru3Vratm1revRqBle7PKh+/fpJ1apVTZ2u6tmzp+kE0aJFC9Pzd+vWrSYLrOvtATAAAAAQcIFv7969JT4+XkaOHCn79++X5s2by9y5cx0D3nbv3u2S4R0xYoSEhYWZf/fu3Svly5c3Qe/zzz/vx1cBAAAAt3Sa4v79M5f9LMwKsRoBbWdWsmRJM9CtRIkS/t4dAAAAFFC8FlRdHQAAAIC88n/OGQAAAIWTZWXO2BYXJxIW5tfdIeMLAAAA39Cgt1gx2yWUpywGAAAAChKBLwAAAEICgS8AAABCAoEvAAAAQgKBLwAAAEICgS8AAABCAn18AQAA4BsRESI33pi57GcEvgAAAPCN2FiRGTMkUFDqAAAAgJBA4AsAAICQQOALAAAA30hIEAkLs1102c8IfAEAABASCHwBAAAQEgh8AQAAEBIIfAEAABASCHwBAAAQEgh8AQAAEBKYuQ0AAAC+odMUX3ll5rKfEfgCAADAd1MWz54tgYJSBwAAAIQEAl8AAACEBAJfAAAA+IZOU1y0qO0SAFMWU+MLAAAA30lMlEBBxhcAAAAhgcAXAAAAIYHAFwAAACGBwBcAAAAhgcAXAAAAIYGuDgAAAPCN8HCRrl0zl/2MwBcAAAC+UaSIyKJFEij8H3oDAAAABYDAFwAAACGBwBcAAAC+odMUly9vuzBlMQAAAAq1Q4ckUJDxBQAAQEgg8AUAAEBIIPAFAABASCDwBQAAQEgg8AUAAEBIYOY2AAAA+IZOU9y6deaynxH4AgAAwHdTFv/xR8AcXf+H3gAAAEABIPAFAABASCDwBQAAgG8kJorUrGm76LKfUeMLAAAA37AskV27Mpf9jIwvAAAAQgKBLwAAAEICgS8AAABCAoEvAAAAQgKBLwAAAEICXR0AAADgG2FhIo0aZS77GYEvAAAAfCMuTmT9egkUlDoAAAAgJBD4AgAAICQQ+AIAAMA3dJrixo1tF6YsBgAAQKFlWSIbNmQu+xkZXwAAAIQEAl8AAACEBAJfAAAAhAQCXwAAAIQEAl8AAACEBGZuAwAAgG/oNMU1amQu+xmBLwAAAHw3ZfHOnRIoKHUAAABASCDwBQAAQEgg8AUAAIBvnD4t0qaN7aLLfkaNLwAAAHwjI0Nk5crMZT8j4wsAAICQQOALAACAkEDgCwAAgJBA4AsAAICQQOALAACAkEBXBwAAAPhOuXISKAh8AQAA4BtFi4rEx0ugoNQBAAAAIYHAFwAAACGBwBcAAAC+odMUX3SR7cKUxQAAACi0MjJEfvklc9nPyPgCAAAgJHgV+FqWJf/884+sX79e0tLS8mUHpkyZIjVr1pTY2Fhp166drFixIsftjx07JoMHD5bKlStLTEyM1K9fX+bMmZMv+wIAAIDCy+PAd8eOHdK0aVNp0KCB+bdOnTqycuXKc3ryzz//XIYNGyajRo2S1atXS7NmzaRHjx5y8OBBt9unpKTIpZdeKjt37pQvv/xSNm/eLO+8845UrVr1nPYDAAAAhV+YpWlcD9x4440m0zty5EiTnX3ppZckKSlJVq1alecn1wxvmzZt5PXXXzfXMzIypFq1anL//ffL8OHDz9p+6tSpMmHCBNm0aZNERUXl6TlPnDghJUuWlOPHj0uJEiXyvO8AAADIRUKCSLFituVTp2x9ff0Yr3k8gcXixYtNlrVz587mevv27eW8886ThIQEKerhi8iavdWg+YknnnCsCw8Pl+7du8uyZcvc3ufbb7+VDh06mFKHb775RsqXLy99+vSRxx9/XCIiItzeJzk52VycDyQAAABCj8elDlp+UK9ePcd1rbEtUqRItmUJuTl06JCkp6dLxYoVXdbr9f3797u9z/bt203wrffTut6nn35aJk6cKM8991y2zzNu3Djzi8F+0YwyAAAACkhcnO0SADzO+IaFhcmpU6dMsOucoT158qRLFtWX5QNaClGhQgV5++23TYa3VatWsnfvXlP+oHXC7mhGWeuI7XRfCX4BAAAKgFYFaLlDgPA48NVSYO2gkHVdixYtHMsaHGs21hPlypUzweuBAwdc1uv1SpUqub2PZpm1tte5rKFhw4YmQ6ylE9HR0WfdRzs/6AUAAAChzePAd+HChfn6xBqkasZ2wYIFct111zkyunp9yJAhbu/TqVMn+eSTT8x2mm1WW7ZsMQGxu6AXAAAA8Drw7dq1q+Q3LUHo37+/tG7dWtq2bSuTJ082g+UGDhxobu/Xr59pVaZ1uuq+++4zHSAefPBB0/lBewqPHTtWHnjggXzfNwAAAJyjpCSRG26wLX/1lUhsrARF4GunbSXmz59veulqaUOtWrVMJ4a81Pb27t1b4uPjTYs0LVdo3ry5zJ071zHgbffu3Y7MrtLa3Hnz5snQoUNNL2ENijUI1q4OAAAACDDp6SL2icY8LIcNiD6+6uOPPzZlCFlbgmm3BO2xq4FsoKOPLwAAQGj28fW4nZnOrKYlCFqPu2bNGjl9+rQkJiaa2dt69uwpffv2lT///DPfdgwAAADwS8ZXg15tZzZjxoxsZ3bTiPz999+XQEbGFwAAoIAEa8Z3yZIlcs8992R7+7333mtmdwMAAAACkceB73///XdWH19neptOJgEAAAAEdeCr9byxObSg0EkikrRlBQAAABCAvGpnpq3EtN7CnWPHjuXXPgEAAKAwKFpUp/eVoAx8dbKJnGhfXwAAACAQeRz46jTBAAAAQKGv8QUAAAC8ouO/evWyXQJgLJjHge+FF17oUsf77bffmkksAAAAALd0muIvv7RdAmDKYo8DX+3Rm5KS4rh+2223yb59+3y1XwAAAEBglDp4OOEbAAAAEBCo8QUAAEBIyHMfX+3ysGDBAvn7779dtrnmmmvydw8BAACAfBBmeVizEB6ee3JY+/imB0Dhck5OnDhhgvfjx49LiRIl/L07AAAAhVdCgkixYrblU6dsE1r4MV6jjy8AAABCglelDgAAAIDH4uJsmV77sp8R+AIAAMA3wsI8Lm8oCHR1AAAAQEgg8AUAAIBvJCeLDBhgu+iynxH4AgAAwDfS0kQ+/NB20WU/o8YXfrXhvxOybPvhoHwXWlYvJS2ql/b3bgAAgPwMfEuXLm169HriyJEjnj43QlxGhiV931suhxNSJBgViYqQVU93l7hofj8CABAMPPqLPXnyZMfy4cOH5bnnnpMePXpIhw4dzLply5aZWd2efvpp3+0pCp2t8adM0BsTGS49GleSYPLLlng5fjpVVu06Kl3qlff37gAAgPycuc3uhhtukG7dusmQIUNc1r/++uvy008/yddffy2BrDDO3HY8MVXe+GWrnEzyf+2MN/YcSZTf/jkk7WqVkc/vsf2IChbDPl8rM9fslWIxkRIbFeHVfSuVjJGPbm8nZYpG+2z/AAAICAlBOnObnWZ2X3jhhbPWX3755TJ8+PD82i944ePlu+StX7YH7TFrW6uMBJseTSqZwPdUcpq5eOPQqWSZt36/3NK2us/2DwAA5EPgW7ZsWfnmm2/k4Ycfdlmv6/Q2FLyVO2111Zc1qihNqpYMqrcgLjpCbmpTTYKNlmYsGX6xnExK9ep+nyzfLR8t2yVz1u2T0nFRPtu/YBMRHi7ta5eR4rH+OybpGZZM/WWb7Dt+WiLDw+W29tWlboXiftsfAEAABL5jxoyRO++8UxYtWiTt2rUz65YvXy5z586Vd955xwe7GHqSUtPl/k/XmFIAT2yPTzD/Du5WV5pVK+XjvYNd1VJFdIibVwfk0kYVTeCrJR56QaZrmlWRV29p4bdD8uuWeJkwb7Pj+q7DCTJtYFu/7Q8AFApxcSIHD2YuB1vgO2DAAGnYsKG8+uqrMnPmTLNOry9evNgRCOPcLNocL/M3HPDqPuWLx0jDyoWjZrkw61C7rNzU+jzHjxWIJKdlyLq9x+XXf+JNp4/wcM86yOS31buPmn9rlSsqOw4lyMpdR/26PwBQKISFiZQvH7yD24JdIA5u0wzvscTMU+ZTFm6V//t9lyld6NehpkePUb9SMalQPNaHewn4Rmp6hlwwep4kpWbIJQ0qSEyUf+bVWbP7mOw7niRjrmksL8zdJIkp6VK5ZKyEe9jK0VMXnV9enr/+gnx9TAAobE4EyuA2tW3bNpk2bZps377dtDqrUKGC/PDDD1K9enVp3Lhxvu1cKDiSkCKXTFwkR50CX+c60s71yvllv4CCEhWh9b1lzZmOBZvOnA7zow51ykq38yvI7HX7TCCc36Yv3y0PXlJPKpTghyqAEJCcLDJsmG150iSRmJjgyvj+8ssvcsUVV0inTp3k119/lY0bN0rt2rVl/PjxsnLlSvnyyy8lkAVaxvebtXvlwc/WmuWoiMzM0nml4+Sr+zrS8goh4eCJJPlp40FJz8jw637UKFtULqxf3mShN+8/aQa85aeHZ/wpWw+ekhdvbGoyv870uf49etqUV+S2j5VKnnvQfPBkkizcpMfc+/tq7+3LGlfMdTCi1k0v3Jy3HzOlikTL3RfWliLR3rULBBBgEoK8nZm2LNMJLIYNGybFi2eOeL744otNL99gMW3JdilS1P8jthduijf/DuxUU0b1JFuO0KTZzz7tqgdUFtoXHVK0dZ8Gvo99+VeeH0N7Ry9+vJuUiju3PtBPfLXunDLsd+yrJU9f3Sjb29PSM2TQ9NVet/tzVqZYtPRtXyPP9weAcw58161bJ5988slZ67Xc4dCh4BmlPvHHfyQ8xv+jC+3a1gy+XrYAvHN9i6oy+6992bbBq1yyiMTmUOO899hpE0jqQLyLG1TM8+HXE30rzrRB7FKvnJl+25vyLB34t3zH4Ry3234oweyrPvbtnT0bq+Bcb71022FZu/sYgS8A/wa+pUqVkn379kmtWrVc1q9Zs0aqVq0qwaJns8oSE3cm9e5nlUrESvdGef8jBiA4tKlZRv4cdVme7z/si7Uyc/Ve+Xbtf5KSlveyEB1ToDM9RkeGy/sD2pgMt6e0zWKXFxfKpn0nZfryXRIm7gf//f3fcfNvk6ol5NEeDbzav582HDCB79Jth+S1Bf+cdbuON7y0USU5v5L/z9oBKOSB78033yyPP/64zJgxQ8LCwiQjI0OWLFkijzzyiPTr10+Cxbj/NQ2IGl8A8FSLaqVM4Pv12v/M5VxpC0Rvgl51XukiUrZotBxOSJGnZv2d6/Z5KRlpWq2kCW51cOHE+VvcbvPdn/tk3tALvX5sAKHN68B37NixMnjwYKlWrZqkp6dLo0aNzL99+vSRESNG+GYvAQByTbOqsnjrITl8KuWcj0ZEeJjce1Edr++nCY/nr28is9bsldyGRheNiZTbO7meHfSEtmaccGMzWbXL1lvZmQ7++3zlHtl84KQpGfHnbH8Agk+e+/ju2bPH1PueOnVKWrRoIfXq1ZNgEGhdHQAA3ukwboHJBj9+eQOpVc5/YzV04qBWNRifAeR3VwcNTRf9vUsublrL/10dnnnmGVPWoBlfvdidPn1aJkyYICNHjsy3nQMAIKvGVUqawFcnGvG3z+9uL+1ql/X3bgCBq0gRkR07Mpc98Os/h6T/+38ERsY3IiLCDG7TLg7ODh8+bNZp2UMgI+MLAMFt1a4jMmn+FklO9V/f591HEuXgyWR5+NL6cv8lwXHGEwgWn63YLY99ulz2TL7J/xlfjZO1xiurP//8U8qU4ZQPAMC3tLxg+p3t/XqY3/l1uzw/Z6P8+e9xOX5m5s3isZESHp6/U1wDocjy4WN7HPiWLl3aBLx6qV+/vkvwq1lerfW99957fbWfAAAEjMZVbBmonzYekGbP/OhY9+2QzmbgIIAzUlJEnnrKtvz88yLRuU++k5G34Wf5G/hOnjzZZHtvv/12GTNmjBkgZhcdHS01a9aUDh06+Go/AQAIGC2ql5a6FYqZmfjs1v93QnYcSjDrAZyRmiry0ku25dGjPQp8fRj3eh749u/f3/yrE1d07NhRoqJoIQMACE1FoiNk/tALJT3D9hf6xqnLZO2eY7Jx3wkCX6AwlDrYde3a1bGclJQkKZrCdkKLMABAKNCSv8iIMMdkIBr4vjx/i8xZt8+0WqtZLrNt0+J/DsmKHYfl+pbnSa1yReXPPcdk3/HTuT5HRHi4tK9dhn7FCClWIJQ62CUmJspjjz0mX3zxhenkkFWgd3UAACC/talZWj5dsVu2H0owl4olYmX0NY3Nbclp6XLbe8vN8po9x0xQfO2UJR4/9lVNK8uUPi150xAyrEAodbB79NFHZeHChfLmm29K3759ZcqUKbJ371556623ZPz48b7ZSwAAAti1zatKySJRsmhzvPzf77tk0/4Tjtv+OZBZB7xx30n5Y+cRs6xTP2v2NzunU9NN3fBqNzPYAYVZRiBlfL/77jv56KOP5KKLLpKBAwdKly5dpG7dulKjRg2ZPn263Hrrrb7ZUwAAApR2crikYUWT6dXAVwPcX7bEm9uWbj3k2O7QqWRZstV2tvTWdtVl2GXnZ/uYx0+nSrMxP5rJOk4kpUoJpmdGiLACKeN75MgRqV27tqOeV6+rzp07y3333Zf/ewgAQJDQjg4aBGvQ2v/9FW630RZo9rrgnGgGuWKJGDlwIlnu/2SN6RMcFx0h7WuXNf82r1ZaKpWM9cnrAPwpoAa3adC7Y8cOqV69ujRo0MDU+rZt29ZkgkuVKuWbvQQAIAjERkXIsEvry+y/9rmsLxYbKcViIuXnTQfN9VJxUdK2Vu6TPjU7r5T8uOGAI3usvlj5r/m3Ztk4WfRot3x/DUC+0mmK//47cznYBrdpeYPO0qbdHYYPHy49e/aU119/XVJTU2XSpEm+2UsAAILE4G51zcWd+JPJpgWaBr4aJOfmueuaSJf65SU9PcNkwTbtOynb4k/Jyl1HZefhRDmakCKli+beFxXwm/Bwkca2gZ5BWeowdOhQx3L37t1l06ZNsmrVKlPn27Rp0/zePwAACo3yxWO82r5CiVjp277GWes7jf9Z9h47LVvjT0mborlnjoFgYvmw2MHrwDcrHdSmFwAAUDDqVChmAl9toaaTZmhJRLNqlBsiAKWkiIwda1t+8kkPpyyWwAp8//jjD9PS7ODBg5KRkeFyG+UOAAD4Vv0KxeTXLfEyc/Vec9HBbqtGXGpmlAMCbsriMWNsy48+GjxTFtuNHTtWRowYIeeff75UrFjRzFxj57wMAAB8Y0CnmnLsdKokpqTJwk3xkpiSLjsOJUijKjl3ioBvJaWmywOfrpHdRxLddumYcGMzqV42jrchmPr4vvLKK/L+++/LgAEDfLNHAAAgR+eVjpOXejUzyze8uVRW7TpqBr0R+PrXsu2HTReO7Pzw9z65p2sdt7elpGXI+0t2yKGTyS7rm1cvJVc3rZLv+xqqvA58w8PDpVOnTr7ZGwAA4JXa5YqawHfOun0mA5ybGmWLml7AyH//HDhp/u1Yp6wMuiizs8f05bvkh7/3myx9duat3y/jf9h01vrwMH28clImhLp3WIGU8dWuDjpN8eTJk32zRwAAwKtJM5QGVnrxxMJHLspxuuTC6nRKuqRlGZuUn7TdnGpTs4x0rlfOsX7lriO2wDcx+8B3837bfZueV9IEukoHL+pkKLsOJ4RU4JsRSDW+jzzyiFx11VVSp04dadSokURFRbncPnPmzPzcPwAAkIMbWp0nmw+clOM5BFV2a/YckyMJKbL+v+MhF/h+tGynjPp2vU8HTtnVr1jc5XqpIrZY6UQOGd/th06Zf69pVkXu7GKbIXf1rqOyYucR+ffoaWlRvbSECiuQAt8HHnjAdHTo1q2blC1blgFtAAD4UbliMTLppuYebfvwF3/KV6v/lR3xCRJqdDa9ggh6dZrp9rVdeyuXjLMFvpq91R8e03/fJYmp6S7brNx51NGqzu680kVkxU6RPUfPHixXmFmB1Mf3ww8/lK+++spkfQEAQPCoXb6oI/O7erct0PJGrbJFg3KmOK0Z3XKm/nbmoI7S2IfdL6LCwyVcC3OzdHSwB75v/7pdpv6yzaNs8XllbB0gvvhjj2w9eEoeuLie1Ay2TH1srMiKFZnLwVbqUKZMGVPmAAAAgou9vOHnTQfNxVtaZ7rk8YsDol9wanqGyeJqMJmb5LR0OZqYKtp1tVHlEhITWbD7bw98j51OkQ37Tpjli84vL3XKZ2Z3lQbkVUsVcVxvUMkWBOv01HopERslo6/xbvpfv4uIEGnTxrv7BNLgttGjR8uoUaNk2rRpEhdHLzoAAIJFl3rlzGn4/44leX3f/46dNqfptRa1cZWS4m+zVu+Vx776y+uMdWxUwQftjoxvYqpsO2ir5R3cra4ZBJeTHo0ryZQ+LWXBxgMyc81et/2BC6OMQMr4vvrqq7Jt2zYzeUXNmjXPGty2evXq/Nw/AACQT4rHRslnd3fI033/98YSWb37mOw8lBgQga+Wa9izos51sdkJDwuTXq3OE38oWcRWHnIiKc1cVN0s2V53IsLD5KqmlaV4bKQJfPcePS1BOWXxK6/Ylh980LOZ2wKpxve6667zzZ4AAICAVbNsUVvgezgwBsZt3m8rGRjUra7phBDISsVFSbGYSDmVbAt6tZzBm1rpqqVt5Q//Hk009cpBNVNuaqrIY4/ZlgcNCr4pi7XMAQAAhBb7oKpXF/wj7y/e4e/dkSOJKebfhmfqYANZVES4TL+znWNAYae6mT1+PWGv+01ISZfHv/pLIsLDzfViMRFy14W1pUJxzwaNBYuAKnUAAAChxz7bW3JahiSn2YJOf9OAMFj6ETerVspc8kLrkquVKSJ7jpyWL1b+63KbDu7TAXtpGZaZyvryJpUk2Fn+LnXQTg5btmyRcuXKSenSpXNMsR85ciQ/9w8AAASAtrXKyPInL8lx9rGCVr1MnERG2LKfhd2bt7aShU6dOLTGWTtzZA2Ev7+/szSp6v8a7HPi74zvyy+/LMWLF3csB1VtCQAAyBcVS8SaCwqeBrPOAa22cnNuSRcdES4p6RmyLf5U0Ae+Gf5uZ9a/f3/H8oABA3y2MwAAAMhdlVKuP0Ba1iglv28/IvuOe9+qLtD4cnCb1+cHIiIi5ODBs5teHz582NwGAAAA33Ke6CImMtxRP7y/EAS+Gf4udXCmbTTcSU5OlmgPWlQAAADg3JQrFuNYrlKqiCMQ1olGAkpsrMjChZnLwTC4zT5xhdL63nfffVeKFctsvJyeni6//vqrNGjQwDd7CQAAAIfw8DAZeXUjmbd+v9zZpbZjvdb9tnp2vlm+uEEFmdCrmX+PWkSEyEUXeXWXgOjjq4PabDtjydSpU13KGjTTq7O46XoAAAD43u2da5mLvcQhNipcklIz5HCCrd3cjFX/St0KxaRG2Ti5pGFF0084GGRXXVCgge+OHbZm1d26dZOZM2eatmYAAADwv0olY+X3Jy6RgyeTzfWX5m2WHzcckHE/bDLXJ/ZqJjf4Y8pmnbnt7bdty3ffLRIVletdfJjw9b7Gd6G9TsOpzGHdunVSo0YNgmEAAAA/KRUXbS5qxFWNJCYqQv7695jsOpwoW+NP+WenUlJEhgyxLWtnME8C30Dq6vDQQw/Je++95wh6L7zwQmnZsqVUq1ZNFi1a5It9BAAAgBeql42T125pITe3qW6uHwiibg8ZPox8vQ58Z8yYIc2a2Qqlv/vuO9m5c6ds2rRJhg4dKk899ZQv9hEAAAB5UKmkrfvDgZPBE/j6stTB68BX+/VWqmSbB3rOnDnSq1cvqV+/vtx+++2m5AEAAACBoWJxWwuxAydstb+hPrjN68C3YsWKsmHDBlPmMHfuXLn00kvN+sTERCawAAAACCAVzkwxvfXgKTmdki7BIKBqfAcOHCg33XSTNGnSxPT07d69u1m/fPly+vgCAAAEkIolMie6eG72BgkGARX4jh492kxgcffdd8uSJUskJsZ2QLWv7/Dhw/O0E1OmTDF9gGNjY6Vdu3ayYsUKj+732WefmeD7uuuuy9PzAgAAFGbFY6Okepk4s7wvSAa4+XJwm9ftzNSNN9541rr+/fvnaQc+//xzGTZsmJn8QoPeyZMnS48ePWTz5s1SoUKFbO+ng+oeeeQR6dKlS56eFwAAIBQ8fFl9efCztZKc5odSB02Qfv995nKwDG678sor5fjx447r48ePl2PHjrkMemvUqJHXOzBp0iS56667TAmF3l8D4Li4OHn//fezvY/WF996660yZswYqV07c5o+AAAAuIqJtIV7yakZBX9oIiNFrrrKdtHlYCl1mDdvniQnZ44IHDt2rBw5csRxPS0tzWRpvZGSkiKrVq1y1AmbHQoPN9eXLVuW7f2eeeYZkw2+4447cn0O3ecTJ064XAAAAEJFTGSE+Tc5zQ+Bb7B2dci6E/mxU4cOHTLZW+0U4Uyv79+/3+19Fi9ebCbQeOeddzx6jnHjxknJkiUdF51oAwAAIOQyvmnp/pmy+IMPbBddDpZSh0Bw8uRJ6du3rwl6y5Ur59F9nnjiCVOiYb/s2bPH5/sJAAAQKGKiwv2X8U1J0ZZgtosuB8vgNu2eoJes686FBq/aDeLAgQMu6/W6fZIMZ9u2bTOD2nr27OlYl5FhexMjIyNNqUWdOnVc7qNdJ+ydJwAAAEK21CE1WEodxP+Br5Y2DBgwwBFEJiUlyb333itFixY1153rfz0VHR0trVq1kgULFjhakmkgq9eHDBly1vYNGjQ4a3a4ESNGmEzwK6+8QhkDAABAIJU65IEvSx08Dnyztiu77bbbztqmX79+Xu+AtjLTx27durW0bdvWtDNLSEgwXR7sj1m1alVTq6t9fnXiDGelSpUy/2ZdDwAAgOAb3JYRCKUO06ZN88kO9O7dW+Lj42XkyJFmQFvz5s3NVMj2AW+7d+82nR4AAAAQZDW+eREIpQ6+pGUN7kob1KJFi3K87wc6ShAAAABuRUfYAt/0DEvS0jMk8sz1QGX5MPIN7FcOAACAfMn4BkvW90zfgsKb8QUAAIBvM772wLdoQTa70qYIX3yRueznjC+BLwAAQCGmpQ2R4WGSlmFJSkFnfHWa4l69vLpLRiBMWQwAAIDgFEwtzSwCXwAAAORVTJSfWpqlpYnMmGG76LJHKHUAAADAuWZ8Uws48NUJzm66ybZ86pSt9CEXlDoAAAAgREodLJ89NjW+AAAAITJ726LN8fL33uMSqlMWE/gCAAAUckWibYHv6wu3ynVTlsjBk0kSqCh1AAAAQJ4N6VZXutQrJ0WiIkxbs92HEwP2aFLqAAAAgDzr3qii/N8d7aRB5eLm+qFTKQF7NGlnBgAAgHNWtmi0+fdIQgAHvrQzAwAAwLkqe2a+4sOnkgvmYEZHi0yblrns54wvUxYDAACEiLLFbMHn4YLK+EZFiQwY4NVdMnwY+RL4AgAAhIgyZ0odPli6UxJT0uTuC2tL3Qq2ut9AQY0vAAAAzlm5YrZSB/XFyn/l7V+3+/ao6jTFs2fbLh5OWUypAwAAAM5ZqxqlpXhspJxMsgWhCcnpvp+y+OqrvZqy2JeD25jAAgAAIERUKxMnq0ZcKqN7NjLXU9IzJNBQ6gAAAIB8ER0ZLkVjbJnX1AAMfH05uI2MLwAAQAgGv4Ea+PqwmxmBLwAAQKiJijgT+Kb5MszMG0odAAAAkO+Bb0ogZnwpdQAAAEB+iYoIC8lSByawAAAACDHR9lIHXwe+Ok3x669nLnuAmdsAAACQb6Icg9ss309ZPHiwV3ehxhcAAAD5X+ObFoClDj6MxSl1AAAACDFRBVXjm54u8ttvtuUuXUQiInK9C6UOAAAACL4a36QkkW7dMqcsLlpU/IkJLAAAAEK1j286fXwBAAAQAoPbUgKwnRlTFgMAAMAnNb6WL0eT5QFTFgMAACDfa3wtSyQ9I7ACXzK+AAAAyPca34Cs8/Xh7jC4DQAAIMQ4B76BVufLlMUAAADI9xpfn7c005nbXnwxc9kD9PEFAABAvgkLCzPBr5Y5+DTwjY4WefRRr+7ClMUAAADwSbnDos3xATXAzfJhsQNTFgMAAISgxJR08+8TM9eZf29pW903UxavXm1bbtnSsymLfZiAJvAFAAAIcXuOJPpuyuK2bW3LTFkMAAAAf0tJC5zODvTxBQAAgM8kB1Dgy+A2AAAA+Exymq3et7APbmMCCwAAgBA08upGAVrq4LvHJvAFAAAIQbd3riXPXtvYLFPqAAAAgEItJjIi4AJfX05aTDszAACAEBUdGe7bUgedpnjUqMxlP5c6EPgCAACEqJgzga/PBrfplMWjR3t1F8uHbR2o8QUAAAjxjG9yAJU6kPEFAACAz2p8U3wV+Or8wxs32pYbNhQJD/drxpdSBwAAgBAVE+XjjO/p0yJNmng1ZbEPS3wpdQAAAAhV0RFnAt/UAJrAgj6+AAAA8FXGNyU9cGp8GdwGAAAAH2Z8MwLm6FLqAAAAgHwXE3VmAossGd/f/omXl+dvkT1HEgv8qGcwuA0AAAC+6uObkpZhSgzCwsIkKTVd+r63wqz/5+BJeePWVgV64KnxBQAAgM/6+Dp3dth1ODPLe+hUinjj8z92S8dxC+TZ7zdIXhH4AgAAwGcZX+cBbtviT4ldQnKaONOscPzJZDl+OlXceXXBVvnveJK8t3hH5jTFjzxiu3g4ZbHlwypf+vgCAACE+OA29eLcTVIkKkLW7T0udqeyBL5Pzlonn67YI+FhIq/3aSlXXlDZ5fZ9x0+fPWXxhAkSKBlfAl8AAIAQFRYWJqXjouRoYqp8/Pvus27PmvFdsPGgY1rhXzbHuwS+6RmWy3TDej1CI2QvMbgNAAAAPjGlT0v5ZUu8y7oTSakms3syKc0lCD54MtlxfcfhBJf7HE7IvE2lpmdIhISJ7D4TUFev7tmUxeI7ZHwBAABCWMe65czF2bHEFBP46oA3DWCjIsJlxyHXQDfr9YMnzg58Y1NSRGrV8m7KYkodAAAAUFCKxmTmRvcfT5Knv/lbth60DXqrW6GYWdZBbpdP/tWsq1YmTvYeda3vTUv3PoL9ffth8SUyvgAAAHChGV7t+KAZ3+/++k8Wbc4shbiofnnzrwa/m/afNMv2f52lZmSI5F7Z4OKLlXvElwh8AQAAcJbisZGSfCpF/tpj6/JwSYMKck/XOtK8WikZcnFd+XvvCbP+me/Xy5YDmS3Q7FI14+tl4GufOvmuLrVk5GTJdwS+AAAAcFvuoBNY/PXvMXO9ba0y5qKiI6Olcz1bXXDlkkUcga9miSPDwyQhJV3StC+wZ617z5pEo3KpIuILXsbhAAAACAXFztT56oQUqk75YtlmhjOXoyTyTG9gHdzmLfskGlF5aIPmCQJfAAAAnKV+xeIuE100Pa/k2RudCXbtSsRGmvpgR6mDl1LPZHydp1LOT5Q6AAAA4Cwv3NBUbm1XXdIyLNO1oUKJ2LM3OhPsOmd/T6emZ2Z8I2NEBg2y3RgZ6XHGl8AXAAAABSY6Mlxa17TV9OYka6nDkcSUzIxvTIzIlCkeP2eKjzO+lDoAAAAgz5xLHYo7lTqYwW1ecgS+ERHiC5Q6AAAAIM9cM76REnVmWmKT8dVp2A4dst1YrpxIWJhng9sifDO4jcAXAAAAeVbCZXBblERFhmVOYJGYKFKhgsdTFlPqAAAAgIBVMi4z8C1ZJEoi7RnfM2UL3nAMbjtTLpHfqPEFAABAnulMbje0PE8ublBBrm1e1RG0ajcIb9kzvvascX6j1AEAAAB5poPZJt7UzHE98kx9bmoADm4j4wsAAIB8cy4TWFDqAAAAgKARlceMb3qGZS7mMejjCwAAgEAXGZ63Pr72MgfFzG0AAAAIeFGRTqUOOk1x//4eTVlsL3PwZVcHBrcBAAAg30SFO5U66JTFH3zgdcbXVxNYMLgNAAAA+SYqj+3MHAPbIsMlLJcZ3oI68J0yZYrUrFlTYmNjpV27drJixYpst33nnXekS5cuUrp0aXPp3r17jtsDAACg4NjbmZkMrk5ZnJBgu+iyBxnfGB+VOQRE4Pv555/LsGHDZNSoUbJ69Wpp1qyZ9OjRQw4ePOh2+0WLFsktt9wiCxculGXLlkm1atXksssuk7179xb4vgMAACC7jO+ZKYuLFbNddNmjySsKceA7adIkueuuu2TgwIHSqFEjmTp1qsTFxcn777/vdvvp06fLoEGDpHnz5tKgQQN59913JSMjQxYsWFDg+w4AAIDs2plZeZy8wnfhqV8Ht6WkpMiqVavkiSeecKwLDw835QuazfVEYmKipKamSpkyZdzenpycbC52J06cyIc9BwAAQE4Z39l/7ZMjB47KS+KZWWv2+rSVmd8zvocOHZL09HSpWLGiy3q9vn//fo8e4/HHH5cqVaqYYNmdcePGScmSJR0XLY0AAACAb1QuGWv+3XvstMxet8/j+81e95/4mt9LHc7F+PHj5bPPPpNZs2aZgXHuaDb5+PHjjsuePXsKfD8BAABCRe821eWdfq2lXS33Z+NzM+baxlIoSx3KlSsnERERcuDAAZf1er1SpUo53vell14yge9PP/0kTZs2zXa7mJgYcwEAAIDvaanCpY0qyq9b4uWvzZ7fz14TXLVUERHxrj44KDK+0dHR0qpVK5eBafaBah06dMj2fi+++KI8++yzMnfuXGndunUB7S0AAAA85W2tbqq9q0NhHdymtJVZ//79TQDbtm1bmTx5siQkJJguD6pfv35StWpVU6urXnjhBRk5cqR88sknpvevvRa4WLFi5gIAAAD/i4kMl4zwcNnQ8TJpVKWESESERxNY+GrWtoAIfHv37i3x8fEmmNUgVtuUaSbXPuBt9+7dptOD3Ztvvmm6Qdx4440uj6N9gEePHl3g+w8AAAD3Gd/kyGiZ/shL8vz1F0huzBTH9kyxVUgDXzVkyBBzyW7CCmc7d+4soL0CAADAuZY62Pvz5iQ9wxL7DMemj2+a+ERQd3UAAABAYIqJtJU2JHsQ+Nqzvb6u8SXwBQAAgE8yvkVSkuTVPi1FwsJEEhJyre9VBL4AAAAIusFt3nZ08PXgNjK+AAAA8G/ge6aHrwa9YZod9hECXwAAAPg58PV9D19F4AsAAAC/TmCR2cOXwBcAAABBJjqXCSuckfEFAABA0IqJ8mZwm63GN9qHA9sCZgILAAAAFC7REbYpi5ee30461imb45TFjlIHL8oj8oIaXwAAAPgk46tTFj9w27Mis2eLxMZmuy2lDgAAAAha0WcGqnkzcxuD2wAAABB0YqK8n7LY1zW+lDoAAADAJxlfnbJ47YvXi1W0aM5TFp8Z3ObrjC+D2wAAAOCzPr5xqckiqTlvS6kDAAAAglasN+3M6OoAAACAYBUTGSGNq5TwaFtqfAEAABDUbmtfw6PtUtILpsaXwW0AAADwCU8npEg90/mBwW0AAAAISlFh2bcnS0nLkKXbDklSarr8/d9x2/Z0dQAAAEAwioiKkN+rNZFiMZHSJNw1+/vWL9tk4vwteR4Qlxe0MwMAAIBPRBSNk5v7jDeD3GYXKeJy264jiebfqqWKSOWSsVIkOkJublNdfInAFwAAAD5hL11IOzN4zdnplHTz711dasmATrWkIDC4DQAAAD4NfO3typydTrUFvnHRBZeHJeMLAAAAn4hOTpRVr/aRiPAwkfv2iujUxWckpqSZf7XEoaAQ+AIAAMBnGd+yp0+4vc1e6hBXgIEvpQ4AAADwiciI7NuZJZ4JfItEEfgCAAAgyEVlaWHmNvAl4wsAAIDCHPie9sPgNkodAAAAUOClDtT4AgAAoNCIdJqC2LIye/lmZFiOjC9dHQAAABD0oqIi5M9K9cxyYwlztBNLSrMFvQU9uI12ZgAAAPCJqGJF5dr+L5vljdGxjsDTPrBN0dUBAAAAharGNzUj46z63tiocAnXyS0Kan8K7JkAAAAQsl0dUtNsge9Hy3bKwk0HC7yjgyLwBQAAgE+EJ52WxVNvF7FE0h7aKEfCwmTkN+sdt1csESsFicAXAAAAvmFZct5xW3b339R02X8k0SyXiouShy6pJxfWLy8FicAXAAAAPpeWYcneE6fNcu1yRWVAp1pS0JjAAgAAAD6Xmp4he4/aAt+qpePEHwh8AQAA4HMp6Rkycf5ms1y1VBHxBwJfAAAA+NyiTfGSlGrr7FCrHBlfAAAAFFLr951wLF/TrKpf9oHBbQAAAPCNsDDZWbGmpKRlyNb4U2bVQ93rSZHogpum2BmBLwAAAHwjLk7uHf6hbNp/UuSkvcyhqPgLNb4AAADwmdgo1+yuPwNfMr4AAADwmfsuqiPvLd4hGRmW1K9UXJpUKSn+QuALAAAA30hMlB43XSI9dPmPP0zpgz8R+AIAAMA3LEtkw4bMZT+jxhcAAAAhgcAXAAAAIYHAFwAAACGBwBcAAAAhgcAXAAAAIYGuDgAAAPCNsDCRGjUyl/2MwBcAAAC+oX17d+6UQEGpAwAAAEICgS8AAABCAoEvAAAAfOP0aZE2bWwXXfYzanwBAADgGxkZIitXZi77GRlfAAAAhAQCXwAAAIQEAl8AAACEBAJfAAAAhAQCXwAAAIQEujoAAADAd8qVk0BB4AsAAADfKFpUJD5eAgWlDgAAAAgJBL4AAAAICQS+AAAA8A2dpviii2wXpiwGAABAoZWRIfLLL5nLfkbGFwAAACGBwBcAAAAhgcAXAAAAIYHAFwAAACGBwBcAAAAhgZnbAAAA4DtxcRIoCHwBAADguymLExIkUFDqAAAAgJBA4AsAAICQQOALAAAA30hKErnqKttFl/2MGl8AAAD4Rnq6yJw5mct+RsYXAAAAIYHAFwAAACEhIALfKVOmSM2aNSU2NlbatWsnK1asyHH7GTNmSIMGDcz2F1xwgcyxp9ABAACAQA18P//8cxk2bJiMGjVKVq9eLc2aNZMePXrIwYMH3W6/dOlSueWWW+SOO+6QNWvWyHXXXWcuf//9d4HvOwAAAIJHmGVZlj93QDO8bdq0kddff91cz8jIkGrVqsn9998vw4cPP2v73r17S0JCgnz//feOde3bt5fmzZvL1KlTc32+EydOSMmSJeX48eNSokSJfH41AAAAcNDJK4oVsy2fOmWb0MIDvorX/NrVISUlRVatWiVPPPGEY114eLh0795dli1b5vY+ul4zxM40Q/z111+73T45Odlc7PQA2g8oAAAAfMh51jaNvTzs7GCP0/I7P+vXwPfQoUOSnp4uFStWdFmv1zdt2uT2Pvv373e7va53Z9y4cTJmzJiz1mtWGQAAAAWkShWv73L48GGT+c0vhb6Pr2aTnTPEx44dkxo1asju3bvz9UAiMOkvRv2Rs2fPHkpbQgDvd2jh/Q4tvN+h5fjx41K9enUpU6ZMvj6uXwPfcuXKSUREhBw4cMBlvV6vVKmS2/voem+2j4mJMZesNOilxjd06HvN+x06eL9DC+93aOH9Di3h4eGFp6tDdHS0tGrVShYsWOBYp4Pb9HqHDh3c3kfXO2+v5s+fn+32AAAAQECUOmgZQv/+/aV169bStm1bmTx5sunaMHDgQHN7v379pGrVqqZWVz344IPStWtXmThxolx11VXy2WefycqVK+Xtt9/28ysBAABAIPN74KvtyeLj42XkyJFmgJq2JZs7d65jAJvW4jqnuTt27CiffPKJjBgxQp588kmpV6+e6ejQpEkTj55Pyx60Z7C78gcUPrzfoYX3O7TwfocW3u/QEuOjeM3vfXwBAACAkJi5DQAAACgIBL4AAAAICQS+AAAACAkEvgAAAAgJhTLwnTJlitSsWVNiY2OlXbt2smLFihy3nzFjhjRo0MBsf8EFF8icOXMKbF9RsO/3O++8I126dJHSpUubS/fu3XP9fCC4v9922vowLCxMrrvuOp/vI/z3fuvsnIMHD5bKlSub0eD169fn/+mF+P3WFqjnn3++FClSxMzSOXToUElKSiqw/UXe/frrr9KzZ0+pUqWK+X+zdujKzaJFi6Rly5bmu123bl354IMPvH9iq5D57LPPrOjoaOv999+31q9fb911111WqVKlrAMHDrjdfsmSJVZERIT14osvWhs2bLBGjBhhRUVFWevWrSvwfYfv3+8+ffpYU6ZMsdasWWNt3LjRGjBggFWyZEnr33//5fAXwvfbbseOHVbVqlWtLl26WNdee22B7S8K9v1OTk62WrdubV155ZXW4sWLzfu+aNEia+3atbwVhfD9nj59uhUTE2P+1fd63rx5VuXKla2hQ4cW+L7De3PmzLGeeuopa+bMmdpdzJo1a1aO22/fvt2Ki4uzhg0bZuK11157zcRvc+fO9ep5C13g27ZtW2vw4MGO6+np6VaVKlWscePGud3+pptusq666iqXde3atbPuuecen+8rCv79ziotLc0qXry49eGHH/J2FNL3W9/jjh07Wu+++67Vv39/At9C/H6/+eabVu3ata2UlJQC3Ev46/3WbS+++GKXdRoUderUiTclyIgHge9jjz1mNW7c2GVd7969rR49enj1XIWq1CElJUVWrVplTl/b6eQXen3ZsmVu76PrnbdXPXr0yHZ7BPf7nVViYqKkpqZKmTJlfLin8Of7/cwzz0iFChXkjjvu4I0o5O/3t99+a6av11IHnQRJJzYaO3aspKenF+Ceo6Deb53QSu9jL4fYvn27KWu58soreRMKoWX5FK/5fea2/HTo0CHzPzj7rG92en3Tpk1u76OzxbnbXtej8L3fWT3++OOmvijrlwmF4/1evHixvPfee7J27doC2kv48/3WwOfnn3+WW2+91QRAW7dulUGDBpkftzoDFArX+92nTx9zv86dO+vZa0lLS5N7773XzOqKwmd/NvHaiRMn5PTp06bO2xOFKuMLeGP8+PFmwNOsWbPMQAoULidPnpS+ffuaAY3lypXz9+6gAGRkZJjs/ttvvy2tWrWS3r17y1NPPSVTp07l+BdCOtBJM/pvvPGGrF69WmbOnCmzZ8+WZ5991t+7hgBWqDK++sctIiJCDhw44LJer1eqVMntfXS9N9sjuN9vu5deeskEvj/99JM0bdrUx3sKf7zf27Ztk507d5pRw86BkYqMjJTNmzdLnTp1eHMK0fdbOzlERUWZ+9k1bNjQZIr0VHp0dLTP9xsF934//fTT5sftnXfeaa5rV6aEhAS5++67zQ8eLZVA4VEpm3itRIkSHmd7VaH6VOj/1PRX/oIFC1z+0Ol1rftyR9c7b6/mz5+f7fYI7vdbvfjiiyYjMHfuXGndunUB7S0K+v3WFoXr1q0zZQ72yzXXXCPdunUzy9r6CIXr+92pUydT3mD/gaO2bNliAmKC3sL3fusYjazBrf1Hj228FAqTDvkVr1mFsB2Ktjf54IMPTLuLu+++27RD2b9/v7m9b9++1vDhw13amUVGRlovvfSSaW81atQo2pkV4vd7/Pjxpl3Ol19+ae3bt89xOXnypB9fBXz1fmdFV4fC/X7v3r3bdGkZMmSItXnzZuv777+3KlSoYD333HN+fBXw1futf6/1/f70009Nq6sff/zRqlOnjunWhMB38uRJ01pULxqOTpo0ySzv2rXL3K7vtb7nWduZPfrooyZe09aktDM7Q3u7Va9e3QQ42h7l999/dxy4rl27mj9+zr744gurfv36ZnttlTF79uyCeddR4O93jRo1zBcs60X/B4rC+f12RuBb+N/vpUuXmpaUGkBpa7Pnn3/etLRD4Xu/U1NTrdGjR5tgNzY21qpWrZo1aNAg6+jRo37ae3hj4cKFbv8e299j/Vff86z3ad68ufl86Pd72rRplrfC9D/5m4wGAAAAAk+hqvEFAAAAskPgCwAAgJBA4AsAAICQQOALAACAkEDgCwAAgJBA4AsAAICQQOALAACAkEDgCwAAgJBA4Asg5I0ePVqaN2/u8+MQFhYmX3/9tV+Otz+ee+fOneZ5165de06PU7NmTZk8eXLAHlsAwYPAF0BQi4+Pl/vuu0+qV68uMTExUqlSJenRo4csWbIk4ALpffv2yRVXXOGX5wYAiERyEAAEsxtuuEFSUlLkww8/lNq1a8uBAwdkwYIFcvjwYQk0GpQHC53NPj09XSIj+TMBoPAg4wsgaB07dkx+++03eeGFF6Rbt25So0YNadu2rTzxxBNyzTXXuGx35513Svny5aVEiRJy8cUXy59//pnjY7/77rvSsGFDiY2NlQYNGsgbb7zhcvu///4rt9xyi5QpU0aKFi0qrVu3luXLl8sHH3wgY8aMMY+vp9/1ouvcnY5ft26d2ZciRYpI2bJl5e6775ZTp045bh8wYIBcd9118tJLL0nlypXNNoMHD5bU1FS3+5zTc6tDhw7J9ddfL3FxcVKvXj359ttvHbctWrTIbP/DDz9Iq1atTPZ88eLFkpGRIePGjZNatWqZ/WzWrJl8+eWXjvsdPXpUbr31VnNs9XZ93GnTprns1/bt2837o8+r91+2bJnL7V999ZU0btzYPKeWNUycODHH9+aff/6RCy+80Lw3jRo1kvnz5+e4PQDY8VMeQNAqVqyYuWgw2b59exM4udOrVy8TlGlQV7JkSXnrrbfkkksukS1btpjANavp06fLyJEj5fXXX5cWLVrImjVr5K677jIBbv/+/U1w2rVrV6lataoJHjWTu3r1ahMk9u7dW/7++2+ZO3eu/PTTT+bx9DmzSkhIMCUZHTp0kD/++EMOHjxogvMhQ4a4BKsLFy40Qa/+u3XrVvP4Wsqg+5NVbs+tQfGLL74oEyZMkNdee80ErLt27XI5BsOHDzeBtmbPS5cubYLejz/+WKZOnWqC2l9//VVuu+02E+jqMXj66adlw4YN5tiWK1fO7OPp06dd9uupp54yj6n312X9waDbaTZ51apVctNNN5kSDd3/pUuXyqBBg0yQr4F/VnqM//e//0nFihXND43jx4/LQw89lO1nBABcWAAQxL788kurdOnSVmxsrNWxY0friSeesP7880/H7b/99ptVokQJKykpyeV+derUsd566y2zPGrUKKtZs2Yut33yyScu2z/77LNWhw4dzLLer3jx4tbhw4fd7lPWx7PT/+XOmjXLLL/99ttmv0+dOuW4ffbs2VZ4eLi1f/9+c71///5WjRo1rLS0NMc2vXr1snr37p3t8cjpuUeMGOG4rs+r63744QdzfeHCheb6119/7dhGj1lcXJy1dOlSl8e64447rFtuucUs9+zZ0xo4cKDbfdmxY4d5zHfffdexbv369Wbdxo0bzfU+ffpYl156qcv9Hn30UatRo0aO63oMXn75ZbM8b948KzIy0tq7d6/jdn0NzscWALJDqQOAoK/x/e+//0zm9fLLLzen7Fu2bOnImuppf83QagbRniHWy44dO2Tbtm1uM7G6/o477nDZ/rnnnnNsr10KNBPsLlvsqY0bN5rT/ppFtuvUqZPJaG7evNmxTksAIiIiHNc1+6vZ4bxo2rSpY1mfV8s+sj6WlmzYaVY2MTFRLr30Updj8dFHHzmOhQ4s/Oyzz0wW+rHHHjMZ25yeV/df2Z9Xj4O+bmd6XcsZtMY4K92+WrVqUqVKFcc6zZoDgCcodQAQ9LTWU4Mzveipdy0ZGDVqlDlVrkGvBlsaEGdVqlSps9bZa2zfeecdadeunctt9gBUyyYKSlRUlMt1rcPV4NhXj+UciNuPxezZs01ZhzN7WYl2qdByiTlz5phaWy0h0TpkLW1w97z6nCqvrwEAzgWBL4BCRwc82QeRafZ3//79pp5UB07lRmtHNZuoA7K0BtYdzWDq4LcjR464zfpGR0e7zVY604FzmpXWDLM92NQWbOHh4XL++edLXnny3N4cRw1wd+/ebep5s6P1vlr7rJcuXbrIo48+6hL45nYcsrae0+v169d3yXQ7b79nzx7TGs6ePf7999+9fm0AQhOlDgCClrYs064IOvjqr7/+MuULM2bMMAO4rr32WrNN9+7dzalw7Y7w448/mkkV9HS8DrJauXKl28fVQWA6qOvVV181A+C0+4J2Kpg0aZK5XQdn6YA2fUwN0jRI1s4E9m4FGmDrvmhJhHZSSE5OPus5NKjWTLUGizogTQev3X///dK3b18TfOeVJ8/tqeLFi8sjjzwiQ4cONe3itLxBB/HpwDi9rnQQ4DfffGPKItavXy/ff/+9CU499fDDD5v2c88++6w51vq4OqhQn9cdfT81KNbjpmUs2tVD30sA8ASBL4CgpfWmWo7w8ssvm/ZWTZo0MaUO2vFAgyf7qXU9Da+3Dxw40ARNN998szk9n12AqaUSmtHVYPeCCy4w2U7NzmpLL3tWVYPoChUqyJVXXmm2GT9+vCNDqXXHWm+sLbw0G/rpp5+e9Rza2mvevHkma9ymTRu58cYbTZmAfb/zypPn9oYGpHpM9YeABrT62Fr64HwstH2cZsH1GOsx0JpfT2lG/osvvjD30fdPA+lnnnnGbUcHpRnxWbNmmc4R2rpO36vnn3/+nF4jgNARpiPc/L0TAAAAgK+R8QUAAEBIIPAFAABASCDwBQAAQEgg8AUAAEBIIPAFAABASCDwBQAAQEgg8AUAAEBIIPAFAABASCDwBQAAQEgg8AUAAEBIIPAFAACAhIL/B3aGkxwBGLMfAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr4AAAIjCAYAAADlfxjoAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbVhJREFUeJzt3Qd8U2X3wPFDNy17D9nKnrJEQBwoiOJ4HYiD4cQtCIiL4QAVQRwoivsVF+5XEFQEFcUFyp8NMmTI3rTQ0jb/z3namyZpUpo0aW+S3/fzidzc3CQ397b25NzznKeUw+FwCAAAABDhYkp6BwAAAIDiQOALAACAqEDgCwAAgKhA4AsAAICoQOALAACAqEDgCwAAgKhA4AsAAICoQOALAACAqEDgCwAAgKhA4AsAXkycOFEaNmwosbGx0rZtW45RlJgzZ44530lJSVKqVCk5cOBAoZ87duxY85zC0O10+2DxfL0333zTrNu0aVPQ3gOIBAS+QBix/ph5u40aNcq5Xf369Z3rY2JipEKFCtKqVSu5+eab5ddff/X62q6vpc+pVauWnHfeebJgwQKJNl9//bWMHDlSunbtKm+88YaMHz8+pO/37rvvypQpUyRcFHZ/rUDwRLczzzwzKPv1+++/yx133CEtWrSQlJQUqVu3rlx55ZWydu3aQj1/7969ZvvSpUvL1KlT5b///a95HQCRI66kdwCA/x555BFp0KCB27qWLVu63des1b333muWDx8+LKtWrZKZM2fK9OnTZejQoTJ58uR8r3vuuefKgAEDxOFwyMaNG+XFF1+Us88+W2bNmiXnn39+1Jyq7777zgT/r732miQkJBRLILl8+XK55557JBwUdn//85//yMknn+y8f+TIEbn11lvl0ksvNY9ZqlevHpT9evLJJ+Wnn36SK664Qlq3bi07duyQF154QU499VT55Zdf8v2OeAuc9Xfl0UcflZ49ewZlnwDYC4EvEIY0CO3QoUOB29SuXVuuvfbafIHB1VdfLc8884yccsopJghx1bhxY7fnaICiAYRm90oy8M3MzJTs7OxiCULVrl27TNYvWO+nXySOHTtmXjNSj5k3+rOjN8uePXvMz5yu8/zZDIZhw4aZoNz1M/fr189c7XjiiSfknXfeOeF5V3qFBEBkotQBiCIaeOnl20qVKsnjjz9uArKCaMBQpUoVk/09ES2h6NOnj1SsWNFcHtbg5tlnn3U+rpezvV3SHjRokCnNsGhNol7+fvrpp03A3ahRI0lMTJQ///xT4uLiZNy4cfleY82aNeY5mt2zaG2mZiTr1Kljnq+ZRw38NRgsiL6OljekpqY6L8VriYkVTGo20Non3e8HHnhA0tPT3V5D11944YUyd+5c8wVFj/vLL7/s9f30mGhG/Z9//nG+n3U8MjIyZPTo0dK+fXspX768Oa7du3eX+fPnu72Gr2O2cuVK87iWq+h+aN2qPqb74qseVYNDfT/dZ/05ueqqq2TLli2F2t+i0tfWrOz//d//SY8ePSQ5Odmct48++sg8/v3330vnzp3NvjVp0kS+/fZbt+effvrp+QJ9/YKnpQ96xeNE7z1w4ECz3LFjR/O59GfToldLrOOivxMauG/btu2En0l/NvQKS9WqVaVs2bJy0UUXydatWwt1PAp7/gEUHhlfIAwdPHjQZM9c6R/jwihTpozJ5OplfA2MNCjwZf/+/ebmernam2+++cYEejVr1pS7775batSoYQKNL7/80twPhAafmiXVumQN4vS1NRj68MMPZcyYMW7bfvDBB2YQml7iVmlpaWZbDUxuueUWU+v5888/y/333y/bt28vsD5Vvxi88sor8ttvv8mrr77qDKjUjTfeKG+99ZZcfvnlpoxEg/0JEyaYz/rpp5/mC8b79+9v3v+mm24ygZo3Dz74oDmfGgxpJt46R+rQoUNmH/R19DX0Mryet169epn98xx053nMNHDVLwy9e/c2x0+/NGRlZZlSGQ3EPOmXoYcfftjUuepn3b17tzz//PNyxhlnmNfRTGhB+xsM+vOmP0sacOv5fOmll8zyjBkzzBeZIUOGmKsWOvhQz4MG5RpQ+qJf7nbu3Fngz7nSz6XnSM+9VUqkXxKUfvEZPHiwCYj1fOvr6Zc6Lauwjosvehz1y4Tus/4caRnNBRdcUKhj4e/5B1AIDgBh44033tAUrdebq3r16jkuuOACn6/zzDPPmOd8/vnnznV6/4YbbnDs3r3bsWvXLsevv/7qOOecc8z6SZMm+XytzMxMR4MGDcx77t+/3+2x7Oxs53KPHj3MzdPAgQPNcy0bN24071muXDmzH65efvll89iyZcvc1jdv3txx9tlnO+8/+uijjpSUFMfatWvdths1apQjNjbWsXnzZp+fx9onfb6rv/76y7z3jTfe6LZ++PDhZv13333nXKefR9fNmTPHURh6rlyPgeuxTU9Pd1unx7h69eqO66+/vlDHrG/fvo7k5GTHtm3bnOvWrVvniIuLc/u52bRpkzk2jz/+uNvz9Vjrtq7rfe3viejPlr7nmDFjvD6uPx/6+Lvvvutct3r1arMuJibG8csvvzjXz50716zX34mC/Pe//zXbvfbaa4X+/fr999+d6zIyMhzVqlVztGzZ0nH06FHn+i+//NJsO3r0aOc6/Vyux9T6mbntttvc3ufqq68u8Dj4e/6V5+tZn0V/NgDkodQBCEM64lyzrK43f1gZOs0gudJskmYCq1WrZi4pa0ZL6yYLGsSkGS8thdBtPDNfhW3t5M1ll12WLyupA6K03EEzvBYdZKWZa63ldL0srZeEtexCM+PWTQcsacbzhx9+8Ht/Zs+ebf7V4+HKGkCol/9dacZQM3NFoVls69K9lmjs27fPlFto2cKSJUtOeMz0s2o5wCWXXGK6dFg0g+9Zs/3JJ5+Y99Bsr+sx0+y9lgsU1+V1/dnUDK9Fs7D6c9WsWTPzM2mxljds2ODztVavXi233367dOnSxVnG4K8//vjD1P7edtttplTEolnbpk2b5jvv3n5m7rrrLrf1hR3E6O/5B3BilDoAYahTp04nHNxWEB1drzwvEV988cWmHZQGrPqY1RaqIOvXrzf/nmjEvL88u1ZY5RznnHOOKXfQWlulQbAGw65dAtatW2fqRL1dzncdxOQPrWnVTg+eZR8aGGpgpo+faP8DoaUVkyZNMkHc8ePHC3x9z3X6OY8ePeq1VMVznR4zTRxqkOtNfHy8FIeTTjop3xcmrW/VWm3PdVZphDfa0UGDU91Oa4Q1iAyEdV69lapo4Ltw4cIT/sxYJRMWX2UvRT3/AE6MwBeIQpol9Rb8aNARqjZOGsx4G0ynWUlvfHVA0Gyg1lv+9ddfpsZRg2ANhl1rnDU7pq3ZtBevN9q9oiifozCC0cFBa0N1gJVmbEeMGGEy8RrAaZ2p9YUjWO+px0w/21dffeU1SAxmHW9BfAWovtZ7+5nSGmTNaOsAxx9//NEt2x1O/D3/AE6MwBeIMprt1YFYmkHTy8dFZWWzNJguKGjWsgNvl6U9M6UnokGADhizyh10cgIdtOa5T/o5gxnE16tXzwSHmhl1PW460EkDLH082MG0Zip19jgtQ3DdxnNwny8aKOnl+b///jvfY57r9JhpEKmZxBN9MShKCUuo6eC+vn37mp8LLfNo3rx5kV7POq86WFF7WrvSdQWdd+tnRoNU1yyvPq8winr+AeRHjS8QRfSy93XXXWdqBXUUezACGJ0cQIMl7ZTgOb2razZOAyu9XKudAixLly41dcT+0LICrZ3VTO/7779vaiA1GHaldaqLFi0y7cQ86T5qnaS/tFWb8uwIYU0EUtiR+t5oOYlmKX1lOV2Po3aS0M9WGPp8Df4/++wz+ffff92CXs3sutJSEd1eOz94ZlH1vs5qdqL9LWl69UBrvfX4aJ231vYWlZYU6ReIadOmubWt0+On3TwKOu9WHfVzzz3ntr6ws/QV9fwDyI+MLxChtJWX1bBfs586AEyDAa191AFZmjUNBq1h1JZTmmXT0gMtQ9DWWRrkrlixwhl8Xn/99SZI1KD1hhtuMPWnGkxoHbG2bfKHBjfaR1VnltPX8xxUp5eFv/jiC9MWSy8Vax9U7cu7bNkyk0XTvreFbf9madOmjRkgpe2uNHjWdmnaUkprMDXwPuussyRQun+awdaBc9oyS8sK9Hjq/mu2T9vPaYClgwj1mGkW06rTPhHt16tTMOv0yzp5hAaH2u9Ya7K1XMT1i8ljjz1msud6fPQzaZ23vqdeIdAWacOHDy9wf0ua/lzredd90S93nhNWBDJphtY2a/9n/bnWc66txax2Ztq/WHv0+qK/D7q9/pzqFwVtZzZv3jyvGXhvgnH+AXhw6fAAwOa8tVvyxmqnpbdSpUqZNlctWrRw3HTTTaZNmTe67e233x7wvi1cuNBx7rnnOsqWLWtagbVu3drx/PPPu23zzjvvOBo2bOhISEhwtG3b1rSk8tXObOLEiT7f69ChQ47SpUub7fQ1vTl8+LDj/vvvd5x88snm/apUqeI4/fTTHU8//bRpUeVvOzN1/Phxx7hx40z7tvj4eEedOnXMexw7dsyvdnKejhw5YlpcVahQwXwm63hoO7jx48eb+4mJiY527dqZNlr+HrN58+aZ5+pxaNSokePVV1913HvvvY6kpKR823788ceObt26mc+vt6ZNm5qfizVr1pxwf4PRzkx/Tj35Op6eP7NWO7TCtPzz9/frgw8+MMdQz0OlSpUc11xzjWPr1q1u23i2M1PaAu2uu+5yVK5c2RxPbS+3ZcuWQrUzK+z5t44F7cyAEyul//EMhgEAkU0zupqR15plAIgW1PgCQBTUdrvSYFd7zHqbQhoAIhkZXwCIcFpzrbXO2iFAu2hoTbYO1NLJR3z17QWASMTgNgCIcL1795b33nvPDGxMTEw03Q7Gjx9P0Asg6pRoqYNOG6qjb7W5uLZV0pY7J7JgwQLTPkn/563N9998881i2VcACFdvvPGG6dSgPW61u8CcOXPM/0cBINqUaOCr7YW0RdDUqVMLtb22ctGWLto2SNvw6HznN954o9denQAAAIAta3w146u9Ij0b0bu67777ZNasWc7pVq3pS7WnpmYwAAAAgIio8dXZajynINXm9Zr59UUHcLjOtqPTR2pj88qVK9t62k0AAIBo5XA45PDhw6YcVidKisrAVwdmVK9e3W2d3tdZn7RdT+nSpfM9Z8KECWYKTgAAAISXLVu2yEknnRSdgW8gdPpNnVbTogM76tataw5kuXLlSnTfAAAAwt7x4zqKNmd58GCd69vt4X4vL5IV/x6Sqde0kx6NqxXqJTWpWadOHTN1ejCFVeBbo0YNM0e6K72vAay3bK/S7g9686TPIfAFAAAootRUkREjcpZvvVUkJcXt4bikFIlJzJSUMmX9jr2CXZYaVjO3ae/JefPmua375ptvzHoAAADYVykp+bFVJRr4HjlyxLQl05vVrkyXN2/e7CxTGDBggHP7IUOGyIYNG2TkyJGyevVqefHFF+XDDz+UoUOHlthnAAAAgG8OyW0gVvJxb8kGvn/88Ye0a9fO3JTW4ury6NGjzf3t27c7g2DVoEED085Ms7za/3fSpEny6quvms4OAAAAsB+HLRrn2qDG98wzzzTtKnzxNiubPkfnlw8l3afMzEzJysoK6fsA0Sw2Nlbi4uJoKwgAUaJUtAe+dpSRkWEyzWlpaSW9K0DES05Olpo1a0pCQkJJ7woAIESsHKcd5k8g8HWhk1tonbFmorRhsv4xtsNJAiKNXlXRL5m7d+82v3OnnHJKUBuUAwDswyH2QeDrQv8Qa/CrfeM0EwUgdLQFYXx8vPzzzz/mdy8pKYnDDQDhKDFR5Msv85Z9sEMqkcDXCzJPQPHgdw0AIkBcnMgFF/h82BrPZYeL6FxbBAAAQFT08SXjCwAAgKJNWTxjRs7yNdfkm7LYTsj4osB2chUqVAirIxSO+wwAQFjLyBAZPDjnpss+uzpIiSPwjRCDBg0yHSg8b7179y7U8+vXry9TpkxxW9evXz9Zu3atRFqw6u04devWzevjKSkppuOAHt/Fixe7vc6CBQvctq1evbpcdtllZnZBAADgPnObDeJeAt9IokGu9iB2vb333ntFGnVfrVo1iURvvPGG23H64osvvD6+YsUKmTp1qpleu3PnzvL222/ne601a9bIv//+KzNnzjTb9+3bl8lPAACwITK+J6AjEdMyMkvkVtCsdt4kJiZKjRo13G4VK1Z0fo6xY8dK3bp1zXbap/iuu+5yzoanLaWGDh3qzF56y8Tq89u2bSuvv/66eZ0yZcrIbbfdZoK8p556yryfBsqPP/64235NnjxZWrVqZbKn2ipOn6OBpJU1HTx4sBw8eND53vo+Kj09XYYPHy61a9c2z9XAU7d3pfuo+6Lt5y699FLZu3dvoY6Vfi7X41SpUiWvj2sm/LzzzpOPPvpIrrnmGrnjjjtk//79btvqZ9ZJGM444wwz3fbKlSvl77//LvR5AwAgkjmscMYGKV8Gt53A0eNZ0nz0XCkJKx/pJckJwTlFH3/8sTzzzDPy/vvvS4sWLWTHjh2ydOlS89gnn3wibdq0kZtvvlluuummAl9n/fr18tVXX8mcOXPM8uWXX24u7Tdu3Fi+//57+fnnn+X666+Xnj17mkDValn13HPPSYMGDcy2GviOHDlSXnzxRTn99NNNiYUGjJo5VRpQKw0yNYjUfdZA/dNPPzVZ7WXLlpnyg19//VVuuOEGmTBhglxyySVmn8aMGSOhol8MNOP7zTffyJVXXukzS660Ly0AABDnBBZ0dUBQffnll86g0fLAAw+Y2+bNm00GUwNSnTRAs6SdOnUy22i2U2erK1u2rNmmIDrBh2Z8ddvmzZvLWWedZQLW2bNnmwC3SZMm8uSTT8r8+fOdge8999zjfL5mUB977DEZMmSICXx1drzy5cubTK/re+v+armB/qtBr9Lsrwa3un78+PHy7LPPmkBYg2ilwbcG3rrNifTv3998Zss777xjgueCNG3a1Py7adMmr49racTTTz9tMtR6HAAAgPh9BTuUyPieQOn4WJN5Lan39ocGoS+99JLbOusS/hVXXGEyqw0bNjTBYp8+fUwtapw2nfaDBq4a9Fp0QJcGkK4TEei6Xbt2Oe9/++23Jiu7evVqOXTokGRmZsqxY8ckLS3N5wx5mtXVEgoNZl1p+UPlypXN8qpVq0x5g6suXboUKvDV7Ld+CbBoqcKJ5DXgdr9Wc9JJJ+WUxKSlmcy5Ztc1oAcAAHns0NWBwPcENMgJVrlBqGkd7Mknn+z1Ma2t1cysBqF6qV7LDSZOnGjKEzQDXFie2+rx8bZOM8NWdvTCCy+UW2+91dT+aiC+cOFCU6Kg5QC+Al+tAdaAWjspuGZmlWdWOxCaXfZ1rHzRQFtpyYarH3/8UcqVK2dqfV2/FAAAEBUSE0U+/DBv2YONSnwJfKOJ1p9qlldvt99+u7l0r5nVU0891WQoNcMabBq4ahA8adIkZ1b4Q+uXI5e3927Xrp1Zp5nj7t27e33tZs2amTpfV7/88ouEimbMNcB1zRRbgTC9gwEAUSsuTi8t+37cPpUOBL6RRMsAdNCaKy1lqFKliul+oIGk1t1qllVrWjUQrlevnrOE4YcffpCrrrrKdH3Q5wSDZlWPHz8uzz//vAm4f/rpJ5k2bZrbNvremuGdN2+eKRXQ/dMSB+2iMGDAABM0ayC8e/dus03r1q3lggsuMF0punbtaupqL774Ypk7d26hyhwK48CBA+ZY6jHVXsYvv/yyfPbZZ2ZwG0EuAAD+8ywVLAm0M4sgGvRprarrzZqYQYO16dOnm0BRA0ctefjf//7nrJd95JFHTFlCo0aNpGrVqkHbJw1ktZ2ZDnhr2bKlzJgxw9T7utLODjrYTSfM0PfW1mhKB7Fp4HvvvfeawWI6+Oz33383A/PUaaedZj6TDnLT9/n666/loYceCsp+a4s1PX6aFdcyDS2v+O233+Tqq68OyusDABAxMjNFZs7Muemyr1KHko97pZTDTkPtioEOrtIuAto3Vi9bu9IBVxs3bjSXrpOSkkpsH4Fowe8cAESA1FQdgJOzrH36U1LcHj5z4nzZtDdNZg7pIh3ru/fNDyReKwoyvgAAAAg5GyR8CXwBAAAQOnYqdSDjCwAAgJDJK6ot+ciXwBcAAABRgcAXAAAAIePILXag1AEAAABRUepQqqR3hAksAAAAUCQJCdp8P2/ZxuJKegcAAAAQxuLjRQYNOnHG1wa1DtT4AgAAIORKPuwl8IUfxo4dK23btrXt+5x55plyzz33SHGrX7++TJkypUivMWjQIDMlczA+3xlnnCHvvvuulLSVK1fKSSedJKk6ow8AIHJlZorMmpVz8zJlsZ2Q8Y0gW7Zskeuvv15q1aolCQkJUq9ePbn77rtl7969fr+WXo747LPP3NYNHz5c5s2bJyVtwYIFZv8OHDhQ0rtiO1988YXs3LlTrrrqKrdpgW+//XapXLmylClTRi677DKzTUH0cQ3G9WcpOTlZevfuLevWrXM+vmnTJnMOvN1m6lztItK8eXM57bTTZPLkySH8xACAEpeeLnLhhTk3XfbgyK11sEGlA4FvpNiwYYN06NDBBCfvvfee/P333zJt2jQTqHbp0kX27dtX5PfQoEmDp0hy/PhxiSTPPfecDB48WGJi8r7TDh06VP73v/+ZgPT777+Xf//9V/7zn//4fA39H5Rmn/Vn6vPPP5c///zTfInq2bOnM3tbp04d2b59u9tt3Lhx5mfk/PPPd76W7stLL70kmTbPAAAAimHmNhsUO5DxLSz9g+/rduxY4bc9erRw2/pJM3qa5f3666+lR48eUrduXROAfPvtt7Jt2zZ58MEH3S7NP/roo9K/f39JSUmR2rVry9SpU90eV5deeqnJ4Fn3PUsQrMvz48ePl+rVq0uFChXkkUceMUHOiBEjpFKlSuZS9xvWSM9c9913nzRu3NhkEhs2bCgPP/xwoQNQzTSeddZZZrlixYpm/3Q/LNnZ2TJy5Ejz3jVq1DD77Eq310DsoosuMp/98ccfN+s1wDv11FMlKSnJ7JMGcVawpoGgvo4e08TERJMFveuuu9xeNy0tzWTby5Yta7Z75ZVX3B5ftmyZnH322VK6dGnz5eHmm2+WI0eO+PycGmAOGDDABJI1a9aUSZMmnfDY7N69W7777jvp27evc93BgwfltddeM1lXff/27dub8/Hzzz/LL7/84vV19MuTPqbHqWPHjtKkSROzfPToUfOlSsXGxprj63r79NNP5corrzT7bDn33HPNly4NuAEA0Slv5raSR+BbWPrH3Nftssvct61Wzfe2LtkwQ4NKb9v5QQOLuXPnym233WYCK1cakFxzzTXywQcfOC81qIkTJ0qbNm1MNm/UqFGmJOKbb74xj/3+++/mXw2QNJNn3fdGAy3NIP7www8muBozZoxceOGFJij99ddfZciQIXLLLbfI1q1bnc/R4PDNN980NaDPPvusTJ8+XZ555plCfVbNNH788cdmec2aNWb/9DUsb731lglo9b2feuopE4hbn8uiQawG9RqMarD6448/miBTj4Hu08svv2z2zwqK9f10/3S9BoVaAtKqVSu319TAVDPuejz1PNx6661m/6wgtlevXuaY6LHUzKt+Ibnjjjt8fk794qDBogbk+mVGyzuWLFlS4LFZuHCh+TLRrFkz57rFixebLxWarbU0bdrUBOeLFi3y+jrpuZep9EuARTPIGvTre3ij7/PXX3/JDTfc4LZev4zplyU9xgCA6Faq5BO+JpsVVQ4ePKjRn/nX09GjRx0rV640/+aT84XF+61PH/dtk5N9b9ujh/u2Vap4384Pv/zyi/lMn376qdfHJ0+ebB7fuXOnuV+vXj1H79693bbp16+f4/zzz3f5uPlfb8yYMY42bdo47w8cONC8VlZWlnNdkyZNHN27d3fez8zMdKSkpDjee+89n/s/ceJER/v27X2+j6f58+eb/du/f7/b+h49eji6devmtq5jx46O++67z+1z3XPPPW7bnHPOOY7x48e7rfvvf//rqFmzplmeNGmSo3Hjxo6MjAyv+6PH4Nprr3Xez87OdlSrVs3x0ksvmfuvvPKKo2LFio4jR444t5k1a5YjJibGsWPHDuexvPjii83y4cOHHQkJCY4PP/zQuf3evXsdpUuXdtx9990+j8szzzzjaNiwodu6GTNmmNfypMdl5MiRXl9HP2fdunUdV1xxhWPfvn2O9PR0xxNPPGGO3Xnnnef1ObfeequjWbNmXh+79NJLHYMGDfL6WIG/cwCA8HDkSF784vK3ztLp8W8c9e770rFs64GgxGtFQR/fwirgsrTExrrf37XL97YutZfGpk0SLK4Z3RPRul/P+4F0JmjRooVbPamWPLRs2dJ5Xy+J66X9XS7HRLPPWou6fv16c7lfSwrKlSsnwdC6dWu3+1om4PreSjOzrpYuXSo//fSTM8OrsrKyzKAwLWG44oorzLHREggd5NWnTx9TThAXF+f1fbWcQjPt1vuuWrXKZNc1E23p2rWrKcvQrLAeM1d6XDIyMqRz587OdVq6oSUHBdFSBNcsbaDi4+Plk08+MdlbfV89h5ox1tIZbz9j+r7aRUJLVrzRqxB6HAEA0clBqUMY0qDF180z2ChoW49SBJ/b+eHkk082wZYGWN7oer3MXrVqVQk2DZJc6X54W6dBntLL61p6ocHjl19+aUoDtP5YA71Q7Y/13hbXAFRp8K01vXqp3rppGYSWNWggqeUVGqC++OKLJojTUgZtGeZal1yY9w21KlWqyP79+93WaQCux9azA4Z2bdDHfNFaYD0O+jwtJ5kzZ47pDqLBv6ePPvrIBLZaLuKrFCcUP3sAgPBSygalDtT4RgDNqOogIg3MNPvmaseOHTJjxgzp16+f24wpngOb9L5rbagGcpr1DDYdVKUdAjTY1czrKaecIv/8849fr6F1oypY+6eD2jSw1S8Qnjcrm60Br2Z5NVOt9bYawGtwXBh6XDWr7NrPVjPM+tresriNGjUyx1/rlC0a0K5du7bA92nXrp05367Brwaw+lqubej0s27evDlf1t+b8uXLm6BVvwT88ccfcvHFF+fbRgfP6WBBX8Ht8uXLzb4BACJUQoLICy/k3LxMWUxXBwTdCy+8YAYl6SAqHWimPX01S6cBsXZtcL2MbwVeOvhLgynt6KADrnRwl0U7OWiw5BlIFZUGuhp0vf/+++aSvgaS2g3AHxo4axCvGWPtZFBQd4TCGD16tLz99tsm67tixQqTIdf9e+ihh8zjOtBNgzsN4LTF1zvvvGMCYd2PwtAMt2aOBw4caF5j/vz5cuedd8p1112Xr8xBaVcELTPQAW46eFCfo50rXEtKvNHgUrO+em5dA1d9rWHDhpn31UFo2mJMg17tses64M31POjPgwb4Vksz/TnSDh7nnXee23tq2zz9ebvxxht9duHQriKug+sAABEmPl7bS+XcPK6Auk9ZLCWOjG+E0IBSM3J6KVpbSmnWUFtmaesvzU5qraare++912yvwdJjjz1mOjJo0OzapUC7Iehl/mBm6zQzqH1ltaOBjvbXDLCv2lBfNJDXIFW7UWjgWFB3hMLQz61BtHZP0PZdGhBqFwcrsNU2bdp5QutytZZXOzJoX9zC9jTWTgvadUMv+evrX3755XLOOeeYLyu+aNeN7t27myyzBo3dunUz2duCaC2uBrWa4Xeln0U7bejEFVqioSUOWsPrSrPA2vrMouUNGphrQKyt23TZamXm6vXXXzct6zwDYos+Rx8r7JcEAABCqZSOcJMocujQIZMF0z/yngOqdDDTxo0bpUGDBkEZJGRXms3VqW9LYnpfhJZm6HXAobY+K+lgU2uL9QuZDnzTLw3eRMvvHABEtKwsEattZffu+Qb9d3jsG9lzJEPm3NNdmtYoV+R4rSjo6gBEEM3malmGlpOUdOCr+/DAAw/4DHoBABHi2DGR3MmlTBcsj0HkzlIHG8zcRuALRBitxbUDa4AgAAB2QeAbhXTAEQAAQHFwdnUo+YQvg9sAAAAQOtZwMhvEvQS+3kTZeD+gxPC7BgAoTrQzc2HNvsX0qkDxsH7XPGe+AwBEDoeNSh2o8fXog6o9W3ft2uXsv+o62xmA4GV6NejV3zX9ndPfPQBAZHI4L6SXfExF4OulHZSygl8AoaNBr/U7BwAIU/HxIk89lbdsYwS+HjTDW7NmTalWrZocP368ZM4KEAW0vIFMLwBEgIQEkREjTjy4reQTvgS+vugfZP4oAwAABKnGV0oeGV8AAAAUbcriJUtylk89Nd+Uxc7I1wYIfAEAAFC0KYs7dfI5ZbHFDg0DaGcGAACAqCh1IPAFAABAyNhpcBuBLwAAAKICgS8AAACKodSh5FO+BL4AAAAI+cxtlDoAAAAAxYR2ZgAAAAicTlM8ZkzesgeHjRr5EvgCAACgaFMWjx3r82FKHQAAAIBiRsYXAAAAgcvOFlm1Kme5WTORmBjvXR1sMLqNwBcAAACBO3pUpGVL31MWW10dpOTRzgwAAABRgcAXAAAAIWN1dbBBpQOBLwAAAELH2dXBBsUOZHwBAAAQFQh8AQAAEDJ5XR2kxBH4AgAAIGQcubUONoh7aWcGAACAItBpiocPz1v24Jyw2AaRL318AQAAULQpiydOlHBAqQMAAACioqsDGV8AAAAUbcrizZtzluvWzTdlsdhocBuBLwAAAIo2ZXGDBr6nLLYRSh0AAAAQ0o4OygYJXwJfAAAAhIZL3CulbFDrQMYXAAAAUYHAFwAAACHhkvCl1AEAAABRUuNbSkocGV8AAABEBdqZAQAAIHBxcSK33Za37LPUoeRTvgS+AAAACFxiosjUqSfs6mCDuLfkSx2mTp0q9evXl6SkJOncubP89ttvBW4/ZcoUadKkiZQuXVrq1KkjQ4cOlWPHjhXb/gIAACA8lWjg+8EHH8iwYcNkzJgxsmTJEmnTpo306tVLdu3a5XX7d999V0aNGmW2X7Vqlbz22mvmNR544IFi33cAAABITlp39+6cm1uKV0sdGNzmNHnyZLnppptk8ODB0rx5c5k2bZokJyfL66+/7vXn6Oeff5auXbvK1VdfbbLE5513nvTv3/+EWWIAAACESFqaSLVqOTdd9jWBhURxxjcjI0MWL14sPXv2zNuZmBhzf9GiRV6fc/rpp5vnWIHuhg0bZPbs2dKnTx+f75Oeni6HDh1yuwEAACD6lNjgtj179khWVpZUr17dbb3eX716tdfnaKZXn9etWzfTFy4zM1OGDBlSYKnDhAkTZNy4cUHffwAAABQeUxb7acGCBTJ+/Hh58cUXTU3wJ598IrNmzZJHH33U53Puv/9+OXjwoPO2ZcsWf98WAAAAAbBbqUOJZXyrVKkisbGxsnPnTrf1er9GjRpen/Pwww/LddddJzfeeKO536pVK0lNTZWbb75ZHnzwQVMq4SkxMdHcAAAAULwY3JYrISFB2rdvL/PmzXMenOzsbHO/S5cuXg9eWlpavuBWg2dzYD1GEQIAAAC2mcBCW5kNHDhQOnToIJ06dTI9ejWDq10e1IABA6R27dqmTlf17dvXdIJo166d6fn7999/myywrrcCYAAAANix1KGURHXg269fP9m9e7eMHj1aduzYIW3btpU5c+Y4B7xt3rzZLcP70EMPmcJo/Xfbtm1StWpVE/Q+/vjjJfgpAAAAolhcnMjAgXnLLtwmbiv5uFdKOaKsRkDbmZUvX94MdCtXrlxJ7w4AAEDEOpKeKS3HzDXLqx/tLUnxsSUar5X4lMUAAACITA6b5VdLtNQBAAAAYc7hyJuxLTnZrabBbqUOZHwBAAAQOA16y5TJuXlMWWw3BL4AAACIiq4OBL4AAAAIDdfAt+TjXgJfAAAARAcyvgAAAAj9lMVS8gh8AQAAEPoaXxvUOhD4AgAAICrQxxcAAACBi40VufzyvGUXbn18peQR+AIAACBwSUkiM2eecOY2G1Q6UOoAAACA0HCfua3kI19qfAEAABAVCHwBAAAQuNTUnDoGvemyj64OdkDgCwAAgJD28bVBlYNB4AsAAICoQOALAACA0MgtdbBJwpfAFwAAAKHhsFFHB0XGFwAAAFGBwBcAAAAhYXV1sEe+l5nbAAAAUBQ6TXGfPnnLNu7qwJTFAAAAKNqUxbNmSTig1AEAAAAhLnWwR8qXwBcAAAAh4Zy4zR5xL4EvAAAAikCnKU5Jybl5TFlsN9T4AgAAoGjS0ryuduTWOtgk4UvGFwAAACGu8bVJ5EuNLwAAAEKKwW0AAABAMSLjCwAAgJCg1AEAAABRwWHN3Cb2QFcHAAAABC4mRqRHj7xlGyPwBQAAQOBKlxZZsOAEpQ72yPnaOywHAABA2M/cVkrsgcAXAAAAUYHAFwAAAIHTaYqrVs25eUxZbM3cZpeULzW+AAAAKJo9e7yuptQBAAAAKAGUOgAAACAk6OoAAACAKOEw/7VJNzMyvgAAAIgOlDoAAAAgJGzW1IGuDgAAACgCnaa4Q4e8ZW9dHWxS60A7MwAAABRtyuLffy9wE3uEvZQ6AAAAIMSlDnZBjS8AAABCwkFXBwAAAESMtDSR+vVzbrps42IHanwBAABQtHqGf/7JW/Z4yE4odQAAAECIZ24TWyDwBQAAQGhrfMUeCHwBAAAQFQh8AQAAEBKUOgAAACCqlLJJsQNdHQAAABA4HbnWvHneso0R+AIAACBwyckiK1Z4fYhSBwAAAEQFB10dAAAAgOJHVwcAAAAETqcpbtEi5+YxZXFeqYM9an+p8QUAAEDgNLpduTJv2fUhsRcyvgAAAAgpmyR8CXwBAAAQGg6PDHBJI+MLAACAkLDCXjK+AAAAiAqlbDJzGxlfAAAAhITNKh3o6gAAAIAi0DqGevXylt04bFXqQDszAAAAFG3K4k2bCtzEJnEvpQ4AAACIjlIHanwBAAAQ4q4O9sj5EvgCAAAgcEePinTsmHPTZW9TFos9UOMLAACAwGVni/zxR96yjZHxBQAAQGhnbrNJypfAFwAAAKGt8RV7IPAFAABAVCDwBQAAQEg4Kx3o6gAAAIBI5rBmbhN7oKsDAAAAiqZKlQIftknCl8AXAAAARZCSIrJ7t/fHmLkNAAAA0dXVoZTYAYPbAAAAEFJ2KXUg8AUAAEDgdJriM8/MufmYstguGNwGAACAwOk0xd9/n7fspauDXZDxBQAAQEiFZR9fnW953bp1smLFCsnMzAzKDkydOlXq168vSUlJ0rlzZ/ntt98K3P7AgQNy++23S82aNSUxMVEaN24ss2fPDsq+AAAAIHjsVupQ6MB348aN0rp1a2natKn5t1GjRvLHH38U6c0/+OADGTZsmIwZM0aWLFkibdq0kV69esmuXbu8bp+RkSHnnnuubNq0ST766CNZs2aNTJ8+XWrXrl2k/QAAAEAouzqEWeA7YsQIk+V95513TNB50kknyS233FKkN588ebLcdNNNMnjwYGnevLlMmzZNkpOT5fXXX/e6va7ft2+ffPbZZ9K1a1eTKe7Ro4cJmAEAAGAvjtyUr00qHQo/uG3hwoUm4O3WrZu5f9ppp5ngNzU1VVK0cbGfNHu7ePFiuf/++53rYmJipGfPnrJo0SKvz/niiy+kS5cuptTh888/l6pVq8rVV18t9913n8TGxnp9Tnp6urlZDh065Pe+AgAAIPwVOuOr5QennHKK877W2JYuXdpnWcKJ7NmzR7KysqR69epu6/X+jh07vD5nw4YNJvjW52ld78MPPyyTJk2Sxx57zOf7TJgwQcqXL++81alTJ6D9BQAAgA/JyTk3X6UO4Zbx1dF4R44cMcGua4b28OHDblnUcuXKSahkZ2dLtWrV5JVXXjEZ3vbt28u2bdtk4sSJpk7YG80oax2xRfeV4BcAACBI9Mp/aqr3xxz2mrktzp8aDe2g4LmuXbt2zmUNjjUbWxhVqlQxwevOnTvd1uv9GjVqeH2OZpnj4+PdyhqaNWtmMsRaOpGQkJDvOdr5QW8AAACIboUOfOfPnx/UN9YgVTO28+bNk0suucSZ0dX7d9xxh9fn6IC2d99912yn2Wa1du1aExB7C3oBAABQchy5Kd+wK3XQ7gnBpiUIAwcOlA4dOkinTp1kypQpZrCcdnlQAwYMMK3KtE5X3XrrrfLCCy/I3XffLXfeeafpKTx+/Hi56667gr5vAAAAKIRjx0Quuyxn+eOPRZKS8vXxLRWuUxYfPHhQvvnmG9NLV0sbGjRoYDoxBFLb269fP9m9e7eMHj3alCu0bdtW5syZ4xzwtnnzZmdmV2lt7ty5c2Xo0KGml7AGxRoEa1cHAAAAlICsLBFrMjFfJa82SfmWclgN1gpBe/hqGYJnSzDtlqA9eDWQtTvdd91fDeBDORAPAAAgKqSmipQpk7N85EjOYLdc367cKTe+/Ye0qVNBPr+9a4nHa4VuZ6Yzq2kJgtbj/vnnn3L06FFJS0szs7f17dtXrrvuOlm6dGnQdgwAAADhzZH7b9iVOjz//PMm6H3zzTfd1p966qny9ttvmyD42Wef9TnrGgAAAKJTKZtEvoXO+P70008FTlE8ZMgQM7sbAAAAoPyoqLVX4Pvvv//m6+PrSh/TySQAAAAAO5Y6FDrw1VKGJJf2FJ50kohj2s4CAAAAcKGdwMKunZm2EtMRdt4cOHAgWPsEAACAcJGSktew14PNKh38C3x1solwiOYBAABgBw7z31LhFvjqNMEAAACAv+ySGy10jS8AAACQj47xuuKKnJvHeC+7lToUOvA944wz3Op4v/jiCzOJBQAAAKJYVpbIRx/l3DymLM7r6lAqvAJf7dGbkZHhvH/ttdfK9u3bQ7VfAAAACHMOm/Uzi4mUhsQAAABAQajxBQAAQEg4wrWrg2cfX+3yMG/ePFm+fLnbNhdddFFw9xAAAABhyeGwV1eHIvXxveWWW/L18c3yKGoGAABAdCtlk5wvfXwBAAAQEnYbEeZXxhcAAABwk5wscuRI3rKXZghhWeoAAAAAuNGoNiVFCmKXwJeuDgAAAIgKBL4AAAAIXHq6yKBBOTdd9tbVwSaD2wh8AQAAELjMTJG33sq56bIXlDoAAAAgKiawsItCDW6rWLGi6dFbGPv27SvqPgEAACACOOwV9xYu8J0yZYpzee/evfLYY49Jr169pEuXLmbdokWLzKxuDz/8cOj2FAAAAGGplE1qHeL8nbHtsssuk0ceeUTuuOMO57q77rpLXnjhBfn2229l6NChodlTAAAAhBWHzTK+fg9u08xu7969863XdRr4AgAAAMqKe+2R7w1gAovKlSvL559/Lvfee6/bel2njwEAABSnHQePyV9b9pvlxLhY6dKoshxIOy63vLNY9h5xb6+lapZPklcHdJTyyfGcqGJik0oH/wPfcePGyY033igLFiyQzp07m3W//vqrzJkzR6ZPnx6KfUSY+vnvPfLEnNWSkZntVuMz6PR60q9j3RLdNwCAva3895Bs2psqZzapKskJcZKd7ZB7Zy6VVdsP5Qtil/97SHYfzgtwbz2zkdSuUFqWbjng9bW37j8qizbsld4ta4T8c0SF5GSRXbvylr1MWWwXfge+gwYNkmbNmslzzz0nn3zyiVmn9xcuXOgMhAH18g8b5P+2Hsx3MCZ9vVau7FDHNoXugNI/qq//tFH+PXDMrwOiP8YXtK4pp9at6HOb5+etk9nLd+Rb3+ak8jLhP634XQA8HDp2XPq+sFCysh1y25mNZGTvprJ6x2H59M9t+Y6Vrrc0qJIiG/ekmqA5Libnb0yfVjXkpu4Nnds8+uVKWbL5gBxJ995vFgHQ/xFWrRqZpQ5KA9wZM2YEf28QMoePHZfU9Kxi7du3ZHPOZacnL2sltSskS7bDITe+9YfsOpxu/udVMSWhyO+TGBsj7etXNJe2UPIe+HSZfL9mt1kunRArj13SUk5rGB4lUAv/3iOPzVoV0HO/W71L5g8/0+tjx45nyZR568wfcE+auRrUtb40rVEuoPcFItWuQ8ecvzMrczO8/x44av5tVDVFxl3U0iy/uOBv+Xn9XrOckhAr4y5qIQNe/81sW61solnfvGY5aefyxbRm+dIickBSCXyLhzVzm02SXQEFvuvXr5c33nhDNmzYYFqdVatWTb766iupW7eutGjRIvh7iSLRAPTKaYsk08sf3lBLToiVy049SeJic8ZRtq1TQX7btE+Gfbg0aO9xQ7cG8vCFzYP2egjMzkPH5N1fN7ut++8v/4RN4GtdEm1Rq5z0aOw9c+FJf6Wmfb/eZJj2p2Z4/TK3Zsdh8we8YnK8PNe/nXP9U3PWyLJtB2XZ1oO2D3z1UqVeRi7q/0P0716Nckm2+QMI+zp0LNOtLEH9ezDn35OrlZFup1Qxyz+u2+0MfGuUT5LaFUs7g2S9r6qXy/nXUiYxJ/Qh4xtEOk3xsGE5y5MniyTmfOlwZZffer8D3++//17OP/986dq1q/zwww+mp68GvkuXLpXXXntNPvroo9DsKQL21bLt5g+WXvWJzb30Uxx0Xu5rT6vnDHrVHWefLFO+XSvHs4oehKdlZMr63akyf80uAl8b+Cs3cNRsjF5WHPXJMlnyz37Zddh36UC5pHhJig99tl4zO1+v3CFHM/LqzT19uzqnPu3SdrXlRpfLoicyd8UOE/g+9PlyZ4bJ1YbdqebflrXLS/dT8gJqzYxr4PvsvHXy2V/5L98W1WkNKsud55yS78rPta/9Jlv2pfn1Wsczs+VwkLJj57esIS9d2z4or4XIdejocefy1v1p5svXttyMb07GNocV6KpaFUpLrdzHUjOy5O9dR7wGvim5ge9hl+AaRaTTFL/4Ys7yU0+5Bb5hOXObq1GjRplgd9iwYVK2bFnn+rPPPtv08g0Xb/y0QUqn5O1/JPt2Vc4f9ElXtpFL251UovtyRuOq5hYMB9OOS5tHvjaBxY1v/W6j75P+OaNxFRnQpb6Ek69X7DCBrV7GtxzPygkqO9avJH3b1DJlD9sPHpNOj8/z+Tplk+Lkm6E9nJmZUNHLoVPnry/Utq1ql/frtbW2VwPfWf+3vcDt2pxUwe2+ZsJfXbjRZLOsjFYw/fT3XunXsY5Uc/mjr+t8DfY5EU3Sxrt8ifWbQyQjK1vmrd4lmVnZbl+IgYIyvseOZ8vz3/0ti3IzuzpozeK6rFcTtMRKr67sTztu/v9j1nv8/6VMkpXxzQuuETrW2Da7XOjxO/BdtmyZvPvuu/nWa9Z3z549Ei4mfb1OYhLdRx5Gug71Kkkk0TY0Ojho6daDzuA+HM1bvVMualNLKiQXvea5uHzw+xbZl5qRb73+j+3c5tVNRuXy9ifJR4u3+nwNvWquGZcf1u6WKzvWCen+/rZxn7PUxltW1nVgjAbu/hjRq4nUq5ws6Zm+a+h1RPq1neu5rTunWTV554bOsjc1f6ulopo4d40Jppf/e1DOdgl8rdHwmnUddm5jv15TM2v6OYoyeLDV2LkmE7dhT6o0rm7fxIN+idt7JP/Pty96Ia1q2URKOEKU8VWTv1nrXK5TKS/Ydf05OqV6GfPv6SdXcX4RrVU+SepWcv9bXzY341uc416g7BH5+v1/sQoVKsj27dulQYMGbuv//PNPqV27toSLvm1qSmJyzi9JNNDC/joev/yRQC+ZLly3xwycC0eaxdDLd79s2Gda9oSaZuyKUu6iAYEGvFZZw/QBHaRpjbw/PBrwVsqtc33q8jbm5ssTX6029bEa+Gvg6Hq50vpZ1VZ42nLoaEbRLkmu+Dcn4Hvq8tZBD7g0m3SXR0lBYWidq1WnGGwL1uyWrfu3yUsL1jsHG6of/85JTnSoX0lOKebAMyamlDSrWU7++Ge/3D5jiZQv7V//VC0VGdO3uTO41HKN22Ys8foFrCBxsaVkaM/Gckk773+vNBvda8oPzhKVwrqqYx154rLWfj0HvlllCPpFVUuErMvl1comyVlNqzm30/9XfHDzaWbQtH7pVi/0byejejc1y/qFxLOcysr4UupQPOz219nvwPeqq66S++67T2bOnGn+B5SdnS0//fSTDB8+XAYMGCDhYsJ/Wku5cvYeUIIT0yAp1NnCUA88/PCPrTLkncXF8n4alP7vzm5ulwcLS4NQDQj0sr5KiI0xZRqBdtTQ7Kuau2KnuVniY0vJghFnmX2c/uMGk70MhtLxsdKoanR82W1Xt4LpnPL7pv3m5kmvlJSETg0qmcB3XW7tpT/0eVd1quMcCDhr2XZTIx0IbVvnK/DdeTjdGfTqz+KJ6HduHUOhJRwIbjszdWHrWjK6b8GDlzt7DKDV2KSgRI9V40upQ/EI+1KH8ePHy+233y516tSRrKwsad68ufn36quvloceeig0ewlEqIvb1pbP/vrXbZKPUNLs2LxVOwOqKdbL5lbQqwGB1o8WpY2cdk44q0lV2ewy0EpnX9JL4VrLp6USVk1fw6opUqmIpSAa6BTn4M6SpH2y9WfqoMflYlWnYrK0r+e753AoaWa8Y4NKkn7cv593HRCrvVpXbz/sDHy1W4Ya0KWe/OfUwo1d0J8v/ZK5dudhU3qhWWhP+3JLHKqXS5RfH+h5wtfUzgAtx8w1XS8OpGWEVclSOJQ66DiAYLNKHejqULzs8n9fv3+iEhISzAxto0ePNvW+R44ckXbt2skpp/h/qQ+Idl1PriLLx/ZyDgwLJS0r0NKKOct3FFjn6sv3a3Muk/dsVk1eHdixyPujg1DeGNzJbd1jX640A77mLN8uZRJj5f+25pRUPHdVO3OpG4Wjl3b96UxRnPt1VpO8y9SF9dPfe0zgq505kuJzBsVZ5TbdTq7ivHpwIlm1HZIYF2MGS/26cZ+Z1tbTntya68ophfsd0dZYenVCS5bmrdoll7XPH4Qv33bQTJ+r72d9+dJBhttz23NZgyRdByJ6ll9oOZS3DKVmN7WDR6BT7wZaTlQ6IU66NKwsCXHBHaSotfLanmzdzpyrAuX8LIkpDKvUYfm2Q+b/vUUatBlmjmdlm4SCdkXyFBsTI6c3quzMiAfLtgP+dZEJNb8/3SOPPGLKGjTjqzfL0aNHZeLEiSYgBlB4+ocj2H88vNEuAhr46h8Vq+9lIFwbwQdb27o5AYwOVrQGLOqxsfNAKIRe05o553/2sh3m5vaYHz2QNejUHrBa833da7/KusfPzzcgzcr4Vi5T+MytvqYGvjqdrs7i51pTun73Ebnw+YVmWWfp69+prplV7OKpP7m9xinVysg3w3p4fX0th9IuKb7o+IA3Pb5EFtYbP22UCV+tDui5I3s3kdvOPFmCSevSp3y7znm/QggCX22jaHl70T+mF3y0eOvnTQVO1POfdrVlcr+2/r9w6dIiGzfmLefSHuZWR52wLXUYN26cDBkyRJI95mJOS0szjxH4AvbUuUEl6dehjvlDHKgKyfFyRYfQtcTr2ay66XBhzdCktDVacXwxgH1d2KqW/Lh2j+w54t4BQ0s2XEf4F8YdZ50st85YYupydx5Kz9fqyhosV9mPmSVvPbORfL82ZxDhpr2pbsG4a/u4vzYfMIHv0twrGdp2q2HVMrI4t+5Zs3DeOmdYVz5OqljatOyyHMvMMllLnQQlUNa08jrAtGqZwmW59Txs2ptmMtnBZr2mdlhpUr2s6X4SbPolw/LPXv8GMYa7rbmtE2vqZB8uYz32pWWY2vatLv/v9UtMjEj9/CV0rlcztQQrLANfbSLtbdYdncCiUqXIapcFRBLtm/rk5fYeda6ZMtfZzQCll/GnXRecSS/Ob1XTTLKik99ora9n4GuVOlQqZKmDdTVFBxT+ufmArN/lHvi6ftG0ljfl1sprjf/Yi1pI20e+NqUQm/akSfNa+TPYVm398POauA3K0wlJWo39WvamZph6VWtGMn/8sy/ntR+6oLmzK8KJfLtyp9z49h9u9fnBYr2mTj0crJ7vnrS2e9T5TU1nmWhraZaeO57k6k513Sa40Yl4bvnvYlNWE0yuDZe8lRaVhEL/llSsWNEEvHpr3LixW/Crg9u01lczwQAA2JmWzmjgO+nrNTLTo9e0lV31p9RBaccQDXy/WLpNDhzNa7Gm7RYtf+8+Yu7PWbHDOWhT1aucIgfSDpjso7fA95+9OcGga9s/VTYp3nRq0Sy1PrdFrfJ+J7J8vXZB6uZuuzn3ucGi+7NlX07G0bP3brClJMQ6Z3WMJum5/cY9r6LF5daea2lCQDIyRB58MGf58cd1QJhZdG01GmOTWodCB75TpkwxP5TXX3+9KWkoX76824C3+vXrS5cuXUK1nwAABEXrkyrIV8t3mMlv9OaNv4FX49zJEzzb87nSrO61r/3qvK+X882/lZNNScRd7/8psR/+le95OhjPdXtXGrBq4Hvnu3/63QHB4dLL1p/PqyUX1uxqI2YuDVq3FJ3K/ujxLFMLqq0qQ8kqKUktYo/wcM34JnoGvrkD/PQcBOT4cZGnn85ZHjvWa+Brk7i38IHvwIEDzb86ccXpp58u8fHBLzgHACDUBp1e32R0fWX7NIvau2UNv17z8vZ1TJmDa7bXtYWcZti+W73LXPrVgXAaPGonB6WX9LWtoQYdvgKP1ieV99oqTafC1kyzzoYXKJ2ExnOShxMFjbr/Wi/qmTEPBg3wQ13Xb3UuSMuIrlKHjNzAN8GjFWV87peXzOzgljq4JpDDLuNr6dEjb9TpsWPHJEPT2y6YFAIAYGfaSi/YA200WD5RDf3I3NnEPGkfYu1rrdlOX1wHtbnSWlUdFJqRFXgAp8Gzv6Zd2945oC/YznaZmS1UUhKjtdQhu8CMb2agGV8ftFIg7ANf7d4wcuRI+fDDD2Xv3vwtkbTeFwAAFF7lQnZU8KSZ2lBNfV0Q7asdzr21rYxvtJU6ZOTW+Cbm9sN2ncpbHQ9yxte1Ztgu8wf5fS1hxIgR8t1338lLL70kiYmJ8uqrr5qa31q1asnbb78dmr0EAAAIkpTcGt+0KO3qkOAxaUe8tiMzycvgZnytuFeTvd46goVFxvd///ufCXDPPPNMGTx4sHTv3l1OPvlkqVevnsyYMUOuueaa0OwpAABAECRbXR2iLuObbf5N9KjptgYoHg+0q8MJSh3sUuYQUMZ337590rBhQ2c9r95X3bp1kx9++CH4ewgAABBEVs9j7ZgR7N61YZnxjc0d3BbkY2HF0XYpcwgo8NWgd2PutHRNmzY1tb5WJrhCBf8L5AEAAIpTcu7gNpVWwKDCSO3jmxgf5MFtOk3x8uU5N5cpi612ZnYpcwio1EHLG3SWNu3uMGrUKOnbt6+88MILcvz4cZk8eXJo9hIAACBIEuNiTZZT28dNnf+3lEmIM3WoZzet7nUSkYhrZxbrfQKLgAe3aY1wixb5VluBr50yvn4HvkOHDnUu9+zZU1avXi2LFy82db6tW9t7OlQAAABVMTlBdh1Ol5e/3+A8INpP+dtheW1bI7XUIckj4xsfsnZmYrsaX/8n9vagg9r0BgAAEC6eury1c5a9oxmZJujdsi/NDMiy06X50GR8Y70ObsvMdgT2+XVOh/Hjc5YfeCDfzG1hH/j+/vvvMn/+fNm1a5dke6TFKXcAAAB2d2aTauamjmZkmcBXM6JH0jOlbFL4zk57/yf/5zZtdv3KyfLfGzqb3sXpzq4O3ge3Wb13rb6+fk1ZPG5czvKIES6Bb84qG8W9/ge+48ePl4ceekiaNGki1atXd/tWEKnfkAAAQGTP5peSECupGVmy50hG2Aa+GrS+99sWt3X7UjNkwZrd0qtFdeeEEr5mbrOyvh4zGgcsIjK+zz77rLz++usyaNCg0OwRAABAMatSNlFS96bJniPp0qBKSlgef9dpr7+8s5u8vWiTfPjHVnnlxw3y28a82XYTPANfl9Fnx7OyzYyAwe3jK+HbziwmJka6du0amr0BAAAoAVVyp43eczg9bI9/WnqmM9BsUaucnN+yprm/dMsBeWvRP87t8vfxdcn4BnGAW14f31Lh3dVh6tSpMmXKlNDsEQAAQDGrnJJTl/rhH1tk+b8HnQFbrxY1pGXt8mFxPrRUQ6WY9myl5MwmVeWRi1vIsq0HZebirc6BbK6lDdY6jU01QaulDsESEX18hw8fLhdccIE0atRImjdvLvHx7nUwn3zySTD3DwAAIORqV8yZeGH+mt3mZvlu9S6ZdVf3sDgDqbkZX2uCDg04B3SpbwbsWYFvlo/AVssdtK9xZqC9fL2wXspOpQ5+B7533XWX6ehw1llnSeXKlW0VxQMAAATiljMaSen4WGed7KGjmfLxkq2y7cDRsDmgabkZ3+SEuHxTNJdNjJPDuYGxN3ExMXI8KyvIpQ4RMLjtrbfeko8//thkfQEAACJBjfJJMrJ3U+d9HeSmge+BtOOSmZWdrzwgGA6mHZf1e46IhoXNapYr8qCytIzcjG9CrNe+xW/+vEn6tqnl9bmmhdnxnMFtfktKEvntt7zlSJq5rVKlSqbMAQAAIJJndrPqXvelZUi1snkBXbAmkzhn8vcmwFZdGlaW924+LSgZ3xSPjK86v1VNc/PFOXtbIDW+OiFGx475Vuf18bVP5Ov315exY8fKmDFjJC0tLTR7BAAAUMJ0wJcGv1Yv3GDbm5ruDHrVul2Hg17j64+43LRsQBlfH6yMrzUzXFhmfJ977jlZv369mbyifv36+Qa3LVmyJJj7BwAAUGKdHjTo3Xsk+IHvwaPH3e6npudka19buFFWbz8kt57ZSBpWLRO0jG9hA9+sQDK+OmXxs8/mLN99t3PmNjv28fX7yFxyySWh2RMAAAAbqZTb4mzNjsNSq0JpM/hNa4GDQQfPqXJJcXLoWKYZVLfz0DF59MuVztnkHrm4ZUCBrz7XX3G5pQ7a2cFvOmXxyJE5y7fdlm/K4rAe3KZlDgAAANEyqcUjX640N/XUZa3lyo51ivzah3IzvjXLl5ZDx3LKHLbuP+ozI+zP4DadftlfcTq4zUxgEcx2ZlYfX7EN/3PhAAAAUaBvm5ry68a9kn48W9Kzss2AtMX/7A9O4HssJ7CtWjbR1PdqjKgZX8vR3OytL/NX75L1u4+4rftt4z7zb3Ki/+FdfEwRBrf5ELYZX+3ksHbtWqlSpYpUrFixwNF5+/blHHQAAIBw1rtlTXNTM379Rx78dLnp8BAMVsa3fOl403dXJ5lwC3xz+wl7s2Vfmgx+83efj1co7T7+yp+M7/EgZnzzanzDLPB95plnpGzZss5lO7WlAAAACLVKuR0e9gepw4PW9apypeNM392cwDe9UBnf7QePOSem6Nmsmttj5UrHy39OPal4B7f5kNfOTMIr8B04cKBzedCgQaHcHwAAANupmBLc1mZWxrdcUrykaGnC4XS3jK81UK2gtmX1qyTLlKvaBWV/4ooyuC2MZm7zu49vbGys7Nq1K9/6vXv3mscAAAAitcNDsEodfli325mhtWZacw18jxVQ6qDZYZUSQNuyE2V8t+5PC37gG/xJ7wIWE2i9hqf09HRJyG1fAQAAEImBr3ZbKGrng6VbDsjanUecNb4puQHsDj8zvlrqECxxuTW+j81a5f+TdZri+fNzbi5TFlsho50yvnH+TFyhtL731VdflTJl8poqZ2VlyQ8//CBNm+bNcQ0AABAprAFjGsxt2psmJ1fzb3IJV67dGHq1qCHfrtpplnfm1u6eaHCblfEtkxS8wLdfx7ry0997zbIG9lbpQ6HoFf8zz/SZ8bXT2LBCHzEd1GZlfKdNm+ZW1qCZXp3FTdcDAABEGg0EKybHy/6043LHu0tkzj1n+PX8yd+slV/W75V7ep7i7NF7Qeuapp1ZSm7GN9Uly1vQ4DZnqUMQM769W9RwLut+lC8dE8R2ZmIbhT5iGzduNP+eddZZ8sknn5i2ZgAAANFi0OkN5Jlv18rqHYflQFqGVMjt9HAiWq/73Lx1Znn6jxuk9UkV3LLIVo2vq4ysbJ+ZV6vUoWwQA9+EuBiJjy1lBrfpRBhaguHXzG2vvJKzfPPNIvHxkTO4bf78+W5Br5Y5/PXXX7J///5g7xsAAIBt3N3zFGeJQ4+JC5wzk52IFahaE0RYGd8KyTkB4inVvZdN+Cp3CEXGV2k/YZWaXvDkGflkZIjccUfOTZdzWcfHThlfvwPfe+65R1577TVn0HvGGWfIqaeeKnXq1JEFCxaEYh8BAABsoX+nuuZfDV4LO62w60C1zKy8wNfKqt7UvaH8745u8uEtXeS7e3s4+976DnyzQhL4puRmnq2pj4PXx7dU+Aa+M2fOlDZt2pjl//3vf7Jp0yZZvXq1DB06VB588MFQ7CMAAIAt3NCtgSTF54RPBwIIfLWEQcskVIXSCc7AsNVJ5aVTg0rSsGoZSY6PLbDONxSlDq5THfud8fXBKnWItVHg6/cR0369NWrkFEDPnj1brrjiCmncuLFcf/318uyzz4ZiHwEAAGyjckqibDtwNDeATTnh9qkuGdSMzGxnwFw+t9TBU+mEWDPA7Nl566SilzriVdsPhUnG12G7Pr5+H7Hq1avLypUrpWbNmjJnzhx56aWXzPq0tDQmsAAAABFPa3NN4FvIjK9r5laD4A27U82yrwFkVcokyp4jGfLJkm0Fvq52hAhJjW9GcDK+Yd3H1zJ48GC58sorTeCrqfmePXua9b/++it9fAEAQMSzAlZr2mF/Sh2soNd1UgxPT13eWuYs3yEFDZ2rVaG0dKgX3A5bKYm5GV+XwXhFEdZ9fC1jx46Vli1bypYtW0yZQ2JizrcN7es7atSogHZi6tSpMnHiRNmxY4epH37++eelU6dOJ3ze+++/L/3795eLL75YPvvss4DeGwAAwB9WN4YDaYUNfL0Hkqf4mARD251ZLc+KU3KQM75h3cfX1eWXX55v3cCBAwPagQ8++ECGDRtmJr/o3LmzTJkyRXr16iVr1qyRatWq+XyeDqobPny4dO/ePaD3BQAACET53EFphQ988weSI3s3sVUmtEgZX02Cfvll3nKusO7j26dPHzl48KDz/hNPPCEHDhxwG/TWvHlzv3dg8uTJctNNN5kSCn2+BsDJycny+uuv+3yOtlG75pprZNy4cdKwYUO/3xMAAKCoGd9tB9Jk637vt52Hjnnt42spndu5wU6SczO+Ow4d8/m5vN4OZ0jaub1ELrhAJC4vp6qz/YZtxnfu3LmSnp7uvD9+/HhT61uhQk4qPjMz02Rp/ZGRkSGLFy+W+++/37kuJibG1A0vWrTI5/MeeeQRkw2+4YYb5McffyzwPXSfXff70KGckZAAAACBsGZc+/CPrebmy+1nNZIRvZp6bUtmx8A3Jberw4xfN5ubP7S12nfDz3QbcBfWfXytqN3X/UDs2bPHZG+1U4Qrva/1vt4sXLjQTKAxffr0Qr3HhAkTpHz58s6bTrQBAAAQqDMaV5Ua5ZIkMS7G602n/lW/b8yZ1TbNy0QU2rLMbno0qWYCV1+fy9ctLitTev0xRw6+ND1n+uJ8pQ5iG8FtABdihw8fluuuu84EvVWqVCnUczSbrDXErhlfgl8AABCoZjXLyS8PnOPz8YXr9si1r/3qnKHNW81skg0zvu3rVZTfH8zp1uWPi5+cK0/PniIyW9Pcg0Xi4z0Gt5UKv8BX09Seqeqipq41eNVuEDt37nRbr/etSTJcrV+/3gxq69u3r3Nddna2+TcuLs6UWjRq1MjtOdp1wuo8AQAAUFztzjTw1Y4Oby36JyxKHQIVH+u9gCCvxjcMA1/d+UGDBjmDyGPHjsmQIUMkJSVnxhLXOtrCSkhIkPbt28u8efPkkksucQayev+OO+7It33Tpk1l2bJlbuseeughkwnWWePI5AIAgJJWrnROeHXo2HFZtH6v122SbVjqEKi43NIOT9m5KV8bxb2FD3w925Vde+21+bYZMGCA3zugZQj62h06dDC9e7WdWWpqqunyYL1m7dq1Ta1uUlKS6SHsyhpc57keAACgJDO+2sZMZ3hTNcsnya7D6ZKVGwzasdQhUPE+5iQO61KHN954IyQ70K9fP9m9e7eMHj3aDGhr27atmQrZGvC2efNm0+kBAAAgHJRNypuK+O9dR8y/ZzapJp/9uU2OZmfZdnBboOLjfGR8GdzmnZY1eCttUAsWLCjwYL/55pt+nyAAAIBQiY0pZdp7HU7PlHU7cwLfamUTJSEuRo7mdniIpBrfWJ8ZX/vV+JJKBQAACLJyueUO63IzvtXLJUmcS1+vSAp8433V+Nqwj29YtTMDAAAIl8BX63v3HEl3ZnytDGiklTpIQqLcdvEo6dexjvTwMmWxj6YPJcJGuwIAABAZapRzb6Vat3Kyc2Cb0okfIkVMQrzMbtpN1vc432PK4tzHyfgCAABErocvbC6tam+TzGyHNKxaRhpXL+u89G+3y//B6uObmTu3Qv52Zvb5rJQ6AAAABJkGu8POa+K2rlHVFFm69WBE1feqRMmSPqsXSt3EDSKn3+rM+ua1MxPbIPAFAAAoBpOubCP/W7pdejSpGlHHOzE7U178/AmRz0Vk5PUuga/9ujoQ+AIAABSDk6uVlaHnlo24Yx3vI6WbN2Wx2EbkVFYDAACg2MX5aNtgx3ZmBL4AAAAIWJzPPr72K3Ug8AUAAEDA4n3O3JbzL6UOAAAAiAhxPgJfZ42vjSJfMr4AAAAIWamDjSod6OoAAACAwMUkJcjwPvdI+7oVpX9CgpdSB/tEvrQzAwAAQMBiExLlo1Y9Jb1NLekfH+9cb03RbKNKB0odAAAAELj43FKH45nZPvr42ifypcYXAAAAAYt3ZMtZ63+XZkt+EMnMtHUfX0odAAAAUKQpi9/4aFzOncduzjdlcayNAl8yvgAAAChyqYMn+vgCAAAgosSVoo8vAAAAokBcGPXxpdQBAAAAAYuL9b7ejn18CXwBAAAQ9CmLrYyvnfr40tUBAAAAAYuPzQt8v1mxQ7KSk83y1v1HbZfxJfAFAABAwBKSk+Thc4eY5fdmLpfMWPfwMs5GKV8CXwAAAASsVf0qMuOmIbJpT6q09XisQnKC9GpZQ+yCwBcAAAABi4uNkaevaCPhgMAXAAAAgcvKEvnxx5zl7t1FYn20ebABAl8AAAAE7tgxkbPOylk+ckQkJUXsinZmAAAAiAoEvgAAAIgKBL4AAACICgS+AAAAiAoEvgAAAIgKBL4AAACICrQzAwAAQODi40Weeipv2cYIfAEAABC4hASRESMkHFDqAAAAgKhAxhcAAABFm7J4yZKc5VNPZcpiAAAARPCUxZ065SwzZTEAAABQ8qjxBQAAQFQg8AUAAEBUIPAFAABAVCDwBQAAQFQg8AUAAEBUoI8vAAAAAqfTFI8Zk7dsYwS+AAAAKNqUxWPHSjig1AEAAABRgYwvAAAAApedLbJqVc5ys2YiMfbNqxL4AgAAIHBHj4q0bJmzzJTFAAAAQMmzby4aAAAACCICXwAAAEQFAl8AAABEBQJfAAAARAUCXwAAAEQF2pkBAAAgcDpN8fDhecs2RuALAACAok1ZPHGihANKHQAAABAVyPgCAACgaFMWb96cs1y3LlMWAwAAIIKnLG7QIGeZKYsBAACAkkeNLwAAAKICgS8AAACiAoEvAAAAogKBLwAAAKICgS8AAACiAn18AQAAELi4OJHbbstbtjF77x0AAADsLTFRZOpUCQeUOgAAACAqkPEFAABA4BwOkT17cparVBEpVUrsisAXAAAAgUtLE6lWLWeZKYsBAACAkkeNLwAAAKICgS8AAACiAoEvAAAAogKBLwAAAKICgS8AAACiAu3MAAAAEDidpnjgwLxlG7P33gEAAMD+Uxa/+aaEA0odAAAAEBVsEfhOnTpV6tevL0lJSdK5c2f57bfffG47ffp06d69u1SsWNHcevbsWeD2AAAACCGdsjg1NeemyzZW4oHvBx98IMOGDZMxY8bIkiVLpE2bNtKrVy/ZtWuX1+0XLFgg/fv3l/nz58uiRYukTp06ct5558m2bduKfd8BAACiXlqaSJkyOTddtrFSDkfJhuaa4e3YsaO88MIL5n52drYJZu+8804ZNWrUCZ+flZVlMr/6/AEDBpxw+0OHDkn58uXl4MGDUq5cuaB8BgAAgKiVmpoT9KojR0RSUor8kqGK10o045uRkSGLFy825QrOHYqJMfc1m1sYaWlpcvz4calUqZLXx9PT083Bc70BAAAg+pRo4Ltnzx6Tsa1evbrber2/Y8eOQr3GfffdJ7Vq1XILnl1NmDDBfGOwbppNBgAAQPQp8RrfonjiiSfk/fffl08//dQMjPPm/vvvN2ly67Zly5Zi308AAABEeR/fKlWqSGxsrOzcudNtvd6vUaNGgc99+umnTeD77bffSuvWrX1ul5iYaG4AAACIbiWa8U1ISJD27dvLvHnznOt0cJve79Kli8/nPfXUU/Loo4/KnDlzpEOHDsW0twAAAAhnJT5zm7YyGzhwoAlgO3XqJFOmTJHU1FQZPHiweVw7NdSuXdvU6qonn3xSRo8eLe+++67p/WvVApcpU8bcAAAAUIxiY0Uuvzxv2cZKPPDt16+f7N692wSzGsS2bdvWZHKtAW+bN282nR4sL730kukGcbl1gHNpH+CxY8cW+/4DAABEtaQkkZkzJRyUeB/f4kYfXwAAAHuLyD6+AAAAQHEh8AUAAEDRZm4rVSrnpss2RuALAACAqEDgCwAAgKhA4AsAAICoQOALAACAqEDgCwAAgKhA4AsAAICoUOIztwEAACCMxcaK9OmTt2xjBL4AAAAo2pTFs2ZJOKDUAQAAAFGBwBcAAABRgcAXAAAAgdNpilNScm42n7KYGl8AAAAUTVqahAMyvgAAAIgKBL4AAACICgS+AAAAiAoEvgAAAIgKBL4AAACICnR1AAAAQOBiYkR69MhbtjECXwAAAASudGmRBQskHNg7LAcAAACChMAXAAAAUYHAFwAAAIHTaYqrVs25MWUxAAAAItqePRIOyPgCAAAgKhD4AgAAICoQ+AIAACAqEPgCAAAgKhD4AgAAICowcxsAAAACp9MUd+iQt2xjBL4AAAAo2pTFv/8u4cDeYTkAAAAQJAS+AAAAiAoEvgAAAAhcWppI/fo5N122MWp8AQAAEDiHQ+Sff/KWbYyMLwAAAKICgS8AAACiAoEvAAAAogKBLwAAAKICgS8AAACiAl0dAAAAELhSpUSaN89btjECXwAAAAQuOVlkxQoJB5Q6AAAAICoQ+AIAACAqEPgCAAAgcDpNcYsWOTemLAYAAEDEcjhEVq7MW7YxMr4AAACICgS+AAAAiAoEvgAAAIgKBL4AAACICgS+AAAAiArM3AYAAIDA6TTF9erlLdsYgS8AAACKNmXxpk0SDih1AAAAQFQg8AUAAEBUIPAFAABA4I4eFenYMeemyzZGjS8AAAACl50t8scfecs2RsYXAAAAUYHAFwAAAFGBwBcAAABRgcAXAAAAUYHAFwAAAFGBrg4AAAAomipVJBwQ+AIAACBwKSkiu3dLOKDUAQAAAFGBwBcAAABRgcAXAAAAgdNpis88M+fGlMUAAACIWNnZIt9/n7dsY2R8AQAAEBUIfAEAABAVCHwBAAAQFQh8AQAAEBUIfAEAABAVmLkNAAAARZOcLOGAwBcAAABFm7I4NVXCAaUOAAAAiAoEvgAAAIgKBL4AAAAI3LFjIhdckHPTZRujxhcAAACBy8oSmT07b9nGyPgCAAAgKhD4AgAAICrYIvCdOnWq1K9fX5KSkqRz587y22+/Fbj9zJkzpWnTpmb7Vq1ayWwrvQ4AAADYNfD94IMPZNiwYTJmzBhZsmSJtGnTRnr16iW7du3yuv3PP/8s/fv3lxtuuEH+/PNPueSSS8xt+fLlxb7vAAAACB+lHA6HoyR3QDO8HTt2lBdeeMHcz87Oljp16sidd94po0aNyrd9v379JDU1Vb788kvnutNOO03atm0r06ZNO+H7HTp0SMqXLy8HDx6UcuXKBfnTAAAARJnUVJEyZXKWjxzJmdCiiEIVr5VoV4eMjAxZvHix3H///c51MTEx0rNnT1m0aJHX5+h6zRC70gzxZ5995nX79PR0c7PoAbQOKAAAAIrIddY2ja+C0NnBitOCnZ8t0cB3z549kpWVJdWrV3dbr/dXr17t9Tk7duzwur2u92bChAkybty4fOs1qwwAAIAgqlUrmK8me/fuNZnfYIn4Pr6aTXbNEB84cEDq1asnmzdvDuqBhD3pN0b9krNlyxZKW6IA5zu6cL6jC+c7uhw8eFDq1q0rlSpVCurrlmjgW6VKFYmNjZWdO3e6rdf7NWrU8PocXe/P9omJiebmSYNeanyjh55rznf04HxHF853dOF8R5eYmJjI6eqQkJAg7du3l3nz5jnX6eA2vd+lSxevz9H1rturb775xuf2AAAAgC1KHbQMYeDAgdKhQwfp1KmTTJkyxXRtGDx4sHl8wIABUrt2bVOrq+6++27p0aOHTJo0SS644AJ5//335Y8//pBXXnmlhD8JAAAA7KzEA19tT7Z7924ZPXq0GaCmbcnmzJnjHMCmtbiuae7TTz9d3n33XXnooYfkgQcekFNOOcV0dGjZsmWh3k/LHrRnsLfyB0Qeznd04XxHF853dOF8R5fEEMVrJd7HFwAAAIiKmdsAAACA4kDgCwAAgKhA4AsAAICoQOALAACAqBCRge/UqVOlfv36kpSUJJ07d5bffvutwO1nzpwpTZs2Ndu3atVKZs+eXWz7iuI939OnT5fu3btLxYoVza1nz54n/PlAeP9+W7T1YalSpeSSSy4J+T6i5M63zs55++23S82aNc1o8MaNG/P/9Ag+39oCtUmTJlK6dGkzS+fQoUPl2LFjxba/CNwPP/wgffv2lVq1apn/N2uHrhNZsGCBnHrqqeZ3++STT5Y333zT/zd2RJj333/fkZCQ4Hj99dcdK1ascNx0002OChUqOHbu3Ol1+59++skRGxvreOqppxwrV650PPTQQ474+HjHsmXLin3fEfrzffXVVzumTp3q+PPPPx2rVq1yDBo0yFG+fHnH1q1bOfwReL4tGzdudNSuXdvRvXt3x8UXX1xs+4viPd/p6emODh06OPr06eNYuHChOe8LFixw/PXXX5yKCDzfM2bMcCQmJpp/9VzPnTvXUbNmTcfQoUOLfd/hv9mzZzsefPBBxyeffKLdxRyffvppgdtv2LDBkZyc7Bg2bJiJ155//nkTv82ZM8ev9424wLdTp06O22+/3Xk/KyvLUatWLceECRO8bn/llVc6LrjgArd1nTt3dtxyyy0h31cU//n2lJmZ6Shbtqzjrbfe4nRE6PnWc3z66ac7Xn31VcfAgQMJfCP4fL/00kuOhg0bOjIyMopxL1FS51u3Pfvss93WaVDUtWtXTkqYkUIEviNHjnS0aNHCbV2/fv0cvXr18uu9IqrUISMjQxYvXmwuX1t08gu9v2jRIq/P0fWu26tevXr53B7hfb49paWlyfHjx6VSpUoh3FOU5Pl+5JFHpFq1anLDDTdwIiL8fH/xxRdm+notddBJkHRio/Hjx0tWVlYx7jmK63zrhFb6HKscYsOGDaaspU+fPpyECLQoSPFaic/cFkx79uwx/4OzZn2z6P3Vq1d7fY7OFudte12PyDvfnu677z5TX+T5y4TION8LFy6U1157Tf76669i2kuU5PnWwOe7776Ta665xgRAf//9t9x2223my63OAIXIOt9XX321eV63bt306rVkZmbKkCFDzKyuiDw7fMRrhw4dkqNHj5o678KIqIwv4I8nnnjCDHj69NNPzUAKRJbDhw/LddddZwY0VqlSpaR3B8UgOzvbZPdfeeUVad++vfTr108efPBBmTZtGsc/AulAJ83ov/jii7JkyRL55JNPZNasWfLoo4+W9K7BxiIq46t/3GJjY2Xnzp1u6/V+jRo1vD5H1/uzPcL7fFuefvppE/h+++230rp16xDvKUrifK9fv142bdpkRg27BkYqLi5O1qxZI40aNeLkRNDvt3ZyiI+PN8+zNGvWzGSK9FJ6QkJCyPcbxXe+H374YfPl9sYbbzT3tStTamqq3HzzzeYLj5ZKIHLU8BGvlStXrtDZXhVRPxX6PzX9lj9v3jy3P3R6X+u+vNH1rturb775xuf2CO/zrZ566imTEZgzZ4506NChmPYWxX2+tUXhsmXLTJmDdbvooovkrLPOMsva+giR9fvdtWtXU95gfcFRa9euNQExQW/knW8do+EZ3FpfenLGSyGSdAlWvOaIwHYo2t7kzTffNO0ubr75ZtMOZceOHebx6667zjFq1Ci3dmZxcXGOp59+2rS3GjNmDO3MIvh8P/HEE6ZdzkcffeTYvn2783b48OES/BQI1fn2RFeHyD7fmzdvNl1a7rjjDseaNWscX375paNatWqOxx57rAQ/BUJ1vvXvtZ7v9957z7S6+vrrrx2NGjUy3Zpgf4cPHzatRfWm4ejkyZPN8j///GMe13Ot59yzndmIESNMvKatSWlnlkt7u9WtW9cEONoe5ZdffnEeuB49epg/fq4+/PBDR+PGjc322ipj1qxZxXPWUeznu169euYXzPOm/wNFZP5+uyLwjfzz/fPPP5uWlBpAaWuzxx9/3LS0Q+Sd7+PHjzvGjh1rgt2kpCRHnTp1HLfddptj//79JbT38Mf8+fO9/j22zrH+q+fc8zlt27Y1Px/6+/3GG284/FVK/xPcZDQAAABgPxFV4wsAAAD4QuALAACAqEDgCwAAgKhA4AsAAICoQOALAACAqEDgCwAAgKhA4AsAAICoQOALAACAqEDgCyDqjR07Vtq2bRvy41CqVCn57LPPSuR4l8R7b9q0ybzvX3/9VaTXqV+/vkyZMsW2xxZA+CDwBRDWdu/eLbfeeqvUrVtXEhMTpUaNGtKrVy/56aefbBdIb9++Xc4///wSeW8AgEgcBwFAOLvsssskIyND3nrrLWnYsKHs3LlT5s2bJ3v37hW70aA8XOhs9llZWRIXx58JAJGDjC+AsHXgwAH58ccf5cknn5SzzjpL6tWrJ506dZL7779fLrroIrftbrzxRqlataqUK1dOzj77bFm6dGmBr/3qq69Ks2bNJCkpSZo2bSovvvii2+Nbt26V/v37S6VKlSQlJUU6dOggv/76q7z55psybtw48/p6+V1vus7b5fhly5aZfSldurRUrlxZbr75Zjly5Ijz8UGDBskll1wiTz/9tNSsWdNsc/vtt8vx48e97nNB76327Nkjl156qSQnJ8spp5wiX3zxhfOxBQsWmO2/+uorad++vcmeL1y4ULKzs2XChAnSoEEDs59t2rSRjz76yPm8/fv3yzXXXGOOrT6ur/vGG2+47deGDRvM+dH31ecvWrTI7fGPP/5YWrRoYd5TyxomTZpU4LlZt26dnHHGGebcNG/eXL755psCtwcAC1/lAYStMmXKmJsGk6eddpoJnLy54oorTFCmQV358uXl5ZdflnPOOUfWrl1rAldPM2bMkNGjR8sLL7wg7dq1kz///FNuuukmE+AOHDjQBKc9evSQ2rVrm+BRM7lLliwxQWK/fv1k+fLlMmfOHPn222/N6+l7ekpNTTUlGV26dJHff/9ddu3aZYLzO+64wy1YnT9/vgl69d+///7bvL6WMuj+eDrRe2tQ/NRTT8nEiRPl+eefNwHrP//843YMRo0aZQJtzZ5XrFjRBL3vvPOOTJs2zQS1P/zwg1x77bUm0NVj8PDDD8vKlSvNsa1SpYrZx6NHj7rt14MPPmheU5+vy/qFQbfTbPLixYvlyiuvNCUauv8///yz3HbbbSbI18Dfkx7j//znP1K9enXzRePgwYNyzz33+PwZAQA3DgAIYx999JGjYsWKjqSkJMfpp5/uuP/++x1Lly51Pv7jjz86ypUr5zh27Jjb8xo1auR4+eWXzfKYMWMcbdq0cXvs3Xffddv+0UcfdXTp0sUs6/PKli3r2Lt3r9d98nw9i/4v99NPPzXLr7zyitnvI0eOOB+fNWuWIyYmxrFjxw5zf+DAgY569eo5MjMzndtcccUVjn79+vk8HgW990MPPeS8r++r67766itzf/78+eb+Z5995txGj1lycrLj559/dnutG264wdG/f3+z3LdvX8fgwYO97svGjRvNa7766qvOdStWrDDrVq1aZe5fffXVjnPPPdfteSNGjHA0b97ceV+PwTPPPGOW586d64iLi3Ns27bN+bh+BtdjCwC+UOoAIOxrfP/991+Tee3du7e5ZH/qqac6s6Z62V8ztJpBtDLEetu4caOsX7/eayZW199www1u2z/22GPO7bVLgWaCvWWLC2vVqlXmsr9mkS1du3Y1Gc01a9Y412kJQGxsrPO+Zn81OxyI1q1bO5f1fbXsw/O1tGTDolnZtLQ0Offcc92Oxdtvv+08Fjqw8P333zdZ6JEjR5qMbUHvq/uvrPfV46Cf25Xe13IGrTH2pNvXqVNHatWq5VynWXMAKAxKHQCEPa311OBMb3rpXUsGxowZYy6Va9CrwZYGxJ4qVKiQb51VYzt9+nTp3Lmz22NWAKplE8UlPj7e7b7W4WpwHKrXcg3ErWMxa9YsU9bhyior0S4VWi4xe/ZsU2urJSRah6ylDd7eV99TBfoZAKAoCHwBRBwd8GQNItPs744dO0w9qQ6cOhGtHdVsog7I0hpYbzSDqYPf9u3b5zXrm5CQ4DVb6UoHzmlWWjPMVrCpLdhiYmKkSZMmEqjCvLc/x1ED3M2bN5t6Xl+03ldrn/XWvXt3GTFihFvge6Lj4Nl6Tu83btzYLdPtuv2WLVtMazgre/zLL7/4/dkARCdKHQCELW1Zpl0RdPDV//3f/5nyhZkzZ5oBXBdffLHZpmfPnuZSuHZH+Prrr82kCno5XgdZ/fHHH15fVweB6aCu5557zgyA0+4L2qlg8uTJ5nEdnKUD2vQ1NUjTIFk7E1jdCjTA1n3RkgjtpJCenp7vPTSo1ky1Bos6IE0Hr915551y3XXXmeA7UIV578IqW7asDB8+XIYOHWraxWl5gw7i04Fxel/pIMDPP//clEWsWLFCvvzySxOcFta9995r2s89+uij5ljr6+qgQn1fb/R8alCsx03LWLSrh55LACgMAl8AYUvrTbUc4ZlnnjHtrVq2bGlKHbTjgQZP1qV1vQyvjw8ePNgETVdddZW5PO8rwNRSCc3oarDbqlUrk+3U7Ky29LKyqhpEV6tWTfr06WO2eeKJJ5wZSq071npjbeGl2dD33nsv33toa6+5c+earHHHjh3l8ssvN2UC1n4HqjDv7Q8NSPWY6hcBDWj1tbX0wfVYaPs4zYLrMdZjoDW/haUZ+Q8//NA8R8+fBtKPPPKI144OSjPin376qekcoa3r9Fw9/vjjRfqMAKJHKR3hVtI7AQAAAIQaGV8AAABEBQJfAAAARAUCXwAAAEQFAl8AAABEBQJfAAAARAUCXwAAAEQFAl8AAABEBQJfAAAARAUCXwAAAEQFAl8AAABEBQJfAAAASDT4fzElo1uhEWs0AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for target in PROPERTIES: \n", + " plot_fdp(results_dict[target][\"all\"][\"fdp_info\"], title=f\"FDP curve for target {target} fold all\")" + ] + }, + { + "cell_type": "markdown", + "id": "8012a68e", + "metadata": {}, + "source": [ + "Newt, we plot the **Stability paths**: each feature Lasso frequency over the range of $1/\\alpha$ (Lasso hyper-parameter value). Features with a dark red color cross the optimal threshold for feature selection. " + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "4a387a4e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIjCAYAAAAQgZNYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsXQVYVGkbfRERKQVUsLALu7u7u3PNVddVd+11XV1dW9fubtfu7i5ssbtFpUFAnP85L9z5h2EGZoZJ5jvPc5mZO5fb893zvd95z2sjk8lkJCAgICAgICAgIGCBSGHqHRAQEBAQEBAQEBDQFYLMCggICAgICAgIWCwEmRUQEBAQEBAQELBYCDIrICAgICAgICBgsRBkVkBAQEBAQEBAwGIhyKyAgICAgICAgIDFQpBZAQEBAQEBAQEBi4UgswICAgICAgICAhYLQWYFBAQEBAQEBAQsFoLMCiQLfP/+nYYPH05eXl6UIkUKat68ual3yaLx008/UY4cOYy+3RcvXpCNjQ2tXr2aTIF169ZRgQIFyM7OjlxdXU2yD+YMU12fx48fU926dSlt2rS8/V27dhl1+wLmd11PnTrF/4PXxFC9enWe9AXl9Zm63RIQZFZAT8CPGD9maUqdOjXly5ePBgwYQB8/fjT4eV65ciVNnz6dWrduTWvWrKHffvvNINvZuHEjzZ492yDrtiaY43l88OABk/jcuXPTsmXLaOnSpabeJYFYdOvWje7cuUMTJ07kDkfp0qUNdm7evXtH48aNo5s3b1rE+dd2f6W2+tq1ayq/B0krXLhwnHno2DZu3Djest++faNZs2ZRuXLlmJAqtvuPHj0yq+sqkLyR0tQ7IJC8MH78eMqZMyc3cufOnaNFixbRgQMH6O7du+To6Giw7Z44cYKyZMnCDauhSRiOZfDgwQbdTnKHuvOYPXt2Cg8P58iosYEIz48fP2jOnDmUJ08eo2/fEmCK64PtXbx4kUaPHs0kyRjk8O+//2YCV7x4cTJ3mGp/P3/+TPXr1ycfHx8muh07diRnZ2d6+PAhbd68mTuDkZGRZnNdBZI3BJkV0CsaNGgg71336tWL0qVLR//++y/t3r2bOnTokKR1h4WFqSXEnz59suhh4YSOzZogRfVNAdxDQGL3kUwm486ag4MDWRtMcX38/Pz4VZ+/79DQUHJyctLb+sx1m4YERjFu3LhB27Zto1atWsX5bsKECUxSjX1dBawXQjMrYFDUrFmTX58/fy6ft379eipVqhSTAXd3d2rfvj29fv1a5VAXev1Vq1ZlovfHH3/EW7+kVTp58iTdu3dPLnOQdFSItGE4u1ChQvwQ9vT0pJ9//pn8/f3jrAdku1GjRpQ5c2ayt7fnoWY0yNHR0XH2af/+/fTy5Uv5diRdqTR0h/1JTNeV0LFFRETQ2LFjOTKI/YAGGFpgzNdEf4aHSsaMGflYs2bNyuc2MDAwznKanH9V0PRcAgcPHqRq1aqRi4sLpUmThsqUKcPR2MTOozrtGSLvVapUYTKAh1+zZs3o/v37cZbBUCv+98mTJ/ygxXIY+uzevTt3FhICto/zDmTIkIHXg/VJ3yHydPjwYe6o4bwtWbKEvwsICODoMq4Trheu29SpU/lcKQLLYZ+wP9gvDK9iWFj5WNVp+1RpmDW9HtL+Y6SkbNmyvGyuXLlo7dq18baD/YREB/+D48E91LVrV47CJXR9INGAxAf3E9aP87Rnz544y0RFRXEEMW/evLwMOrqVK1emo0ePqr0uuAaIBgPDhg2Lc68AIFPoQOMeQ1SwVq1adOnSpTjrkH6bp0+fpv79+5OHhwcflyrgd4p7FcB9I92f0vGePXuW2rRpQ9myZZP/PnG+EGVUvl7Yn6dPn1LDhg35d9CpUyf+DssOHDiQ0qdPz/ObNm1Kb9++jXPPScD8Hj168LXF9nCtIanSdH8NhcuXL/NvuGfPnvGILIB9nTFjhkGvqzogIoz2G79T3O+4Zppi1apV/MzCPYJjKFiwII8uCpg/RGRWwKBAYw7gwQVAGzVmzBhq27YtR27RO583bx6TOjRgir30L1++cIMGstW5c2du0JUB4gGtFdYbEhJCkydP5vne3t78ioc7GnY09HiAgFTPnz+ft3X+/Hn5cCmWQaP5+++/8yvI019//UVBQUGsxQUQaQAxfPPmjVzOgGV1gapjAznBgw2ko0+fPnwM0JNhW9CfJZQcgeG8evXqMen99ddfmdDiQbhv3z4mKCBR2p5/ZWhzLvEAxoN31KhRvE4sc+jQIR6K1PY8Hjt2jM8VCBgegiAD2OdKlSrR9evX45E8HBukLrgX8P3y5cv54QSSqQ4ghSB3O3fu5IcX9qdo0aLy7zF0ipEFnIPevXtT/vz5mSCDsOM8Yz4IzoULF/iY379/L9cEI5IL8o3r2rdvX76u2A4IbVKg6fUAQPBBNkE+sF0QIhAudGpwnQD8ftBhQCcB169kyZJMYkFKca1AvlQBnUhcC8h8Ro4cyR2OLVu2cBLm9u3bqUWLFrwcrh2uCe47kAz8tqDbxDWqU6eOynW3bNmS7x8QRpx/EEPpXsF2sb8gPOjw4XjRyUBnAMQVOk5FgMiivcDvGlFSVcC1gVQKy+A3iPUDFStW5NetW7fyde/Xrx+3aVeuXOF7EecH3yknpeI3CcIOYieNvOC84/x06dKFypcvz/uKjrQykGuA70H0MAyPfUcnEdcQ5w6dqMT2NyHgNyh1UpQ7HYlB6qjgGHSBPq+rIlasWMG/Cxw/zs+zZ8+4TUUnCx2PxIDfPn4P+J+UKVPS3r17+b5B2/zLL7/odKwCRoJMQEAPWLVqlQy307Fjx2R+fn6y169fyzZv3ixLly6dzMHBQfbmzRvZixcvZLa2trKJEyfG+d87d+7IUqZMGWd+tWrVeH2LFy/WaPtYvlChQnHmnT17ltexYcOGOPMPHToUb35YWFi8df78888yR0dH2bdv3+TzGjVqJMuePbva43/+/Hmc+SdPnuT5eE3s2NatWydLkSIF77cisByWP3/+vNrjv3HjBi+zdetWtctoc/67desW5zg1PZcBAQEyFxcXWbly5WTh4eFxlv3x40ei5xHnD+vD+ZRQvHhxmYeHh+zLly/yebdu3eJz1bVrV/m8sWPH8v/26NEjzjpbtGjB92FikP4f968isJ+Yj2NVxIQJE2ROTk6yR48exZk/cuRIPs+vXr3iz7t27eL/nzZtmnyZ79+/y6pUqRLvWHFvYFKGrtdDcf/PnDkjn/fp0yeZvb29bMiQIfJ5f/31Fy+3Y8eOeNuXrp2q61OrVi1ZkSJF4vxOsHzFihVlefPmlc8rVqwYX3dtIW1z+vTpceY3b95clipVKtnTp0/l8969e8f3X9WqVeP9NitXrsznPTFcvXo13jEm1E5MnjxZZmNjI3v58mWc64V14F5QhI+PD88fPHhwnPk//fQTz8c9KKFnz56yTJkyyT5//hxn2fbt28vSpk0r35eE9lcVpPOR0KTcluIeUrx2+E1hOX9/f5muSOp1VW5bIyMjuZ1AexERESFfbunSpbycqt+VJte3Xr16sly5csWZp/w7VfW7EDAuhMxAQK+oXbs2RxDQC0bUEb1tRKEQtdmxYwf3cBE5Q0RAmhBFxNAjpAKKwDAPok66ApESRCQR9VHcHqJR2C/F7SnqH4ODg3k5RAcQhcEQqr6h6tiwv4i0wBpKcX8lqYby+VGEFHnFULi6IXVtz78u5xJDxjh/iNApaysRYdIWiHBiOB7RLERXJCBqin1BcqEyEP1UBK4jIuGIZukKRHoRZVM+J1i3m5tbnHOC3wDkKWfOnOHlsI+I8iCaJ8HW1pYj6Ma4twEMl0pROwC/UUSXEbmSgChqsWLF5JFUTa7d169feRQD95T0u8GE843zBekLItcAInGIumFeUoHze+TIEY7+ImIvIVOmTBz9RxRc+Xojoo7znhQothOI7uJYEQVE9B0RcWUoXnMAoxMAon2KUL4XsD5cjyZNmvB7xWuM84qoKiLaScGCBQv496o8KY5IqIN0biGT0Cd0ua4SEOWH7h2//1SpUsnnS/Ieba+vFLnG6At+J8pyLQHzgpAZCOgVaCBhzYKHN4bO8cCE7yuAhxgaZhAnVVDOkAYBVmyU0JgoatPwnSLBUQa2h//BEHNCCT8AHrJ//vknP5iVG0tDNGLKxybtL4Z4QTQS219VZAsSCSTbbdiwgYkLhsogYZAacm3Pvy7nUpKVKFv76AroagHcR8oA8Qd5V06swXC/IkA2AWhJMXSpC3B+VZ2T27dvJ3q9cAx4GCtLKVQdk6bQ5t5WdU6k86Kor8W1U6V/TAiQL+CegnQFk7p9wf2O4XDILdA+4P5AJjyGqTUhT8qAPAadNnX3BTpt0IFLEgp111BbvHr1iof0McyurE1WbifQBiprc3EvoD1U3hdl9wwcH+RB0H+qs4hLqD3QBJB6qLLCkjpnCUH6HaEDo88ELl2uq3Jbody+oV1TJMYJAfIcaOfhsqAcFMD11ZQUCxgfgswK6BXqGkgADREiPNB9qYqQKD/slbPFBw0axB6yEtBjTsgwG9vDwx7kThUkEoKHBtaFBhoPXCQPIKqIyMeIESPiJfOogrrIlWICWULHJu1vkSJFmJCqQmKar5kzZ3IUAslsiG5ARwmNIhIn8FDV9vzrci7NAeqibyBdukLd9UJkFLo+VQBp0xa4Pqr2U/k+0vZ6GOKcSPsBDB06NF7kWpmoQZcNwizdn9AyQzO9ePFi1tEaGkl1n8A1wPVGNBrtAkZQ0IlC5Bm/O+V2AqMvUkdeW0jrQmdUnbZal06AvoBjB6DpV4z4WzJwbyLRDMeGNhjtLQIOGFnBfarJc0DAdBBkVsBoAEnEwxNRCV0e9CANaNyVI24JbQ/JQ0hOSehBBkKMYVEMw+OBK0HRgSEx0irtC4ixqmiBJsD+3rp1ixtUXYbkAZBhTIgyIxkJxw6y8M8//yTp/Gt6LrEcAA/ZhLxaNT0+KeMZCVjKgPwDSUmmsjvCsSJpCrKCxI7h+PHjvKxih0HVMeE+Uhz6V3cfaXo9tAHWieumDaSIF6JfiZ0HACMpkNdgwvnA7w2JYdqSWZB1JFSpuy9AIjVJ+NHm3gRxQyImOtRweJCQkBuDqnsBpAhti2IEERFu5ePDED4IdGLnVde2IimA/AEdZTij6JPMJuW6Sm0FRi0kaZaU0IbzDQlNQkCyFxJoEXVXHMlISH4lYD4QmlkBowEZrIgQwZ5HOSKEzyCUCQG6PzTs0gR9YEKAjg8PA1hsKQOZxhLxlKJWivsEd4CFCxfG+z8QJ1WyA4nESTpJANvWpooU9hdRHlSfUgbkFeoysAFII3BMigCpReMv2Xol5fxrei5RmhIPYTzo4MWqvI3EzqMyMDwPI3gQCMWOAkgXonvIgjYVcE4wHAmpgzKwr9L1wD7ivaLFD84lsuBV3Ud4aEsenAA6OBj+1OV6aANIDLAtaNw1jeAiOowsc2SbQ9+sDMXjUL6/QOzR4dHEdk4ZuI9xryHKq2iHBwcAWMDBQUBXSYnUOVI+h6raCbxHkQ1NIUWvldsW5XsB28L1gG5WVQdD8byq219DokKFCiwTQXRdlcsK2k9E6415XTEiCDKMzrtisQY4fmhyblRdX7RRsOsSMH+IyKyA0YAHNSKEsC5CQwWRP4gPes14gMJaRpcGUB0gHYBNC4gVkojQSCKChJ47EmjwEIJdERI4EBHDcB6G5hHpgN2Xqgc4CPR///3H+lT4O+KBjCgFNFyw0cGxYRgSEShUwVEmmAkB+kFY9iCBAdEARN1AWEBuMF/yOVUFaH1h3wMPTERdsV0cg/RQTOr51/Rc4kGDITlE2nB+kLSBcwuSBA2aJBNRdx5VAdZosObCAxS2RJI1F/Rryr6cxgT8MRHFgYerZHOFDgcieDCSxzlG5BjHhWuJpDjMQ6cMowCqyDwssTDECdKDY4UuEg9n3F+KWm5Nr4e2x4P9xj2E/cDx4F7GMWIf1EW2oJMHyUDnCUlWiNaCfIDow7IK1x7AcYP4Yr34fSBhB9vTtfoT7mVERbFtJFRBowpSDXI8bdo00hX4nUAHimPG7wNkEXZQGH7Gd/iNoNOJex1kU5XPsjrg2PF7hG0byL1kzSWVflWMsk6ZMoXbAWwb5xXnD9cD8idE5fE+of3Vh0Y4IcDKDvcdOsm4xzGihG3jHkTbh85NQl6z+r6uuP/xv/hdIDLbrl07bttARjXRzOJYICvAsWAdGDlAYAEdNlUdNQEzg5HdEwSSKSS7F9jEJIbt27ezTQ5sjTAVKFBA9ssvv8gePnyYoNVWQkhoeVizlCpVii3CYO8CG6Hhw4ez3YsE2F6VL1+el8mcOTN/f/jw4Xi2WiEhIbKOHTvKXF1d+TtFuyRYydSuXZstjzw9PWV//PGH7OjRoyqtudTtK+xlpk6dyt9jPW5ubrzvf//9tywwMFDt8T979owtqXLnzi1LnTq1zN3dXVajRg22StPl/CtbQWlzLoE9e/awNROWS5Mmjaxs2bKyTZs2JXoe1Vnc4DgqVaokX1+TJk1kvr6+GllrqbNN08aaS52lVHBwsGzUqFGyPHnysJ1Q+vTp+bhnzJjB11ICbMW6dOnC+w5bJbyX7NSUj3X9+vVsBYT1wWYI92FSroe6/VdlA4b9HDBggCxLliy8/axZs/K2JXsoddcH9z5s0jJmzCizs7Pj/2/cuLFs27Zt8mX++ecfvg9wzbG/uO9gB6d4nrSxcAKuX7/O1knOzs5so4d7/sKFCzq3TRJ2794tK1iwIFvWKR4v7jn8xrE9XOvevXuzTZzyOcE5w29LFUJDQ/n3ht8o1gMrKvz2sI4pU6bEWfbjx4+8rJeXF59XnF9YoeG6a7K/qpDY+VDVPqm7h2BlhXu9TJkyfCy4Z2DH9uuvv8qePHkiM+R1VWV7CCxcuFCWM2dObj9Lly7NlnTqLO+UgXaraNGi3IbmyJGD2+KVK1fGaz+ENZf5wQZ/TE2oBQQEBKwNiNIieobIESK7AtYLRNdLlCjBGlSpUpiAgIDmEJpZAQEBAQEBI0G59C0A2QH07YoJqAICAppDaGYFBAQEBASMBOg+fXx8qEaNGqwHhVUeJmjWdXVgEBCwdggyKyAgICAgYCQg4RQJTnCiQJIRbKCQyDh69GhxDQQEdIRJNbOwMUKmMnqpyBZERjUyrBMCPEGRAY2KTejFwk9T6M0EBAQEBAQEBKwTJtXMwsYGdi+wdtEEsNlo1KgRD89AMD948GC2AFLl8yggICAgICAgIJD8YTZuBvDXSywyixKC+/fvj2Mi3b59ezZEPnTokJH2VEBAQEBAQEBAwFxgUZpZmHArl/aDuTgitOoAo2XFCjMoJQiz6XTp0pmkDKCAgICAgICAgEDCQKw1ODiYMmfOzG4fyYbMfvjwgTw9PePMw2dUxoHdiaoa5aiQg/KdAgICAgICAgICloXXr19T1qxZkw+Z1QUo3YmEMQkoIYnsUZwcXWt3CwgICAgICAgIGA4IVCLRH2WaE4NFkdmMGTNyzW9F4DNIqaqoLGBvb8+TMvA/gswKCAiYEj++f6eosDD6Hh4e86rw/kdkJNm7upJD+vQ82Tk5CWmUgICA1cFGA0moRZHZChUq0IEDB+LMg18f5gsICAjoA9BpRUdExCOXiu8lAvpdg/cJredHVJTG+2Vrb8+k1jFDBjnBVZ4Uv0udLh2lVNGRFxAQEEgIsh8/KDIkhCKDgigyOJhfI2Lf2zk6Us769cncYFIyC8PoJ0+exLHeguWWu7s7SwEgEXj79i2tXbuWv+/bty/Nnz+fhg8fTj169KATJ07Qli1b2OFAQEAgeeNHdHQMSdQDiVR+H+d/UG5UQ5MXG1tbbtxTOjrGvDo4xHmP19Tu7vL3+E7Ve1X/myJVKooMDKTwz58pzM+PXxWnsE+f6PO9e/LPqohxKheX/5NdBaLrqEyEY79L7eZGKWxtDXD1BAQEDN0J/x4eHpd8qiCjkarmK32OCglRux3PkiUFmVXGtWvX2DNWgqRt7datG61evZoLKbx69Ur+fc6cOZm4/vbbbzRnzhwWBC9fvpwdDQQEBEwUxYyMTDKhTJCYxn7GdjRFytSp1RLMlAoEU5l4qiOb6oinrZ0dmct1wMMoDtlVQYADnz2jD1euUDi++/o1Pmm3sSEHd3eVRDdOBFjhOxBm4QwjIKAb0K7ht6tMKqX38vnKnxXJZ3DMfFl0tNrtpEiZklKlSRMzubiQfex7/I7T5szJ73mei4vK5eTzNdCvWrXPrDEFxWnTpuVEMKGZFTBX4GeJoR5E2zBFx77y9P272nkaLRs7X9U8aVkmk2rIpfJnraOYEol0ciJ7Dw+yd3OLmefgwEPp/D51arIFIcWk7Xx7e7JJxMZFICbSjQfgN39/ivD3///r16/0LSAgznzpvaqIjY2dHUd0U7u68rXEe+kVnQbMV5yHV7vUqc3+Etja2lLKlCkFURdQ+dvBb0E52plg9FMNSYWkSS1sbGJIZCyRVCaWCZLPNHGXQ1tpaZ1ObfiaILMCAkkAiF/A06f09cGDmOnhQ26gEiOXcearWdYQQO+cJzs7+WQrvVeYL49IqohqahrJtFMeNrezkzemkZGRPPISBjIsYHGdLESA1L3Cy1txnsrOjo0NdzjQwUkR+2qT0CsmEzyIHR0dKVOmTJQqVSqjb1tA//cuOt8JRj8TGnpXWC4qNDTBbaG9U0c+7VREO9WRVE76tOKOeZAWZNaiEsAEBEyFiMBAJqogrF/u35eT14AnT5iMAvZp05J7gQKcgc6EMHVqSuHi8n/iGEsW5eRR3Tw18/HeJmXKeMuqmq+KoOK9OfTMQXagj0fkC2bYIArmsF8CBhxhALH9/j2G7KLzhs+x8+SfY18xMQHGq8KwKR7qfA+DAGPCPQ2yiwn3eex7vuel+TreVyzbiIwkPz8/vlfz5s2bqGm7gGHwPSJC66F3dfO5c6UGuJ/iDaljGD5DBnLNnTtB8hknKoo2P6WgVsaGOOMCAgoPsJC3b+MRVrwPff9efp5csmWjdAUKUI66dcl94EBy9/bmz46enoKUaQCQBBBa+Aci8iUgEI8AS6RXYZITX2kkA/eR9J0araB8JELq1IEMK86LnaR5ihFg2D3a2dnRy5cv+Z5NbQHSCHMBOiTqopraJiQlqJW3sVE51I5X5yxZ4sxPTA9qicPwAv+HILMCVgc0jv5PntBXRcIa+yppAm1TpSK3fPk40lqkZ09K5+3N7zEvlbOzqQ8hWUBEugRUAYRCIpeaQor+ysmtJN9RmqBPlC+jIkqHbbMcJnb7321sWEN848ABSu3goNIJAm1FshmGDw3VKNEosSF66OkTAuRHqobW0+TIodWQvPBeFpAgyKxAsgQa5oiAgDhElaf79yng2TN5JAcJKYisZihalAq0a8eEFVPaHDnEUJGAgIUAEVVbTFq4S0hShzjRXuUoMJw6vn2jB5s3k//Nm3JJkSKkjPCEPH8VJ33an0meyOqinQklHsWLigYHJz4MnzZtPFLp5OlJbnnzqs1+jzck7+ws2lYBvUOQWQGLAhKk4K8Z+uEDD/3zq+KkME8eHbCxoTTZszNJzdW4sZywYsIDRwwtCQhYH5hQ2tomGFn99u0b+RNRh7NnuZIkiJ/c+kyyPFOyQAt8+pQ+XL4c81mF/RmIN7s8uLlRKlfXGJLn5CT3Fsb+yJN+ZLKYKnGwsIslnMpR0oSSRbEeVYlFIKUuXl5qs+JVDcmLAhwC5gxBZgXMBmj4/W7dSpCk4gERBzY2TEidMmbkyTVPHspSuTI5Z8pETpkykXv+/CwNQEa9gIAl4sWLF+yxfePGDSpevLhRtlm9enXe1uzZs81qn01xLuSQyWIiwKlTU6q0abntAcGzj00SUhX9ROIoZAqwNYuIJaPoZEvEV2PY2Mht6NCWcUQ0Y8YY+7N06cjJwyOmDcycmUkqJkcPD15WdNYFrAGCzAqYTcR1XalSFPTiBX+2c3aWE1QmpQUK/P+zwnwQWZE5KmApOHXqFBeK8ff3J1dXV1PvjnUkk8UmlEkTW4cpfJa7LahYJjIqioI/fqR1rVtT4P37CXoqg2yqGmrHqJB9kSLqs9+VIqfw7QX5VS54oaoQht/r1xwZVpUkBT2pYuGLeFXflItiuLuLtlTAYiHIrIBZ4PmBA0xk2xw9SpnKlxdJVgICZgxk9xvSe5V9ahVJZiy5RDEHAEQu5N27OCSU3ysS1dj/T6yoh2T1xVZesb62/DlVKpIhChsaSsUHDKBUtrYqLZmkIXl9JoKlcnQklyxZtErcUlXxTT75+VHQy5f0wceHP3/78kWlPhaR3oSqv8UhxBkysFxBRH4FzAGCzAqYBe6sWEGepUpR9tq1Tb0rAgIJDr8XLlyY369bt46tm/r160fjx4/nhzrmodT2w4cPycnJiWrWrMlD9R4eHjxELpXvdnNzi1O6G5HAGTNm0NKlS+n169fk6elJP//8M40ePVq+7WfPnnEp78uXL7Pv6eLFi6lChQoaXa3z58/zuq5cucLaz7Jly9LmzZt5P0JDQ/kYduzYQS4uLjR06NB4/58jRw7q2bMnPX78mHbt2kUtW7bk/VZXUAFJU8DDu3dp0K+/0lUfH8qdMyfNnjyZypYsSSHBwZS/bFmaO2kSNa1bV05K9x87Rv3/+INuHzpEzk5OdOPePRo+aRI9fvGC8ufOTYO6d+f1grhhSqFMQOFEoDwvgc+JFWOAZtb+2zcq0L272VpzYf+RVIXJNWdOjf4H1wkdA2XNr1wHHDt9uXdP/h6SCWVgVAwyh3iEV03yGybogwUE9A1BZgVMjpD37+nZgQNUa948U++KgAmB6jxwnDAmIF/RVk+9Zs0aJnYghteuXaM+ffpQtmzZqHfv3hQVFUUTJkyg/Pnz06dPn+j333+nn376iQ4cOMC+utu3b6dWrVox2UVFG3iZAqNGjaJly5bRrFmzqHLlylwd7YHSuQAZBeEFkcX7Dh060JMnT7jkakK4efMm1apVi3r06MFEG8ufPHmSokEgZTImr6dPn6YdW7dSend3GjNuHF2/fp0KFyjAyZYS0ZwxfToN+/VXOr1zJ5Nv+C/LI6JSta9Y+L97x69/jhlDYwcNokmDB9OURYuoe9++dHn/frKzt6cWDRrQxu3bqXmjRlxgBARz66FD1KJJE8pSqBCFhodTtwYNqFbNmrRu40Z6+eoV/R5LtGGV51GsmFbXTeD/AImHrAAT5cun0amBlAH6X3WJb9L04fnzmCixn5+8U6MI6H7VEV2VDhDp0iUb+zMBw0GQWQGT496aNWypU6BDB1PvioAJASIL3bQx0cXHhzxLltTqf0BKQToREQNpvXPnDn8GmQVhlJArVy6aO3culSlThkJCQsjZ2ZncQR6IOFIraWaDg4OZZM6fP58jtUDu3LmZ1CoCpLNRo0b8ftzYsVS4SBF64OtL+fPkSVD7OXHsWCpeuDD9M3iwPHLarmpV+vH6NT3z9aWVK1bQ/PHjqWiGDLzuGUOHUsmTJzkSF/TqFUcz8X+Vy5Shfl26xItwplAsPRv7OSg2ijlsxAjq2KsXfz/V25sKFSpEgQ4OVKBAAfpl6FCqWLEihTs4cMlYkP8jJ07QsWPHmMSsW7qUfshktGrNGo6KFi9Vit5//MhRZAHjA4RSylfQpoOamO4Xyb2f79yRf1Znf6bO6kwVCYZcwprLwFojBJkVMCkQGYLEIF/r1pRaJMRYNRAlBbk09ja1Rfny5eMMTWOof+bMmRzpRBR03LhxdOvWLU7yApkEXr16RQULFlS5vvv371NERARHTyUg6z38yxe2XQp49YrneTk60qebN5mM2sYO+T6+dInSq0j+kcgliOXtu3epWYMGXKRCeRj+WUAAJzlVa9SI3OCtnCIFpbe1ZbKJbHhIf6RCAhVr1uRKd5oglT8MrYhKlColTyoCYQVAWrF+SB1AbhHpHjlyJK1fv56yZ89OVatWlZ+XokWLxhne11RWIWAewKiHXbZslCZbNs39wQMDEyXA/o8f07uLF2P0v7A/U4Jkf5aQ36+iJhjSCCQdC/2v5UKQWQGT4s2ZMxTw5AnVW75cXAkrBx582kZJzQnQV9arV4+nDRs2UIYMGZjE4jMSptRBkhpID3LIblCJjq2YUqdmIgk4ubvHlExOkYJ+xHb8nLJk4aIfTFQVtaAKZNvZ1ZWHamFbF2/bnz7xa+q0acnexeX/X6AKV+wkARpgbQFN8f9XGbMuieADvXr1ogULFjCZXbVqFXXv3l0QCisG7hEENTC5qbhfVQGRXNg6qkt8k7TAQTduyOdLlR6VI8/aJL/hN4Xfp4B5QJBZAZMCUVk8ZLPGRmMEBMwdSMBSxKVLl1jHCo3rly9faMqUKSxFAKCpVYTkAIAoroQ8efIwod29bh11aNSILZXwm5AyxQMlMuvpyf7JQJS9fcz6nJwSTahBdPP48eP0999/x/sOcgYQThwTdL8AIsqPHj2iatWqkaHRuXNnGj58OMsxfH195TILwNvbmxPq0EmQorM41wICikDkn312PTw0PjHQ8saL/iqTYD8/rhgpRYZVFadANFeb5DcQYH1VfxOIC0FmBUwGZNM+2rqVKvz1l4jGCFgMEG1FYhfcBpAoNW/ePJYZgAyCrOJz37596e7du5wMpggMo4Og7tu3jxrUr08UFkY2ISH0S5cuNH7WLEqTMSNVq1WLHj94QPfu3eNEs6QCyWVFihSh/v37835hH5EA1qZNG0qfPj1vY9iwYZQuXTrW8iK5DJFeYwBuCnBGwPbr1q1LWbNmlX/XsWNH3hdokXEMcINAApyAQFKBiKpL1qw8aWx/FhISQ3gTsEALfPGCPly7FvP5y5f4tnCIPCvbnyVS/ljYn2kGQWYFTIYHmzZxsYRCCtEYAQFzR9euXSk8PJw1n7a2tjRo0CB2NABJhV3VH3/8wZHGkiVLMvlq2rSp/H+zZMnCyVsjhg/nIfU2DRvSkjlz6J8ZM8g1WzaaMHky9fv1V9aXgnjqA/ny5aMjR47wfmGfEQUuV64cuyEA06dP5wS1Jk2asDXXkCFDKFCFDZOhADK9cePGOMlzABLm9u7dy+ehRIkSrDmeOnUqu0EICBjd/gzewi4uGtufIRkzQrI/U6H7VbQ/k75D1ThVkWe1kV41JNjOCite2sjQ5bAiBAUFUdq0abmxhjWOgOmwrnRpcs6cmVrs2SMugxUBw8bPnz/nsqTm6t1piDKv6LjB6goT3AEw5IjMcGvX3UFKAP/cd+/eGbQQg7XdqwKWB9ifIaKbGAGWpBD4PjoiQq39mabJb/AKhqOQJfM1EZkVMAmQlf3Rx4cqjBkjroBAsgYeNqEfP/IDCMBDBPpXa/fODAsLYz9daIwh2TA3IisgYGygTYAuXtLGayR/UGF/Fq5UCCP47Vv6dOuWfB4cUZQBOYMmyW8oI++aKxeZGwSZFTBZ4hcys3M2bCiugECyxPfwcAr98IEzraFBRRQWdleSVZW+0KBBAzp79qzK7yAtwKRvTJo0iSdVqFKlCh08eDDRdUybNo0mTpzIVlzQxAoICOggf4hNAk2bPbtG/4NRIWX7M1WFMPwfPqR358/H2J/FWu0BnqVLU5erV83uUgmZgYDRgUzSxZkzU9E+fajqlCniClgZkvvQbWRoKIW9f88JjrDVQhQWkQ5DZTG/ffuWNbyqgCINUqEGfeLr1688qQI0udAGJwck93tVQEBj+7NY+QOiuhmKFiVjQMgMBMwaj3fu5J5eYaWEDwEBSwWG+1DoANWM8AqP2DTZs7Mu1tCViExBHA1FkgUEBMzU/szTkydzhZAZCBgdd5Yvp6xVqpC7hjXBBQTMFVzoICCA5QRRoaGU0tGR9WT2KKepUHBAm/XBzxI6uGjUtUfhAlTyUiyKoFxCVoftCAgICCQnCDIrYFQEPHtGr06coAZr1ogzL2CxgO4MZTRBYiGbgWWPW968XENeU3IJ4or//R4WxhMILHS2Um16KaKLbSUExdK1coIrfVaYJ/8cO0/5s3LlMAEBAQFLgSCzAkbF3VWr+IGfr3VrceYFLA7wjuSEiY8f2UYHGcBpcuSgVM7Oif4fiKoiacV7yRkRWcyI6iJBDK92Dg6UIlUqJpcgs5iwDujV+HN09P8/x85T/vw9IiLe9/FM3JWgFQlO6HsjFV0QEBAQAASZFTAa8DAFmfXu0MEqTZ0FLBeIlkoesXjv4O5OjpkyMelU5ScrJ60ScYVkALCxYV9Z3P+p3d3/T1wTcDiQoqZJdUFg4gwZgzakWPo+MjLe9wkBJFxtFFiVbCKhzyJaLCAgkAgEmRUwGl4cPkwhb99SkV69xFkXsAgg+oooLMzJQQTZcxGFDuzt5TIBRdKK91INd5A4kFWMROB/QFphZm6qqCWTQhsbssX2k2iQjmOXyDATXoX3qj5L83BuZN++xRBiaRkNZRTKJFdZVpGotljIKAQEki0EmRUwqrcsLD08S5USZ13ArAGSikIH31DoIEUKrqQDUiqRW4nASkQMFlyItnIpSZBWR0d2NDBWVDEplcl0gRR5JT3YjTExVkeKFUmv0me5jEIhwqyxjEITbXGKFBSJ7Xz7Rl/u3yenNGn4HsCEzoyAgID5QJBZAaMg9NMnerpnD1WfOVMMGwqYLUBSQ9+9Y49YkBlbyAh+/GBiiwmATABkNbWrK78i2mqOpSAtBUyMIaFImZKSSo0T1BYn9FmNjAIxdhjKn+3bl8JevpRvB50Xe4ncurjISa690me8T3A5Fxe9F9EQELBGiF+RgFHgu24dkwPvTp3EGRcwCyAiiEgrIqyw10JVHMlJQJFo2bm4cLU6kFZMhip+YG6Ijo7m48fQvaWAOyB6lFGEh4ZSUKpU1GTbNpIFBVFEUBBFYgoO5tcIhfeYoKn2f/JE/hnfwbItIbAURQXpVUWCE1rOzslJBAoEDAZ08nA/QyqEkSpzgyCzAgYHHgzwls3bsiWbyAsIGBuc3R9rgxWl4CqgmMgEIgR3AiRmQTJgmzp1PHKAYfDJkyfT0qVL6cOHD5QvXz4aM2YMtW7dmk6dOkU1atSgY8eO0YgRI8jX15eH/letWkX58+fn/7916xYNHjyYrl27xuvOmzcvLVmyhEqXLp3oMZw/f55Gjx5NV65cIXt7eypbtixt3ryZ3Nzc5Ps2fPhwWr58OaVKlYr69u1L48aNk///v//+y/vy7NkzLnjQpEkTLinrHOvEsHr1at63tWvX0siRI+nRo0f05MkT3lavXr3oxIkTlDFjRi5BixK5WBYTEBAQQEOHDqXdu3dTREQEH8+sWbOoWLFiZImQZBRwmUAUNkO+fDpXAJNIgCLpxXuVxFjhc9DLl/GWi46ISGin5WTXTgNyrCqKLM03pkRGwHBtXmRIyP/vPXSs8Ko0Tz5f8bOKZZATAGQsW5Y6X75sdpdNkFkBg+PdxYv09cEDqjVvnjjbAmoBcon7JKkAeUDBAZBXPPylV7kNlp0dD2sjwuCSNSs7EzhlzsxENrEHOIjs+vXrafHixUxEz5w5Q507d6YMCpEKEM6ZM2fyPBDKHj16MBEFOnXqRCVKlKBFixaRra0t3bx5k+w0iCJiuVq1avG65syZQylTpqSTJ09y9FTCmjVr6Pfff6fLly/TxYsX6aeffqJKlSpRnTp1+HtEWOfOnculWUFo+/fvz+R34cKF8nWEhYXR1KlTmRCnS5eOPDw8qFmzZvT582cm69hXbOPTp09x9q9NmzZcxvbgwYOUNm1aJujYXxBia68Uhkg+JCmYkgrohOWkWIEEg4wkFDVGZTrlKHJCiXcg8JqQ3sQkFpiEBEczoH1CFF8t0VRFTBMgoVGJjAig8y5dI3R+UilM0P7zfGfnOPMxOWXKROYIG5nUwlsJtKn1K6AfHOrZkwsl9H76VPhPCqitd//x+nVaZ+TkwPZnzlCWypU1ikIh4ghihshrhQoV5PMRtQQJ7NOnjzwyCyIHHDhwgBo1akTh4eF8rGhz5s2bR926ddNqPzt27EivXr2ic+fOqU0AA7E9e/asfB4itzVr1qQpU6ao/J9t27Yx2QZRlSKz3bt3Z+IsRVQfPHhA3t7edPXqVXn0GNFaEHlEXhGZxT7hGEFwEcWVkCdPHibLOC/J7V61dLATR3i4SqmE8mdVUWTF+SBQCQHSHF2lE4qfWUZhRpIX+TlURSpVEFBV5DMOCcV5TIiOIfKuQC6VCWgqab4KAhrne7w6O8c4q5h59F0bviYiswIGBX6oD//7j8qOGGFWDZGA+cG9QAHq4uOjvsxrbJT1uxRtjbV4kttgITELk709SwR4qDRFCl4mwt+fwr9+ZU2sfWzkAY05tqlpgw4SB9IqRTolREZGcrRVQtGiReXvM8VGMUD0smXLxlFNkN9169ZR7dq1OaKZO3fuRLcNgollE4LidqVtK0ZQQbIRWQZBxUPi+/fvTNZwTI6xvs+QJyiu5+HDhxwFLlmyZBySKkkbJOlESEgIR3IVAQL/9OnTRI9NwPhgLTg8jh0dySljxiStC78vKSKoKjocJ2qsQIKDX7+Ot5zcjzkhMpcY6VVDjjEfEWeMUMALWnkoPQ7ZjP0uMQKamK0cE0sVBBTRTbd8+bQioLhW5k4+TQlBZgUMigf//cfDx4V++inZn2k0gA+3bOFGjhvQtGlVvoJwiUYpPtBYe5Ys+f9qWUoVs1ARC2TLIbZaFpbnpCzoW2OrZSkCDyyp0EHqdOn44YEHN86/LgBhA/bv309ZsmSJ8x0ikhJxU5QNSPsEPSsADSuirFgHhuTHjh3LutcWLVokuG0M4ScGZbkCti1t98WLF9S4cWPq168fa14RYUZEtWfPnkzGJTKL7Wh7b+K8gDhDhqAMVz0MrQuYv4wCbRsmlySuCwmZ8ohvcDA7SbDP8+fPbJOHDik6ppywGRRE4V++sLZYaiMgJ8I6OJFTh0FntmZD+5IqFXeIuY1xcmJCCS192pw5yd7NjaVJ6BCjXUnt5qaagJpZJDm5Q5BZAYN7y+aoV4/SeHkl2zMd9OoVXZ83j+4sW8YNMYhVQhEGua0PHgAKr+rIr6pXLJ8cLH24WpYiacWkcO5AVuHbigeGRGATO25EbvEARNlZwCFDBnLy9OTrkhQULFiQSSuG+6tVqxbve02jkEgaw/Tbb79Rhw4dOCkrMTKLaOnx48fp77//1mnffXx8mNhCyyu5E2zZsiXR/0PiGiK4N27coFKxEhBEqP39/eXLIGqLZDhEcHPkyKHT/gkkD+D3nFjCUWJaT8VJKkCiDlxNT9J5pkv3/yims3NMEicS+DClTCkvmsHR1NhKeFg/Jh7xQdGTkJA40WW0IZHPnye6DwlKJxKQUsSJIjs7C/KbBFj+01DAbPH53j16f+kSNdm6lZJrYtu1WbPo8Y4d3BAV7dOHSgwYQGmyZePogNQowvJJ3SsvE/uKCEOE0vcJlQ0FuVNHgjUlxGj0jRElxgMk8Plz+nTzJvk9eUKpy5enLxERZBtrhRWnWpanpzzqqk1kAy4FYR8+cPQG0SJEYR09PPRG+l1cXDhjHyQUxLBy5cqs5UJyF/Rc2bNnT/D/Mew+bNgwdj6ABvPNmzesRW3VqlWi2x41ahQVKVKEk7agc0WEGglgkB6kT58+0f+HNCAqKor1unAxwD4jiS0xFChQgOUQ0L0iaQ3R3yFDhsSJ4OJ7aIibN2/O7ggg6u/evePoM0i6Jk4NAqYBIphqdZ0a6D2VSWiCbgtIvsToirLeE8QTQ++ZM6sfZlcxDI95xkgui+MKoIUbRfDbtxT14EGc+ZIjgDrgmBIlvQnpjF1i3luCHlbfEGRWwKBRWQzF5GnaNFk1/o+2byefWbPo/eXL5JonD9WcM4cKdevGjbJio+2I0qcaEI3EEgwSI8HK34e8exfnMxpRtbCxURkd5kIA0J7a23PkQXqv/FlRn8rvkQCUIgUXHgh88YICHj8m/8eP2aVA2g/30qWpWPnynN3tiIY6idWyIkNDY7K1AwI46s0OBenTG8QPdsKECexSAO0pHAEwjI7IJKyqpCF9dYB7wZcvX6hr16708eNHJqEtW7bUKNoKgnjkyBHeDhK7QCbLlSvHkV1NgIQuWHPBqQDEuGrVqnwM2JfEAKsuyBHwP7Dmwv/du3dPnhCF64ZEN7g4IIHMz8+Pl8Pynp6eGu2fQBLtlnQkoImRK3QEVSYbOTtzpzNBnacKAprU0RFTgC37YskiKcmLkhS51iLhDlIp5eWUPbGV5RLaWLIpE2XF5Szlmgk3AwGDAJHJxVmyUMGuXanGzJkWf5a/+fvT7WXL6Mb8+Zy44FWjBpX+7TfK1aiR2Q8NSQkayiRYHRnGq2RnFS3ZW+F97Gf5+9hJWzhmz06lFi+mLBkykF3s0B+fw9hXJrXK86X30nwbm5gkjtBQ3gc8dEHEOdKMUqSq1pnI+gU0AyLKXl5ecVwbkiuS6mYA8gn5TGK+npomHCXFbkmKgCZEQJVJqPCbNeOCLxERCbpMRCYSRZYn5iHIkIC+GPeAIun1KFmS6q9YYZTjFG4GAibHkz17WG9UpGdPsmQgqugzZw7dW72atVUFOnakUoMGkUfx4mSJCRpJaTyD37yhTzduxEgFbt7kV0gHAERn03l7szuAe/78HLFOkz07P1wViS9IchT0au7u5JgxI9nb2sqrLZHSK7sGxr5yidHYz4hI4Frw51hCytWavnzhSScoEuaESK8CmebvlMm2Bv+rlqgrLmNGQLEEJHlB5vD+/Xu224I2FpHX5AbpXpRK3XKBjW/f6NWpU/QjIEBjrWccr08d7ZZcvLw0IqCK5NMah5etEbjGknuLk4dHktbFHa5Yf9vEKtzhfVLdLwwFITMQMAhQ8StzhQqUvmBBi3ygvT51iqUET/ft4yHr0kOGUPF+/cz2h6xPgCx+ffhQTlwl8ioRRWT1epQoQXlbtWJSjwkEVlNtqhTtckQmsIbRLiarX7+yJhZRf7a3yZiRIwbSw5vJLciI9KpEiNUR5XjzE1mG5QTK85XXk4jkQBkdBw6kyzdvqvzutz596Pf+/blTgmIP/IqsayS1xL4qz9MnoYHWFvIGyCqgG65YsSJt2LBBo2IPhgafd0zo7GCKJaF8nVTMk5b7oTTvh8J7RSD9CJn0Z/v2pbCXL3kestTj+XYq2C0lZrOkSELZbsnMR3YEkjdsFKL5zpkzk6VCyAwEDJLdvzRHDqq3bJlFRWYxfP5g0ybymT2b/G7dovSFC1OpwYPJu1Mnne2cjA1EkTSVEiSkw5WiSbCiAXGVSCveO2fJkiSypM3QLUgGIvxwJwCJtXd1jSGxCvpkc4U2RPnt27cUjvK6CoRcIleuadKQq7NzDOFCVFoiZIlo5hTJbxwirO5VIsMGjuzJiaYGJDMOMVU1L4EESfm5iI2g20jHKL1PZB7eR37/Tq/evKGMrq7k4uYm7JYEBIwIITMQMCnurl7NEYf8bdtaxJUI/fSJbi1eTDcXLmTSlLNhQ6o+YwZlq1XLaEN2nFWMYR4Nk7zUvYLwJWYho+xsAEmAshOCW/78lKFoUb2U4NT1fEgesXgP2x3IEmDTZSlg+YCGSWi5dTjPUkRSkdyqe+VlwsPjzFO73ylSxIn6ykmeNMXqj3n6/87EvCRETGMJaGL+n9J5i0MusU94hZ9w7Dz+rAkxTcJvWPbtGycVYig3lYV0aAUErBFCZiCgdyC6ma9NGx62MGf43b1L12fPJt/16/nBB0eCkoMGUboCBXReZ8DTpzxpS0oTSuzAA1mV4wCGhKBRTcx+S/o/S8hKBRlnk3Q/PyY98IhF1jScEgRUkD5EVZXkHfJhd1VD7YrzY0kuE1y8Vyad8N/Updq5gg5YmkAI40SLFScY1KMyk+QFKobdBQQEtIQgswJ6xbeAALZhKvfHH2Z5ZvGgfn7oEOthXx47xkPmFceNY49YVHXRFXj4X540iS78/XecoU/2DVQilxgqhxetpsUSrKGMIeQRoR8+0DfoclOkYH9YkFhj+EiaQ7IRSw6kSSkJSZOh9jhD9onpdW1s/h+9VIhgouiB2oio0vIclVWQTcSRQCi9Su/RUcErSykSIueK8gilCLE6eYQ5Js4JCAgYD4LMCugVn65f59eMZmaUDi9S33XrOBKL5CbP0qWp0YYNHEFOKmEKev2aDnTuTG/PnaNyo0dT0V695FYmhvA6TU6AbRE8YmF9xsO5mTOTY4YMJqtuFkfXqoJgxiGdKqbEvo+zjBZRT3XD6ii7GY+AJqAB5fvRxFZkHAFW0v6qe4WOXXGeOqIehwgnQoJVSigEERYQsGgIMiugV3y4do2jkcjqNQegCgu8YW8vWcJD+nmaN6e6y5dTlkqV9PIAe7xzJx3u2ZMTQ9qePEleydCuyFCRWBRVkIWEsI8hItWpUehAzRCzyiimKtKpLaFU9Z0WiKMllXxwlYfXlfWmSsskto7kRrb4GkNaoMP/xosCK2qClSPCkZFcFEBOhtVdW0SqVSTC4T3cDCAPerRtG6V2dOSyypjsY1/RYU1O10ZAwFIhyKyA3smsZ8mSJo9IogrW6WHD6OGWLey9WKRXLyrx66/kmjOn3iKKp37/nW4tWUJ5W7akusuWJUmmYIlg/1foKlHTPCyMvoeFxfhy4hWfld5DFwy7L79Hj6jAuHH03dOTUseWpERHA9FZfUQx5X6taiaJuJBCVE5jUqn4vSi2YHTgvNvi3OswmqIoy4gXBVYmw7ivv32jyKgorizn8+efcmsu5f2BbEiR4CoTXpXvXV1ZRiT0wQIC+oEgswJ6xcdr1yhPixYmPavwRd3RuDE/pKpNn06Fe/SIKUWoJ/jduUP72renwGfPqM7ixay3TQ7RGVTUenP6ND3bv59dBOKQVImQxn6W3mtijSRHrM7SKW/emOhXLCEBgVDMoFckmJYQxaxevToVL16cZs+ezcUEBg8ezJO+8NNPP1FAQADt2rVLb+u0RuhChGEjF5gqFf109y7ZRERwhwtTROyr4nuQXrzCjzngyZP/fx8YqNrBAaWk06bVnPwqznN1NXnAQEDAnCDIrIDegEYcFaEyliplsrP6dO9e2tehA2f5t9izR68m0IgO3liwgE4PHcoyis7XrlH6QoXIkoHo04sjR+jxjh30dM8efvi6ZMvG/rJIPIN8AhrWlI6OHOHGPHXv+bODA8/Dezysn+zeTTcXLOD7Ike9elRu1ChKX6YMvXjxgtx0LBFqzrh69So5OTmZejesCuPGjWOif1NN0Ql9AB0tjCLAIk5boLMGxxKVRDiWACvOg/xGkSCrk0dAl68p+VVcBkQ4OSdWClgnBJkV0Bs++vjwK5KrjA0QTRQ7ODVkCOVp1owarl9PqfRIKlAF6HCPHkyWSwwYwBFfSymkoAz42T47cIAJLKKwGP539/am4v37s2QChRGSEt2ExvDmokXsGIEIb/42bajp9u3kWaKEPNqVXJEhQwZT74KAmQERVIlQagsQWfxe4xDhgIA45FeRDKPktOJ36kZOkNegiuSqIsfKny3B4k/A+iDIrIBeySyiBW558hh9ePzEwIFc+KDM8OFUdfJkvWrRXp04QQe6dKHoiAiO9uZu0oQsMWoOIv5o+3Z6efQoHwu0zbBQy9uiBaXz9tZL8Ynrc+ZwJBYyBPj2lhk2jNzy5qXkgtDQUOrXrx/t2LGDS7sOHTo0zvfKMgN0ChYuXEh79uyhU6dOUaZMmWjatGnUunVr+f/cuXOHBg0aRBcvXiRHR0dq1aoV/fvvv+SspsoZ3ACmTp1KS5cupQ8fPlC+fPlozJgxcdapDtiHGjVq0KFDh2jkyJH04MEDqlChAm3evJl8fHzo999/52pkjRs3puXLl/P+ABERETRs2DBeDlV5SpcuTbNmzaIyZcokab2JHYu03mPHjtGIESPI19eXJR2rVq2i/Pnz0+rVq+nvv/+Wn2sA30GakRzAmtzYQiZpc+TQuoMfFRISJwKckEwCloqK86EbVgWMvCjKHbTRC1tqAEDA/CHIrIB+k79KlTJqUgP0aHvbtmXCiSQs2GLpkyRfGDuWLk+ZQtlq1KAGa9eSS5YsZClAEtzjXbs4Avv61CmO8sDFocrkyUxgtX04qkPgy5d0bcYMurNiBV/7Yn37UqnffrOoc6UpQOhOnz5Nu3fvJg8PD/rjjz/o+vXrTLDUAeRsypQpNGfOHFq3bh21b9+eCay3tzeT43r16jHxg0Th06dP1KtXLxowYAATNVWYPHkyrV+/nhYvXkx58+alM2fOUOfOnTkqXK1aNY2H5ufPn8+ksm3btjzZ29vTxo0bKSQkhFq0aEHz5s1jAgkMHz6ctm/fTmvWrKHs2bMzIcd+P3nyhNwVEh+1Xa+mxzJ69GiaOXMmz+/bty/16NGDzp8/T+3ataO7d+8yiQbhBdKmTavh1UzeALmH2wIXr8mWTWsijA5pQuRX8T00woqSCciXVAHOJVolyymQZWvw2xbQHYLMCuiVzBZo185oZzTg+XPa2bgxk7bWhw9Ttpo19bfuZ89of8eOfExVJk3iCKMlJFxgv2EX9nj7dnp38SJr/bxq1KBa8+dT3ubNySljRr1t67OvL12ZMoXub9zIGr2yI0eyBENXVwcklCE6ZExAW836Xg0AMrZixQomX7Vq1eJ5IHdZs2ZN8P/atGnDBBWYMGECHT16lAkdIrYgeZBdrF27Vq61BRls0qQJRyw9PT3jrAsR0kmTJjFxAwEGcuXKRefOnaMlS5ZoTGb/+ecfqlSpEr/v2bMnjRo1ip4+fcrrAhAZPXnyJJNOEO5FixYxuW7QoAF/v2zZMj4OnA8QfF3Wq82xTJw4Uf4Zkd9GjRrxeXNwcOAINgo+ZNTjvW3tAGmUdPC6dEpBZhMjwlLEOOjlS/p286Z8HhJMVQEJo7oky2GCrEIQ4eQNQWYF9AIMMQe/emU0vSyI2s5mzdiloOPFi0kqQasM3w0b6Fi/fuSQPj11PH+eMpUrR+YKRFC+3L/P5BURWDg5YCgPyVYN1qyhXI0b690y7P3ly3R58mRO7nLJmpWqz5hBRXr3TrJGGUR2nZGTB7v4+LDcQhOAlEVGRlI5hfsBUUkMdycEiagpfpaSle7fv0/FihWLkzQGMojh94co7qFEZhEJDQsLozp16sSZj/0qEatJ1gRFixaVv8c2EEmVCKc078qVK/LjjoqKkpNUwM7OjsqWLcv7r+t6tTkWxfVCqgEgip1Ny4ijgHGANsg5UyaetAUKZahKjFOVMAcf8c9378q/h6xCFdCpVyWJSCxZTu4lLEosmz0EmRXQa/KXMSp/3d+0iQ51704Zy5ShZjt3kmP69HpZLxItjg0YQL5r15J3p05Ue+FCvVp66ZPA4nyDvGJCRTNEHnI3bswa2JwNGlAqNXrLpGwT5X9BYl+fPEnu+fNTvZUrqWCnTnpLCEGUFOTSmMA2LQmIDgP79++nLEoRMwznawqQ0ThROKXsdswDodYW2qxXm2NRXi+gy/4JmD9S2ttTSk9PclLqyGkqDVMmvOr0wqEfP3IHWpoPxwlVUOUlrGmynPASNh4EmRXQm78sfrywdDIUQKguTpjAOtaCnTtzJS80fPoA5ASw9Ar98IG1sYW6dCFzAux93l24wOT10Y4dHAVP7e7Ozg3VZs6k7LVqGSS5Att9smsXk1gQaGiim27bxpXU9C27wJCmplFSUyB37txMqi5fviyPCPr7+9OjR48SHN6/dOkSde3aNc5nKfII3SyG7zGUL0VnoQVFlSxVEd+CBQsy0Xv16pXGkgJ9HHeqVKl4v6CXBRCphcY3KX66+joW7Fu0Nn7HAskWsByDlSAmbYECGlLxFkUCrFIm8fUrBT59qrGXsMbkV4kIm6qstyVCnCkB/SZ/GUigj6GnI716ke/69VRpwgQqP3q0XraFpKirM2fSuT/+oAzFi1OrgweN7sagDtGRkfTq5EkmsCCUsLmCby6KUuRr2ZKyVq1qsMYO28a5vjptGkd+obttfeQIZa9d22q1Z9BmQgcKjWi6dOk4AQyJSepK8ErYunUrZ/9XrlyZNmzYwMPs0JoCnTp1orFjx1K3bt04ecrPz49+/fVX6tKlSzyJASA5KPz2228cmcQ6AwMDmWimSZOG16NvgGTDwQHHDVkFiDwSwCARwPnQFfo6FjhIPH/+nKUb0C9jvdpEqQUEALSl8BHWxUsYzxFYEmqSLIcJOmEQZmmeWi9h3Ms6JMulhoWalXkJCzIroLfIbEGF6JM+AY/X3S1a0IerV6nx5s16SzILef+eDnbrxlZVsPSqPGGCyT0UkQQlL2Kwdy83eGlz5eJzm69VK8pUtqzB9Vu3ly+ni3//zZ6ViPxCe2vOumFjYvr06Tw8jgQtkKYhQ4YwAUsIsI6CRVX//v1Z77lp0yaOSgLQlB4+fJituWBzpWjNpQ5IIkNWP5wAnj17Rq6urlSyZEl2VjAU4MYAwgmSHRwczOQc++2mg3eqvo8F5wtWabDwQqW05GTNJWAZQJsM7S0m0nJ0EiOOkpdwgslysR7DSHhWnIeIsiqg4I025FdxGX2NeBoTNjKtip5bPuCRCOsWPIDQ+xfQDylcnDkzDz+DcOkTXx48oB2NGrGwv/nu3ZS5fHm9rBdFAw7+9BMPlUNWkEMpCcWYQI8exQvgAfv84EHO5k1XqBCfSxQxyFC0qNGioX5379KaIkUoX5s2VHHsWINUOEMWOiJpOZNhBTBl4Lrt3LmTmjdvbupdEdAB1nSvClge2Es4NFQ9+U1EMoEROFVAJUd1yXJu+fNTif79zY6vicisgNlW/np5/DjtadWKnLNmpbbHj+vFFxVyhTMjRrC5f86GDan+qlXk5OFBxkaYnx+Xj4X+9dWxY9yoIKGtwpgx7AGLBCtT4PaSJWzf1WjDBqsbphIQEBCwOC9hZ+eYhF8vL/15Casqs/z0KX2MlUgYi8xqA0FmBfSil4WNVRo92uTcXraMjvXvz96xTbZsYTG8PqK8+zt0oC++vlRj9mwqOXCgUfWfGLaXihi8OX2aG5OsVapwaVwkVOnz/OmCyNBQurd2LXvFCiJrmUBBAfjgqgKKEaA4gYCAgIBNEr2EzQ2CzAroRS+LqKy+ErLOjBxJV6dPp2L9+lGtuXOTnOQE0ojqVCcGDaI0Xl7U6fJl8kigYpM+4f/kidxCC/6sMP7OVqsW1Vm8mHI3baqT/Yyh8PC//1i7VbR3b1PvSrKBsVVc48ePj1diV4KQVQkICCRXCDIrkOSHNSKz+iBAiAwe6NyZh9/1FTmFYP5Inz70aOtWKtKrF683qeb+iZ0PmHhLBNbv9m3WH+WsX58arlvHRQw4ScAMcWvxYt5PfZW5FTA+4LCASUBAQMCaIMisQJIQ8vYthX38mORiCfAz3V6vHlewQqIXCgAkFW/Pn6d9HTtSZGAgSxXyt2lD+gZMukFYUZHs/aVLvM2gFy8oVZo0lLtJE6owdixX4zIkgdYHPl6/zm4ROPcCAgICAgKWBEFmBZIERGX1kfx1Y948envhArU/c4ayVq6c5Ojo9blz6dTvv1PmChWo4ZkzlDbW7F0fzg0SccUrJBaoQw75AAz/YWUF8gqtryXZm9xasoScs2ShXA0bmnpXBAQEBAQEtIIgswJJAsico6cnm/nriqBXr+jcn39SiV9+STKRhecetLE3Fy6k0kOGUNUpU3TW3ML54NONG3Li+u7SJa68Bbh4eVGm8uWp8qRJbBfmUaKEQSpwGQPQyd7fuJHPl6g4IyAgICBgaRBkViBJ+ODjwxIDXbWtiKIe++UXNnCuPHFikvYFJQX3tmtHr44fp7pLl2ql48V+BL9+zYT1fSxx/XT9OltmgaQi8py/bVsmriCxySH7U4Lvhg3sbVu0Vy9T74qAgICAgIDWEGRWQGeAACIyW/yXX3ReBwoFPNu3j5rt3En2SShiEfjiBe1o3JhC3ryhVocOUfZatRJcPio8nP1xJckAJlRWAVBxC6TVu2NHlimgaIGpK4MZ8hoi8QuJaS5Zs5p6dwQEBAQEBLSGILMCSZIHhH/+rHPyF5wGTvz6K3us5k1ChSREUXc1a0Z2zs7U8eJFSuftHY+wBT5//n+t66VL5HfzJksSUjo6colYlIsFcUXZVnOyyzI0Ply5Qn63blGVyZNNvSsCRPTgwQMuxXrz5k0qUKAAv6qaJyAgICDwfwgyK6AzEJUFPEuV0un/z44axaX4as2bp/M+PPjvPzrYrRsT6ma7dpFj+vRyycHNxYvp3YULTGDDPn3i+W758rFMoEjPnhx9TV+4sFXrRJH4lSZ7dspRt66pd0WAiMaOHUtOTk708OFDckZVHzXz1OHFixc0YcIEOnHiBH348IEyZ87MxRJGjx5NqRRGFw4fPszrvXfvHpdprVq1Ks2cOZNyKNiynTp1in7//XdexsvLi/78808m1QICAgLmBut9igvoxckAGfDOmTJp/b+wsMLwds1583Qa3ka09dLEiXR+zBjy7tSJ6q1YIXcPCHj+nHY2bszR2CyVKlHRn3+O0bqWK0cO6dJpva3kCkTGH2zeTOX//JNS2NqaencEiOjp06fUqFEjyq7gvqFqnjogivvjxw9asmQJ5cmTh+7evUu9e/em0NBQmjFjBi/z/PlzatasGRPVDRs2cN3z3377jVq2bEnXr1+XL4NtoqIYljl+/Dj16tWLMmXKRPXq1RPXSkBAwLwgszIEBgaiJA+/CiQNW2rXlu1s1kzr//seESFbWbCgbH25crLo79+1/v+ob99k+7t0kU0nkp3/+2/Zjx8/5N+9vXBBNj9DBtmy3Llln+/f13rd1gSfuXNlM1OmlIW8f2/U7YaHh8t8fX351dIQHR0tmzp1qix37tyyVKlSyby8vGT//PMPf3f79m1ZjRo1ZKlTp5a5u7vLevfuLQsODo7z/8uWLZMVKFBAZm9vL8ufP79swYIF8u/QLilOY8eOVTlPW0ybNk2WM2dO+eetW7fKUqZMycciYc+ePTIbGxtZZGQkfx4+fLisUKFCcdbTrl07Wb169WTWBEu+VwUErImvpTA1mRaw7MpfuvjLolSt/6NH7DigbUQw7PNn2lanDj3csoUab9pEFf/6S+6kgCjjfzVqkHv+/NTx0iVKV6CA1vtmLeDEL0Tvmjcnp4wZTb07FoNRo0bRlClTaMyYMeTr60sbN24kT09PjnwiYunm5kZXr16lrVu30rFjx2jAgAHy/0WE86+//qKJEyfS/fv3adKkSbyeNWvW8Pfv37+nQoUK0ZAhQ/g9ytKqmqctEHl1d3eXfy5VqhSlSJGCVq1aRdHR0fz9unXrqHbt2mRnZ8fLXLx4kT8rAseH+QICAgLmBiEzENAJgc+eUURAgNbJX18fPaKLEyawpylcArTBlwcPWD4QERRE7U6e5IQtueTgn3/o/F9/UcHOnanu8uUWVbDAFIDM48u9e1Rz9mwyF0SFhdHXBw+Muk33AgXIztFRo2WDg4Npzpw5NH/+fOrWrRvPy507N1WuXJmWLVtG3759o7Vr17K+FcByTZo0oalTpzLhhUYVulQM5wM5c+ZkQgxJANaXMWNGSpkyJeti8R7Ae+V52uDJkyc0b948ucRA2u6RI0eobdu29PPPPzOhrVChAh04cEC+DPS22GdF4HNQUBCFh4eTg4OD1vsiICAgYCgIMiugs7+stslfIJ1H+/ZlnW2Fv/7SanuvTpyg3a1acXGGTpcvk2vOnPLCBkd69SLf9eup0oQJVH70aJ09b60Jt5csIdc8ebhSmbkARHadjsmEuqKLjw9XbtMEiKZGRERQLRW2b/iuWLFiciILVKpUifWrUuIWtK89e/ZkDauE79+/U9q0ackQePv2LdWvX5/atGkTZ5sgqvgMAt2hQwcm6YgYt27dmo4ePSp+PwICAhYHQWYFdHYycMmWjRwzZND4f+6tWUOvT56k1keOaBwNA+6sWMEk2KtGDWq6dSvZxz78ITnY3aIFfbh6lRpv3kwF2rXT6VisDeFfvtDDrVuZ/NukMB+lEaKkIJfG3qamSEo0MiQkhF8RwS1Xrlyc72wNkHz37t07qlGjBlWsWJGWLl0a57sFCxYwgZ42bZp83vr169mx4PLly1S+fHmOAn/8+DHO/+FzmjRpRFRWQEDA7CDIrIBOgF5WG4lBmJ8fnRoyhJ0HctSpo9H/yH78oDOjRtHVadOoWN++VHPuXLKN1fRBcrCjUSOKCgmhdqdOsVuBgOadCpLJqLCZ2Syhg6NplNQUyJs3LxM5KbNfEd7e3rR69WrWzkrR2fPnz7M2NX/+/DxED5usZ8+eUadOnQy6n4jIgshCGwtdLPZBEWFhYfHmSYQakWRAWXYAIGqL+QICAgLmBvMJywhYDEAyUT1LGzILIgtU//dfjZaPDA2lPa1bc7JYjVmzqPbChXIi+/L4cdpYoQKldHBgyYEgstonfuVt1UqrqLoAsR/riBEjaPjw4ayNhWzg0qVLtGLFCiao+B5D97DDOnnyJP3666/UpUsXufb077//psmTJ9PcuXPp0aNHdOfOHSab/2r4m9CUyFavXp2yZcvGOlk/Pz+WFWCSAMstJKmNHz+eHj9+zHZc3bt3Z+uvEiVK8DKw5ALxxrHC7mvhwoW0ZcsWtvASEBAQMDeIyKyA1vB/8oQig4I0djJ4cfQo+a5bR/VWriQnD49El0dZ2Z1Nm7KGssXu3ZS7SRP5d7eXL6dj/fqx1rPJli1yyYGAZnh96lSMk8SyZeKU6QC4DyAhCxpTDOXDdxXEz9HRkQsRDBo0iMqUKcOfW7VqFYeoIpqL+dOnT6dhw4ZxBLdIkSI0ePBgvV0LRE+R9IUpq5J/c4z7F1HNmjXZhQEyA0zYJ0RcDx06JJcQIEls//79TF6R9IZ1LV++XHjMCggImCVs4M9FVgRk40IvBjsa6L8EtMf9jRtpf6dO9MuXL+SgYPmjLkN9dZEilCZbNmp74kSiySWfbt1ixwLcli337SOP4sX/LzkYOZIjtcX69aNac+dadeUuXbG3XTvyu3OHut+7Z7JEH2T9w5QfhAnRTAEBc4W4VwUELIOvmVxmgGQElFDEQw2JEVeuXElw+dmzZ7MGDREEJCwgcoAGR8C4etm0uXIlSmQB2HCFvH1LdZYsSZA8RYaEsCPBpkqVyNHTkzpfuSInspAcwMng2syZVGP2bKq9YIEgsjog9ONHerxzJxX7+WeRsS4gICAgkGxg0tDWf//9xyUVFy9ezEQWRBXG3LCy8VAxHI2hsZEjR9LKlSs5Sxe6M9QKB0nSp+5MIHEnA030sn63b9O1GTPYhss9X74430VHRbELwctjx+jV8eP07uJF+hEVRXlbtqQGa9dSqtgkGpYcNGlCXx8+pOaQHDRuLC6PjriLZCBbWyrUtas4hxYKFFrApApVqlShgwcPGn2fBAQEBKyazIKAwu8QyQcASC10WiCrIK3KuHDhAns3duzYkT8jogufRNjJCBgHP6Kj6eONG1QhEVKJ5Y706UNu+fJR2REjWDbwxdeXySumN6dPU2RwMGteYbmFJK9stWpx9S4pgvvp5k3a0bgxf+5w/jx5FCtmpKNMfoBM4/bSpZSvbVtK7eZm6t0R0BHQ56LYgSqIQgYCAgLWCpOR2cjISPLx8eHykBJgF4MSiupKJiIaCz9ESBHKli3L2bawj0HGsDrA5ByTogZDQHcgeQh2WIlFZm8tXkzvL1+msqNG0aEePTj6GvrhA9mmSkWZK1WisiNHUvbatdmKSZX29enevbSvQwdy9/amFnv2kHOmTOKyJQFIwgt8/pwabdggzqMFA2VpFUvTCggICAiYkMx+/vyZyyiqKpkIKxhVQEQW/4fykYj0oXoOIhV//PGH2u3ACgeWOAL608sCHgn4gV4YP54ujBvH769MmcKEtWDXrkxes1SqlGDBBFxXn9mz2corb4sW1HDdOq0KLAior/iVvkgRyiT8eAUEBAQEkhlMngCmDU6dOsV6MXgewhtxx44dLEuYMGGC2v9B5BeZcNL0+vVro+5zctTLuuXNS6ldXVV+//XxY7owdixHYOuvXk2/+PlRl2vXqNrUqVwsISFiCh3tsf796dTvv1PZ4cO52pcgskkHdMdP9uzhwhOi1K+AgICAQHKDySKz6dOn56ozqkomopSiOo9HSAqk6jvwaETFnT59+tDo0aPjVbUB7O3teRLQX2RWnb9sdGQkV+UCGm3cSPlattR4vR+vX6eTv/1G7y5coHorVlCRHj3EJdMTUA7Y1t6eChq48pSAgICAgIBVRWZTpUrF5RZRGlICSinis7qSiQmVYbQyu1yT4Mf37/Tpxg2Vetnv375xoYOAx4+5upSmRBYuBXvatqV1pUpR2KdP1ObYMUFk9XnNoqPp9rJl5N2xoygwISAgICCQLGFSNwPYcqH8Y+nSpTmhC9ZciLRK7gZdu3alLFmysO4VaNKkCTsgoOQirLxQ5QbRWsyXSK2A4fDl/n36Hh4eLzKLwgi7mjen1ydPkk2KFFRDA5u04Ddv6MLff7NdlHPmzFwdrFCXLsI/Vs94fvAgBb9+zd6yAgICAgICugJBQ3YhMsOCUyYls+1QjcjPj0tDonZ48eLFuaSilBT26tWrOJHYP//8kzV/eEUN8gwZMjCRnThxogmPwsqSv2xsyDO2frtU7AD2WfCMdcyYkbJUrMjVvtQh7PNnTgq7MX8+pXJxoeozZrCWM6WoBGUQwFXCs1QpjXyBBcwX1atX5/YRHX51QNu4c+dOat68uUH35cWLF1y97caNG7xPqrB69Wou0xsQEKDROmGziOX1WdpXQEBA9xE9uN/AThNBrK/378e8PnhA6QsVoo4XLpC5weT1QAcMGMCTuoQvRaAm+tixY3kSMD4++viQe4ECTEKBiMBA2t6wIX2+c4cqjhtHZ4YPp5KDBqn8X/Tmrs2axUUUgHKjRlHp33+Xr0tA/wh8+ZKeHThAdZcsEafXCvD+/Xty07OHMIrSgJDu2rVL60BFw4YNNV7+6tWr5BRbKMWYxFxAwJrx/ds3ttsEUVUkrZgXHWtpimc0LDLTeXtzUSOpMqe5weRkVsDCKn+VKsXvw79+pW316lHAkyescz03ejRlLFOGMivpnb9HRHB08NLEiRQZFETF+/dnIuuYIYOJjsJ6cGf5ckrl7EwFOnQw9a4IGAHqEmdNARRw0KaIA0bZBAQEDIOIoCA5UeXJ15c/I/qKgjqAo4cHk1bYZxbt1YvSFSzInyEDtAQXHIuy5hIwHWCbhYpc0MuG+fnR1lq1KOj5c2p74gTZOTlxVa9SgwfLb3oMU9xdvZpW5MvHVlt5mjalno8fs55WEFnjXC+4GHh37syEVkA/gAwKPteurq6ULl06aty4MT19+lQ+/I77f8uWLVxaFmSuTJkyXHYbkUfkBjg7O1ODBg1YXqUY/UQEEn7YIHVp0qRh/2wUllEEEmSHDx/ORRNAXMfFejlLwLalCKq0L5s3b+ZiM6lTp6bChQvT6dOn/3+PREdTz549WTKAfc2fPz/NmTNH/j3Wv2bNGtq9ezevC5PiaBmK1tSoUYMcHR2pWLFicYrdQGaAc6SIvXv38vnAvsDNpkWLFnFkBpKEAu8BfI9t4jOOB5Kza7E+1xLwP9mzZ+dzIyBg7XrW0A8f6NXJk3Rj4UI6/uuvtKV2bVqcJQvNS5uWNpQvT4e6d6eHW7aQLDqacjdrRnWWLKEO587RL1++UP+PH6n9qVNUZ9EiKjlwIPvCu2TJYhFEFhCRWQGN8OXePR52SJszJ/1XowaF+/lR21OnKEPhwly21ilTJsrXujUT3eeHDtHlyZO554d5lQ4fpnQFCogzbUSgglro+/ci8UvPQIIqEleLFi1KISEhrPcH6bp586Z8GcigQLKyZctGPXr04GIvLi4uTBRB/FCOFv+3aNEi+f/AxQUkD2QRxA1JsCDLivkAIJbYNsp3gziCBKO8d506ddTu77Bhw3hfChYsyMmzyDF4/vw5rxsEMGvWrLR161b+jHLhsDnMlCkT7+PQoUPp/v37XDVx1apVvD4Q6Xfv3vF72CHOmDGD8ubNy+9RWhxJuZCDKQN+4DhPWG7t2rVM1FG9URVA/D08PHib9evX5+RekHxUh8Q8dAok4DPOgypbRgGB5AhEUiEhk+tYFV6/+fvzMqiq6Zo3L0sDCnfvLpcJuOXPT6kU5DzJCYLMCmgERGWR/IXKXN/Dwqjd6dNMUANfvKC7a9awxGB92bLkd+sWL5+9Th1quHatSDwyYcUvVPvyKFaMLAVwxUCCgTEBDbg2hTlatWoV5/PKlSuZaPn6+nLUFQAJrFevHr8fNGgQkzyQVRBPANFQRC6VrQqxLpDdQoUK0fjx45mIoiCMRNRAoKV8ARDI+fPn83oTIrPIR5D2GeQZkeUVK1ZwhNfOzi5OdUREaEGSEVkGmcXxIGKLcuCqJAw4zkaxvtJYD/YbZLaAio4rSHn79u3jbA/R3IQkB4jsKm4X/uKIWIOUwzschXPu3LnDkWMBgeQG+Lb7P34cj7DCzhKuQkBKR0d+Drt7e1OuRo2YsOK9a+7cZGtnR9YEQWYFGPiB3EKikBq/3jdnz5KNrS3/wKrPmsVDFa+OHaO358/H9BSfPaMcdetSmaFDKVvNmqyzETANAp49oxdHjnAFNksCiCz8ho2JLj4+XG5ZUzx+/JijqoiOorS2NLwN5xVEPyXSKUFyZkGBF8V5nz59irNeEDsQWQnw2kbkFxULMYyuvF4AEVTl9ShD0bMbEVNENRFtlbBgwQIm0dj/8PBwjpiqcyhQhuL+YF8A7I8qMovIde/evSkpgBTjl19+4cQwEGN0CCBzkGQJAgKWCDgCoe1TJq3+T56wHABwSJeOSSqCRigNL5HWNF5ebIcpIMisQCyuz53Lnq9pc+VSeU6CYjV44Z8/07527diA36t6dc50zF63LjX57z+L0dYkd9xeupTsXV0pf9u2ZElAlBTk0tjb1AYYpge5XLZsGWXOnJnJLLSoivpWRDwlSL8J5Xm6aDwV15GU9UiAnhbR1ZkzZzLphRRi+vTpTNS13R+5Vl7N/miTDKYOiF7DexzSgpYtW9LGjRvjaHwFBMwZsKWMIw2Itb2CD7gEl6xZmaTmqFePSv32m1weIPJMEoeIzAow3l++TPnatKGGa9aoPCNzXV3JJjqaKvz5J2WrXZujWYjOPtm9myqMGSOIrJkAkfM7KEDRrRvZ6YFAGBMY7tcmSmpsfPnyhR4+fMhEFglewLlz5/Sy7lu3bnFkVCJ9ly5d4mF+Ly+vJK0X66latSq///79O/n4+MitEM+fP8/JYf3795cvLyWzKRJIJIolFYjiQhIhFcTRhCir2i6kBug8LFy4kI8HpFZAwJySsEBOlaOseEUgCMAIJ2QAIKnenTrJo6yQCwirSt0hyKwAe81B61q4Rw+VZwNJXZGBgZSrcWO21ZLggySXWrUog8IQqoBp8XjnTk7OExW/9A94uCJRaunSpTysjqH5kSNH6mXdiOxCS4uCMEgAgzYWpDOpiU2QEUBf6+3tTbNmzSJ/f39OSgMwH8lYhw8fZr3sunXrOPkK7yVgCB/fg8Tj2NOmTavTfuB4atWqRblz52aJAIgoEsBGjBihcnlsV9IZQx8r+efiOMqXL8//h+PQR8RXQECX0u4BT5/GIatsd/XgAUWFhvIyKASEhCuQVQSA8Aq7K9c8eSilvb046XqGILMC9OnGDf5xZipbVuXZuBZrmVOkZ0/5vHeXLtGHK1eoxd694gyaEaB7zlqlCjecAvoFiCWG5gcOHMjRQVhZzZ07l6tzJRUgeiCXiKIi4QpJY8rWW7pgypQpPEGzmidPHtqzZw/bYgE///wzV/FCgQPIBLBNRGkPHjwo/3/oXOGwAK0tNLwnT57USaOKcwTXBCS0YX9gPyZFjFUB0gc4NyAKjpLmIPgSQPrhvCCRcgEBQyEqPJz8Hz6USwLketbHj+lHVBQvA8kdSGqGYsWoQPv2cmlAmuzZKYWtrbg4RoKNDHFxKwJsZhBdCAwM5AZVICbCembkSBoYFES2qVLFOSW4PRZ7eVHo27fsRefg7s7z97ZvzxXBej58KAToZpTEt7JAAWq0YQN5d+xI5opv376xPRQigLCjsnboWmUrqSVnLRUgxCDGt2/fNvi2xL1qHYClVZwoa+x7uPVISdGwn5RLAmInvHfKmFHI7MyAr4nIrADrZaFVVCaywOuTJ5nI2ru5yYls0OvX9GjbNqoxa5YgsmaEW0uXctZrXiX7KAGB5ABEhkHSYUn2zz//mHp3BCyxqMD79/GqYOF92MePMQvZ2LCXOogqPNIl4opE0dRKRUAEzAuCzArQ+ytXuEKXKtxYsIBSpUlDGRRseG4uWMBVvwr/9JM4e2ake763ejXrnoUeSyA5AhriTZs2sUWXkBgIqAOqT6JMq3KUFa8oqQ4gcOOWLx+T1WJVq8qjrJhnaYmzxkRkcDAHs9LH2hCaEwSZtXIguQsesZnKlYv3HW7aJ7t28TCKpMGEsT2sn4r06iUyL80IiJR/+/qVivXpY+pdEdASygUU9AHoWpObggznyRDnSsAy8T0igvwfPYqXhIV5qFYJ2Dk7y4lqnubNWduKz4i+okqWQOII//qVnu7ZQ4937GD/cvf8+albbHEkc4K4mlYORGWBjCqSv1BFKqWTE/vjSWTWd906iggMpBKx9j4C5oFbixezs4Rb3rym3hUBAQEBvSEiKEhllBVBGBTsARw9PJiwZqlUiYr26iWXBzhnySL0rDog5P17DmSBwL46eZLPc5aKFanKpEmUp0ULMkcIMmvlgF7WIX167qkq93qhwczbogX5rl3LjQMiPT5z5lCeZs3IVWl5AdPB7+5drsTWZMsWcRkEBAQsDni2hH36pNKfNeTtW/lycAjAsyh3kyZxkrGQKyCQNAQ8f05Pdu6kR9u307uLFzkfJluNGlRr3jyOajvHVvkzVwgya+X4cPkySwyUq3c92rqV/Uozly/PZBYNxsujR7mBqbN4scn2V4BURtAdPT25kyEgICBgrkCEL+jVK7nVlSJxhaMAgOF/eLFCEoC8DImwwrM1lZOTqQ8hWeGzry9HXzHBotPW3p7L0tdftYo7DFLStyVAkFkr7w1DZlD6999VJn5lr1OHh3hQlQTDNUf69CGPEiXYx1TAPBAZGsrSj+L9+6t0oxAQEBAwRSVC/ydP4kVZYR/4PSyMl0np6MhVr0BWczVsKCetILK2SqWbBfT3zP94/bqcwKLIA3TFuRo1orIjR1KuBg0sNhdGkFkrBoyfIwIC4iV/fbh2jd5fukTNoZnZuZMbGYjqnx88SA3WrBEaJDPCw//+4w5Hkd69Tb0rAgICVtiZBiGKQ1p9fbk6FgrxAKnd3ZmkepYqRQU7d44hrQULUhovL2HtaCR3h3cXLjB5fbRjBwW/esXXJHfTplRt+nTKXrs2VyuzdAgya+V6WSBjmTLxorIu2bJx+dpLkyZxQ/TswAG+4fO3a2eivRVQV/ErR716QsMsICBgMCAJWDnKignESIJL1qxMVNEeyf1Zvb3JMUMGEQAxMqKjotgjniOwu3axjy6KPiAHJm/LlpS1atVkF/0WZNbKySx89VLH1j0Hwr98oQebNlHFceO414yGCzc/F1YoVUp4mJoRPt64wSWFEUEXEBAQSOoQdPCbNypJK/InADwTXHPnZpLq3aFDnKIC9qKipslL7748coQTuJ7u3cujrkjsRjQ8X6tWMbkxKVJQcoUgs1YMECFlicGdFSv4tUjPnhTy7h2bJKOxgvUTSK2AeSV+QcsMvZOAcXHx4kWqXLky1a9fn/bv3x/nu507d9LUqVPp/v379OPHD8qWLRvVqVOHZs+ezd/DK7V79+78HomXmTNn5u/xPx4eHuJSChgUGP4PePZMLgmQW149eEBRISG8DBKBQFDR9sPyT15UIG9eEdAwI0Bi9mz/fo7AYvQUemRIOEr8+ivla9mSMhQrZjVRcUFmrbhi1KebN6lQt25xtDU3Fy1iKQGGhl4eO8bzHTw8KOjFC5WFFQRMA3QyfDdsoNJDhgjzbxNgxYoV9Ouvv/Lru3fvmJACx48fp3bt2tHEiROpadOm/CDx9fWlo0ePxvl/1Bl/+PAhk91bt24xucV6Dh8+bIrDEUimkTr/hw/j+bMGPH7MCVqAfdq0TFIzFClC+du2ZdKKKU2OHJTC1tbUhyCgRvIhFTGAwxCupWfp0lThzz/ZAxZJddYIQWatFCCyP6Ki4hRLeH7gAJPWErF+pWj4kCEf9uEDfxZk1nxwf+NG7oXDIFzAuAgJCaH//vuPrl27Rh8+fOBI6x9//MHf7d27lypVqkTDhg2TL58vXz4uwaoIkNyMGTPyexDhgQMH0pgxYyg8PJw+fvxIOXPm5G3MmzePt1O4cGHasGEDBQYGUr9+/ejBgwdUpUoVWrt2LWXIkIHXc/XqVd6PGzduUFRUFBUvXpxmzZpFJUuW5O9PnTpFdevWZcKN/wWmTZtGM2bMoDt37pCnp6fRzqGA/vAtICCOJADRVnwOfPEC2gFeBlUcQVq9qlWj4v36ySOtmG8tkTtLRvDbt5yMDQL75vRploRkrVyZqk6bxh6wabNnJ2uHILNWCmhgMZTkUayYfN6N+fM5GSxTbEIYGkZoaj9eu8Y+pmmyZTPhHgtIQEMG2QcS9JB0IWBcbNmyhQoUKED58+enzp070+DBg2nUqFFygrpx40a6e/cuE1BN4eDgwFHa77EZ4MDYsWNZmgCZQo8ePahjx47k4uJCc+bMIUdHR2rbti399ddftGjRIl4+ODiYunXrxgQY98jMmTOpYcOG9PjxY/6/6tWr87526dKFo8HPnj1jAr1161ZBZM0cuJ6h79/Hi7LiNTQ22EA2NqyRBFHN26qVPMoK0pra1dXUhyCgJeAIAfcBEFi4C8F/F5KP2osWsae4k+h8xoEgs1asl4VnrORN+vXRI667DOstCWgo0RC+V1NYQcA0+HD1KkfWK0+cmKwuQVRYGOv2jAnoAu0cHbX6H0gLQGIBaGYRLT19+jSTRUgPzp49S0WKFKHs2bNT+fLlORraqVMnsre3V7k+kM3FixdT6dKlmXR++fKF5w8dOpTq1avH7wcNGkQdOnTgqCoiv0DPnj05KiyhZs2acda7dOlScnV15X1r3Lgxz/vnn39Y8tCnTx8m3CC/kEMImAcg9cLomCrSijLiQAo7Ow4ygKjCko9Ja8GCPM/OwcHUhyCQhA7L53v36PH27Uxg/W7fZgehHPXrU8N16zg3QjFZWyAuBJm1UoCgIrIHQHNzrH9/rm8N3ZQENKJFq1Sh63PmUNkRI0y4twKKQFQWZR1hgZOcACK7rlQpo26zi48PecYOw2sC6FyvXLnCSV5AypQpWSMLggsy6+TkxAlhT58+pZMnT9KlS5doyJAhHE1F0hgiqgAIsLOzM0djv337xslky5cvj7OtokWLyt9LEgCQZMV5nz59kn+GPOHPP/9kOQHmR0dHU1hYGL1SsE9KlSoVyxWwbpBtyBAEjA+UC4fPtyQJkAgr/LyRzwDAzF6KrCISJ713zZVL6OSTEYFFcEIqYoB7AkULUH2rwl9/MZEVVc80gyCzViogxxAGoq34MR3u1Yvenj1LrQ4flpsnh3/9yt50SBCIDArisrYC5qGPe7B5M5UfPTrZJWggSgpyaextagOQVkgBpIQvAL8hRF3nz59PadOm5Xm5c+fmqVevXjR69GjWzUIDK7kYIAJ7/fp1SpEiBWXKlIllBsqwU/CBlEZFlOeBDEtAlBVRXRBnEFXsU4UKFSgyNtlHwoULF/j169evPIGACxgu2xydNOUoK9pflHYFHDJkYKKauUIFKtyjh5y0QkIkRsOSZ/T97blzcgILOzSH9Om5w1IDsqJatYRjhA4QZNZKJQZAprJl6fyYMVwOtfGmTZStenX5MmhwgUhYtdjYcLakgOmBa4XEPTz0khsw3K9NlNTYAIlFwhW0qJAOKAIJXps2baK+ffvG+78cOXJwRDY0NFQ+DyQ2T548et2/8+fP08KFC1knC7x+/Zo+f/4cZxlEjH/77TdatmwZk2sQ4GPHjvH+COgGdGbC/Pz+n4SlEG0NeftWvhwK0YCoYkRMIqx4dUiXTpx6K4jEvzpxgsnrk9272bcXtoqwu+QiBpUri2h7EiHIrBXi/ZUr3BN8cfQoXZo4kUvaFWjfPs4yaIhBYkNev2Y9ljDENpPEryVLKHezZuScKZOpd8fqsG/fPvL392etqhSBldCqVSuO2sLdAEP7IJSIjgYEBNDcuXPZXQBesoZE3rx5ad26day9DQoKYkcFxYgvZAfQ+kKHiwgx9L6QLYCcK7ovCKgGIqlBr17Fi7Li9dvXr7wMknRc8+RhkgrbQ4m0uufPT6mcncWptbJSvy8OH2YCiyIGGOFEwYnC3buzByySrZNzEQNjQ5BZK9XLwkfw+C+/sLkyvEqVgQYambEffXyEJZeZ4O358/Tl3j2qIXSOJgHIau3ateMRWYnMwuYKZBGJVV27dmUNq5ubG5UoUYKOHDnC7geG3j8kdsGKy8vLiyZNmsRJZBLgffvy5Usm5QDkDUgSQ2IZIs3FFJxNrJ20RkdEsHY1NDiYwj9/pt1Dh9L7U6fYDg9I6eAgLyoAXSM6/HgPsiIl1QpYpwzs2b59TGCfHzpE38PDKX2RIlT69985Apu+cGEhHTEQbGQI91gRELHAwwgJGDAutzbgcs9zdeUfWe7GjanJ1q0qtZfbGzbkZWHKXHvhQirWp49J9lfg/zjQpQu9u3iRej56ZNE9eiQ8PX/+nL1UU8dqtAUETKFdjP72jUkrpujw8Jj3ERFyf9boFCnofWAgBRw4QK6ZMsmlAbAptOTfoID+EPrpEz3dvZtttF4dP84yMOSjsISgRQuumiZgeL4mIrNWBuh2MNyBqELDDRvUJhEhMoukL1l0tIjMmgHCv3yhh1u3UqXx48VDVEBAy/Kt6LxLpBXvQWKlKliS3RWiranSpCHH1KnJ1sGBk2Ejv39nq6zCEyaIjpeAHEGvX9OTnTvp0fbtnMwFZK1alarPnMlFDNJ4eYmzZWQIMmtlw2cHunbl98337FHrSQi/z6CXLzlBLKWjI6UvVMjIeyqgjHtr1vD1g95KQEAgLjCKhIiYIlmVCCzIrAQUigFpTe3uzmRVIq3qOvU20dHiVAvIvdglBwLYaaEDlL1OHaq7dCnlbtqUS8ALmA6CzFoRAl++pNB378gpc2ZyT2Do4+vDhzzMhgzdjKVLiyxLM0n8yteqlWgwBcjafwuSnlVOWmPfS1ZXsLOyTZ2aSapjmjTy95iENEBAm3sNhQskAvv57l0O7uRs0IBKDR7MRQxgXSlgHhBk1oqA5CEAep6EINlywcDbu2NHo+ybgHq8PnWKrwUiAAIC1gD450Yra1nx/ts3JhmAja2tnKSiMpJEWhF9Ff6sAroAHSIkSEtlZAOfPWPCishrpQkTKEfdulpXDBQwDgSZtSKgBCrgpeAnq04v6+jpyR6JiRFfAcMDUVlonKHJEhBIdnpWVaQVSViKetbUqdnayjZDBjmBxXxBWgX0cQ++OXOGCSx0sCHv3nE1TGhfkcSVrUYN4VBhARBk1orwLrbyT6YyZRInsx4eXAFMkFnTZ8oiQlBt2jTx4BaweD2roiyA9axRUXH1rIiyurrGRFklPWtK8ZgS0C/gWPHy2DF6vH07Pd2zhxNsXby8KF+bNiznylyxYrKrsJjcIVoJK8LnO3e4EEKGRPwkITPAw8Q5c2YuqShgOtxdtYp1fgVjE/cEBMxazxoZGU/Lile4ojBsbOSRVRRu4fcODkxkBXkQMCRQzfL5wYMcHHi2fz9FBgeTW758VLRPH47AepYqJQIGFgxBZq3IUxHDJ04ZMyao+YmOiiL/x4+5qEKm8uWNuo8C8fVbt5cupfzt2pGDu7s4PQJmc18isqUoC5AIrFzPmiKFnKjau7rGIa1CGiBgLHzz9+fqWyCwqMaFe9WjeHEqM2wYE1gUuxD3Y/KAILNWgoCnT/khhGokiS2Hob/g16+paK9eRts/gfjAMBgSEBquWydOj4BJOsDKWlYmrYp61pQp/69nVYi0Cj2rgKkQ+uEDPd61iwns65MnWRML2UClf/7hIgauuXKJi5MMIcisleDTjRv86pVIEpHkZIAoi9DLmha3Fi/mzkfmChVMvCcCyRkYjVH0ZZW0rYpFBVCiFdIjeZQVrgGY7OxMuu8CAkDgixf0eOdOJrAo+42RASQ615gzh/I2b86SOYHkDVGPz4rsnYCsGjgZILICbRs0RAKmASQhT/bsoWI//yyGwcwIP/30E18PaUqXLh3Vr1+fbt++LV9m2bJlVKxYMXJ2diZXV1cqUaIETZ48WeX6ChQoQPb29vThwwet9qN69eo0ePDgBJc5efIkNWzYkPfR0dGRCnp70+ABA+jxzZv88P/y4AE7nPjdusXe0kGvXnF1QBCBqw8fcqKobaZM5FGiBGUoWpTc8+XjykYFy5ShhStWxCGyN27coDZt2pCnpydXysqbNy/17t2bHj16pNVxCQhoCty/lyZNonWlStGynDnp7MiR3Nmqv3Il9f/4kdoeO0Yl+vcXRNZKIMislQAVSwDPEiUSjczaubhQhiJFeOhQwDS4A7Jgb08FO3cWl8DMAPL6/v17no4fP04pU6akxo0b83crV65kkjlw4EC6efMmnT9/noYPH04hISHx1nPu3DkKDw+n1q1b05o1a/SnZw0Pp/mzZlHt2rXJ3cmJVs6cSae3bKGJv/1Gfm/e0MwZM7jKH6KtcC1xzZ2b0hUqRJ4lS1L6woXJLU8eeXEOOyenRBOz9u3bR+XLl6eIiAjasGED3b9/n9avX8811ceMGaOX4xIQgB774/XrdO7PP2llwYK0ytubLk+aRK558lDjzZvpl8+fqeXevVT4p5/IIV06ccKsDEJmYCUIePaMSzgmZviMyCw0s0JiYFqt4u1ly8i7QwdRYcYMgUhqxowZ+T1eR44cSVWqVCE/Pz/as2cPtW3blnr27ClfvpCactArVqygjh07UrVq1WjQoEE0YsQIzXci1u4KlkJxdK0REfTuwwcaMmIE9WrfniaNGSOXBRR1cKAm3bpRcFgYubm5Jf1EEFFYWBh1796dI8A7d+6Uz8+ZMyeVK1eOAgIC9LIdAesEOmfvLl6UFzEIevGCC2SgiEHVKVO4nKy6suwC1gVBZq0A0L5F+PtTxkQKIKDh+PrgAUdtBJk1HWAfwwl4P/9swr0Q0ASIuCIKmSdPHh7OB7k9ffo0vXz5krJnz672/4KDg2nr1q10+fJllhoEBgbS2bNnmRSrLCogkdVY1wDYDIV//UqBz5/HFBVwcKBUadKQY+rUtO7IEYqMiqKx06dTOhVaQTd7e71d3MOHD9Pnz585+qwKkFkICGir4YYsDuT1ya5dnNAFF548LVpQvpYtKWu1akKrbUL8+P7dLL2fzW+PBPSOz76+/JqpbNkElwt+84aiQkP5fWLEV8CwFb8w5JuxdGmrOs3oRKEzZUygspq25SkxrA49LBAaGkqZMmXieSlSpKCxY8dSy5YtKUeOHJQvXz6qUKECRy0hJcD3EjZv3sy6Uilq2759e47USmQ2IiiIo1BxkrCkogLu7vJX2AwpP1iev35NadKkocx6SHrJqsJnGtFYCY8fP+ZXEHIBAV0RFR5OL48eZQKLIgaw1II9ZIGOHZnAIgkWWm4B0yD0wweOjj/aupXbodaHDpndpRBk1grwIvbGy1m/fqISAyCloyOl8/Y2yr4JxAWScJ4fOEC1Fy2yusQvEFkkcxgTXXx8uOOgDWrUqEGLFi3i9/7+/rRw4UJq0KABXblyhaOxFy9epLt379KZM2fowoUL1K1bN1q+fDkdOnRITmihre2soIfGe8gN5s6dS7bh4RyZR6TVOWtWuUxA8WGOaCwSsFRFSKAt1Ne9g2ixi4tLvOQzxW0JCOgCFC14duAAPdq+nds8BFLcvb2p+C+/sAcsOmrW1gaaK4F9ffo0tz/Za9WiAu3bkzlCkFkrAKxKAAzPJJb8hRs2Y9myohqPiXB7+XJOuoFe1tqAKCnIpbG3qS2cnJxYViABRBXJTnAx+Oeff3he4cKFeerfvz/17duXI66QH4AI+/r60qVLl5j8Kupko6OjafXChdS2dm1y9PTk6nu6PMwREYZsAQlqiBonBdC+KksFkPCmuC3gwYMHHIUWEEgI0HjDpQUR2JdHjvDIA1xzyv3xB3vAiiCKaRH68SN3LkBg35w5w65GILD1li2jPM2bm3VinSCzVoAv9+4xQUrl5JTwcr6+TGYzi8pfJtOK3Vm+nLw7daJUStEwawCG+7WNkpoDQDgRcYUzgSoULFhQLkkAICeoWrUqLViwII4ObcmcObRmwwbq1asXOaZPr/P+QNKApLRp06bRrFmz4n2PpCx9aVnr1q1L6dOn520pJoAZYlsClmszyEUMtm/nCB9yM7JUqkRVp05lgpQ2Rw5T7yJZO4F9vGMHPdyyJQ6BrbNkCV+fpLRFxoQgs1bSmKTNmTPR5T7dusUPVZH8ZRo827ePQt+/p2J9+5poDwQ0ASyoJF9YyAzmz5/PiWBNmjShfv36sVa1Zs2arDdFdBTR2gwZMnDkMioqitatW0fjx4/nyC2ApC7/J0+oQ5MmtHD1anr+8SMV0uABAvcE2H8pApFYLy8vJrEDBgygoKAg6tq1K2t437x5Q2vXrmW978yZM/VysRGlRmQaHrNNmzZlSzJErZEUtmXLFnr16hXrgwWszz0HBAkT3Aggh8lWsybVXrCA8jRrxgldAqZDaDIhsIoQZDaZIyI4mMtPZihWLNFlpepfgsyaruIXzr2HBtdKwHSA9lUavoeeFMlPcCaAlvTLly+sh4WmFu8RtQSJhR8t3A62b9/O81u0aMH/HxEYyA9+eL6Wb9SIvL29OXL777//JrofGzdu5EkREyZMoD///JPlDZAAzJgxg7eFqDEILfxwf//9d72ej2bNmrE2GIUhYDUGAg1CDUIvyS4EkjegncbInkRgUYwDOu8c9epRgzVrKHeTJmypJWAGBHbrVnpz+nSyILCKsJFZmYIfDS30bdCUIeM3uePBf//RvvbtOaGoeAIRvzA/P1ro4UGp06enAX5+Rt1HgZhIxvLcuan+qlVs+p2c8e3bN3r+/DnrMVEtyhqBZjfs0ydO9LJPm5bS5soldOpmCHGvJlLEwMeHNZYgSf6PHrE8KlfjxpzAhYRjUXjH/Ahstpo1KX/btloTWMhDXp04we2Wd8eOZG58TURmkzlgdwKgZ6yJk4ElahaTA24vXcqkBo2MQPIGHgpwrQj//JmHW52zZBFZ2wIWU9AFCcVSBBadMSQF5W7WjKr/+y9H+hCRFTAdQj99+r+EQIHA1lm8mL16tY3A+j9+TPfWrKF7a9fy9c5apYrRyKw2EGQ2mQPl/6BXcsmSJcHlvty9y6+46QWMC2T03lm5kgp166a156mA5SX5BT59yjZESHxxUPFggR0WrL7UQVVpXG2B9WM7qvDHH3/wJCDA92xkJL06eZITuJDIFe7nR86ZM3P0FRPIjTma6FsTQvVMYCF/QjT33urV3HlBoAWWXIV++slsZYjiDkzmQIUgBw+PRJf7cP06vyLLVMC4eLxzJz8gRMWv5G8MH/D4MUdm3fLnVzsEW7p06XiJXfoGkrbUuS+4u7sbdNsCllHA5MXhwzFFDPbuZXIDKQwkUCCwKMAjihiYB4FlH9hTp5JMYBF1f33yJN1dvZrXi1wblAtuvGkTR97NvWywILPJPAqERsijRIlEl4XeCRAyA9NU/EJ0I32shZNA8sO3gAAKRKKXvT0T2ZQJlJR1cHCI42NrCGRJZKRGwPqAZ8Wz/fvZKB8ltb+HhVH6woWp5KBBTGAzFC0q5DDmSGBr1NCZwAJfHz1iGYEvZARv3pB7/vxUYexYKti5c6IjuuYEQWaTMT5cuwaVPmVKxDcWPTK/W7codbp0YpjbyPj68CH3hhuuX2/sTQsYK9Hr40d+SNi7urJFXgpbW3HuBcwCSPx9snt3TBGDY8foR1QUF82p8NdfXMTAPbYohoBpCeyTnTtZQqAvAhsBGcGWLRyFfXfhQoyMoEMHjrzj+lti5TVBZpMxUCJQkzK2uKkjg4KEXtYEuLV0KSdQ5GvVyhSbFzB0otfLl1z1SCR6CZgL0LGCtAkElj1GEamvUoWqz5jB5CiNl5epd9HqgU6GpIFVJLBwJUInwzFDBq3P0Y/oaHYjuCfJCCIjKXvdutR482b2/rX0xD1BZq2gjC3KBSZ0g1/8+2+uA+9q4KFNgbj4/u0bNyyFu3e3+IZEIL7EJ+DpU/qORK+cOc26DKRA8geKcvDw9Pbt9OHKFUphZ0fZa9dmj9HcTZuSkwZ5FQJGIrCQEJw8yfO40EQSCKw0+ie5EYS8fcslvCuMG2dxMoLEIMhsMsbXBw/Iztk5wTK2DzZt4psd2anigWtcPNq2jb59/UpF+/Qx8pYFDJ08E/DkCUsMEkr0EhAwFHDvfb5zh/WvIEh4n9LBgXI2aEAlBw6kXI0aUWpRZtgsCaxXEiOwkowAHvMIlqACGyROchlBmTIWKSNIDILMJlOgLC20euiFJbTMxfHj2YMWw02pRRaz0RO/0PMWurRkmOiVOjW558nDlb0EBIwla/lw9aqcwKJDhRE3tO8Vx41juZmw/ku+BPYHZATHj7MOFhpbyAhQga3xf/9RnqZNk/3onyCzyRQoLYjGLSEng/sbN7IhMpKPNpQrJ8isEfH53j16e+4cNzQClgOUrC1evDjNnj07XiQs9MMHHsZDxCuNFole6tapCihJO3jwYJ7UAVGXnTt3UvPmzTXavoDlAgGJN2fPxhQx2LmT7z+HDBkob/PmVGvePO4siw6VmRBYxSQumSyGwC5cyDrlpMg84skIvL2p4t9/s4wAI67WAkFmkymQmQp4Va+uPio7YQILv+EfCIjIrHGjso4eHvzQEUgGiV4vXlD416/klCkTP0AMNYx39epVckpANiSQ/PE9IoIjcCCwcCJAJTmXrFk5iRQWWlkqVxaOGWZEYGGjhaITcgK7YEGSCSxGgB7+9x9HYd9fusQyAlTlQlGDjKVLJ0sZQWIQZDaZAkJ/APoYVfBdv56HoZpu3cq6TUCQWeNpKuHpV6xfPxE1SQ6JXk+esCcnOoUOBpbqZNBxCFLAshEZGkovDh2KKWKwbx+7z7jlzUtFevViAmutBMaaCCxkBAhSsRvBzp1so5ajfn1qsmULS0mSu4wgMaTQ9h9WrVpFYWFhhtkbAb2RJc5YTZmSDZBVPYARlYU+x6N4cUFmjQwI8yOCgqho797G3rSAHvDjxw8aPnw4V8rKlCkTTZkzh9wKFKBfhg6lxo0bx1k2KiqKPDw8aMWKFfw5NDSUunbtSs7Ozvy/M2fO1GrbkBkoyhEeP35MVatWpdSpU1PBggXp6NGjcZZfu3YtbwvLSejfvz8VKFBAtONmjm/+/nRv3Tra1aIFLUyfnva0bs3ypNJDhlC3O3eox8OHVHXyZMqUTBN6LInAwmJxa506tChTJjrWrx+P1oDA9n3/ntoeO0bFfv5ZZyL75cEDOjNqFC3Nlo22169PfrdvU6UJE+jnN2+o1f79lL9NG6snsjpFZkeOHEmDBg2iNm3aUM+ePalixYo6XSABw4HNr79/p2y1a6u8yX3XreMkleY7d/JnKTJr6KiSQAxuLV5MOerWJddYeYeAZWHNmjU0sF8/2r9yJd24f58GjB5NdVu1ol69ejGxfP/+PRNVYN++fUwa27Vrx5+HDRtGp0+fpt27dzPJ/eOPP+j69eusmdWFVLds2ZI8PT3p8uXLFBgYGE9LC+KMfejUqRNduHCBDh8+zKVsL168SI6Ojno6IwL6QujHj/IiBpASoB1H0ZuK48dTvpYtyTV3bnGyzQBhnz/LCxnII7DVq1Ot+fM5Up5UqzN0ZCQ3gveXL1NqNzcq0LEjuxHAalN0XvRAZt++fUt79+6l1atXc+JCrly5qHv37tStWzfKmDGjtqsTMAAebN7Mr4W6do33HTIcOSrbqhWXJwRg6g7Yu7mJ62FgfLxxg6PmzWI7EgJxRxRgJ2dMwO1D2wzvQojCtm7ND5hyTZrQ6p076fjx4zRlyhTKnz8/rVu3jiO30kgWOv6IjoaEhHCEdv369VSrVi05Mc6aNatO+37s2DF68OABE9TMsYkekyZNogYNGsRZbsmSJVS0aFEaOHAg7dixg8aNG0elEvCeFjAuAl++ZGLERQzOnSObFCnIq1o1qjF7NuVp3jxZeYEmCwILCcGJE3onsCwjOHo0xo1g1y7uyMCBosnWrTEyggRKYAvoQGZTpkxJLVq04Onjx4/cMKNBHjNmDNWvX5+jtU2aNKEUKbRWMAjoARjeQH1tVAzBD0AZyHpEskqLPXvk8xCZhQehnYODuAYGxu0lSzhBKLfScLRAjC/yOiOTrC4+PuRZsqTGkVAUusifLRtfQyR7IUKCKOynT594GURnly5dymQW7ePBgwfpBB58RPT06VOKjIykcuXKydcJqQIIsC64f/8+eXl5yYksUKFChXjLubm5MYmuV68ej6RhdE3AtEAGOhcx2LGDPl67xtr57HXqUL3ly7mIgS4lSgUsj8ACX+7f5+cyRkxD3r2jdIUKUeV//iHvTp3IOXaER8DACWAY3qpcuTI9evSIpzt37nCEFo0nIhKI3AoYFx98fDg5AIlfyqbYILqXJk6kfG3aUIYiReKQWZH8ZXhEBgeT74YNVPr331nPLBA/SgpyaUwk5MOsPKKBil6IljilSxfH8gaEFkRXGtYHWcQwPob1c+bMSVWqVCFT48yZM2Rra8sSCOh2XVxcTL1LVgVYt/nduhXjAbt9O1sn2jk5Uc6GDanMkCH8ap8mjal3U0ANgc1arVoMgUUSl6dnks8Tywg2b2YSK2QE+oFOT1REHDCUBsL6DNrL5s1Zl1W7dm1uKMePH8+k9uXLl3raTQFNAbsOoFD37vG+C3j2jGvF11m8OM58QWaNA/j6IusdGcgC8YHhfk2jpMZEVGgolwMFMHqRUNZwunTpuD1E2whCCwmWhNy5c5OdnR3rW7Nly8bz/P39ORBQrVo1rffL29ubXr9+HUeje+nSpXjLgVRPnTqV5WEjRoygAQMG8GiagGGB4MG7S5diPGB37KDA58/ZQgmR1yqTJlH2unXFaJiZAFI7yQc2DoGdNy8mAqsHAouO8IujR1kHC100ywgaNKCm27ZRrsaNhYzA2GQWEgJotPLly0e9e/fmSASGyiTAA3HIkCE0ffr0pO6bgA7AjxFAsoAyPl6/zq8eSoRBkFnjRGbgLYsykmm8vIywRQF9AL+NwBcvWIaD5BsbDQohQGoAV4Po6Gju1EuAbhYyLCSBgfQiAWz06NE6S7IQPEA7jG2gvQ0KCuL1KSI4OJi6dOnCelloaaHPLVOmDLfjrVu31mm7AuoBpxhUU5SKGIS+f0+Onp7sJ408BQxR29rZiVNoRgQWNlovjx83CIEFPvv6ymUEuB9YRjBxIhXs1ImcRJ6R6cgsGmBk46rSZil6IT5//jyp+yagJYJev6bg16/ZjkvVD/HTjRvknCVLPJ0PzN6Fk4FhgTKTOP+wVBEwf3BFr/fvWcMGCU6aHDk0Jp0gmYiUFipUKI6eFQDpRCIYyCSG+tHxhwuBLsD+oNIXCHLZsmXZtmvu3LmcuyABzjMIMCAxDChSpAi///nnn7kNzyKSi5IM6KiRuAMJwdM9e7gDlCZ7dirQvj2ToswVKogiBlZGYCUZAZK5kPCLNkQqaoDRJ+FGoH/YyNBqWxEQvUibNi0/QNIkM43StX//pVNDhlDlSZOo/KhR8b7fVr8+pbCzo5Z798aZv75cOXY2qLdsmRH31rpwqGdPtkzr/eyZ1T/Yvn37xp1d6Enhj2puQFYxkiTxQOLOX8aMWj18QFZBEiE1gHWWQPK7V6F/f3bwIEdgkXAbFRLCQQREX1GJC2XEBWExYwJbtSrlb9tWrwSWZQRHjjCBfQoZQXQ05WrYkAksRuSEG4Fh+ZrWkVkMV+XJk4dfFTF//nx68uSJRvXFBQwDGGwDGL5QBvoskBkU69s33ndCZmBYoPTgg02bqNwff1g9kTV3cKIXKnp9+8ayAthvaQokgX3+/JkLIbi6ulLTpk0Nuq8CxgVGsJ7u3csJXCAt0RERHGUrN3Ikk6J03t7ikpgRgYW9FWR3igS25ty5LMHT5/A+ClnIZQQfPlD6woWpyuTJ7EagL6IskDi0JrPbt2+nPQq2ThJg+QKfRUFmTVfu8PPt2+ScNSuliU0uUQSGS8P9/FQm2Agya1igdDBIUpGePQ28JYGk/oZAZBFR08V/9tWrVxzBgy4VPtywMdQGZ8+ejecRqxzxFTAu8LtFFPZQjx70dMsWTurKUrEiJ3CBwKbNkUNcEnMjsHAhQMGJ6Gj26zUEgUXHBgEKkFhIyFhG0KkTFzVIrlH56Kgo+nT9OgdnctarRxZPZr98+cJhX2UgBIyohIBp8GzfPm5oC8RWGlIG9JoAfmiKwP9gOFVoZg2Y+LV4MeVp1kx4Bpr5gxDSgpSOjuSaJ49OSTrQrCZFtVW6dGm6efOmzv8voB98j4igCH9/fmiHhYTIKyTCmkn8ji2DwNaYM0fvBBYygueHD7MbAbTRLCNo1Iiabt+eLGUE0ZGRTNRfnz5Nb06fprfnz7Ozi0fx4smDzEJicOjQIbZ3UQTMwVENTMA0uL18Ob8W7d1bLZnFkKly1DYCyScymfCZNRDeXbhAX+7doxqzZhlqEwJJAMgnRi2Q7OWQLh0n7qACkyng4ODA7auA8REVHi4nsLDPQ2QtVdq0XH3LxcGBiq1caZb6bmuEKgILCYEhCKwkI4AO9v769TEygiJFqMqUKZzQlZxkBN+/fWMrORBXOHK8u3iRvoeHUyoXF8pSuTKVHzOGOwoop2uO0JrM/v7770xk/fz8qGbNmjwPpRyhExMSA9NByphEEoIqQC+ravhDijqIogmGAaKyaXPlouyx5UsFzCzR6/lzJjC6JHoJWHYnBqQV1x4kFg9ydGLs06Yl54wZmcimsLXlBDCbgABT767VA8P6kgbWGAQWhFlyI0CFNnR0ISNAMhcik8mhnYgMDaX3Fy/KI68o3oBoLIJeWapU4SpkOMc4Xkso8qP1Hvbo0YMiIiJo4sSJNCHWZgjDa4sWLWLPWQHTDIuh6le2BAgTIrOo/KXqRwsIMqt/4NwielBp/HiTRfsEVAONNgohRCPRK0+eeNXyBJIngYXrgERgcQ/gIY1CBsg1QAUu8Tu1AAI7ezY7RuibwCrLCCDBg3yg/OjR7EqAksOWjIigIJYKgLiCwIKk45gd0qfn81pt+nS2KUN1UEv8HehEt/v168cTorMYGoMZuIDpgNrOAHpQ6hoFVP7yVNLLAiIyazggOQANInrzAuaDyJAQLk2ra6KXgOUAvz8kcEUEBDCJ/REVxfaE6LzYu7nxEGpyiLIlOwILCcGxY3EILBLunGMr3ekTfnfvMoFFom7Yx49sU1l16lQqABmBkie7JeGbvz+9OXuWJQMgr0jewu8BnQCQ1kJdu/IrXDiSw28gSbFjFEcQMD1wswLQtaiCX2xSiXLyFyDIrOGiQLeXLo3xMbTgBjHZJno5ObH1lqjGlPwAizSMVEkaWFl0NNna23OSKwisnZNTsnh4J2sCW6WKQQks2oH7cCOAjMDHh6OTcjcCNUEhc0fY58/MBaTIq9/t25wP4+LlxVrXYn36MHl1y5s3Wd7/WpPZjx8/0tChQ1kn++nTp3jZuyjhKGB8vSyQqVw5tXpZZGm75cunsiHB8ImITukXaEy+PnxItRcv1vOaBXRO9Hr7lhM4TJ3oJaB/gAAh+spTYCBHoFCC2NHDgzWAeJ8cH+AWTWB3746REBiJwMJa6sWhQ3R3zRqWEYDosYzgzz8tUkaAtgzPGda8njnDicZAWtgDVqtGpQYP5lfYx1nDva81mf3pp5/YT3HMmDFcsjGpJ2nBggVc4vHDhw9UrFgxmjdvHpdmVIeAgACuP75jxw76+vUrZc+enRPPGjZsSNYsM0DNeHUaIuhlPYoVU2nYL3nMWsPNbuzELyTjoUcsYFrgQRn4/DkTHZesWcnR01Pn+7169epUvHhxvSa7GmKd5owXL16wH++NGzf4uJNCTkBcEYFFJBYdFnTKnTJliiGwCu4D1naOzXXY+7GkgVUgsNVnzWINrCEILOB3547cjSDs0yeOvFabNs3iZAQoV68YefV/9IjnI0jlVa0alRs1iiUZaby8yBqhNZk9d+4cm3snpRGS8N9//7E7wuLFi6lcuXLc0NSrV48ePnxIHipussjISKpTpw5/t23bNi4Z+fLlS662Y80IfvWKkxjUPaA/3rhB2WrUUPmdKJigf4R++sRlLqG7Ep0E0ydHohACqjUl90QvcyRsCH4gALFr1y69rA9JW1ICF7SwQCpnZ07gwrWFnEDA/Agsl5I9etRoBBZD7g8kGcH16ywjKNi5MxXq1s0iZATomAW+eCEnrnhFhxxIV6gQJ3sjsRjk1VDnUBEY6YDjB6y6cA3NsROgNZn18vJKkjG4Iv7991/q3bs3de/enT+D1O7fv59WrlxJI0eOjLc85iMae+HCBbKLNTWHk4I1A9cCDQYyENXZb3x98IDKDBmilsxi2FVAf7i7ahUPYaPhFDBxohcqetnakru3N9k5OFj95UB7ASmYttXJTAk8RDmBy9+fTdsJHrAuLiwVQSdeH7pnBEpSWdgws0UQWERgv383CoGVywjgRrB3b4yMoHFjqvDXX5SzQQOzlhHgd+n/+LHc4xUENvj1a77XkZCWu0kTlgzgPDoq5Crx6ERQENvMRYWFMdnk1wTew1NZcXmN3oeHy7eZrnBh6n7nDpkbtG7R0OsH0VyyZEmSiCQaDx8fHxo1apR8XooUKah27dp08eJFlf+DMroVKlSgX375hXbv3s0JaB07dqQRI0aQrYohdAA2YpgkBAUFUXICDN+R4OBesKDK71HiFj9qVclfgIjM6r8Hi8Sv/G3biqpqJkT458/s4IFkn7R6TvRCgtHw4cNp+fLlTID69u1L48aNY9tC5BHs27dPvmxUVBSPIE2ePJl69uxJoaGh7AQDmZSLiwvnH2iDhQsX0qxZs+j169dcibFKlSo8SoUI6OnTp3maM2cOL/v8+XMe0q9RowYdOHCA/vzzT7pz5w4dOXKEqlatSlOnTqWlS5eyxCtfvnwsHWvdujX/76lTp/j/jh07xu2rr68vR31XrVpF+RW8rP/55x+aO3cuhYeHU7t27Sh9+vRcVAeVzHBO1qxZw8tJIxQnT56UPzeePXtGv/32G12+fJny5s3LwQy07+wBCwKLBC54wIaHx3jApklDjjlzshfsxcuXaXSfPnTlyhWyt7dnadrmzZvJzc1No3OMfcD1ePz4MUeNW7ZsySWIBXQDrpOkgZUT2MqVqfq//7IPrHPmzAY7tUh0YhnBhg0xMoISJaj6jBlUoEOHOMTPWJDu34RIIoJMgU+fsgQCwaaAZ88oCiMNNjYcXHLIkIEylS/PiaqyqCh6e+ECvTx+PN56cJ41go0N68Yhw0H+DDr2/IrPse9xrlKqmI/3YX5+XAAIE7ZrjtCazKLBCgsLo9y5c5MjDlTpIYHIqSZA6VtECDyVKmjg84MHD1T+Dxq/EydOUKdOnbhxfvLkCfXv358fGGPHjlX5P3iI/P3335RcgXJzQMbSpdVKDOCliKEJdWQW9kQC+gEa8sBnz6jh2rXilJoq0evNGwr9+JGHFlHxTt+JXiBokEeBhKHjDSJZqVIl6tWrF5PE9+/fcz4BAGKL9hLtJjBs2DAmnOiMQy71xx9/0PXr1zWSbV27do0GDhxI69ato4oVK3JbC8kXAAL76NEjKly4MI0fP57nobMPMgsgADFjxgyu0gjCh3Zx/fr1TCBBJM+cOUOdO3fm/6mmoPNGfgIK4mA+SDsI+/nz5/m7DRs2sN84CDaOH2QSy0IPC4BE3r9/nwMIIMGAu7s7vXv3Tr5u7BO2j/cd2renG6dP0/fgYJaFIKLORQwyZ6ZUadLINf8gyrVq1eJ9wXEjygySLCUfa3qOse2//vpL7bNDQEcCO3NmTATWgASWZQQbNzKJRU4IyJ9cRlCsmMr/wf5pG51MLMqp8r1CFFMT4D6HvtsxY0bWemPUITHiqeq9Xezyqt5DfqOt5A0jWygcgeAMeAauZ+mhQ6lIz55kjtApMmsqICKCxgnRBERiS5UqRW/fvuUEMnUNEiK/ePBIQMMKqURywdtz5/gVjYgq4IcOIquubrSIzOoXt5YsofSFC1PmihX1vObkDzwIEKXQFdBywbEAjTCXmbSxkVvPqYMuPrNFixaVtzcgYvPnz2d3lylTpnDUEmQTkVsAJK5NmzbsxR0SEkIrVqxgEgkyJhHjrFmzarRdJN46OTlR48aNOeKI5NcSsSMuiNIiSowAQ0YViaAguMg3ADBSNWnSJI66IhIKgOQiHwIjbopkFmRV+gxC3KhRI66KhdKuSNZFdFOSiYEYIuqL4wRwzPAhx/ZU7dOQIUOoTtWqTIoGdexIVbZtI98bN6hwiRKUOlu2GA9YFR2RadOmUenSpZlESygU21nX5hyjgiX2QUAHAitpYJNIYBWjmIkNi0MjjeDM+0uX2CkGI46QmmD4HSQQidAnBg5Uux6No5ggRomQRHSUVc2XiCfII9wGIB346uvLEVgkKaZIlYo8S5ZkuQB0r7DTTOXkZFa34McbN5jAItKNthQSjea7drHzgzlXAtN6z7rpSQeI4SgQUlh9KQKfVTV8AKIdiAQrSgq8vb15mEyd5glDUJiSK/xu3eJXdTIDGCXjx5OQRYqo/qW/ZKNn+/ZRlcmTReKXDgCRXWfkut9dfHwS/H2oI7PK7RLkBQCis+hsg8yiLTt48CCPJgFPnz7ldgrJrhIQqVQctk8IIKMgsCCe9evX56lFixZMYBMDyJ8EjGghWiyRWwnYN4kcqzpWKdqMY82WLRsn6mJkTBEY7peOV50MBxo/wMvBgUkJihh45cnD8767u7OVUEJAZBYdBFXQ5hwrnhMBNVHM8HAKef+enu3fT88PHqQPly9zpxFG+xjGR8cdgRJomW8uXqy5BlPhvbYAoQJ5xbA4OjwACDEIpWP69AlGLzWJZCJKqm0UE9pV+NVC6/r80CEOMoF8Y32ZK1Sg0r//zqQb9pnmqN2PVBGFLTl4MEdh02bPTpYAnWg2GgxEHPCKYR5ES9Foo4GTesiJAcQTkVVENJo3by6PvOLzgAEDVP4PhrI2btzIy0FfC2BoDY2stYr3UZITPxhVvTv8wD7fvau2AhUnjwkyqzeg44BsazRaAtoDUVKQS22BB2nwmzccxYMtja2CJZMm29QWytIqPPjQJgEo6Y0IJuQHSFTFkDt0rfoAorEYLoeeFRFQREKhS7169Wqiji6I6EqQIqdItoWeVxHKHX/FY5Ue8NKxapukiglWWrAYApzTp49JzHN0pMDAQPmyiQHRXn1A8ZxYAuRRTD0MiydGMFEpLSF88fXlCUhsiBtRTFXzEyKb2IcXR4/Skx076PO9ezEygi5dqHC3bpwQZQ6BC/i7Sx6v0JKiHYJGP0ulSlR25Ei2y8pYpoxZJ559VBWF3b2bfXeVo7Do4EBSAl0yPGwtnsxCi9SgQQMmltBZYRgKZPbWrVs8vINkBE2B4X9EetFDRo8eEgaI96VhKzwYpOQJAKJ+DOkNGjSIfv31VxbvY7gMOjJrBcrvwTdTFdDYgFypS/5ib8boaBGZ1RPeXbrEvXpzaGwtEXiIaRslRWJC0KtX/H+o6GXqYbB06dJx5xydfRBaqS0DkGcAcgitLTr+gL+/P3fIFYf2EwL0oUiSxQSpA0gsIqFIYEKHXpOiNQULFmTSCtmCpttVBUQ7QaTRTkvAZ+nBB+JK375RuL8/lw8GWYH8wzW2s4H3ugyxIlqMoIeqXAh9nGNtgWNV1EvqnE2e2P8giqmhkxB+B4lFJ5FopEgw0VlBIhICIBglQRQdEVivGjUoR926rD9XXo8uUUx1QPDl+YED5DNrFo9wQSaELH6MdOWoX9+k1fpw/iFvkGyy8B4dC2i5IRmoMHYseVWtSh4lS5p9VcHI2CgsJHEfr13jKGyp337jKCyusTJwD8Kh5+qMGVw9EUUtSg4aZHajj1q3/Ig6IIMVRBSRAkX9EYimNkBShJ+fH0cYIBWAQB+ZsFJSGBpbKQILQOt6+PBhzoBFgwaiC2KLbFtrBIYx0MClzZVLrV4WDYI6QTwkBgDKPAokHWjgPEuXNvvGLDkAUSpEY7kzlyEDl2w0l4pekBpA1wpiqSjLgoYUGlMkKIH0IgiAxCfFNi4hIJkMSbBIMkMSF5JgESWVhtCRoQ8Sh6QvbAvD66ogZfijHcX/V65cmSOjSOxKkyaNxlIyBBRgrYhgBBLSNm3cSLdv3aLsWbPSJ8ifZDLKmjEjnTh3jr5AK+jpyQlddpGRlBQgD6JIkSIscUBSGkg8EsAgPYB8TTrH7m5ulCF9evpzzBg+x4g24kEOkoYJD2m4Xkif5ZNMxq+EqmLfv3Mkav/YsRT+8qVKEppYFFMR8gilGoIJyRc8c7VN8FHUa2Kepm0QPHuhgYWN1osjR5iYI7JY499/KW+rVuSiFLk3BD7dvBnjRrBxI4X7+XHHFC4I7EaQPj2ZArhPEG2Vk9crV/g64/qAvFaeNIkjrxnUFCMy2yjskiXku2EDR5ERfVUXhZX4wc0FC+j63Lk8gpu/XTtqvnOn2fr0ak1mYe2CoX5loGGGQ4G2gKRAnawAw2nKQMLCpUuXtN5OcoSULIOb69qsWRxlLT1kiLzHBLNo1GGWdEXKkJJjhGZWf5FZWHIJGBZ44CKChJEFl2zZmMyaU5QAUVNInyC5yqyUEINkVQzzN2nShEklEpCkIfbEgCgs7KYgLUASFpLPNm3aJJd2gaCCiCLyCqssWHOpw4QJE9ihAKNeIMhYd8mSJTnzX1PAVebJ48c05PffeX+a1q5NbRo2pFsPHnDnAkUMBo0eTVd8fal8pUp83IgiZ4+N/nyPjOSIF/34IS+AgNfwL1/ikEtSIJiYPFKmpO0rV9KEmTOp7IoVnIxWskgRqlOkCP1wdqZhnTqR38uXfI6dHR2pb+fO9PndO344S20m7iEQWRjTSxnl6AzJJxsbfv2BSKiNDUeRXVxddc4m5/fIKDeDDlc8Agv7OCRxwVnCSAQWhWUkNwLkfaDscKGuXdmNQJ1nuiGBUYQ3587JfV4/XLvGz1PIG0BaQa7xmr5QIbO4hpoiMjg4Jgq7dGlMFDZLFtbvqovCApABIToO+QHOQeEePZhXuKoJmpkLbGRaVkBAVuiWLVu4J47GGPICJCTs3LmTG1PoaM0ZcDNA5i8eIIhCWDKuzZ5Np377jZps20bnx4yhr/fvM5mqv2oVN6CbqlThm7fJ5s0q/x+apG1161Lv588TTboQSNzvd3GWLNR02zbO6hVQDxAfEC3oSUFEtAGG9riiV1QUywrgPWpuAGnDqBGkBhj+N3fwI0CBLKqamFDGTpAuKWsrkcSFaGCr3r3JI316WjRliup1aPG4USSXpEAw1U28jLbfx67TEPeqOUElga1UiZ8XxiKwuG+eHTjAVbmQUMYygqZNqfBPP1GOevWMOqKFjs3bs2flkVdEh3GPohQySCvyHvAKTb05dZQ1xcfr15mMKkZhi/bpozYKC3z29aWr06axfhYBsOK//EIlfv3VpNW+tOFrWkdm27dvz8P6W7dulSc+YHgKRFZROyVgeECADniWKEGRgYFc2u7pvn20uWpVarZzJ/9AoTlSBxGZ1R/eX77MrzC6FjAMIoKD2WgcUTRo+aDXMyegLcToFLxWEels2rRpktanGI1UJpRqSWcipFTdenRBeEQErdu5k2pWrcpa3h0HDtDpCxdo59q1MRpMHQgnLyORVgskEeZGYJ/u2cNJO4oEttr06dzhdtHQEk5vMoINGzga7lmqFFcD8+7QwWjVJxEJRsRVKg/7ObaCFUZ2QFqL9+/PBBYdZEu97yJ1iMICKMhwZepUvlfwPyjDXrR3b7UjuuYKrcksEq5QgQv6VWjCMKSFV1TiQoUZAeMBvnpo+OG1h4Yrb4sWVGP2bNrVtCmtLVaMokJC1CZ/SWQWvTRLu2nNVWKAh4MxIhzWCCnRC/cqhrtMleiVUBQTEbwC0PJnzkxL582jyK9fKUJpiDwhQnrx6lVqr2R1pYinZ86o/Y4jjNDuqYleQtdnY2enFaFE4QI8ICHnQFQN64d0ACVkkfgSERlJZ8aOpTmrVnEEE9rd7du3U/MkRqORYCwVg1AGZBDaSCGslsAiAnv4sMkILMgjyCuisKjQhSRlSAiMJSPASJnkNIBXjFoCIKsgrWWGDuXgT3IYkVSMwn4PC2NHghZ79vCrunYSbRKi5FemTGEbMbiKYETXu2NHs3ZfSAhaPxEgtl+2bBmXPrx79y4PqcGbEPotAeMi+NUrfrBA14KbGO8Rpe189Srtat6cfe8SI7PQy1pqT9Tckr9EVNZAiV6vX3MSDnR1eBirGhbWNoqpawQzoShmWtwHsdn8AMh3YkPeGJ6X5pWrVIkuHD0aP0IZG6V0z5s3zuc4pFQPv2GcQ5BXyUYLRAgPQ3s3NyaxykUMYJGFwgv6BsoEQ/OrCuqS2qwZ5kJgWUawfz9HYeFKgHsFMgIkS+WsV8+gHVD81iTJAF4hRQIgEwBprfDnn0xik0uwQR6FhSOBj09MFHbIECrSo0eCUVjIs/B/kBPAtQIeuCiIgBFcS9ICq4LOdxdsTyTrEwHjAwkMeOCgl8sWOPCIjPWadMqYkdqdPk2Bz58nmA0qCibo71rAaLrShAl6WmPyAMgRHnDKNkMgKt9TpYoxzw8Li5dFLp9g7xQUxA9nDFtjHTDZT7IWU9JJqiGa2kQxlQllvOFyLUgmFGEeRg4KSEUMIgICeMK9jMgMOrkgsHbOzkbv7Cp73wrEB9p8eSWuI0f4d4aqg8YmsPjdQUZwT5IRfPnCji4YISzQvr1BZATYJkqGg7RKBDbo5Uv+DkUcoL/1mjSJSSxXAkxG+ODjE+MLu3FjTBS2YcNEo7BAZGgo3V2xgq7OnMlBMPxf7YULOfEvuQSztCazqIedEFauXJmU/RHQEJyFK5Px8AAeQgBsbyQgczZdIobwomCCfoBShSBamZOJXhY2NPAFVet5qUU9c1WRTMfs2anU4sUUFB1NiikfykTwR2QkgaIimRFlILVO/FEgl/qOYloyUMEJGntE9NB24Bqh0ATM7VFZCZn31n6OzJbAxmpgFQls1WnTjEpggdCPH2NkBGvW/F9G0L17jIygcGG9k1f/R4/iRF5RtpptJ4sXpzzNm7PuNUuVKiaz8jJ0FPb+pk1MYrWJwgJhnz/Tjfnz6eb8+fx7h065zPDhJnGMMDsyCwNqRURFRbHcICAggL1mBYwD9nEk4gojypFZTSHIrH7w7uJF7hXDMNvSgUZzf8eO8s+I0qm0Ior9jA4UMoDttCghKXNwILQi7jlykAOIk1IUE5FCkGnUN3fNk8fsEr0sEVzEICCAH2ggsiAIuC4YxYGMQJ/m9wL6J7DsQnD48P8J7NSplK91a6MSWGwbCcbsRnDgAI9g5G7WLKaoQd26epMRoHOFzHqJuEL3Cj9paLbhQQv/WSavlSvz6EFyha5RWCDw5Uvy+fdfur18OQe9ivTqxclgyUEjrA5a332w4FKVxYvqXKi+ImAcwNAZgE5THpnVgcyqK7ggoJ1eFtpkc6y5rQ2Q1Xqoe3cq2LkzD0GB7BjCEBzJQpDAgCgrN8rQxnKiV5o0Jk30Sg6APo4JrL9/jI+rTMayAUR2mMAqla4VMH8CCxstlGw2FlhGcOMG62DhCwsZAQIoNefOjZER6EHDjJECRHclj1dM2A705NgWIpDQu2apWDHZJyurjcLCkUCD6+53506MvdamTRxoKDNsGJUYMCBZRqyVoZcnBaqroCJY9erVafjw4fpYpUAigNE04J4/P72OLS6RWgcym7F0aXGu9UBmUW7RkoEiBLuaNeOHR93ly41OdBCN4UQvP7+YRC9U9BKRQp1qxksEFm4mAAgAHoTo7FpqprJVEtgKFUxCYBVlBCCxsLFCBB/m+ZARoHBAUkcJUI1KirzC7xXHj5GYTOXKUbH+/TnyiuPHSI41QGUUdu9eylm/fqIdenQ43p47x/ZaSMBD24kKboV79tSpXLSlQm9hDxRL+P79u75WJ5AIENlCzxU9Likyi2iWNkDvV1T/ShpwDv0fP6aK48aRpQJDzzsaNeKePPyJjU1kuaLX06dcQhI2c6joJaA5oE1m/SsIbFgYdwLQFmBIEQRWRLfNE5DTyH1gzYDAoiP0bN++GDeCgwd5VAZ6VOxPjjp1dL6PcFyoqCUnr+fPc0cLsiNEnBF5ROQ1U9myViUpkkdh4Uhw/TpLRmAZhk6DJtceAYCne/cyiX138SInvzVYu5Yj5tZYUl3ruxMRWOVewfv372n//v0a1/QWSDowHCsRUfRqEX3RZkgY101oZpMOSy+WgKHoPa1bsyat46VLRh+OAhHzf/KE7eXc8uUj+2Q+jJgQMLJVvHhxmj17tsrvf/rpJ85NgNSLCay/PxNYVEWD7hidEUdoYNOmtZh68VZLYBGBPXRITmCrTJnCGlhjE1g8B0Ck2I1g48aY0bqyZanWvHmUv107nWQEuB/RLkoer5DE4X6FxAU61/KjR7PTAEYFrXGkgKOwS5bERGHDwylXo0ZU8e+/NYrCArhn8L9Xpk1j/1yc0xb79nF1L2sezdKazN64cSOexAA1vlH1JjGnAwH9gMtJhoRQ2pw5+TMis9rqZVHiDpZHIjKb9GIJqN8tXQtLAh5kx/r144dOm6NHyT1fPqNHJgLfvOEoghsqepm5hhNkcs2aNfzezs6OrQlR9RAm/qiAZehrNX3iRAr39+dhX7QBIKz43TtnzcplffXlE+nn50d//fUXByg+fvxIbm5uVKxYMZ5XqVIlvWzDmmBuBBYI/fCBTfZBYuE3iiROJAmxjKBgQa3WhdEARAYltwEQWRTcQKcKDgOVxo/nyCs80K11lICjsBs3xmhhpSjssGEaR2Glddxetox8Zs2i4Ddv2MO33vLlrCUW0IHMnjx5Upw3EwMJMgDE4bqSWVHKVn96WVhyWWKP+Or06XRnxQqqv3o1a9SMBTbnDwqiwNBQck6blpMQLSWSWL9+fVq1ahVFRETQgQMHuBoiiO2oUaP0vi0MI0J6gegrZATc+bSz4986ErhSwQPWAEbnrVq1osjISCbuuXLlYkJ7/Phx+vLlCxkK2B4K8iRLAgsJQUSEyQksZAQYlgaBfX7o0P9lBNOmaSUjAKmCVEByGoDHNu5NeMoi4gpZAl4zFC1qMb9rQwHyCrkWVjEKC0cCDc8N8giuz51LNxcs4HPv3akT22tp2+lI9pBZGQIDA2Fdya+WiueHD8umE8mO9O/Pn/d37izbVKWKVuv4eOMGr+PdlSsG2svkjx/R0bI5adLILk6cKLM0PNy2ja//2dGjjbrd75GRsqPDhskuHTwo+/zsmezHjx8yS0G3bt1kzZo1izOvTp06svLly/P7mTNnygoXLixzdHSUZc2aVdavXz9ZcHBwnOXPnTsnq1atmszBwUHm6uoqq1u3ruzr16/8HeYPGjSI34d//SpbP3euzMXJSbZw0iRZ0KtXsi4dO8bZPpb/9ddfZcOGDZO5ubnJPD09ZWPHjo2zvfv378sqVaoks7e3l3l7e8uOHj3K7d/OnTtVHqO/vz9/f+rUqQTPBZbr06ePzMPDg9ddqFAh2d69e+Xfb9u2TVawYEFZqlSpZNmzZ5fNmDEjzv9j3vjx42VdunSRubi48LkFzp49K6tcubIsderUfA5xfCEhITJTITw8XObr68uvieFbYKDs3vr1sh1Nm8r+tbfn39f68uVlV//9Vxb46pXMFMDv6/3Vq7Kjv/wim+fmFrNP5crJbixaxPeYJgj395c92btXdnLoUNm6MmVkM2xteT0LPD1lu9u0kV2fP1/26c4dbg8FZLKIoCDZzcWLZWtLluTztDhrVtn5ceNkQa9fa3V6/J894+s2K3Vq2WwnJ9mJ334z2X1kCXxN68gsStdqGoW6fv26LvxaIBFAYwi45cnDr9+SEJnVh7WKteLLgwccYbS0YgkoinCgc2fWxGEI0JjJctDnfn3zhiq2acNDm5YY0VYESrpKEUtIrubOnUs5c+akZ8+eUf/+/dndZeHChfz9zZs3qVatWizHmjNnDksTMNIVHR0dJ2qNkZf1a9fSyClTaO2aNdSsZUs+T0j4VAaip8hjuHz5Ml28eJGlEJAC1KlTh9fbvHlzlkPg++DgYBoyZEiCx+MM6y5nZ9q1axeVL1+e7FVIP2DF2KBBA17f+vXr2ZLR19eXbGMjTT4+PtS2bVsaN24ctWvXji5cuMDnIl26dLx/EmbMmMHShbFjx8qTiBH5/ueff7j4DuQOAwYM4AnRcLONwO7d+/8krogI1s9XmTQpJgJroiqZIe/fy90Ivty7x7+1on36sIwgnbd3or9TSe8K2QB7mstkPBKIERzIEfAKjbul/371qj1WdCSQorDjx8doYbWIUON8I6kL9xSKmJT74w8q/ssv4lmdCLQms2hs0DgXLFiQKlSowPMuXbpE9+7dY69ZNO4ChsXXBw/iyAxggo4scG2AUraA0MwmTWIAs3/YWVkKYKa9s2lTylC8ONVftcpo9bhhgr6zSRMm/4127qRwZ2eV2jvp3jYWULtdF/sfPLww9H748GH69ddfed7gwYPl3+fIkYNJWd++feVkdtq0aVS6dGn5Z6CQgs0Rl5b196cFCxbQ1MWLac++fZwUlhCKFi0qJ4N58+al+fPn836BzB49epQJ4qlTpyhjxoy8zMSJE/k7dQDBXr16NfXu3ZsWL15MJUuWpGrVqlH79u15W8CxY8foypUrdP/+fcoXq7OGHEHCv//+y6R9zJgx/BnLgOxOnz49DplFkR1Fct2rVy/q1KmT/DzieNA5wPYXLVpEqc0k010isLDRwnC9uRBYJF5hv0BgQawhG4CMoPqMGZS9dm21MgLYcEmSAZBXaGiBNDlyMGktMXAgeVWtynIgQV7j3wsPNm2iW0uWsB8vbLEgAYA3rjYFLdCe4BpcmTKFrx3Ofc05c6hw9+5WY09mdDKL3vLAgQNpglIdejSor1+/FuVsjQDpgS/VnUZkNkOxYlpHZqUMaAHdySzsUCzFyBuuFzsbN2ZLnOa7dxutyAOqBe1r3547XG2OHaPUmTLR8+fPVd7X60qVImOii48PVxXSFPv27ePIJSofIkLZsWNHjkBKJG/y5Mn04MEDCgoKYqtCFIgICwsjR0dHjsy2adNG5XrxGwaZ33P4MH3296fz589TGQ06SRLBlJApUyb69OkTv3/48CF5eXnJiSxQtmxZjTSzjRo1orNnz3Kg4uDBg0zEly9fzmQUx5E1a1Y5kVUGSG6zZs3izEO0GC4NiBZLEVwQe0XcunWLbt++TRs2bIjzkMd5xv3inUhE0ZCAdvnZ9u1mR2BxfqDLhA4WpAoOF9iv2gsWUP62bTmyp4zgt2//X13r9Gn6+vAhz0e1PZBXkDG8muqYzB3SOUcUFueco7CNG1OlCRO0jsKiA/t41y6OxH64coV1xo02bOBrZ63JcrpC67O1detWunbtWrz5nTt35sYJw0MChveYBWBknZQEMDR0xorMJUcggxc+iZYAeLnubdeOCxN0uHCBnDw8jNLoI/P29LBhPOSGRhrEHwRPXZQU5NKYwDa1QY0aNThKiGSlzJkzy10MXrx4QY0bN+bRKUQ/3d3d6dy5c9SzZ09ObgKZVTVqhYcZ6swjOoaHYMkyZdgxBu0o2tPEImFIPlMElgf5SyoQBUUEFxMirIiaImABMquv0TcnJUP3kJAQ+vnnnzlYogxIJYwNVKYCOYQN4sZmzSjk8WM29Tc1gZVkBL7r1zOJ/eLrS86ZM1PRn3+OkREo3dOBL17IiSteA5894/nu3t7kVaMGe2QjYQvrEEg4Cis5EiQlCisl491fv57ttfwfPWK3h5YHDjAZNkX0W/bjB7tsILqPjpo0qfoMizVE6i2ezKIhQ9QAQ0CKwDxzGQZKzgBBwMNPL2RW6GWT1LB9vnePSin5LpsjeEh84EB6dfw4tTp40ChZsGgYj/brR3dXruQGHwQgsYgFhtO0iZKaAiBgeWK16oqAThQkEhaF0M4CW7ZsiRdFhQTg77//lp8jVF6DTR4ehoiYY90Ypoe8ABFMyAZ0RX5UB3z9mt0IPGNHca5evarTuiArg45WOo43b97Qo0ePVEZnEUHF80AR+IxlpaisKkDSADmCqvNrTAIrLwEcGEiRMhl7IJf67TfK17AhpdVSzqVPgEigSti9NWvY4gsa6rwtWlD1f/+NkRHY2vJvHUVcJM0rpuBY9xtE/dCpBHHFZIwOraVDn1FY6bkBScL12bMp5N07yt2kCXv6pi9ShMkiouSJkUn5e7zGfv4uLaPi83cN1gc3Ck3hWbo0ddGxHTErMgs9E6IPSO6ShqyQXIBIgqSREjAcwj9/5h8UhiBQ5QeNL+w6dCllK8is7oAdDZIiLCH5y2f2bLq1aBHVXbqUH3qGBqxk9rRqxX6TsP0qbAXFVEDAID2YN28eNWnShMkbNKeKgH1XkSJFOBmqR6dOFPHpE5338aHOvXrJO6YASB8Sw0BoEflVV0QhMSCqiuQsFLOBTAAJW3/++Sd/py76g2Q2SCGQpAbS6uLiwiNx+H9JOgANa9WqVVmOAOKNY4e0AutETgV0sJBIQIqGBDAkpoGUK2qFVWHEiBGcdIaEL0SC0XEAuYX2NymkXlsCCwJj5+TEOQkyR0cOHuSsWNEkwRomU1evsg4WZAr7CYuv2gsXcgInZGKQ58B/FJFXkFiQJIy4eRQvTvlatWLJAPxerT3ZlyUr37/HJXhqyB7uBXT+Xxw5wp0BBItQnAByPlQpQwneV8eOqSWXyp8hIeIS06Gh/NxArgUAjTMmbWBja8ulf+HLbZs69f/f28d8lr+3tyc7FxdySJ9e/hn7Lr3X9rO0PXPV8GpNZkeOHMlif2TjIpNV6okj2xQZrAKGhTREBKN+PDzQ0wNSaal9FWQ26XpZPEjc8+cncwYiOadALoYNo6K9ext8e35373KiF+qLtz150moMvVFUAMRu6tSpTFpB9qCfRVEFRZKKhLGRw4bRyhUrmByVK1+e+gwdqjKqeuLECXmEFhFfbYH/QzQVxBDkEu02krBAttURM+iBy5UrR7NmzeLkMRB06G6REIbiEBK2b99OQ4cOpQ4dOlBoaCgT2ilTpsgjrIhKw6kAhBY63vHjx8dJ/lIFkOfTp0/T6NGjqUqVKkw+QMZBiI1JYOHhKxXwUCeJMTRASCEjAIlFlSfsV/F+/ahgly4cRUPE9XCvXkxew/38mOCgopZ3584xkdfKlc0iHwLnNQ65U0EgNY0e6iNayURSB4CEwlsXjgWJkT3p/sE8bPPz7dvsQIRrBEKcrVYtjorrRC7t7YWWVg1s4M9FVgQkZqRNm5YC4QCQJg1ZGlDLeX/HjuRRsiR19fGhgOfPaXmuXFzBSZuo2+Zq1Vjz0yi2QyKgHXY0aUI/IiOp9eHDZnvqUGlmU5UqPBzWdOtWg+ujn+7bR/s6dCDXXLmo+Z49aodkQRCQ0AMLK2uSJkFWAL07RlJAThCNNbY+DhHjypUr05MnT5goWhPUEVjkDigSWFPdq3IZQawbAUq95m7WjLJWqcLfIRr45uxZDkRAYpCpbFnWWiLyCu0+imhIx6kt2dMXmYz3OTJS5/ORlOhhQtFK5f/H+Xp98iQ92bmTh/lhY4ZOA/THaMtwHbRtO9H2Iqnr0bZtHBktOWgQd0ZUJeQJ6Iev6ZQuh/rg27ZtYy9F9M6R7ADZAXRZWWLtogQMg4CnT7khkwTnaJwBXTSz2jogCMQAD0FEZov372+2pwTlDhEhTVewIDVct86gRBbn4+qMGXRmxAjK06wZb096sArEACMoPKpiY8PRfGM5YOzcuZOjrchxAIEdNGgQOwtYC5HVNAKrl+FrXSKJ375xAhDKYvvdusXzUqdLx84feP94xw56+N9//PvF6BvuGwdE9ezs2A8W0oO7q1bFWT/2RRdgG5qSR+4EuLsbhFziM55xhuzoybWwS5ZwgAjnLXfjxqw/zlGvnk6Vy7DOVydOsL3Wy2PH2Mqs1oIFTIqN5RxjzdCazMI6pXbt2syWkcGLISyQ2R07dtCrV69o7dq1htlTAQYeiPihS7ZcSSGzQjOr+zWAdhkWOOYI2AjtaNyYh7Va7NljUI0TIjpHf/6Zk1LKjRpFlf/5RzhkKD3gQt+/52FjaNzT5szJRMRYgE4WWlS0zenTp+e2WxfJgrmBBxSRnIUJ7g2xr/z5+3eOfqMDIWkUQZLQRqZ0dOTfBf34wW2g4v8qroNiXyO+f6fQDx9o97BhFP7qlVpCquvwtRw2NjG/Gxsb+vblC5NvdAjhMODo4UGOGTLwvusrUqmKXFqDFRTsCeWOBDdvkku2bFRu5EgqDEcCHQNx6DCh04FILGQIHiVKUOPNm1mvbA3n1Fyg9ZlGtRlon5AQgOQACQ0bNmTPRQHDAtnPaDgdFZwMdCWz1p4QoCsQRQEwzGduQMOKoX4Q7g7nz5NzpkwG21bop0+0u0ULbsAbrl9PBTt1Mti2LBHRUVF8HVhWkDmzSSqeQbOrqNtNCpgoKhA9dQRQPk/6PoFl4xFRZXKZ0Ha0gEQ8yd8/5hqkSMGvEoHEK89XmocIHQgJRjhs0BFJQhINjuH5kSOsg/VDdczYbcAtAcQVekpJNuBZqpRROz3JGVISHVfnUojCVp44UecoLIBOzL21a+nq9OkU8OQJa2FbHznCcj9RXMICyCysXZYsWRJvPuQFHz580Nd+CSQgM0A0TB6ZDQzkV03E/vAbhN625ODB/EPUJjILY+cTAwfGPBASg40NlRo8mHu8yRGQGKCUo0O6dGRuQLLX8wMHqMW+fZShSBGDbcfv9m25brj96dPsvynwf4DAcscTZafz5SN7HfX5GhFB6b00XwPCqXZ+QsskIfoYjzRKZFKJWLKtmQqiqZJwglCEh3P0Fdni2D8QR0TA0R6CQKr8Xy06FNDMOkRHU+Xx43XSzGKU5M7KlayDxW8GxBVAlBWkFcQHBNajWDERxbOAKKy03puLFrFLDDyIEYFtvGkTJ+AJWBCZRa1uiHKVAc/BDBky6Gu/BFQABJQ9ZmWyOB6zPPyUSC8eVV+21KpFQS9e0NE+fXiepmQWWZz7O3SgrNWrc5asJoT77KhRrOst2LlzsozMmqPE4MaCBXR9zhzWaeVq0MBg23myezft79SJSRoqiaXx8jLYtixSVvDhA/9OoW+Ebk6bCBv+H+QMGeoYamZCqQtiSZs6IqhIIjkylTJlfKIp/a+q9aiLbKr4X20JZKIa2MBAivj6lV8lDayLHjWwSQGkDWgvn+3bx5ZLKFIC4Hzg95K3VSvK36YNdzRFwRojRmEnTaIcdevqHIWVClVINodYL7SwpZEzpKYSnoCZk9mmTZuyzYpkCI5GCnos6LLgOyhgOCCyKkVHHBVK2SbmMYvqQltr1WJLl87XrtH2+vU1liYgu3Nn06aUsVw5ar5rl0YPC2kI8HDPnvwwT072TFHh4eR38yZXfTEnoGQsIueIiJcwUGIariuSG86OHk15W7akBmvWUCqlKk5k7bICuBUEBbGkANICTUkcV5v68oXC4CMdFsYZ1OiwpkAmtTZkUvF9MoE6AqvPJC5dgQ4HHAa4QMHJkxwBlNpoXIeMZcpQsZ9/poLdupGt0E8aPAqLggRIpOMo7KhRVLh79yRFYYGvjx6xlMB37VrWFyPxF+4EhpRwCRiBzCJ5oHXr1uTh4UHh4eFsoA15QYUKFbiMo4DhPWa1qf6FjNetdepwxKD9mTPklicPlR05kk79/js93bMnQaKJCNO2+vV5W8137tT4oYEHaZ3FizlCu6t5c+p85QqlzZGDkgOgD0W2MIzLzQUYvkSpWlT3qTZjhsFGBeBreX/DBio/ZgxVGjdORJaUhpNxv4PIuOXNq7HHJ4bHEYXF7xRRWPyW8fDFUHlyIqTJhcCiIAi8XaUKW/jtUey+sQ2VTMa2icX69qUCbduahddrso7CXrlCt1Cda/PmmChskyZUZfLkJEdhgfdXr3JSF5K7IOurOH48Fe/bV1zT5EJm4WKAiizwK7x16xbX04ZJNrJkBQwLaPCQiQvdlaKbgToyi6jttrp1OZu63enTTGT5GsYSy2v//ksFOnRgvZa6jHg0ENBEauuPh8hS0+3baUO5cmwRhWQkXXWD5qaXhawjfeHCZA7A0BeuEwhUo40bk9yAq+vUoFOCiAeydAsYwMTekh+oYR8/shUaapZLvpSJEjV/fyZGkBRI7iQohJLY/1odgXV0NCmBBUHFNTr/99/0as8e+uLry/MR+XNMn56dBnD9sX+Ff/qJCnXtyr9FAcMB94bvhg0sJdB3FBb3HKp+gcQi0o5rWXfJEvadhR5bIJmQWVSDcXBwoJs3b7JXISYB4yHw6VPWuaJxxYNT+mGr6v0zGW3YkAlwu1OnKH3BgnGcDABk6CIhDNIDRR88DJfuadOG/Q8RzU2TLZtO+4vGvuW+fbSxQgXOsIdNlCHIlrH1shg6NAfLlcjQUO4ooHPTYu9eg3i7frxxg3Y1bcpEo92ZM5SpTBm9b8NSgQg9ZAX4DWL0AqQroWgqkpXCpCgsMtjTpCHX3Ln592ut+klzI7Agr0jek6ZvERFsw4dOLJIcvapXp89377K0ABF1JP8U+uknylajhtVew+QQhcVvGQUOQGIhFfEsXZqabN1KeVu0sPhnlrVAqyeynZ0dZcuWjaJjMzIFjAsQUxAWJJZID01EZqHPUwaE6p9u3OCIrHLkNfzrV47mNtqwgdaXLs1m97XmzpU3Gsf69eO60y0PHOD63klBOm9varJlC21v2JBODx1KNWbNIksGHmrmkNSGIekDnTtzXfb2Z88mOSKhCo+2b6cDXbvyNUSilyG2YalAZxGyH5BS1zx51OrWcZ0wQgLiA3KEThA8Q1EVSNNID/y8UYHqxo0bVDyJv0ezIrD+/jEE9scPkxBYLrWKyKtEXkNC5G4tKR0ceCTJzt6eHGxsuAPru2QJ66FhoVVv2TLK16ZNshhtsogoLLSwt29zMYnyf/zBUVho0vWRA4GiE9dmzuTfM4hx2+PHyQudEyuW+VgitA4voW42anSvW7eOiyUIGA+ICECArvjgBJl19/aOsxwa6JuxlUdUeaFKBRPSFypEVadN48ShXA0bctnTixMm0J0VKzi5J0edOnrZbzQQNefMoeMDBvC+Fot1U7A0YCgZWerm4GRwesQI1jwjKc+zRAm9P+Qv/fMPnf/rL8rfti3VX7XKoIUXLE5W8OlTjKzA0ZFc8+eP8RBVAuzzWAv7+TNHfSRng0s3b1LNEiXI39+fXK1o2FItgc2c2WgElslrRIQ86hoF8hpbbpXJa2yFLR71kv2PvbMAk7L6wvhBEOku6RKQklakRSSkJUQURDHAxm5QUQQUCQUBQUQUpEFS6U6lS7q7O/b//A575//t7HTszuzOeZ55Znd29ptvvrj3ve95z3uilEG/cOyYnseDixdLuVdf1THVyLUiEbcsbPWvv5Z8deoEhCmlcO/fH36QNX37auElC5PG48YFfCyNRAiD2QEDBmhbxJw5c0q+fPkktV01M21tIxEcbSQrR1rQmuIvZ24G2/74Q3WOZV991eG2uHmNLVfZl1/WSvgZTz8tFd96S5Z++ql2cUL7Fcgo+9JLcnLLFpnz0ks6GeR96CEJ22YJ8eypyiC/undvqfXddzrIBzIAXjPat9fK4Ae7dZPKH38cYSgsxwZrO+453ERgqq2pZe0YdeaMSglg8NC340Ws3ZuiZTyJKRUd3wCW80HhopV5xdGFYD+oA7gzbVrNdsGYm9a3xpGCc3VnunR6rlv9/bekjCzowpqFJViEru7TR/W2dIor0aGDVHzzTZX7RCKRgdmmTZsGZ08i4TLwLjQTqrHlclQAxgC+pk8f7Wxi1cnaywxM9y9SKfWHD5efS5WSBW+/LaWff17u/+CDoJyNh777Ts7s2CGTH3tM2q5YEXb+fEgMGGDj05Jlz19/yd+dO9+2h3GyWPE1VGLSubMuhhqOGaPV2JG4HejUkfk06dBBSpctq0CM7BTSqxeef17e69xZmbwxkyfLT3/8ITv37JHUadLIQw89JN99951kS5lS5QK1atXS7WWMLqhs3769/Pzzz3Lr1i3p3bu3DB48WPbv3y/Zs2eXF154QTNhJnbt2iVvvPGGrFixQu655x4ZNGiQusi4C7b/+uuv6/Pbb7+t28eFZujQoZLH4hE8cOBA3Qf+jqzho48+kqeeesp2bXTr1k2GDRsmR48elcyZM6urTb9oeVIoAFgFr5cv32ZdDXi9cUPtytgHFhaGeTXsns3X98SJ276+0d240uXPr2D32vXrcmL37kS1CIkXFvbHH2+zsNeuSeHGjQPKwhIQKWqv9euv6jzB2MnDFFJHIpGAWQas559/XjugdOjQQXLnzn27U0sk4iwOLVmifd2RCBhmlokCBsFaAAboPbp2rTw2Y4bTbek2LDcx20PXCkNb/auvgsbEwX7wOaMqV5aJDRvKE8uXh1VLXS0CiUeJwYlNm2RKixY6yCPbCPR5WvHll7J+yBCVFUSA7P8nW9LMmN/DrgKKRo0eLc8884wsnjNHli1YIK9/9JFkuuMOee655yRF1qzyVa9eUrRoUTl27Jit/ff06dMVOI4fP179uLdt2ybp0qXTglri/ffflyFDhkifPn2katWqcvjwYdm6dWuM8wOwBWwCZPm5TZs2miVL5kEx4qVLl9Q68ZdffpHkyZNL586d5fHHH1dXGmLixIny2muvKfDGmebPP/+0jfUAcPabfRs9erSUKFFC7Rhxs3EFYNHykwEKFoBV8Hrp0v8Lti5cUDDKfQFgwR1CwWvq1LFAEalrFvWAWH7GRQJnAgBvDC1zNJMbicAG2Y0txpHAsLAffhhQFtZk0yjq+m/SJN0uBWPI3LguIpGwIkmUB02uGSwPHTqk3rJJkybVgZafwzHoXoa92NmzZ3UyCZcYWbGiZCpaVFevtQcMUL87vGP7p08fwy5pcosWcnLTJumwaZNTNmFEmTKSq0oVefj77yU+Aj9OLLuylC4tLWbNCose5DAGHGsGQxoTxHXQ+IJjRgV8m8WLA154snHECJn59NMqLXjwk08kmEGL0N27dyv7Z20RiucqBW1xGZmKFXOqBwakqazg9GkFOnS0q1mrlhw9fFgWjh2rKWsA7leDBsmMOXNkc7RtkzVWr14tFStWlPPnz0uaNGlk/vz5Cg5VMxudUeFvdE9EwtWxY0enBWAwqc8++6y+xmcBKrds2SLFihVz+R1hZAGmy5cvl/ujJTIA5XvvvVdZ3kqVKqkzDduDGTbRqlUruXjxokybNk2+/fZbbWO+ceNGZaOdAVjY12ABWD6Da8ToXXnmNZUDpE59G7ga8Opg7DMyAhh0IyOAfU0Rzdg6Whw6u1Yj4cP5i4qSwytWKIC1srBkAwPJwvI5u2fMUBCLHzDzZsV33pF727aN9w5xkQgeXvOImUUfy8q8QYMGeqEcOHBAb3JHgdtBJAJvwYQzAYCV1ay1YQJhZAZ0CPtv4kRtZ+oqLWYKwOIr0Cc1mThR2+uioa3z448hr8uEPUB/Fx/MLBW3k5o0UQYJq7NAA1mkC7M7dpRSzz6rGtn4CoDsyPLl4/Qzn1qzRrKXKxfrdUATiy4AK4VbZBXQUgKiyhYrpucA5g/gVP3hh6XfoEHq8oJtYdeuXZW1BLAiHyDokljciewHQHr16lWpXbu2y30tXbq07ee7o6UusL/uwKwhJADVJvgfwDSfDZjlmeybNQC4ffv21Z9btmyprG2B/PmldtWqUrNiRalTtaqkTJcuaAysgteLF22sK8feBl7TpNHPVQCbKpXT8S6GjODUKf1/q4wgYrsUjyzsM88EVLKFpGTrmDEKYk9s2KC1DcwzAOaITCThh0dgFu3UK6+8Ii+//LKCDuugaB00+FvEtivwcWTFCk2fMakS1oYJhCkA+2fAAJUcYPDsKuIbzBK5q1WTRwYPlpkdOqjDQYU33pBQjkPLlmkqMlscV7sy+VKQxSSAzZqvnr/O4ti6dTLlsceUGXl44MB4XVTAkgIu4/ozY8kKTpyQ8/v2qXMIjOyFQ4fk5pUrmn7GuYB7B8mPfbDAr1u3rj5GjRqlbCsglt+vRVfNOwojNXAXMKImzHkyYDmYwXiR9to1WTh6tCxcvlwWr10r7/fqJYPHjZOFixbF2C9/AuYU4HndCl6ZV5ImVQBKmliZ15Qp3YITRzICxk1Y2Ij5fdyxsGhht40Zc5uFbdJE3XNwyQkkuGThiQMP9lrn9u6VAvXrS+3+/SV39eohT5JEIo7BLCt29Fl79+5VduDvv//WAoBIxE2gg4V9Nab4qaKZWVa8BH+DvdgwdKi2UUxu5zBhbxnEhBHfYJagYw7C/PlvvikZixSRQo8+KqGsl6VNZVynqRZ//LGaeWMbE+iGBef27dPGGnS5Qcsc33IPGDZHLGlchcoK9u5V8AaQBcBevHJFGbz0+fIpGwgoWrlqVYz/I32PjpXU/cmTJ6VHjx62wipkBtZAr0pYF/38L4B2zpw5DmUGgYgbN27ovsDCEmh2z5w5o1IDgmf0sxSkcRyunT0r82fNkkK5cmnhG+cmS4EC8kS5ctIuRQp5c9s2ZXc3bNigHSB9Bq/IBaIlA4xLWGLBgnOs0+TOrWMeHfc8ASU2GcGJE7o9m4wgXz6nMoJIBIeFBcTCjsKAP/DRR7e1sAEunEUu8s/338s//frp55K5xA/bUUfLSCT88NjNIG3atFKyZEkZPny4pp/uimhP4izwOETjir+llZllwiFgY9E8MimUeekll9tC40aESuEVBWd0Gvvz8cfliaVLJWupUhKKQSEB6aq4jA3Dh2tRFmxGkebNA7ptdKDj69eXO5Inl+bTpgWle1g4BfeOkRVoREVJ6pw5tbmBPciHbaWwC7cBrAj79+8v33zzjUqsAKv8/uKLL6q+9PPPP4/xv9gZAqoosEK2BYhFS/vuu+/KO++8o//P+Hr8+HHZtGmTTSPrb8Cekl2jmBfJAVm2Bx54wAZu33zzTS0IK5o7tzxYurTMWrBAps6eLVPHjNHWzb+icbx5UzW3qVKlkl9//VX3ne/jTRrYMK428BpdGArYTJEnz23wCvPqIfBUGcGFCwpsbDICPH3z51f9bkRGEEcs7PLlahloZWFr9OoVcBbWLMJpxU6xKvcp8qgKb75pa9MeicQZXltzsXKPRNwFbAMpbnpPUwRkNGL2zOzGn37S1nvpLFY7joLUG0G6LRSCga7ByJEyulo1bc0KoA1kNWsg4uKxY+rxG5d62X3z5slfzz8vpZ97Tv1/Axmw85OaNVMvYo631bc4sQWACu9JwBXB/cXxoNDOGaBq166dXL58WYEgBbG4AJC94v0UW9FUBtAIY4n7QGPLIihXrlxqcfXee+9pURbb4n8+/vhjBZmffPKJFtuiiQUQByoAoADmJ554Qg4ePCjVqlWTIYMHKwBkYVMlf375vEsXGTB0qLx/5IhqYyEu6j/2mP4/+loYZ0A8oLZUqVIydepUlxk6Ba9GMgB4vXRJX7/jzjv1OLNQALzCgnvLmnIN45cNiLXJCHLkuC0jiBAtcRLMP1hdoYUNNgtr3FxW9uwpW3/7Ta8fAGy5V15RH+dIRMIjN4OEFOHmZkCf6F/KlpXHFy6U/6ZMUYuRjjt26N/W9u+v3rCdDh+WAZkzS71hwzR17yoOLF6swLHDli2S2YPCkbgKAMWvlSppZTQAjoHKHTCPq9g5dapMbNxYntuzR9PNwY5T27bJb5UrS/by5bWlcCDT/zBX09q2lR0TJ2rbRhj/uI74rhBngQiAu3zsmA1gkcrOULCgWz1lzZo1taUsxVDhEsZnFlmBkRBcsbgQ8N01HY8PrB/n4+b16za9KyAWz1cCoGn8XXlGd+xLyt+pjCAaFAdDRhDf12q4sLA4EgSDhTVzFkVdu/78U9LmySMVunSRUh07JvpsUlzH9UuX5OiaNXrv0TE0LN0MIhG/elkmA3qDk1axsmimYYI2VIiKUsG7u4CJIUJBM2sNbI/ar18v//Tvrw9aDRZ/8kmp9O67aq0S3xIDjnugi68cxaUTJ2TCo49qpXajsWMDrmNd+N57WvHbeOzYeAGy8Rm4QmiL2ZMnb/uRMvEmSaLnNSGzO1okFhWlMgorgFUXAj8ALEDGapOF2wcBWFWGO3t2LdjyhymNyAhCk4WlABLnkxJPPx0UFpZrdNe0aQpimd8yFy+uLdaLtWkT79r+xBBRUVGajSQrzPzHAub4unWabaGuIa7ArDcRAbMhHgwc3MhMOKSFY4DZs2fVyeDAokWamndUYe0UzEZ3IAqlSJUli1Tp1k3T6tqy9ZtvZOPPP8s9zZurzCJHHNs22TdLCHYBCanTyU2bqn8wHdLs2xT7GzD5dMGh4UKR6PRxQg8mRWVhaTF74YJNn4nPKIvE9IUKaXV8OEf9+vVl0aJFDv/2xgsvSJa0afU4cH35A2C1eDQauPIgvU+wLUCrscriuPobsWQEd90VkRHEMwuLnrxQ48ZSs3dvyffww0FhYWH3t/7+u8oJ8Etnwd1syhQp+OijEXutIMa18+flyKpVNuDKM2MmAZnE/Ic2mWsgSYguJiJgNsSDiRhtGYHPZaFGjWIws8nTp1dj6FzVqnkEtpgcdMIJ0QuSYP/ol1325Zdl8y+/6MD2a4UKOoACavPUqhVnlcmkNg+vXKlasGBPHLOeeUaOrF4trefNkwweLEy8CWQFc1977bbOLMBtcEMxYAlJR/OATdCioAIFdNDmNTIT+F16WyBE04NQC5opoOFVd4Dz53WRq92wbt2SLNmzy90FCshL773nFYDlegREGr2rgtdoezEKtCg6JbV/ZwDHEpURsPCgqYFFRpAyf36VKETcCBImC0twneHGQ2EX3fYKNmwodQYNktxVqwbl8xJzRN26Jae2b1fQqsB12TI5sXHj7eLJdOnUn7dMp04KYPkZL20cKiBC8ALH+oymTaF2P3oNZhH/o8HCRgbDbnufw7lz5wZy/xJ9GCkBbN2Z//6TrBbbEQYdJukDCxa49ZYNJY9ZT4P0JPpZzLWxp1rZo4c2WshRqZKC2rgwwz65ebOyUTmDXPy1tFs32fLbb9rNLWflygHd9sGlS2XaE09I0ZYtpUbPnpJQg8EYIHcJFvbcOQWq6Clh/JETYDF18/JlBbEsEENtMPYVAGZOlUq1nVcvXhQKIJJFs6/eMLAKXq9cseldeRhnByQJOAMoeKVgK5Aa7ogbQWixsPjC/vHHbRa2SZOgsrBGVqXSsgED9J4t9sQTUvHttyVryZJB+bzEGFfOnJEjK1cq2wpwxbcekowxkawv8w0Ex92VK2sdjTnX/B/Xw9q+fTUrjDa67k8/Sa4HH5RQDK/BLJW7gNlHH31UrboSwoQQysEFlTZvXjXNJ7JbTPsBumj/YJ5oQpDQwKwJQAkegkVbtZI9s2bJiq++ksnNmumNiKY2mDoqBnhu7uwVKkiwYvOoUbKsWzep+sUXtrbEgSwmwyWCBQCas4TYCQcG8ZJhYa9fVyZBrZkyZdK2pgzcdMdDYkCDDmfta8MltIjr3Dm9l33VwAJeYK8N6wqINeCV44d1H6wrAJbjFuiIyAhCI7g3bCzsxo02FhZHgmC6nHA/IiOj2QGgSot+u3SJk7qEhBy3bt5U73bDuPLM72jmmfdhW8u/8YYCWOpwyLA4KsZe8913ek0wthZv104zeqFUMO4ovB6lRo8eLX/88Yd6JIZ14HHoKMXIa9bJINoL0WEADKx6O2/eSxW1MyMJFgjREy5pt5SpU8uJ5cvlrjvvlEzc7NGfc5NCliRJdALLUqLE7f+lgthFV6AYYNbNe8XafIHiDovRu1/v5buZRRC6uxs3PHpvkmvXpEC1avpglbmqd2/5u317Wf7hh1L+tdekxIsvKnOkQUrUeIY6Cs6FAXYu3nt00SLJVqrU/xtRuNsu1465rnifi85PctddcmDZMpUXlHzqKbn/tdecX0MU0RhQwfGK1is6DDSLd96pVm4T6tWTdFmzStNRoyQZ58R++9Hv1eDvTtpUa/A+o4f05r1cY9GV7RrsO6+xDR6cX3MuuCdcXZPR7wWMUZWPrgtApynpTJmUcTUaWN6DJyX+zNwjuGOorMDRtWndB/P93OxDXL6XDBgAlgWsAbBJrQDWuphz8BlRd9yh7gJasHXunFqSsQjmMwH3qaLBK0AW6yzLB7veZ+sYGl1o5iw4q0ZGAIjWc5Yhg6TIm/e2jMC6/9HFeZ5sN6jvNcF97Oo4WO/7AI8Rtvvem/e6GCO4Lw6tXSvrhw1TLWzU9etyT8OGUqt7d8mLhMt8bzNWBHCMOL5hgwKlbWPHSvIMGZSMQE6WkhoOxghn45+r8cQ+OAam6JDzG+1Y4vd7vcEGcYQjLu/frzK4IzxWrdIHmUSu8SylSmlROMcYEJsxV67/32P2n5UkiRzftUulBFifpUiVSso//7zc16mTpDGLGut+Wef7YOIIV8fCX2uunDlzqm6sSJEiEo5hs3oQEYdGD4D0adNiHlxnF3iNGojo/v87FdEnTjh+L8yetXMQBs979zp+Lz3cN23SH7/Plk06JEkiqaIbJtjH+aRJ5a/69aX51Km3X6BLlF3XIVtkySJjy5TRlGHjP/7AZ0hkwQLnINJ6IdGda/p0cRrWy6hlS5Fx45y/l5vNXLRYiY0Y4fy9fG9TaU5DiB9+cPrWXzJlkiJdumjjiBTdu4v07u18uxs3ipgFQNeuIt26OX3riscek/vN9+nVS+Sdd5xvd96828eV+P57kZdfdvrW84MHyy/vvy+ZS5aUVk8+KXc895zz7XK+OK7E2LEirVo5f+/w4XKtRQsZU7OmZNq5Ux6N9iN2GAMG3D6uBNdyrVrO34tE4e23b//MtRxtuO8wPv309nEluJYtacMr+fLJ7kGDpECWLKLDPU1AjA0bE/CGDU43eytzZrmUIoWC2Khr1ySb8z2QK8mSydmbN9XOJ2XmzJLkn3+cv5nJtFCh///u7B4iYDPuuef/v69d63wwT5tWxOrG8e+/zhdv3HPc+9ERtX69LuAcRRT2VtYGI1zPTkDGzTvukBNJktx2cCC1mCSJJHO2v0zuZcr8//dt20SiPXgdTqzW7l9YBkY3cnEUR1mERDc1SAeb7GqiIgNlAN/u3SInTzp/L9IrA7YYU6MLVxwGx8yAl/37RY4edf7eEiXkSpIkt625pk2TFObadxQrV94eewM8Rsiff94ee4mffxbp0CEgY8QMLK8KFFBG9L48eSSFK5lakMaIm++/L0m//NLhGBEr8NrmuBJ79oi4qino3Pn2cSW4FrK5GCXwzee4ElyPrprHtGhx+7iacJWVDhKOuF68uGx6+eXbhVrLlkmLHTskNrcaG0doMN9t3iyO4mLKlDLw8mV1FSrfpYuUGzlS7nA2XiLbst5jQcQR58aN0+/niTWX1zlHOsX07dtXV3eRCG5wjGFiXKWGSSt4YsllZWZDpftXoKNAvXqy7PPPZXDevLLf2c3lQ9ABKRixrGtXNXlvMmFCQFO5XBNTW7dWicGDLkB6OAYV7hcPH9ZCBdrwuoxbtyRTsWKSKlu22IxECMaNa9dUF09aEAbLFFw5Cnt5l8vRmG5m2bNrVXK2smX98pL1J0hbwxaxH8kC4HgQCd8Dx5iO//2ntQfBcrZh4eIqAuF6kdiCGo65r76qz/nr1rUVh/sbUTduSP1ffpGOu3ZJhTfeCMvOeV4zs82aNZN58+ZJpkyZpESJEtom0RoTJkyQsGBmDx1yjPRDSGaASXHf1Kml/o8/ytyXX5ZqX36pVYYEp61f+vQ6YLRatuz/BUpuKP/BJUvKvW3a6LbCTWbg9r0pU2q3LtX7sDK/fl21PmiEYtkveSAz2Dtnjkxq0kSe2rxZtZau3utNChGQMrFJEzm2aZO0WbFCMhYuHNAU4t+vvy4bRozQNrX5H3rII0lCXMoMrly9KrsPH9YuU2pE70RmQBqcjnVoYdFuAcIYvCnqUvBvJ0ngu184dEhlBWjB6EhkS5l7KF/wVQ4QFT0h3LxxQ7Wn+oj+2fbajRua0tX0vl3wfdhXbG/Qf/NzUmzE0qVz6NOqhVPRsgH1eMW9ICpKF77anCC6WAsJgQJfL+QAvr6X76hNDZARXLjw/6YGSBiQEXiz3RCRGei1CjObK5ekcDXBh5jM4Mrx47J1xAjZOHy4Ah/uBXSweHdrO3Trfe+hbMnT+547Bx3u6p495dy2bZKzShXVw+Z/5JGYizBvpAMJXGZwM2lSObZunWpckbYhGzgXnblNhSPJ/ffrIzuPBx/8/3zmoVxR49IlxRRbfv1V1vbrp+5IuWvUkPKvvy75aHjhq3QgiDji3OnTkj5nzuA0TaCtIYA27IODZj1wrt7nzTY9DQ+KUJgYiGtMEtevSxYAa/RnoHm7fuuW3JE8uZoY28KNZ2YMzaw3/presDnevJeBxFNTdQ/eC/tTvUcPqfTee+p+sLRXL9kwerR6qxZq2NDxPzFIOmAJDv77ryTNmFEyWoXvTt7rdAC2W+wBOGa/9JLsX7FCWv79920g6+S9LgdgJ0zu8i++kHU//ST1hg/XycP2fk+CAdjTa9ib9wIgrO/lf3mNZzuAEGWaGxw7drviltOO3tWRPZMFpLFAoCkAgzWyAmVjnbzX4+8XrVW1gdPoB16YsQArQMNuUgHM3WEBp1ha8Wx9TR/JkrktpFXbrYsXb2teeeBcAHhNmlSBa+pcuW5rXg14dRXeFAG6ea9qly9ckCsnTuj5sskIChRQFxanDE8A9yFO3ss97+m45ucY4et7VQu7ZIn6wm7HkeDGDSnctKlU/e47yVe7tvMMn4vxxJv7nmtzXf/+sqZPH7lw8ODt6vfhwz1zZ7EfIwL1Xu6FYLyX8OO95w8ejFGkRWctCjJhq7OVKyf5mzdXnSvHjtS/03vaw2LWyydPyj/ff6+uEWS3irRoIfX++ENyOCts9gYbBBNHeHGMvQaz9OuORNw5GRAXDh/W56ylS8cCupnvvdfjdI32Sj93LuzcDHwJCksAtbARc155RSv68S4E1NK2NL6aJeDEsGnECGkwcqTHDhSexsYRI2TJxx9Llc8+c9vWONSCa5OFFrZaFCphkp8GNixzZrdOFRREwTIwWZPCBty5CiZ9A0IdAlQLm4rONEYkSXIbiEYzqQpQ06WLCU7N3/1I1SlIhHU9d+42gI1mYLTpQ5o0kiZ3bgWNfH58OMrY3Ahgza9dizQ1iG9HgpEjFcTSaCB9wYJS+dNPbzsSwMIGOSg0hemjayOLLNhf7LWYmyJx2/P62D//2KyxmFfw0iVwKgKwAi55zlqmjF8d8+zjzO7durhQ14ioKLW5hCX3dA4Mp/BZqHf8+HHZRnGAUN9QVLIm4HaQ8RUGsJ7ft08yFCokd1lodsNaZfeiKxaTIkHqMrEE4KbFrFmyY8IEmffGGzI82s4L5tZV5yfju1ju9dcDti+0kV384Yc60TDgBzL2/PWXzO7YUXuWB7vBQyCDyQ8AC5CF1WMRArMKUHMH0lRWcPCgeiAiK2BiYMBWg39HbKoFwNqHgs9ogEq2I1nq1I4Bqh2Leu3aNUkeYO0fx4EUI2wKnwt4pYBNW8OmSCHXr18P+Gf63NQABwn2LdLUIE5DWdilS2OxsLX69HHNwgYw8G3GUWbT8OGSJFkyKf3886q3hElMrGEcVCjOMt20ALIs+Fh4woQWe/xxBa7IBujcGYw4unatOhPgGYzUp9I772hhtHpuOwmyUPQRuHHjho4xPFsfRpFKdh6pZtiD2YsXL8orr7wiv/zyi61hQtKkSaVdu3bSv39/SRXmHo6hCGYpCqFwwxrHqIrGXcILA2MDZq2gODEE4IP2rfnr1ZMVX36p8oNNv/wiD333nbZndASaTu/YoQuGQDVLYEU+o317ufeJJ+RBKv0DGFwLUx57TPI98ojUGTgw5L2fr126pNfi6f/+kyTRqTXkIehh7bMMADtrKt8GTq9eVUaWvwEw2R7diqzBcbCCUezVYoDTaF2qalU9nPxr1qyp/trJkiWTX3/9VUqVKqU1BM5i69at0rFjR1m9erUULFhQ+vXrJ3Xq1JGJEydK06ZN5aGHHpLixYvLACrGo9t5/rdypZSqWVMm/fGH1G/aVAoUKCDPPvus7NixQyZNmiTNmzdXr++4CMMQw8JaZQTp3ckIIhF3LGzXrpqJiQsWljj6zz+y8uuvZfvYsZo5YfFcpnPnkGyRHuwgY0LXRms3LRbXBAQUmT0aGvFMZjWYnTejoqJk719/acfMfXPm6D1aq29fubddO0mSPLkC0jNnztjAKYDV2vSK8ZJxzfqgpoFnMB7Y79SpUyE7v3gNZrt06SILFiyQqVOnSpUqVfS1xYsXy6uvvqpOBwMHDgzGfibKMOzric2btTe1NViVE944GdBFjGAySowBmKnWvbuUaN9eK0InARTq15eH+vX7v3Y1OhiYCJoNBCLVQ8EXq3I6qARyMIAFGN+ggWQsUkQajRkTFIP7QMXxjRtl3aBBsnv+fCndu7ckIV2eM6emqAGol44ejVkw5aRYCp2osZkiy4BO1CFATZo0KAPviBEjpFOnTrJkyRKX74PlALDmzZtXVqxYIefPn9cx0hoA3Zdfflm++eYbuYPJZudOGTNxouTMlUuBrNn/3r17yyeffCKfBngh5Co1qjKCkyf/LyO4+251QuHnSMQDC/vjjwogDQvLYjzvQw/FCQvLPuyfN09B7J7ZsxUoPdS/v0oZXGW4ElJwDLg/FbRGW2NRtMVYhD8zcwVpfAiQHPffL6ldWYL5GYBQA0qvXb6s18WGAQPk9KZNkrFUKXlgwADJVa+ezgcnz52LBVAp3Odnmsq4GiP5nNOnT2vhfNq0aSVPnjwKbEMxvJ75xo8fL+PGjVOGwgQNFFKmTCmtWrWKgNkAM7NMypjD2zOzp6MlHt6kKSgcSWwyA0eRqUgReWzGDPlv0iSZ+/rr8nOJEqrxuv+DD2zdoRiscDAg7e2v7nnCo4/qAqLJpEkBtUVisTO+fn3dJs4F7rSiwQ4KtwCkMBPYZ/FMNxnYiuPr1qmUgIk3Vb58t99/6ZJciK4e5nUmabRktnS+Sf1bfuc7o9Nk8kBTi2exmoT7GFh3edsR7J577pGeHrQF/uuvv2Tnzp3qy50j2ni8e/fuysyagGUFzI4dNUrqoJdLmVLGz54tHTp0iDHJwODaA+FgyAg4vhRzUdQVoxFF6tQhy8gk1OBckEGiExOOBPHBwnJNME4CYjHkp516w99/V41nKC+cAxFkJPjOVq0rY4+Rr8G2Iq3gGftGf7MU2lKaQk8HKX4e9ixq1NWrsmfMGNn8449y8cAByVunjspM8teurSDVn2AfYGEvX76ssoL8+fPrZxpG197FKhTC66vx0qVLkt3BjZQtWzb9WyQCC2aZ3HAzyGY1MkfuQSojunuPx9tL5MysNbgx72nWTL36KMpa1bOnbBo5UgcDXmfg8ldiQMp4asuWCuyeWLbMpV7JlwIcmGWugyeWLg3a5MZkBjtnwKl5XIp+pjjR/EzaP0YY8BMVpbpKWCTYi9SFCsmdWbNqy9lUJvWfNKnqvKZgTB6H8dSaNTHdQDyI8h7q1KkpgMkwQJaoZMf033XXXdK6WTP5acgQaThqlPx36pRs3LRJppgmKNFRIUjtlB3KCNKli8gIQomFbdZMC1fjioU148vmX35R3SWSqzy1asljM2fGttdKIMF1f2r79hgOA7T3NfcD+lakFABXfvbUq12LTS0sqjXFzzPg1Rr2aX5km+Znw4hScPdP//5acMe9Szv3im+9FaNA3Ne4cuWKnCQbc/Om2q/yANcdPnxY6wPYD15LEGC2cuXKmupCM6sekWozdlm6deumf4tE4AJWj4k+ZdasmuKzBv6bpPu8GViojCYSOzNrDRYDVT///Lb04LXXVHuat3ZtTR8ZT19fgkFsDhZc8+dLi9mzA9rXmgEW/S1ehC3nzFGWIFBx6cQJmf/GG3Ji06bboPXYsVgV/WjjUuXIoTpXMgOAQdW8Zs0qZ3ftUt3W4RUr9H2kIWEvYMOtAybencg+rEw1LCng0j5gCfGPJfi8QDLQfKa3kdobSx43CwVcGFrVqSMP//yznL/zTpUwwMLmi2avA/2ZVhkBi5Qr9jIC3CNCyMzeoQ26g9f0FWd+m05ed2qxbnmdYwOgZNF2LdrbWP/PPJv3W163bdvJe23vs7yXsX7Xn3/KjvHj9ZrAraJkx45S6NFHbe4zsISutufuMzzZRwoyd8+YITunTNHFDcCtxnPPSYZ77pEbly7JjokTXW7T3f54s4/u/t/d93G1j2SFyAIh0yJ7dGH/fr0nCMYxitiQ9pH94Z4guA4OLl4sBxct0jEYwKfWfTxu3rz9e/TD+tnEHej3o1P6/Myszc+2+duD7wy5BcCmhgZ7MprGsMjgPSvJFPl4zJURvn5dwSqRFN/b6O/E3gGi2Xf2m//LWLSo1O7XT8IezNL9q27dupI7d265jzaCIrJu3ToFtrNmzQrGPiba0O5fSZKojYY9aKWqmNSfN2FzM4gws7ECzWzzP/+UnVOnyl8vvKAm0ACyYk88oaDL21j9zTeyfsgQqTtsmPY7D2QsePddrVJtPG6c5PKiANBdnNy6VSURXCdFmjdXcANINQ8FsNmzx5JKnN27VzYMGaIWMADgXFWqqPUYqUhvZBUsLKwsKYMsjHDUoUOSvWxZTbMGs4Ai0IHLy/79++Xo0aO2bNaq6JbWTB6ntm7VQrbK9eop8zp06FD57bffpE+vXjrRAuKV2bl+XS4cOaILDIfhKbhj4rp1SxcnZoIzXrj8TotgFi+efoZtm168N9Y+unp/CAS+FxdOnJAFL74ol5y1Hw9CXDhwQP4dMEAf8RmmsCnOwwr0zM+W59svR//s6r3Rr5nrXotJqcw3C3RjtZc8uS4aTDEo7OcFWh2bxbWdZ7UC0Whwathy6+/u9sfVa/bfjwXGxUOHdHHB/gG0GZv5mfs11nFIEvP/nR0z4jpMMe4uBmhHNxW5K0UKzZbFANzR/+etLCtkwSyVvFTVjho1Sit1iTZt2kjbtm1VNxuJwIVpZYvtkDXocsUk6JEZtR0zm4ximRAVcMd3cNMWbtxYjq1fL8s/+0y72FDsUPPbb9UNwVMWHPZiwTvvaKvIUq56qfsQ+Dmu7t1b044AzkAF3c5I8cN80swhg6ve59GsIgwOBV27pk9XtrR4u3Zy3wsvSNZSpfzeH8AeDBXXbBpAdc6cYZfeRBtbqFAhad++vWpsKQD7KNo2DbASVayYrbPcUy1bypsffCCpUqaU6kWLauaFRaeZUGj/qoy0s2Ng97r1N9hFWCdlnqKilHllHNCFhuX/bD95+Bn/f9m799sm1kD8jw/HI9b/uLiukHidueMOeWTIEEkarVn0F1ixWNw9c6ZqUc/t2aPsHwVdhRo1Un2yu//3BrRYX3O0vbN79qgmd9vYsXpdUHlf+rnn9J7z9PsEch8DcY+TcTC2WEgGyGAZK7lMJUpI1vLlJVO5cpKxTBlJmSdPjM+EhbRP9fMgre6uWCqQAfjeNW2aMq7sPwW+1Xv2VEtHf+oubt26JRcuXFApARkyvhc2W2nSpFFCMtzGWGv4pOBGx/Hcc88Ffm8i4dCaCwsca6z+9lt9Lg2D6EVwQyc2Wy5f4tiaNdrQgAls3uuvq+4138MPa/WuO7nA4VWrZFrbtspKVv3ii4Du1/YJE7RgjRa95V59NWDbXT90qPzdqZNq8hr98UesxZM1SLdiwM0ECHuIz/Ejgwerd2Kg0v9cp3hYakqrSJGwvWaZGLHSwrGgYsWKas31xYcfSovlyyVl6tSaWTm9fbsyrw3uv1/eTZZMWjZvLrnKlo3RDIHCN1ijdHbSA29lBCxUQk1GEPJx5YqeC8YDI6vzJWC+Dy5ZIusHDVLgCFhBm1936FDN3MSVFtYEdlJqrzV+vHbLq9Ktm9z34ot+F7zGVZhiqWtXrsjRf//VLNqRFSvk+Jo1cp6xg3kzc2bJXLasFO3cWbJVqCDZypeXlOnT2yr5zSOUABxa5S2jRql/76ktW9R6s+mkSbrQ8eUauXXrlspAsdXigZQAUE5RF1ImfwvFwg7MTpkyRerXr68XAT+7isaNGwdq3xJ9oKNi0LOCCyrGARIEeiZvggKwiMTAdZhmCVisIO9oNmWK7Jw2Ta28RpQuLeXfeEMqf/yxQ+DG8Z3ctKkK8euPGBHQCYqJcHrbtlK0ZUup4UElvSfBtbXwvfe0yIOJrHb//g4rlHkfzC0s7H+TJyswurdNG/0fp+0QfdmfqCh1Q0DDxvFVWUGIAS+cCbyJYsWKyaKFCxWg08Jy6bJl+nrebNm00xmFJMnTp1et8pWrV+XFV16Jlcbbs2eP524EVCCfPKkOD1iT2ZoaRNwI4iVg2PGFNY4EeI/Soa8EjgRBtG5y6kP6998KYvEhZV/wpaZeIJAuK/6EMe13VDDF364cPy4n//lHTq5dK6f+/VdOrVsnNy9f1gVfltKlpUC9epKrcmWVX2EfFkpA1VVQPEvR35rvvlNplbYCHjJEJVveRBRyocuXlX3lmQCwA2JZXGMTmFAz6B6BWbwSjxw5oo4F/OwsuHDsq/Mi4Xugi0XfY2Vm1//4423GNkkSSYs1kReBNVek+Mt1UBCA7tPqZEARBl11AH00XWDljPQAYGkdLJd9/rnqmnAuCKT34qlt22Ri48bqBBAokHzt4kWZ/uSTCk5xcCj32muxBn46c238+We95vBXzFyihMobSHW5Ym99Ca5zZAUM6lpYlitX2ExEDlmjK1d0cTNh3Di5K0kSKZA7t+zev18+6dNHKt9/v1Rs0ECBOpM0KT88ZB944AEp56Wzgs2NADAcvfi1uRFkzJigmJdwCWVhFy+2pe8NC4ufdXywsCxyto8bp44tOIagSycDc0/z5nEiOeN4OKvmt3aWIrhebYzprVtydssWObFmjRxbvVqZV8YIAs0oMrvijz2mDgNkiMLR75aF+5q+fXWMRTqIVIvMm6cFw1o8eOWKglfjJkUGgYJRnFLwiOWY5sqVK166BoYcmLX6m1l/jkRwA9BKitAAB1hZVtV4/WGH5C1rFWFm3YetWYId6w1zASOLpoy2uH+2bq0DUO0BA7QHOcVTa7/7TlvVpqOtaoACYD2uXj1JlT27ppsCwaDgDDCxUSMFyc0mT9YUljXQm2H9wgRIFG3VSkE0Ka9gAEwKnXBBYNKnQjfQQDlYQd3AC/ZSn+jq4Nw5csjCsWNVJ9t14EA5eOSIZMmSRR6uU0cbJJh7l8YLtWrVkiJFiqh/t88yAiawEHQjSHQs7C+/aHcuUsTxycKaa4TFKBp7FqNIpVr+9Ze6tfh7H1stpxz5ojqznDIpfoCWec0suMhcWK2xjq5Zo9+B6zlbuXKqKwa4AmIpggrXxa5pIMN52fLbb5qJodUs0jHVKrs57levXrWBV84BTGvq1Kklc7TrAgD2+PHjId/kIN41s1hytW7dWi9Ga0Bjjx49WtvaRsL/MHYtTI6GmQU8wZblqlbNp6puimkizKzrYBAlve1s8sEbtenEiVrAMeeVV1R6AKtJ/+20efKo318gQd6Ehg11xd56/vyAtIuk9S3bZCJos3hxLP9iTNpnPP20TsRVv/xSU5CB9Me1hroVRMsKGND5zHABYgDverVqyeKZMzXjYWx9AJV3pkkjqTNkkHS5csljjzwirRo1kgyFC0syB52zaD7j1CLKAXutTSMsMgJkCrQUjcgIQouFfXjAAMlTs2acs7AE88a6gQM1ZY3J/z2PPSYNx4yRHB74IzvyRLU+7FlUq/7UtD41nqiuwCb3C7UJAFfTTYtxgEibN68CVuoOeM5KM5EE0HWOY3dg4ULN8FHcBSCv3qOHFtw5k/8Z8Go0r5wfw7xmzJjRBlRv3LihABaAy+umyUFiCq/BLJ1p6tWrp5IDa8BA8LcImA1MYMdh7EMMU7V19GgdKOkIBnDyNkhH+vJ/iSkOedgsAW3W09Gr62WffabsWIUuXQLW6hPgMrV1a2VP2yxaJOm9KP5xFtiO/dmmjXqrogW27x5ngGzpjh2lzqBBQZ2ImfTP79snt86fV7svlRWEcEpcpQNXr2p2g/uPe4nvkDNNGkmeM6cWqbFQBIwrSD9yRNlmCmrSFSjgczrXyAgAJVetMoKCBXWRG5ERhAgLW7iwVIn2q44PFtZkXFb36XM7ZX3tmnYKq/DWW7pIVL0pjhYOmFT7zlL2lfwwf/4US3ENI98CsJpuWiz+KXykuA7dPcb/AFfqQLzpahkOYeuiFu1MQLew+r/8IsVat461eNf7/do1G3jlvEEcAl6RCtizrPZNDrJly5boQKzPYJaD7ehgHThwQC0eIhFYJwMrmOW1nFWqqCUSnVi8jQgz676S9NjatXLvE094dDxhC9A3URjF5IHLxJE1a+TBrl0lT/XqPoMz7rG/O3eWvbNna5tae/bUl+3B0sx/8025p2lTqT9yZCzv3LgEsqTYLpw5I+kyZZIshQuHbAU1CwruGQWw587pOUarTnEaKX0ALBZX1vGQiQu7JRhUJmXe5xMAuHVLC0FgYflc5CURGUFosLDanWvcuHhnYQ2LemzTJvmnTx/ZMXq0JE2ZUu5p314KtWsnKbJlE9rkACSN5ZRhUq2dpQJtOUVDAtwSrJIB7VgposAaqUCJdu30mWLZcPKO9iaQBW4aMUI9x2l0QIOD5tOnKxFiPd5W8Mr5RNsKeL377rv1/NiHLpYvXtR2s5xX5AUpQqSALyzAbNmyZW0GurVr145xkFkV0NEHxjYSgQmVGESHkRmQdiaFiSUSKQpvI2LN5TqO//uvAgcGWU8DCxUG6vYbNijTiHXWH7VqaQEOLA0PpAnexPLu3bXhQr2ff/Zp0WLv14oTA4C74jvvSPWvvoo16cYVkGUQpgXjir59pfygQcpmpQgh2y3ACRMxRWiAV7IjBECSexBG1Hi/OgquHSYtUqg4YZjOTb4yWehh8R2NyAjiN8iQaSFk377a6CKYLKyjYilr0ZQ1zX963TrZNmiQ7J85UzX1FT/5RFPWqdFNu0nzB3J/0eNagSvdEzlmSF8oWsUZhmwXdQjxxVrHZbAAZZxb27+/3sPIPB797Te5u2JF/TvnETCK7pXzygID8EpjFVdtYjnWZ8+eVU0si5GcOXM6BLvBDNP1LKzb2RoXg3///Vc7gGGya4KVBBqNxx57LDh7mQjDETMLGGUVi17OF7lApADMdTAYA1yyRXe2cxcADtwNyr3+ulaf8uiwaZOyNxuHD1dt1NKuXdW/lSIQGi+4657CpLnk4491sizZvr34E4Cyqa1ayb65c9XPstSzz8Z6T1wBWa69WR07ar/58h9+qI4FNAKI7wB42thXpAM3bypYBbgCJGFfPZGOsNBkUgdAIOPwp0sOXX2QFbAIYh8iEfehrV0vXJBzR45oYdLab76R3OXLy8Pff+81C2stlnJUze+sWMo8ADrWNP+eWbO0EJhW2fgw4/NMYWpc6Eq5R2ira9O6Ll+u1ypBW+27K1fW9tUQAqTTE1ODHhpQ0AUR3246SALikZ6lyZdPwevBgwf1vJtz6g68muD6gIUF/JL9jmt/2KhoJvgMBek3b0rWrFnDG8x++umn+gxoffzxx2MVgEUi8LZcJmCFzOCqqU5E8j6A2Yg1l+tgcMbixdMipAVvv60LDVwOTDDZYLDOAyseTMkBtjPatZM5L70kRVu3lpIdOqg+zJ45odvY7OeeU3blgQ8/FH/izO7dMrFhQ9XRtZg1SwG1fWwaOVKBLCA3mECWorMpLVsqSGs0dqzka9hQMznxJh04f94GYNHBqnQgdWrV7uL5ChD1htViMj+3d68kS536dhGbHwM9CxAyL4D9CJCNn+sDZo3Wvix0biVPrvf44wsWSEY7Lae3xVLWNL83xVJmv7aNGaMg9vi6dcp4Nh4/Xv1IgwUYyVSc2r7dxrjyOLFxo023jb61TOfOClz5mWLExBhH//lHiQtajCOZqvTBB3JPu3ZyPWlSOXPtmraiBrwCAr2xx0J+gB6WZ4q6cEOJSz3s1atXFcBSVMb+o8cNZXsvrznq4sWLKzt7v5110YoVK/SmpMd4JAIsM0ifXg3WGUTwr/QFzJqWlpGmCc6DwZoKWk9i37x5OnhhWeWsQxXaSthVHnS0Qj/FY8PQocqoUKCBryB+wQC+yY89JvkeeUQe/uEHvwatg0uXyqSmTXW/8Lx15FmoQLZ9ewWyj/z4Y1CALJM53xXXB+zLHpsxQzIWLqxFC3EVugik8000eGVBSMC2cl+5kw642zZtaXFkAHhiyebPcURjB7vL4pWCuEjETRiiAKcYSAQgKKAkTZ48ciNpUjm1Z4+cv3FDLuzf77ZYygpSA8GeIXthMYzuEo/V/HXrqi+0ssMBBjbMOXTSUsnA8uXq64r2m8Ve5uLFdQGOfRTsK2NKKBdsxlUDCrx7Dy5fLrnq15eHp06VtEWKyJ3Jk0vS1KklXerUCv68PU+AR0AsAYCNyyYHN2/eVCnDuXPndOEFiA6XojKvwexLL70k79B33g7MQqF//fXXCmojERiZAd2YKChhsmWgJZiYGUTc+dHZB2wUEbHmct6mFXbNE70sLAk6VDXtfvJJj44/GkpaRj746aeaHmSCosnC4o8+klxVq8rx9esV4DYaM8ZhFy5PY8vvv8vMDh3kbpibCRMc2mrFBZAl7f7Xiy9qgwk6hTEBx1WXIQr5AK8GwCIdwMbqrrRpJWW+fHoP+JuS5RpggcJnsLBM5eeAj7YZvS0gO5w6F4UT+LA+zDEHvF6lyO7qVbkjeXJJkT273JUpk41d51riXND+E3Yq0MVSrtwS/v3+e1nbr592dSOj02TCBL+LQU0wr9CRzABX2FdcGQi03oyDdDtkjMtRsWLYeD8HO7hmto0bJ9tmzJCkmTNLrg4dpHjXrpK9SBFJkzatZqx9dXzAEQo5AdtAghBXLGiUnYwAKQOdwsLNKcXrWXPz5s0Ou9RQIMbfIhE4MKuelaSg7rjDBkaZnKmS9hbw2MCsEz+7xB4wEoQntlz/DhwoJzZtkidXrfIaCPJ+Uv48aLgAqF30wQfKvMPKLXjnHZUhYFfjzaDIgAQ4Xvrpp6qfe2TIEIeALVPt7O8AAQAASURBVC6ALG4FU1u2VN9ICh9ofRvMYGK2SQfOnr0tHRC57ffKpJAuXUB9WMlwADyZ2FiAOGPmPQ0yLmd37lTQzfYcscQ///yzvP766zrhBDKCtd24CANK7YGq9XVrmALmGxcvamGOqUvAvzkdi5y0aWNdI0zuTOoAi7gwnz+3f/9t3eXgwXo9qO7yzTd1MexP0C7ZxrouW6YWUdwz3P84CuSpUUPuf+89BbE0Lokspv4fsPHnTp6UPcuXy7kTJ+QaTixFi0rBatUkX9WqfoE+tk1BF0xoXDc5uGqREVADFeoygoCDWVYNR48elYJ2N9fhw4fjvLIuIQcpH1gaJmHCBmZPn/bNY/YcJi3i98SbUINBntSuO5cIGPIlVA137OiRCbmr4PzumDhRvRabjB8v+xcuvO1dOXCgto4F1ML8AshcBezR7I4dZfOvv2rhGHpbR5MRfw82kKWADVsxKr6fWr1ai0KCkha+dOk2+4rzAK4DUVG3pQPRfq8qHQjCeARYhpGFuUM64S/bbJwLyLhkLFo0QZjDBxqgOvrdHqCa690wp9bXbFrYEyf0oV2l7rpL5T04RYSCNdSJzZs1ZU0mg0UYrGjZV17xqfqf73p8w4YYDgOnd+zQv6XMmlXZ1vs/+ECBK4tm5FCRsBy/W7fk8uXLylaeP3NG/aL3T50qxxYvllz33aeLC0+LhJ0FmmqkBHHd5OBmGMsI3IXXo/0jjzwi77//vkyePNnmKwu6/+CDD6ROnTrB2MdELTMwHpxG60dxgq8NE4iIzMBxkGrzRGKwOLowq2r37uIvGwewhCFpOWeO5HrwQSlQv75U/eIL2fvXX8rYLv7gA1n47rtSsEEDBbYFH300VnEa4Hpys2bq69hw9Gg14nYUANnp7dpJqWeeCQqQBVz+/dJLsunnnxUsU/zmT0W/I823scziWmbC5jtwPafLk+e2dCCIMgZAFAVsFGeRckUKEAiwfOno0dvOBQUKJGhQ4QyYOgOo5tk8rOl9Tydeh1rYjBm1w5QjFjY+An07RV07aWKSK5dU//prlx2hHAWabQNcVeu6apXcuHRJr0+6Z+WvV0+9rxnfIhIWx9eJAa+ASyLJpUuya8wY+bdXL71OcGioNXWq363K46PJQVS0jAAGGKAerjICd+H1aNy7d2+pXr262kMgLSAoCEPjMXLkyGDsY6IFs6rzs9hymckv54MPer+9aGY2IjOIHQAjJgA0ra4CwIjtykN9+0qqrFnFn0BOQPvLxuPGKZA1QYoZU20e6Obo+gawndy8uRYZ3du2rQJbmIGTW7fKhEcf1QmbdrfOJBIxgOzgwQEHsuwHsgJkEnjj+mspZqQDfC8DYE27WDIVsEt3GelAHAzILDzQU7OQXLpli3z744+yceNGTQdWrlxZ+vbtK4UKFdKq4y5dusj48eN14mBMfPHFF3XxT3z77bcyfPhw2bVrl05kDR55RN5p316yFSwoKaP7qruLWbNmqSxg//79UrVqVd0e5uoLFy5U/29ez5Ejh+39vHfNmjWyaNEim6zgk08+kRMnTqjFItvw+bg4AafW16xhBaeOHoEKRyxsmhBiYTkuu6ZPl5U9eqiNH1Zu9YYP12Yt7pxUWNTh42rtpkWTDgL5GcVZjGMAV5xZ7ozD4qGwahV/5YqtUQFB4R6p9uu7dilDTsYMHXzljz5Szb8/rcTjq8nBVTsZAeOCt5ZauiC8fl2PF4CfZ9jcdCGY4fUazNJSbf369TJq1ChZt26dVtrRxrZNmzYh6T0WrmH0XLaGCdFglkIlmChvI8LMOg/sZmAyXDGzABqq8vFOLNOpk/gTa/r21epk2MsizZs7fR9WN2U7d9YHOlRYz80jR8ravn3VAgr/S7R+bVescNqYIdhAdvOoUfLXCy8o24WGOEuJEr6zIydOyNG1azXlTmW/SgfuvFNBq3mgLebBoi4Q4c4T1hRmcX3AakXt3auAtXTp0ur7CDBs1qyZLuj79esnU6ZMkT/++EOZD4AlDxMwIbynQIECsn3LFnmpUycFW0N//dWjfWVSgkyANGBbTz75pLz11ls6FkMwIP3ib2+//ba+n0mIv/Xs2VN/pzj32Wefla+++kp9w2fOnGmzXLSGqxS/M4Bqfram+c1rcRH2LCxxFywsWtg0aUKCheVaYnEKWGLMId3fdNIkKdSokdP7knvcao11dM2a2wA9eXIFq3QgY9xiW0ikQuF7hlpwbQDsuF+5h2AnwS0U9LGo5IixuJjXs6ccWLTotnfvjz/e9u71A3TGR5ODm37ICAxwNaCVB6+xHY4XABZ7sVBldH06slwEzz//fOD3JhK2UEuUW7dszKyRGWDN5Y9mNiGnMn0NGA5SckwOzgJQyGTSat48v9LL+M7Oe+MN7Zle7pVXPP6/rCVLSs3evaXaV1/JvNdf1yI0Aj3X/LfeUpsv2FzrvgUTyAI22Q8KVRj0sRPz9tqCZboM+xrtPABgn/HUUxKX8dSaNZLdQUErAaiGbWZAR8/K97NvDDNs2DAd4Cl+3bdvn9xzzz3KdjJ5kL2yBiypATWpz5+X9197Td7p3l1+8hCAMNEMGjRIWWDi5Zdfls8++8z2d4AqTK0Bs1OnTtUJqVWrVvodYJBhY9988039vVOnTrJ48WKZPXu2TvbWsGdNzQQWaBbV3+BYUsxlY2Fh2EKIhSXQdG/86SdZ9c032iWwQIMGer/gYmI9luw/iznjMAD7ShElwWIRwIp1IM/IBxK7vtodeDWyAQAeTCi4BXBnCqyoNdB2s717q7MDx7XJxIlSuHFjv8bKuG5yoBaBFy4oC+upjMAKXHlwvHiNAjCOVagDV0fh06zM6v/HH3/UdNmyZcv0ZPXp00eZgSZNmgR+LxMpM6u2XBaZAatEBjxfNbMUFiRmb0BnweTB5OAsJQfYQhZQtFUryVuzps+fc3DJEpnWtq1up8bXX3v9/1wPOB/QKhGz8gc++kiN1JEhTGzUSI32AZZ0Gzu2du3tYq8gAFmKSWiCcHrbNnVNQCPrCcBBVwvzsW/5cklVtaqcunhRgBswo0gH8tep45NDhL/MrKNA4kH6lnuOYjaT/t2xY4eysbCcpOqN7yhA9umnn9a6gaJFi2pr74YNG2qNgYm///5bWdHNGzfKeRqg3LqlYJMJF+bGXfAeA2QJ5AXHjh3TfWAigqn96KOPFKBWqlRJgTbgGzYICQSAm/HZsKtMVA8++KCC2XBqghMOLKxxEPhnwAD5d8AALejF1YOW0llLlbpd+Ld3bwxrrGP//CO36BCVMqUWZhVr00YBFg0JkBBEwnFwLLm+jWwAMMn1DHiFDbV3B0C6tG7wYFn73XfaVKZQ48Y6RuaqUsWvQxzXTQ4AoLC+gNE0LmQE5vgYqYAVuMK4An4BsKFy38QZmB04cKAO5rAMX3zxha0VHyfvu+++8wnMfv/999KrVy85cuSI3HfffdK/f38djN3F6NGjVd7AZ06aNEkSHJiNirIVgAFG7yDl4QczG9HLOg4mkvwW0GEfWF5x/Gr07i2+xqlt22Ri48aaEqTRgreADXZnetu2snPqVNXsUunM4FP+9df1QRcaQO0GGKBevfR/0FZX79kzoOAQne+sZ59V4Iy8AVsfZ8GAiX8unc32zp6tQBbbrCyVKknp2rU1LZrWjkFz59wQ7FCW49AhuXj4sPptpsufPwY70ahRI128DxkyRCdKgGTJkiV1ssCykM5mM2bMUOAKI/rwww/LuHHjZM+ePQpun2nbVt586inJe999svKff5RN5X8dgVkDUnkwzjJRWRlU02WKZ64F0ol8xi+//CKFCxdWfe38+fNtQJX3MLFbU53hNIEZFhaQeDNEWVji7N69subbb2+3NY2KklIdO6o0CfC9e8YMdUMBxF48ckTfj2SIcaFEu3b6zD0VSt8nFMMKXrn+AWaAVxZ4zlL52pa4b19ZN2iQjkMs/HEmwJXEn7A2OUAP68nCNBAyAr4z/sdo85NE38cGuBrGlZ+twJX3++qFm+DALECTgRzNVY8ePWyv0/kL/Za3MWbMGNWgkT6jEQOAmFTYtm3bdHB2FkwOfF61atUkoQX6TFaPFC7YmNkLF3SAI43sy4QPuxix5YodFPWc3r5dKn/yidPiJlbwlT/91CetMsGkNa5ePQWATbHi8pIFYxCe1LixAuKmkydLoYYNY70ne9my+shWtqzM6thR0ubMqYzPoJw5VVdH0Vje2rV9bn1JSm7BW28p01Ts8ceVyXC0OOK70hkHAMsDbStMEx2LqvfooR3OUhcooPcvC7VQmrRhvumyxEISkMT5sg76TFiMS4x/ZtyBBbUG6bnWrVvro0WLFsrQknKkCAtw+tELL0jGQoW04GvStGmO9yO6TSphr0G1dhQyLIzVG/K5557TBT5+lbC4VSxs07333hurqc3y5cslHFnYdCHGwhLYYam91u+/671Bty6u8UNLlmg2Bd9YdN+0osU/loLNHPff75P9VmILUuIGvPIz1z7gFSDnrlYHT/BVvXvftj1LlUqzWnQy84ftNk0OYEa5/4LZ5MBeRgAgRUbAtc/iFnB72QJcAaswrRCMCRW4BgTMwjwYFwNrcNBMZaA3QYUvAzBFZASgdtq0aZoie++995yuTtq2bSvdunXTKt1wNPx2FWj1ALQUuliZWe38lSuXT0zb9fPnI7ZcDuLwypX67MgJgIFh3muvqV6tog8LNbMImdCwoTIB9Hf3tioWxhUJAQNSmyVLXPobUoyF3yz62bpDhqhlD7pZGNtxdesqE0r7XP6OMbqncWb3bpnaqpWcWL9etX5U95oBEtkLFdkGvNI3ngBU8zkw3jmrVIkB4OOyna03YF0bIVy9qrICc99Zg8kB5mXw4MHKACEtsI5RjGW8zvgICB07dqym/ph88mTLppPwyBkzpOVTT8mS6dN1rLOGYVmZsJigrYywVbPqKiACANRkzax6WuLVV19VcEsRGdksmFuKwEIxwoWF5Zxx3dOshKYE7CfSFBZE/02cqD7LOAxg7QTrSgGprwvKxBTcBwa8AtJgWwGv6Dg9AY2cFzJBZKl2/fmnXjvUG2B75g+pw70J3gBAktrPnTt30JocWGUERu/LGAITzOuMBYZxzZjIgGtAwCyVuFTu2hc3MCiy8vcmuEhhLIx1jRm0Sc2hxXUWDNKwtqTojOWMqwvCmpqDng/1MDZahGFmAaMUhPkiMTDbjMgMYgfpPiyv0jvosIP3IxMVbKgvVa1YBAECYX4fX7jQa4/C/6ZMkWlPPKG6zmZTp7psYQyQndGuneplAbKm5XGlt99WII6fLQ0NaJG54ssvtfgEsIl+19V1sWPSJJn59NMKIp5YtkxBKkwHsgGOzYEFCxTQwmLCulZ65x3J+/DDYcU2sVCk0AsrvEz33utUO83YhLQJUIi0AG0s7gQ1o3XUdPDBOQBdLRNcxYoVZfr06QqQ86VOLV988IH0/fFH6fb11+o+gH62Xbt2tgU6Ezj/50s/d+s+ot398ssvbds28cADDyirjIMBUjHGWTS2n3/+uYRCaIr0wgW5bMfCps+X77bePwQmakiGU9u3q/592x9/6EIOpwuCDAS6S+Q9AFe0rjiSRMJ9cO0D0mAgwQXcBwA4dKfeMJ5kV/6bPFkZchYXNJ9B1kU2yZ3tWSg0OWAcACzz4F7mOPA5AFr+BnDFgcGfMSKhhtdgFknASy+9ZLNtWLlypfz+++86MA9FI+RFUEDBCYKitwa/b9261eH/kNb76aefFFB7EuwXDG44hbHRIqw+s9yovoJZ/j/SMMExmGXisR8YtFr/jTc0VYh1jrfBvfFXp07aAKH59Ole9VTnf2lpiUsBEoH6v/wiyaM7wbkEsu3b24CsNfhuTKw8an77rfw3aZLafM167jmZ8+qrWiENsKWlpflfnAYWvvee7keBRx+VIs2aydr+/RXEoikF3OeuXl2qfPGFsq8wTuE4uJK+pgMXKWu0i+6cKgCA9m27rXZVZJnsGUZ63iMZev+zz+RDu2YbZJiYKBkHXU1QAFQe1kDqZW+VRRw8eFAaNGigLLF9PPPMM/qwBu4GocTCJgshFpYFKRky5DUH//5bpTt0nTORKnt2LYCEec1SvHikwNbD4Ho3zCtkkwGvZD58AWqM13RPRE5AhgVZU/Np07QRjT/jUrCbHBjPW8ArsgWYX8NCo71FLhABrkECsx07dtTVASt6VilPPPGEFkJg+/L4449LMIOT/dRTTym7wIrNk4D1BYBbmVn0ZKEcxkaLsMkMLlzQSlcYMF+3iU9mJGKyLKzeK0ZbGVkDH1hscR6bMcOnwWv5F1/IhqFDtYkAVfreTOxzX3lF1v34o1R6912p9uWXLifIGEB26FC3kymsI1XVPOgDzwQAY8sz1wfbyV2jhvzdqZMyUGly55bd06bpg8KUYk88oeAVZjecDdk593TzAsxijq4enQF2UeAzjLVXpsKFY6SXXUkKfA1Snxs2bJDffvtN/W5DOUKRhdVzcvnybZ9jHuwfbhMnTsgmvH2vXdOCLgKQhJuIteFJJJwH17kBr4A3rneTOvcnPY7rCHrktf366YLonubN5dFRo+RuDwrI47rJAccA4G71cTVFnABXPPx5DkdSIGytuWATeJi0gKtCLVcBIOViOWpngM7v1i42Jnbu3KmFI1QUmzDWOKxmKM6wWtcQ3CjhZDtjz8xarblgy3ztPBVhZmMHBVUU2tk3S4CpIxWPSwCaN28DcEjFcpXPP/eqGxb2PcgS9s+bJ3V/+klttVyFt0DWPihoe+DDD7VPO2lTtLVozJZ27ap/R98LWws7ne/hh13KHMIpYNsAmYApCon87ebmKNR6ad8+uXHxonrUwsyacCQpqF+/vlPJFK3CebgLdLBkyug6FqqtxUOJhWVfrMDV1CoQyVKlUvnNHRkzyp3RGm8YPzrwsfj1tTlIYgnmZfABoBDwBngFqGEDZa2+9zXO7tmjWSPcWyisK9Ghg1To0kUyFi4cEk0OrMCVB1pXo3E1fwOXgHMgByMA1v/wqx0FJ9wfGwpObPny5WXOnDmaMiM40fyOIbh9FCtWTJkHa8AQw9jCDIc64+oPM4vmFe0d+k5ftxnRzMYMUoaSJInkqFgxxuuk95F3wLx4G7tnzZLZzz2nhQYARU/jzK5dWiiGJVSL2bMlb61aLt+/5bff/AKy1mAgzV21qj7uSJ5cNo8YIc2mTJG8Dz2U4NKmpCMBJUyAmYoUCdo9gYsDRv6w3aaZBGMbkxoTu33qEIkWk56jIL3pSWDDFbIs7Pnzejzii4W1sa7RoJWFDOMpgbSE/Uh99936TMU7Cx7O4aUjR/T99zRtKmX//NNnR5OEHlzbXL8GvBJgA3TkgUzNUxDLghu9MmM01lplXnrJL42+v00O+O6GabUCV9hcgCqknXEd4G98BhKgcGpIkGDALNW5nl6Ma9eu9WoHkAC0b99erb3wlsWaixvCuBtQxAD9jvaVi4PCC2tQKUzYvx7O4agAzABcf8BsxJortl4WhsV6XPbNmyfbx45Vnaq3x4vz9ufjj2shFFX/nt4zB5culUlNmujg3Hb5crdsMEB2Os0RAgBk7W3INmA79dVXysQmtID5pmMaLCktK4PVQYnPQaKCJAgLLk8kBYxxCS1sLOzx4woc45KFtbGu0eDVxromSaLyGO41bZGcJo0WBpl7lcYeNDO4cuqUglyaeaRNkULue//9gKSaE0po++lo8AoDS5gWsYC3QAI1Pgu7P0AsNQh4P9fq00ftzVzVEgSjyYEBroZxNR7PBrgC3GFzec1oYfkMV00NIhGHYNawpsEI/BiPHz+u1bU0TShTpow6I5iiMOxvEtsKRhskcEPccYetit5IDxhcfd3mnUFiocK9+MsEbMzcV1/VrjvF27b1entoZJk88WD1tOUtnpQzO3RQjVfjCRMklZvFSrCALLHg7bfVccGbNrvhEKqBO3JELhw8qJmOdAUKBM0eCTAEYL4rQwYFbkZSwARnJrmEHE5Z2Pz5g8bCAlJh3G3AFdYVfSus6513KjOOpyjgNVnq1LHmE21/ev68ZkVY9ANuseNjIXINls0Hy8mEFqZQyeheCdMiFk1pMOZoxmOatOBMcOzff7XtdMPff9eCVX9ainva5MARcOV78r1Ny1d7cGpYXrLFjpoaRCJ44dEVgZVLMANJgSNZgSeps59//lkSWjCgku5l8OUmUOPw6AHEF2YWD00G9wgzaznG58/LiY0bpdxrr9le+3fgQLWdemr1aq9BIkzQmu++0wKptB6wbJzTZZ99pvpUvF8BwO6YwmACWZgP/Bgb/fGHTzZkoRo4gBimDUBDKjlYEwvXABIGmF/YIxgfR5KChBgOWdjcuRUQ+gM8HH7WtWv/lwvQAQrWNSpKjzFaV8AzYycgFjDr7NgriD1zRhc6bAtrLWQhdH6z/c/165IYQ4/N1as28AqwA8DBMCJ7CSbBxDnd+NNPsvrbb/XeRbPf8u+/b8uefLyP3DU5AIQa4GoKswxwNS1fnelnrU0N+Jn30tQgsZFw8R0+jTKcNFo0UpD19ttv68WNvIALJCGmy+IDaJGGM7Zcqu2KLkzwBcwaVjdizfX/OLJqlTI6hpllEqZoC60rDIC3gYaL6nhPmivgy0qXLjrSVP3iCy3AcjdIBxPIAvjmv/mm+mPCeiSUAPQALjneGQoWVJASrLA6F6TNn19uRLefTcgTmo2FPX5cpRVJgsDCKut66VIMuYBhXWFQAa0pcue+LRmgEtyD48026fyHJpZrA900TUQYHxP6osNZmDaogDKYS8CdYV5hF4PVGMAaF48dk3/691d3Agpz8YbF49tVoxhfmhwQAFacjYx/qxW48n09KfwyMgK2gTY4IiMIMzC7ni5ADz+sqw+cBfBVBMxOmDBBJQH0BY+E/8xskmTJNFUZw92AG87LDlJme0SkACxm8ReTV+ZixfT3RdHV4oBLXyaC1b17K4OQtVQpl+8FNE9q2lSOrV0rDceMkWKtWnkkRQDIwuAGGsgSeM4eX79e2q5YkWAmcwp8tBFCkiTadAKgE6xQ54K9e5UhTFOwoNyZIkWcTP6hxMKmDQALy3FU1tWqdUWPCet6xx16DlmQKHBNndprE3wWbQBvOuNhc6iSk/z5bQV6iRG8GuYVQEd1PeCVKv64vH5P//efWiEyDtG4BEKh3Ouva4FgIJocAFABsoDP/fv3K3DlNW+Aq3W7AGMjI0BrG5ERhHHTBMy76XTDasQEJt14zkYiQGA2SZIYDRMItYrxYZCJMLNO9LL336+T5JHVq9Xi5aF+/Xyyado3d65qulr+9ZfL953cskUmPPqoTtKt58/Xz/cIyD75ZNCALNfG4o8+Usshf7wZQynQawIu0UfSCCHYxUakqWH60uTNK6kyZEgwC4Jgs7CAS7pnXbOwroBMAqkGgBWArFpX7It8vPYB3+pMcPy4srJsM3X27LrNxBRW8AooA4wBXqms99WCyp/A43tlr16yg1qBrFnlgY8/1lbZvnZNA5Abay1cA/hOfEeAuWn56sv3jMgIwiO8PrOrVq2SH3/8MdbryAso4IqE/6HgEzBrx8z6wsrq/0eY2ViDE8wsAyeT25xXXtEOVmVefNGn40vXmaz33Sd5a9d2qUmd0qKF6ghbzZ2rIMBbIBuMoqWVX3+tukGaM4R76KRz4IAyb8hxKGYLprUYn3fp5EktLMO5IE0YtfCNaxZWWderV2OzrljDwboCXLNk+T/rGoAFCBICY5HGeApgomOXP21NwykAdAa88jOyF8ArTGJ8VdUz3u6aMUOLug4sXKjyjjqDBkmJdu280uoDxq3FWQB1XuN7AVrJHPvLLkdkBAkczJKKQGtiH9u3b5esQTAfT4yBxRM3vWFmGfwJJhBft0dECsBux9ndu5VhyvnAA7L511+VpYUp9SVFenzjRtkzc6Y0GDnSKTu1bvBg+btzZ7W7ajRmjO28xjeQxdSf9B5ejQC/sG+EsGuXLtxo+UxXr2AwpGSlRowYoT/D8mRIl05KFismTz7zjNoJGo0svdv37t2rP8MK0czltdde0w6K1m04CnwukXCFMwsL62rfkIBzRABaFLxmzfp/1jWA54rPgi2/cvq03tOpc+ZUIBvoQrRQC8CcAa+AO9MWlXnZWuwUH4F8BN0/C/+TmzZprUKTCROkUOPGbsc2vpcBrQBMdLAAVTSu/AwjS5YYZwJ/GeaIjCB8w+sz37hxY/nss8/kjz/+0N8ZhNDKvvvuu/LYY48FYx8TXTCRYOpuLzPw1ZbrukWmEInbEgMiU/Hi8tsDD0jR1q2105UvgVYWpoptOJrQF777rgJGjL0f+u47jybUuACyRieMjzFtc8M5YOAo9IJFxD82mIs2gN4jjzwiQwYN0s88fvasLN+6VV5//XUZP368tpE1EyrjJDUF6PbGjh2rP5PBosFLjx49bNskzTt8+HCpV6+e/h5feltfWVhlXa9c0Sp0A15pUECggQSwAia1IQHWWEEAlQaAA2LVXgtHibx5JUWAPU9DKQBxBrziPMB1Y3xeYShDQe4CkbJ+8GB1eiGDUahRI2Vic1Wp4nD/HAFX7ierDRiBlADdKvZY3jY5sI+IjCBhhNejyjfffCMtWrRQc2AuuBo1aqi8oHLlytK9e/fg7GUiCwbjW1hp2ckM0Hn5zMxiFu6HwXRCCiQGpLf+HTBAj22NXr182s75gweVbaDJgH1alIl9etu2snPqVNXieurdunX06NtA9qmnggpkD69cqW4KjwwZEtaLHKqeYWQ5/pnvvTdotmJqj3f9uj7rxHr1qqTIlk1K1KghtVu0kMoPPii1a9dWq0DYV8JUOBMs9qkz+Ouvv7R1LWlQa1CI4qiFd3ywsMiZUrpgYWFYDetq9K4svglYVgWv2bLp/3M+ggmq1ELq9Onb9lqXLqk1V3qcKzJmDAkwF2jwalrIW8ErBdihZv924dAhWdO3r6wbNEgXNoxnZICyFC9uew/3k9UOywBXU7Bl33wBtvnYsWP63fnOZD/8+c58JqCYZ+7V+NIORyIw4fWZYxBmQF6yZImsW7dOb6xy5cqpw0EkAgdm1RfWMLPRMgM8Mn3aHpWXadMmuNak/jCzme69V9b27SsPdu3qc4tKbGSYvKm+tQe5Exs1ktM7dkjTKVOk0KOPegxkp7VtexvI/vRT0IAsAGB+ly6StXRpKRndaS8UAjByautWz03cT51SfawxxT+5ebPXn+nO6UBZx5s39cFEx+TK5IxzQcaiRW36y4ceekjuu+8+dXUxYNYEk/TEiRNtHpehEJ6ysLY2sFbW9cqV/7eBTZ1aF9mmDWxcpfKNvRYglv1Xe63o9sShBOr8Ca4bw7wCuLj2AK9oQpH7heL3PLF5s2arkG8xNlKXUO7VV3XhB2g9evSoglF3wNUa/N8JdM9umhz4KiNgcRqKxzIS3oXPI0+VKlX0EYnAB+AT9sOmmY1mZmE7fNreuXNhzb4FMugUdOyffyTD+fPa5Qe2wNdzBOtQ+vnnY6S1j65dq0CWhUObxYs99kiMKyBLbB83Tg4uWaLuC8H8HG8DIDuyfPk4/cyn1qxx6itsunfBgBnmC2DHQtORpVOxYsXUutAEbOxHH32kkzfbgU2yB7qhxsIqyD1zJobWVdvAMlmkSqXjCMVu2gY2HgAV4yIA/NKxY7fttdDyFizoV1vTUAkAHsyrAa8cW4AbBFIo2z9xXR1cvFhW9uypjVfQKFf85BPJ//jjcuvOO+UkxWfHjilohAFFw+tOFuCuyYG3+8e2ALGRpgYJNzwGs8uWLVPftoYNG9pew1OW7mDcfLS87d+/v64YI+F7mMIJggmDgIEgfLGNsjGzQdQRhlMAZJkQAU4YcvualsbKi/ME62ACgDiuXj1l+5pNmSJpPGTS4xLIwqqh4y3YsKEWpIVScNwAl67i5o0b2pwCjSbH10hx/PlMZ5ICwpq+NSCPa8ZRMabpQmWChjIUex0+fFh/7ty5sxQuXFhChYXFsxVACGil4p8MkDZoMaxrmjSaDbKxrvG48GEBAYDlO9BAJgX2WjlyhHW3OsArrCPzJ88E4BXAh4wvVMGr9V7cNmGCMrHHVq2SdEWKSIXevaVg8+aSJn16ZV3BA97oWR01OfBVQx6RESSu8BjMUsxQs2ZNG5jdsGGDPPvsszpY33vvvdKrVy81W+7atWsw9zfBh3EuIIzGVQdwH7t/ERFm9v9xYNEi1Q/nq1NHixF8CcDw6j59tEONkSgcXLpUgWz28uWl+bRpHjNFW8eMUSB775NPBh3IEmv791cXg+bTp0uoBYDJVfc1gCSNEDIWLqz+sYE2u7eXFFgnUSQQZ9HmJk/uVFe3ZcsWKVCggO13UqeAVx4UgJUqVUoqVKggxS26wTh1JMiQQccQ9K3YsVGQo6wrenqAR/r0t62xYF1DRIPJ4kudCVjQ33HHbXutbNnC0l6Lc2LAKwwsAeAzRVuhXKhmFnjs//lTp2T777/L9iFD5MKePZKjShV5dPx4KdK4sST1UWZibXKAftzXoi6rjAAgzbYiMoLEER5fef/++698/vnntt9Hjx4t999/vwwZMkR/z5Mnj7K0ETDrXxgbLSuYNcysr24GbDNiy3U7No8cqc+1+/XzebLeNnasnN+3TypEt66loGw8QLZcOe+B7BNPKJCtN2xY0IEsi6LlX3whZTp1snU+C5e4fOqUnNuzR5m4DIULBxzMOJIU2P52/bo6FyTFUgq5ztmzsf5/7ty5usB/4403HG6f8bF169by/vvvy+TJkwO6765Y2DvuvFO1i1H4cp4+TRm4vmZ0xmqNhcNAiAEpCigvGXst/FHD0F5Ldd2A8WjwaisejK7KD7Vjbt8dzBRnIZPhtaiLF2XP77/L5iFDdJF0T/PmUmn0aI+avzgLto0elvsPGY4vjLS9jAAAmzdv3pA9vpEITng8MqBdQbdiYsGCBVqVa6JixYraKi4S/oVpcGAFsxS6+MXMRheAJfaAkaRIKEfFipKpaFGftmFa18Lsooeli8042tjed19IA1liyaefqpaXordwCbXNOXRILh4+rGlxtKqBnKRIawJiCUcV4TCXsMHsR6bChfXvTMA4uDABU9Ayc+ZM+eqrrzRr1a5dO6efhc9syZIlZfXq1crQBhQ0nT6tDQKMRMn2txs3JEny5JI8Y0YdTwCxgMNQYF0dgqhz527ba50/f9teK18+lXSEQ/GqOitcvWor2uLaMuAVoBaK4MoAV+MoYIAr94Jp93r1yBG11towdKhmpSgardClizrC+PqZHJ9Tp07p4hFgz3HyVUbAPiNJiLgRJO7wGMwCZHfv3q0MAxf/2rVrpVu3bra/szKKr64iCSmMDZcVzJIS9Fdm4KutV0KKvzp31j7v5V97zedt7J8/X4u8WsyapfZWYx95RLKWKiWPTZ/ucdo7PoDsiU2bZP2PP6oNma/NN+JDP35u925Nk6fJlUs1koECYVqlf+OGAg7GLUdAg/fQFtfeuQDwaiZOqqFxMejXr5+0b9/eJWBBXoBH7SeffCLT/ZB5ALCRPXBfA2KNpyvBtQR7zOJVJQOpUoU8EDRgHBBLe1v2OUPBgtqoIRRBtz0QxNEH5pXFDaltgBUgML78gj0BrqZrFgFwBUyyz1aXBFp0L+3VS8crJCjlu3SRsi+/LKl9LETm82FP0cQClLmHvMUMjmQEbCsSkfAYzDZo0EDee+89+frrr2XSpEkqVK9WrZrt71Tx0uUmEgFkZqMtSAC4mI/7WrEbYWZF9s2dK7unTdPjkadmTZ/PDx1sspQqpRPtuDp1tA3uYzNmeMx824Bs27ZxBmSJBW+/LekLFNDmDeEQN65evd0I4epVlRWk8LPQy1NJgTW0FerJk3rczEIFH1ke7sJZBy+AsKNJ3qWO99q12G1gLf+D9IKCKBYp4aQlZSFx5cQJtVdTe6106ULaXsvoRgGvMIsGvMK8Ui8SSuDVsMSGcbUCV8CfM3sv/o/W26t69ZI9s2crM16rTx8p+cwzPs8/HCdrkwNvJQBGRgAIJiIygkj4BWbRyzZv3lybJLDypB2j1Spj2LBhyjpEIvDMLJOYP1W7WgCWiN0MSI3NefVVrcwmxYpW0Fd2c/f06ZqmH/fII+pV6zWQpdgLIDt8eJwB2d2zZsnuGTOk8fjxkiwM3Ea4B0jts4DjGFOcFBeSAmvABp8/cECvmbhmsrle+fxrPEhXRzsroBfVgq2oKE3BoyElWxNOOtIY9lpHj+rP2GvBxIZiUxeuGR7ISsx1A3gNpZS2FbgaxpVr2wBXT5oqcB6w7MNeC8eXbGXLSsPff5ciLVr4fH2xHxR18Qx49rbJgb2MgAVDqBzzxBhR0RpwFiKh6Frl8ZVBteXChQttlhn2q1CqdXk9EoEvADOdbXyNxG7N9e8PP6hWFo0rzI+vQVtaivDQj6G5bTFzpseFdTYg+8QTcQpkmaTmv/mm5K5eXe5p1kxCPQA5aJthQnEsCARQ80RSYA3jXADI8nXh423AviInIt1uFrS4CrBQMswsLgTohrkGGRtCkb10FXwPWFiKhwDkAPFU2bOHlL2WAa88zHVDoOvEMitUgSvgAuDKfnrTDYzF0sZhw2T1t99qgWX+Rx5R/+m8tWv7fH350+SA4w0DC/sdkRHEb9xg0Xnpkj645gjkKPbdC8O6A5ijYPUXCf8DFhX2kIkL9oUgBcfE6k9RRWItAAMcLfnkEyn17LOy5ddfpbiLAh1XceHwYdk0cqS2TUVmgGbWNLUIVSBr/HBPbtokT65eHdLgB8YRJhQvUayX8EENhNbTU0mBI+cCis2CecyQUtCKFQCrhVuwaWnTSrq8efXzAfUmK+OoO1e4BJpeBbEnT+o5BcCqvVYI1FgYOzYDXjnfLHZMtzde4zk+6kEME2aVCliBKwQT++XLNXrx2DH5Z8AA+ff777UldLHWraXpxImSrUwZn/fV1yYHERlB/EdU9LVmwKuxJ2QhYq+lDtUIv5ExgYdW8dJeT8R28cBo+MqsAoS1m1giZWYXffCBgoSijz+u1bg5H3jAp+0s/ugjrQzPVLq0d0D2jz/iDcjC8i/++GMF8DniuLOWN8H1iawA0340er42B4mxTYqkrl9XIOIpU2XvXBDoc6VMHxXjANgzZ7TYSdPB6dNL+vz51QcWsAqwpRXyHcmT3263G4YsLMH5pKgLxpkFetpcuZRVjs/mC5wDrg0ma3vwys/xdZzZJyvjyrUbKOBqjdP//acZpk3ovu+4Q1txl3/jDUmfL5/P++1rkwO+J//L94b1jsgI4p51vRy9UCK41gCvoSSh8SbCb48TeMCiwlhYCzkAUb4WwBjZQmJkZo+sXq3M5EP9+snprVt1QkUL5m0cXLZMNg4froxSqzlzPD4XCmQp9ooHIEus+OorZfaqde8uodxeGCaUTESm6OKfuJQUOHQuKFYsYIVUWjREmi4awNK5DHYS4JomRw4FstbrAgAIkIWNxfoo3JhYm73W4cP6XZJFM9wpM2WKF1eFUASvWvh25YqNdTXAlRQuwJV2r4EArtbAeYWiru3jx+ti8YGPPpL7OnXS8xKXTQ4iMoL4k6ZcimZdTaYK4EpBXjh0m/MkwmukTCTMLKDL6GVhZQm0cj5tz4DZRMbMwrLNeeUVdRso8+KLMrNDB21q4K0+7/j69epagMYPLZnXQLZNm3gBsmf37JE1ffpIpXff1RR1KAYLrSsHDqicBi2zP8VpBrQwUANUDFjxNGAQbc4FfhYiKYC9cEHlA7CS3MOAUgDsXblza5bEEbC7SuHbjh23rakAsiFUHe9RmvLUqdv2Wpcv6/iF5pnvHJcTpbkOzINg4o4v8GqAq2HATLbAMK4ACW+vVW+OBYWfFHUdWLBAF0d1Bg7UTI2vRZW+NDngGKCBtboRAH4TAoAKxbh586YNuNqzrjloAR1mC2RPI2F+q3DXzNIX3XjMRncb8rX7lykmSWzMLAzE4eXLpfX8+Xo8Dy1bJgWjWzF7Gsc3bpQ/atdWHSVVvfjJeg1kf/45XkDJovff1wVQxbfflpBkCs6elXMXL0raDBkkXYECfh0jXyQF1rgS3drVH+cCFk/cawbAIp1gUYrWHUDnzm6K4wFDjUesFr6FCZDFC/jyiRPqTABoR36D5pfitbgAK47AK9eBFcDGB3DlwcKKfYFx5QELFhfaW87Dlt9/VyYWvTwdunAyKdykiU/Xla9NDiIyguBHYmFdPYkImA1BtgrWxrgXnD94UJ8pmPAlEiszS3UufrJ5atTQIjC0kN7oZRXIPvSQTspM1vejvfWw1W18A1mA+9bRo5UR9rSRQ1zKCua//bZkathQUt17r6TPm9fnwdZXSUGgnAsActxfKiGglWZ00SZV+gBYT7WugOmzO3fqPQqQDfUmBzZ7rWPH9KH2WpkySYYcOWze2HENXq3SgbgIPtuwrfbAFcY1roCr/dyxfvBgdVthccbiHSY2V9WqPh0XX5oc2MsIsOTypbtXJDxjXU2L5JQpU2rRXWJuXBUBsyEWyqQmSWJjZs/v26fPdD/yeXukGRIRmD20fLmysk0nT9bfaTlL3O0hmMVPFiBrwA02Ndk90NpSjT+jXTutDI4vIMvgNu+NN1QbXMJH54ZgBcdnUtOmcunCBcn19NPalc7XSZZB3VTc+jqAG+cCo+v0ZF8AbrCosK88w8gmS5lSuyLRSIOfvfLSPHVKzuzerfIVJA6hDmQpKFVngmjrJZu9VpB8J0MBvLIPgAcAGsCV684KXHH4ic/ULe2e1/TtK+sGDVKJR/Enn5QKb70lWYoXj5MmB1YZAeeD4xGREQSuY5sBr2SfYF255iiYQ1sdii2S4ysiYDbEAqaH4dmAWQopCNp5+ro9gvRlYgm0onSNKhQtKwDYMuFSKe8uTmzefBvI3n23VOnWTcEXjRE8ieVffKFMbp1Bg+ItTbxtzBgF763mzg0pYMQCY3KzZpp6f3TSJDnvo2bPX0lBDOcCCs+iovRacXW+AL0KXs+ckUcff1xKFCkiPT75RGUJMLq++qSi0T27e7e0ePllKX///dK3b18J1YBRv4Su+NQpPfbBstfifFjtsuIavFrBswET7AssGAACvWeoaA5PbtmiHQk3jxypi6j7XnhByr32mrpG+NPkgLQ1elhXTQ6MlVPEjSBwwXXGYsm4DHCMjdYVuUBiZl09idC4KyMRg0nlIrYHs+ny5PHpKGkrXHwSg5z+C5XAmxO9bK3vvrOBOYAUEgN3E+HJrVsVyDJRt5wzR4vGKCDLX7eu289FxoBzQrUePeJNnwzgWPDuu6qNy1urloRKbPrlF5n9/POSvXx5aTJhgiRNn17O797tk6RA7w0fJQWxnAsuXXLqXIDu0Ohfrbpz7byVJYtkvvde8bs5xN69ymwChkNV16b2WocPKwvNcVK/W7qOBWixtnv3bilYsKCsWrVKSkVr0uMKvNoDV+N2YBwPePA39gNwFwrpcvbx4JIlsqpnT9k5dapmj6p27y73Pf+8x3aB/jQ5iMgIgse66iIxVSq1OMOKLcK6ehcRMBuiTRNsYPboUX1O42NFOjqqUO11HoxY27+/ft+STz9t0zUeWbnSreb11LZt8ketWmpbg/0WXYp2/fmnygU8OXZLu3ZVpqpM584SX7G2b1+5eOiQVP/rLwmF4NgvfO89Wd27t/Z2f/iHHzQdbSpsfZEUeOph6ZFzQcGCMZwL1AM2ugtXjCYG+fKpBtZY5tFm16/PP3pUzu/ff7s5hI+L1Lgo0OM4maYN+OCii/WX7Teg0YBIJnTCtF8N1jjlCXAN5TGSe2nnlCnqTECmKXPx4qqJx/bPFxs5b5ocRGQEgWVdGf84psbRIhhWbIkxQicPGQkbmEWXZ8Cs0ab52gFMu38lEr0sLNKGIUPUCNwUPpGKg1lzpZc9tX27jKlVSydrGFkALQVksB4Ucnmisd08apQ88PHHPlve+BsApBVffillX35Z/VrjOwBDExs1kjXffqssed2hQ73WVRqww8TLRBsIIAtQpTgGGQn3FAVgaA45hyc2btSfAa3oV2l/zLHkerCm09mvd955R9k6rG66du2qrz/zzDPS0M4xA8aFFOFPP/2kvx/duVOefuYZKVyjhhS9/3759ttvvdp/Ur9ffPGFtGvXThkctIlTpkyR48ePS5MmTfS10qVLy+rVq2P83/jx46VEiRI6gbKNb775JtZ2P//8c2nburWkSZ1aCt97r8yYO1euZ8ggz374oWTNn1/uK1Mm1nYXL14s1apV00k5T5488uqrr2rlu3W73bt3l6efflrT9OgvBw0apBM3E3ixYsX0fRUqVFBAWbNmTfE3zAKIY0/KnAc/c95MNy+OA9cUP3NdhSqQYIG1bvBgGV68uExu3lyBa7OpU+XpDRt0we4tkOUY4EqwZ88ePS40OaCwyx7IcgwBX4cOHZJ9dKK7fl2bGnCO0dGG6vEKJdYVCQbHj2N98OBBPZ6pU6fWY859wXFHthLMRVxiiggzG0KBNo/BK1nq1P8HsydPKkPkqzYNIJdYbLlobACgLfvKK7bXYDFgk3JUqODwfzCoh5GFeUNnSiEPjNTmX36RBz/7zKPJYsnHHytzVeqZZyS+gpa9WJABqOM7WBxMatxYATZ6Y/q9exIAy1Nbt9okBQRAI1DpNopj8N9FX0ia/9rixapF514jRcvihYWfuxT6iBEjpEuXLrJixQpZtmyZArUqVapIx44dpXr16nL48GGdqIg///xT2ZhWrVqpM8m7774rK9atk0mTJysb9sEHH8jatWuljBdtRPv06SNffvmlfPzxx/rzU089JQ8++KCC6V69eulnAHY3bdqkk+SaNWv08wHdrVu3lqVLl0rnzp01pcy+w/rhxNDnm2/kvc6d5Y3Jk2XImDHy0vvvy4NTpzrd7s6dO6VevXoKrocNG6aA+uWXX5aXXnpJhg4damNBAex89ocffqig+pVXXpHatWtL0aJFZeXKlVKpUiX5+++/FWx72gLVVYGYlXGNa3uuQAWLrn8HDpS1/fqpY8Q9zZtLg19+UZutYDY5MDICWFtkFaEirwjlMM4WRuvK71zHSAYC1bktEu4jAmZDKIw279b16zaN64UDB/zqApRYmFkmZNLs+MFa9cWA2SylSjm0qKK1I4wsx6c1QDZ7dn2dnuW0EqWgwpMuYzsmTpT6I0YErGuUt3F8wwZt1Vvz22997ugTqNgze7ZMbd1a3TeeXLlSjdo9DVj0X50sOoIV+BDDwHqTPof5/PTTT/Xne+65RwYMGCBz5syRHj16KEAbOXKkMrfE8OHDpWXLliJnzsix3bvl96lT5ddff5WHH37YBoxharyJBg0ayAvR1+Ynn3wiAwcOlIoVK97+HBEFnZUrV5ajR48qcwyYBDwCfokiRYrI5s2bpVfPntKiTh0F9tw/dWrVkjeiswu5S5WSwT/95HK7X331lbRt21bZWCZwAFLv3r2lTp06ekyYzJnE2V8ArNkGAHzevHl6rEixEgBrtukqDDi2B67xYc0VTM0/BazrhwzRDB3sa4U33/TqPvK2yQHHEvCKDRd/A+xyPsL9WAYjtCHK9es2rSsMLNcemQkeHLeI1jV+IgJmQxDM3rh6VdkiKq7P7d9vY2l93WZisOVC30oR1qOjRsV4neKv3NWqOQayNWsqyFVGNnoivXbxovz7ww9SumNHj7p9Lf7oI8l0771yb9u2El+D6/w331R/0jKdOsXLPpj9gEWa36WLFsw1/P13rwpSmFDTFCwoT6xYocyovxMp9w66V65/HoA1gnPKfuHjzGdkKlbMax0oYNYasLDHjh3Tn2FnBw8erGAW0DdjxgyZ+vvvylIfv3FDJ7/7LewaAANQ5+vnw+4SpnjK+hr7BEDcsmWLShBMML6ULVJEvtuxQ84dOiRpsmfXzE+FBx+0yWRcbZfvBeP077//yoYNG2SU5Z4zYHP//v1yb3SRnHV/OebskzleiRm4WuPYunXa5AB/aMbr8m+8oZIhs8D2xUoMJtZZkwPjRoBmlmsSCQgyglBxagg11tUwr4Z1NcA1IhEInYhcuSEUxkbrVjSYpSiJXu5YAPmzzcRgy7W6Tx/JWblyjDQcus2TmzfH6oIF6EVawDFuNW+e6ietUgWK5sq9/rrbz9y/cKHsmTVLGo8bF29WXLtnzpS9f/0lTSdNijdmGHD0d+fOsnHYMD3W1b76yuPjYZgOInWGDJKmUiWf98M0MVAXgrNn9fyaoiXuI5wL/G1VS9hb5ACqDOAiDf/ee++p/GDJkiWSL3duKZM/vxaRpTx0yO/Ptv98A+gcvWb2ySrjQEKDt63xs85aurTciZY5WsPqaLsGVJrzZIq20MY+//zz8tprr8XaR7SxjvbXbNvsG9smjMY1MQBXE3z3fXPnqjMBGQ2ukVrffqvFkr40O/GkyQHHmPfAxPKeiIwgZnBtG+AKq238hMky0AAiELr9SAQnImA2hEIrqKODiRhWkcAA39dg0vLVozZc4ug//2jv8UZ//BHj9cMrVzLCx+j8dWbXLpUWoJtsbQdkAUMULBVt1UrSu/GkZeJY/OGHkr1cOdWzxZfGGlY2T61aUqhx43jZBxhHClOOrlkj9X/5RUo89ZTH/4s+D5Dij0uBaWIAgL1GE4OoqNtNDLJn1yYGuBNQ8GXvXBCsgK1p2rSpakiXLFworRo00GIy2uQWSplSwQVaWwP2YMa2b98uNWrUCMr+cDyKFi4s8//6S1549NHb9lp58sjGgwdVbqBA1sH/GFAJ+DG2QYa14zvwc7ly5ZT1LVy4sMf7YgWvgAUTpg1nQgWu9tfs9nHjlIk9unatZCtTRh797Tcp2rKlT5Iyd00OIjIC1+2HjdaV48i1DXAF5EdY1/CKCJgNocD30gpm986Zo4xJnurVfd6mseZKyIHGLG3evHJPs2YxXkcvS8W60ZtR/AOQxStUGVm79qVoXzGxbzR2rNvPhJE9uHixFjjF1+SLro6CKaQV8bEPLCImNWmiGu/HFyzwuDjFtP8kfJkwTBMDBbAwjNG+zCzaKOQzTQyszgVxqSV+9plnpFGjRnLz1i3pOGGCAlkCp4Fnn31W3n77bQW96BcpigqWxo57n+ujQ+PGUr99e/lh/Hhp2769TJ85U77/4Qf54Ycf9H2OAKbZJ8ClKcqy30/0rw888IAWfSGvoFIbLe5ff/0l/fv3d7hdzjWvm6YXVMfDEFIARoU3LBgdpBJiIGEi87P6m2/k3J49kq9OHWkxe7bke/hhn+5fV00OIjKC2GHVunLMOFZcexHWNWFEBMyGUJAGNMHkfGDhwljMoreR0AvALhw+rDqzal9+GYvVgNnOcf/9mmY+u3evamTRBsLI2nfJYfCHKYHlzFG+vEesLD3PPWmoEIy4cuaMLP30Uy0Q8aTVbqBj29ixMqN9e8lcooRKHDzpOgSAPXLkiDIi3rJwSBm0CxcA9sIFfU09YPPkue0Bayex4F5iYcJiJrXdoiWYgVa3ArZeWbJIyZIlpWCJEjH+jisArT8Bu+gU33zzTU37BvLz6dJF4GWbJFs2qdGokYwZM0aL1np8842mn3EXoHjLyo466qrm6vyghV2wYIECcuy5uC9ogNCiRQsFWuZ/7bdr3AYMK9+vXz/57LPPtJiN7cyfP18SUlBgR1EpD7IIZH5oHuLrfeuqyUFERhDTWsxIBoxPtQGuWLMl9AxAYosImA1RMGu0nUmSJfNbZpCQmdl/v/9egUypjh1jDWYws+VefVUrhAGymN3DyNLFyD5gWWmu0HzaNLefuWPCBE0Ptl6wIN4GRDxluV6qfvFFnH4uYGlpt26y7LPPpFibNlL3p5/ceutyLvC2JA1KERHHzOpF6iywqVP9K00MLl26bayfLp2ky59fi7ic2dXB3NKqFoaW9wbyHDkCWpMmTbLJVLhnzxw7JucuXpTnXnwx1nthZ3E74GECptbTwLPSoSzg5k3VwyL7yIiX6I4dWtSI9pK/N2vWTIvAnLWIdbZda8D8mcIs040NQDt16tRYzQfMMXe0XQrHrAGryyOhBdfCqm++kU3Dh3PAtaiUwi5s/ALZ5CAiI7i9UDasK9IBrj+jdcWdIaJ1TfgRAbMhKjNA2wkrm6VECZ8Le9S8OQEzs7RvXTdokBZM2DsPAGYodEErqUA2SRJlZJ21BabHOV11CtSr5/IzAQ2LP/5YGVl/5B/+BNcGNmT3f/hhLKlEMANGdEa7drJj0iQt8qr07rtugSKglcp1423J+511AFOQdPmyDcACZmHVAa6pcuTQZ3eFZYBtzj3bylC4cJwV5nFdULB55NAh+XnaNP2+jeNAxwxwx4eUB98dSQPtmLGWA+RYZQPeFlPZd+sy4NYA18SicfU2Dq9apVmeHePHS4rMmfU+xWnEyE28CY47BV2w9yyEsHHjuBvHAv6W2NwIjITCgFcr68p9F2FdE2ck/Cs/jAL2iVQ5BQJo3VQv+9BDPm8PYMAEl1CZ2c0jR2pKtbyDamr6l5tmAsZPNJ2lwtoagBBaRdYdNsytTdOWUaPk1JYtamAeX7Hw3XclZdasUvGtt+LsM9EbT2zcWFP3zSZPlkKNGrl8P+lOLJyYeClIccaMqJvBxYsKXpFO3ETLljSpLk5o4axNDDzUlGo19549uijEuSCu3B24X2m+sXv3bqnUsKECjp9//tlrYLFo0SKpX7++078jT7DKLi7Rlpd0M9q/LFnkrixZ6DIhyr1Gd7vyFGy6A65mOxHg6vz47Z4xQ0Hs/vnzdSFV+/vvpUT79j51BYRpJJvBYtDa5ID7ite5FhKLG4GVdTWLM8O6oq9ODAA+Eu4jchWEUDAJU5zE5IgZP8xsrsqV/bb6Sog+s0wea777Tgo3bqweq/bBxKJgJipKgawrdwJa15KSpc+5q7h57Zos7dpVC82cdRQLdhxYvFgroXEOMI01gh1YkE157DEFlm1pQmGnA7UGQIiiFCZh/EQdTbSm0x3FWecuXNACMhZx6FvRv7L48tb7lTC2U3HlXGC+C0D21rVrUqZmzVipeW+Clq72KXj7sNpr6THLlk3uypxZJRfWNL+riADXwAVjApp9QCztkHNUqqRWfYWbNvUpK2Df5ICmEkZiYG1qgM9vQlxYGNbVaF0BsoBVgDvAlfEkIX7vSPgfETAbaswsAIzU7D//6Gt4p/rbhCEhygxwE4AhrTNwoMO/75o+XRkrBbIuNGpoDDeNGCEPfvqpJHNgU2SNDcOGKfNHb/T4CFh2mhJkL19eisdRkwb6ws956SXJVa2aNB471mWqFLaIlqYUWBhJgQnAK3642ydMkIP//COlevSQa3fcIWlgljJkkDvTpPFrkrI5F+TMGWfOBQCZ09u3q8QgY9GiPjFw1mDCdmRzxQSPM8HJbdvk+vnzOkakzpVL2dikbphXZ8DVgN4I4+pbcD5wE8FJheuu4KOPKhNLgxZvr2NHTQ5IlQPoaI2MjADLrVy5ciU47Sdg1QBXIz/iu8O6shiOsK6hE1HR1ynPSF5CLSJgNsSY2Tuii1quX7ighu+OipW8GXCJhCgzYBKhMC63A93qvvnz9fiVePppt8UW/3z/vTJcpd20rkWfu/zzzxVEumImgxlbfv9djqxadbvwLEh2TjE8bLt00QpsOhHRKtdZwRWTLZICPBqtkgIWU7tmzNCCuV3Tpuk5yVS0qBRr314bgWQsUkQBnL8Rw7nAjwYj3gJZ5CksMPhOxg4sUMGEcfPGDZVeXD52TG5evqz+uXjWaiMIB4ApAlzjxj0FvTpafa47Ov8h9/FlTHDU5IDgd0BsQpMR6KIMeUy0ZMB4CwNcAeuOWu1GIn7jxo0bmmXjmmTRwSLYdAIMtYiA2RDUzAJoSb1mKVnSr+0ZmUFCY2ZPbNqkHXNItTsa/Ba9/74+u6v053jjhlDq2Wfdsnm0uKXI5sGuXSU+gn1d9N572qAh2IVnl0+elKmtWqk1XJ0ff5T7nn/e4ftg+kiJMsgxwDHpomHeOXWqFr9wjtDAsui4P3rfM997rzIw6EsDMXEF07nAWaBXPb1tm/5MO1x3jL43wTHVbliXL8vFvXv1+KkF2T336H1s9RGNMK5xF6d37ZL1336rOn2kYPe9+KKUe+01jyzp3DU5QGMNYADAJiQZAd/T6jBgZV0ZL+y7k0UidNjXCxcu2Nr38uCcYbtnHDRCMSJgNtSY2aRJJWmKFApmc1Ss6Nf2bDKDBMbMwozAwBVr3TrW3479+69actHlyN1Es/Hnn9W7FLscdwz3yq++UtcER/rcuAh0vUgiqn/9dVA/59CyZTKtbVu9dlrOmeMUODMRA2RhjlLeuCFbhw9XBnbfvHnKVuZ68EH1/i3crJlkKFAgKPsaH84FyCVgZGHGYWQDVWTGhGHsrpLcuCEXdu/WhW2me+9VbbQytTdvxpIKRIqzgt/ogEXsvPbtJcm1a1Ll88/lvhdeUGcNf5ocIMWBiYSZPXDgQNjLCKysK4tbCtX4LrDLOC2g/Q1Wc5BI+BecN8ArCyrOIwsOxhqC65TFVTicuwiYDaFQL00sb5IlE7qgM1n6EwmRmb104oSyIw989JFDILGIjkrJkmkBhqswrWuLtGzpVopAoRm2VJU//ljiK7W5skcP9czN6GHrUF8YzmWffy4runfXIpZWc+c6PC4MfEgKrh05IqcXLZJlEyYoAOa6zVurltTu31+PvbVNcDDC5lxw+XJAQaW7+xONLJkTJBLOZBeehmFWrW19YWIpKOMz0hYoIFFJkyoIigDXOAZmZ85ood2lixe1ILfql19K8cce84mFB9wBYtmuqb7HkQCgZ/Sx4RaAHaN15dmAIBg8QHqEdQ3tc3fx4kUFsIwtsK1oYCEmjNUbP9PRL5yyAxEwG2LMLKCARgkE3pr+BOwaNkeB1vPFZ6BVIxxpXA8sWiS7KfwSkbxuLM3+mzxZTc0bjh7t8n2kzWk/WaZzZ7/0y/7Eko8/1nMIgA9GwDROf+opbQSBjOL+99+P1U0N0PXfkiWya/JkOTpnjhz/919Nt+K3W2/4cLXqisuWsVbnArrlBTuwD1OQmTy5tkf2B8galpWHtTuWAcvc/2n5XnfdFRaMSEIJ7Z6GE8fRo3LzyhVtOIGd34UTJ6RAlSpeAVlrkwOAHcAV8AATG24yAvUrv3bNJhmwsq6AIL5L5DoN/W5oF6KlA5wrc964Ns/R9vrUKV2MwKCH4+KKiIDZUOsAZvFy9NdSi/Q42wiXQdMTrSIa1+Lt2kkqPDXtbli0suny5ZNze/c6LAyzvhcrndw1ari12FrVs6dE3bwpld57T+Ijjq1bpy4KD/XrF6sxhL/BcWBxMP/NN1WW8cSyZXK3RdrC34+uWSMbR4+WnZMmyfmdO9V1gMptAG/B+vXjRcIS184FsPIAWRYUAFl7oO8s8Jp9/fXXle0gaCdLt7CVK1cqGDAgVu2IsF7auVNBsjesLx3JatWqpaAJkBQJ7wPmlZazyAmQd3GfkZUAzKrW8+RJn5ocAAo4zwBB9OSm4UE4sa58f76TYV0BOwCghDKnJNS4du2aglceRvMKgOX8ce7IBjFm8HckLnny5HF7bXJNcG3D2PI/oRYRMBuCHcCMJs5fxgkbn4QkMdg2ZowycuVffz3W36iWp1FCvkceUa9SVyDn0NKlqqt1Z7Gllcv9+kmFN9+U1NmySVwH1wGOApmKFFGdXiCD4zjzmWfUj/e+Tp2kRq9e6s1q2gBv++MP2T5+vJzfv1+SZ8wo9zRpIkW++07yPfxwvDL9ce1cQHYDIItuNQNA1gcwYqQEr776qrz00ks2EGte5zud371bpRKca0/BciT8CyQdF48dk8vHj6sfNVZndE/z5fo2TQ4AB8gIuI9gwEJdRmBlXQErRtIC6wpoibCu4SkduBOZUtq0sXTYLE6QvPB+9LDuMgRc1wBYtst1zII5EA40wYjIqBlqzGx0lXIgwCzMbEIp/tImCX36SP569bQiPsbfbt2SRR98IHlq1tQ0beEmTVxui9a1FNYUbNDA5ftWfPmlptIBs/ERu/78U/bNnaug2199pjV2TJwos597TtPZzadN0+PAMfxvyhRZ8dVXCmZTZs8uuerWlYfbtJH8tWsH9PP9scOyORcUKBB0dugqtknRbDSFf94AWaOHJYzxO8CG4HVStXqfX7+uxV7JkC9EgGycjbPaPe30aQVuANhU2bL5dI2bJgcAQa5HQAQgARYsFNlLrj2r1pXfWVzB3Jm0cyjudyScSwfMtZc6dWodY8xi2ZnkhfPsaoHFNcF2TUbJ2oo8lCMiyAoxZhZQQVo7EGD2WgJiZvcvWKBOBRUcOA/gv3piwwa1yjm3Z4/kqVHD6XZObd+uetmKb77p0qv17N69su7HH6XSO+8EPL3vsc/rW28pE0paPxDB9QAbO7l5c22C8PSGDZKvTh3Z/Ouv8nPp0jKJRcAdd8iDQ4fKU9u2SdMRI6RQvXohAWQ1fbtz5/+dC4KsJcXfFeDMYpCiO4Dsnj17bC1drY+aNWvaZAX47AIMmjZtqiCHMJPLJ598Ivfdd58N3D737LPStFEj+WboUClWo4ZkyJRJXnzxRWVWrGAJRpeiGlLVVatWlVWrVrnc98WLF0u1atWUQSF9yP/D2iTmMI0nuP9Pbt6s0hE08FlKl1bXE2+ucbbFZI+93N69e5XtomAmf/78ev5hxEJh4jesK6Dk0KFDev3inACQ5RpF9sA+58yZUwGLPQiKRGgF5xL2f//+/XrdAVABsFxzefPmtWUBzDmEfWUM4rzzv5xvzrUzIGuadOzbt08X27yX7SIpCIfrIsLMhiAzi4YrIGA2ATGzsLKZS5RQ8GXP1i355BNlY40VmSu9LNuBhcHs3FUs69ZNU9llX31V4iPQspLeputWIAYSJBgUeaENrDtsmBRt3Vo2DR+uLDULgAINGkitAQMkKl8+lwNesK//U1u3OgYPBw/q+UXLSNvQQAU+sfZtgSksO4OUAe0kDHA0cAYYMtibOHLkiDz88MNSvXp1WbZsmTz77LPy+eefK5D966+/pGu0JzHglYlFbbeSJFHQQEEZ9+eilSslXbZsqn1l0unQoYNOSt27d9f/feedd2T8+PEyYsQIZUd69uwpdevWlf/++08BlH3s3LlT6tWrJ1988YUMGzZMO7K9/PLL+hg+fLgktlA98unTysRyfdkaT2TM6HXjEbYFmDDOBIDW+LpXvGFdjWtCBKyGp08vCycWtbCqMP4013DVGe0K9oGnTikgJUvAgsXZHGIvI+D94dqkIwJmQ81nNnlyLUIIFJi9K2NGCfc4/d9/asT/yODBsW7K9UOHqoay6eTJClSzli7ttOUqQG7Tzz+rK4ArXRzV/bS4rdWnj+pI4zqYfJd27arNHPg+/gRgf2m3bmrtRWvkJhMnquPD0AIF5PKJE1K0VStpOmmSZCxeXFmb+JycAbIjy5eP0898as0ayV6unO13qtlVk5sp020ga7ne0J7RYtNMGIDWBx54QD744ANp3769gsz3339f/6dYsWKyZMkSmT17tr4fIGG0awBZGEKcRu5KkUJBJkxZiRIl5LPPPpO3335bQTGAZODAgcr41q9fX/93yJAhCpR/+uknfZ99fPXVV9K2bVstPCPuuece6devn9SoUUO3Fa4TlbeB9d4V40xA44l06bR4z9p4wtNQHfnhw3rOARRcA/HNvrJPgBUDXgE7ZCs4v1xLLHTCodgsEnYLrytXbK4DRjrAuXS3EImySAmMpMnZvW6VEbBN7OLCQUbgLiJgNoQC5uDOO+64DWaTJFG9pj8Bk5U2b15JCE0SAKj2bCqG5ss++0yKP/WUZC1ZUvbPny+FGjZ02bqWNDrde1zFkk8/lTS5crltcRuswO+VCbjq55/7tZ2TW7bI9CeflOPr10vFd99V+cro6tXVdohWvxXffltT6EyK8Q1kDUsKuLQGqeHzBw5IqqxZ9RGMz7QudnDCoBAonYvBnYkDBhVLm2nTpulEs337dmnWrJkNZPBcuXJlBbNWFgUZEUCWxRRZE2QHgA8T/A8TDalEKuLZVpUqVWx/B0xVqlRJtmzZ4nDf1q1bJ+vXr5dRo0bF2F8mMNLi99rpzRNaIM+5bJwJbtzQRUkGH+zbzDEDJMJeARRZGLhixIIZ7AtAx9hj8TvXggGuEdY1PIP727gOwMQauzPAqCdSKms3uTRp0mjBl6Nr1ABlACzXtMkqxNf1HIxION8kzINJDgN4zNIBHXQB83elZKy5wjnQLm4cPlzKd+kid9pVUf7Tr5+mhKt06ybn9u2Ts7t2aRGY29a1TphbAl0urgl1hw4NaJtSTwNpwT8DBsiDn34qqX30GWbgYhsL33lHUufKpU0M1vbpowVfZTp10o5npqlBqABZgnS/lSVVBnPbNklXubL6yQaTOYDBw7kBCQo2ZY4+y/jDksIHpK5YsUInHVOwCegxeljT5MCeJWeRQqobltDbNLcnwaT4wgsvqE7WPtC/JdSgM9ulo0c12wARYHMm8PKaNg4TnGeuAdhNQCPtV+Ny4ue+NMAV8MG+AHQAr6SCI6xreAbXl3Ed4LxyTXkiHbAP/he5C9cJeuf8TqQECUlG4C4iYDaEBmOCyY5gwvM3sOa6M8w1s+uHDFGmumznzrGaGaz8+mtlWdFRbho5Ul+nsMlRbPrlFwW+jmy9rLH4448VaJRo317iIxa++66CWMC7L3Hh0CGZ2aGD7Jk9W6vjkWhcO3tW7v/wQyn70kuqFTQRSkDWPgB+7Dv3QbCdC7BgQ5PLcYeRt/8sJiDTSnby5Mny5ZdfyowZM6RQoUI24FO0aFFZs2ZNjN7ly5cvt/1MwRESBgCsetVGp4BhUkkVG7sb/ofJDX0uVcdsD7kCaUBzzigAMzIC+yhXrpxs3rxZCgepU1xItpulgQbOBMmSqV0bCxJv7M3MIsW0E2YRwv3As/rMxiHryrXAvhjWFfBhLeqJRHhLBwikA76cV1N4CBPLYkZbiTvACbcSqIzAXUTAbCgVf0WnyQj7opTEyMySJvynf38p1qZNLJaSZgb8/YEPP9TfDyxYIFlKlYrVTMHauvaexx7TlKOzoC0rdliP/vZbvHh94tiAbdajo0bFYqE9iW3jxsmsZ5+1LYhg+h/q00dKPvtsLO1vKANZ41xAqCVWkJwLmBwuAmQPHVKmOnXOnDEGfMPSEUweW7duVXkBRVlFihTRql/TCQlwiRygd+/e0qRJE5k1a5bMnDnz/00Xtm/XinmkQ1aLL6qMKRz76KOPtACMxgoUa/GdmfQ6deqk2lgmLphVCsCYFPkfR/Huu++qjpdtdOzYUbcBuEVnO2DAAEkIoVX6586pVzJSKo4pnbpSeNGJysgIzCKF4FzCjgV70rdqXQE6fJ7RukZY14QjHYCBZfzg3HojHbAPrlGAKbIm7mdH8oCoaNAM0GVMSYgyAneReL5pmDRMkOiB1V8XAh3ww9yay5j2kxa3BuADHW2Ft96S1Nmz62voZanIdxQUj5G+bxDN3jqLRR9+qIC4WOvWEh8yExok5KhUSYo9/rjXUowpLVvKvr//1t8x93/ggw/k3ieeUCN++whlIMt1i7sCQDxT0aIO9z9QnwMbCyCCjTWyCwNymIQAGUYyQMCIAkBwGjBuAwTFVbgRUJwFGMWCC5cDACqFXABZFqfoN+2jdu3aqsXEEYHUYZs2bWwuCESPHj10f5566inVxVWoUEGBMqDHUZQuXVoWLFggH374odpz8X1gkFvHwzUdjHuE7AqSEK4PdLAsTily9RSA2gNYjg/nGCAbDBBrQIaRDPDZfB7AlfRwhHUN/+BaMq4DnGsjHaBQ0B8wCShFSsC44MyVwMgIzp8/r6CZRW9ClRG4iyRRRvCVSILVDbQ7xRWh1JLt5NatMtxSnAGoeXLFCp+3BxvUL21aZRnvbdNGwjFGPfCAJEuVSlrPnRvj9b86ddIOVc/t2iV3pU8v5/bvl8F580rj8eOlSPPmsbbzW5UqyoY9vnCh08/aO2eOjH34YXVFKNy4scR1bBwxQmY+/bS0WbxYclkKflwFjDPFYjQ6uHXtmlbf1+jdW+5p2tSpHjMUgCwDPsVIBbBIsht4WajwAKQ4An+BCK383b9fi4TQx7IgMqlmHoBXw9C5Arcedw8DdEV71Vrj6aef1omIFreRcH2dm6Iu5Cfc82RqaGbhCQC1nltrmHPpahuurlVHwXVi1boShnWFwU9MTFmC9iy+etXGvhIwpgBYfxcnmi2iVuDUKVsHOXspAeMR4BUMw2exKEoTok064hKvRe6sUGNmWWGg2Uqf3q/tkYYjwpWZJeV/eMUKaTZlSozX0VFuGDpUqn31le0YITFw5i97cOlSbV9rvx37AWTxhx/qAqJQo0YSH7q/xR98IEVatvQIyN64elU2DhumTPLV06e1fW/tYcOUiXU1oIUCkHUV6B415Z8zZ1CBLI4FFArhWJAic2Y9LkwQsHOmKpz3GT0sk4q31eLugGwk3AfAFQCLywSsLC2qUwFiPZDgWGUExt+X8HZB4u4zrFpXU/wHcGUCBsQmRICRGINza1wH+Jnxk1Q+TGggriWVVp05o6ANYExBGLppExEZgfuIgNkQ08wS6DUD0f2LCNemCav79NFCGfvuVzRIoEq5zEsv2V5DYpClZEmHetnV33yj6WpXXbSQIQCcW/71V7xMPqt791ZwVf3rr92y7esHD5YVPXrc7iefJIkeh4f69nULlkIdyOJcYPxdKeIJRjAh8BmkqnFHSJomjU5MVq2kYWHtwa03EQGy/gUSAqQE+MRyjastW/bsHklOrDICw7oaMOsviDWsK8DVFIZxLxnwGmFdE650gLEA9hNXCyvIDFRXLz7DtI21XqOM2wBcmFgY2sQsI3AXETAbisxsAMAsxV9EOBaA0Up2x/jx8lC/fjHS5dhmbf39d22eYGVnKJwqUK9erO3A4lJQ9ciPPzpNu8P4LPn4Y8lTq5bkrV1b4jrOHzwoK3v2lHKvvy4ZChRw+B6q4Nf27y9r+/VTZwJTGNVo7FjJXras288IdSAbw7nARbcaf4LzDJAF6KQvVkyBkRXcWNPQxo7J1/uONrikwN213aUZQiRiLtbQMF89c0YtCinIA8i6K8a0ygiMnRbhz4KEbRp2nsfBgwd1OwBX0p20F46wrglbOmAWKQDYQJ5rPgugDIglkBJYP8ORjID3RK431xEBsyHIzAK8/AWz2HKFKzOLgwHyCHt7LNLq2E2V7NDB9hqG+oAHR/6y2ro2a1ZtquAs0N7SVOCJpUvjZbBY/NFHWhxEwZZ98N1gltcNHqxgjO+CrAB7sapffulRujXUgWxcOBegubxw7JgkTZ9ej0GK1KltjJ2xZAoEc+cNkI2EBUScPasg9vqFC9pMggUNkgJXPrz2MgKzADHn01sQa7ZnHoRhdtkWZvQRRixhBdcJwBXgaKQDsK+Bkg7YB9cVABU5AUCZAjGzaOb6g/EPdTeCqOhFXiiObaF1pBJxWJlZUmuBYmbDTTNLihZvWfxjk6dJY3v9wKJF2oa14ZgxMZgaWFlHetlLJ05os4X733/faetarL2QLSBBoNVrXMfRtWu1be7D338fQyNNhyg8dDePHKnXQf66dWX/3LkKaJFC5Hv4YY+2H+pANtjOBUYyAOMHUEqTLZvclTat33pYp0AWjWzatNpVLRgNERJScC2TcaDRAR7bZgHAfeDqXNjLCMxkb5WGuGPVzYRsgKuRIZhGF1Z7LsP2RiL8g3MNYIR95TlY0gFH4zAsLGysvZQgXGQE169ftzVfwP8asB1qEQGzIcjMSlSU32CWwgktJMuQQcIpAKDoJ8u+/LLtNSabRe+/r92hirZoEeP96GUzlygRq9Xp8i++kCRJk8p9nTo5/SyAJEU6jf74Q+I6+E7zunSRzPfeK6Wfe05fO7Jmjazs0UMtyaiwf+Cjj+TExo2yfexYKdqqlTw8cKAyVgkByBIU9lw/dUoZWX+vd2uYlLOyHYcOKZuN/jpZ6tQOi738DZhFGFkWjnyXCJB1HiwgL5l2s9evS4oMGZSJtS5cPZERADg5j5xPd6y6I9bVgNdAFYNFIvRC7SmvXbNJB/g9rmQihmnFWosApJrPNAxtqMsIbjmQOwBkQ20/TUTAbIgEzCzMFPpB2tn6O7kD0pgkMGoPl9DmBn37StGWLSVdnjy213dNmyYHlyyRFrNmxQIKOBnke+SRWDZntK6t8sUXDovCjCPA0m7dFCRmK1NG4jr+mzxZ97359OnKOmOvtfevvxQM1Rk0SCvtZz/3nLpSNPj1V7dOBeEGZFm8Xbp4UTLiXODEM9WbiAV4kiRR+QKsH4yf3HWXLf0cSBYmAmQ9C8Y1irq0cDEqShscsGBzljVxJCMw3dV4DZDiiFV3xrpawWuoTsaR8D+4NozrAOMg1wfsKzKRuGgBzDWHnRQsJgwrrC/7YMAtr4eyjIAw+4mGOJT30z5Cfw8TSTC5J2GSvXZNGQt/wSwpT9iocApcBc7u2iUNf/89Rjpy0QcfqCY2X506sYqnAO3oR60x/803JW3evC5b167/8Uc1zX+wWzeJj4l9/ltvSbayZWVZt27qpJC1dGn93gUbNZKln34qf734ouSpUUPqjxih3Y08jXAAssc3bVL3hhwFC/rtXGAkAybtzMQB+8d1QSe0tLTCTZEiKAxcBMh6uGgBxJ46pQtRXAloN+tske1IRsCz9TzbW6iZ90dY18QXppjKKh3A2ipr1qwxWksHO6xSAorG6NbHdcvrx48f1/0LZRnBjRs3bHIH5g1YWEetckM5ImA2hAZ9Y6/EZOwvmEV36am2MlSCav2cDz4od1eqZHtty++/y4kNG+SJZctiMSqO/GV3z5yp2loaKCRzAubwdV3evbsWmGUuVkziMmhXPLNDBzkbXfSUq2pVaT5tmhSoX1+/52+VK8vpbdukRs+eUqFLF69S1uEAZPGRndO5s5T46ivtvOUrS2YFPVZww0KBa597KD0azACbidesWVPKlCkjPbp21XOYPH16bfDg6XmiuxdNEv7991+njRMMs2jfz4Z2t3QLoxMZ++BNBOoYeLodtO+AWDILZJw41ylJUUYfJ+t3s7KwVhmB+RtMlrVTl5EXmG040rpGIuGG1XWAawHpAAxifDhMGFcC9sNICbQpSxik56Pognjhgo4//GwF4eEYETAbQjID64ToD5glXc9Em9GFXjTUAh0d+te6Q4faXgOYYJtVuEkTyfnAA7H+x+hlU2fLdvv916+rDhUW955mzVy6JWDQX/mTTySu4vrly9rogMIuuk/BHD86apTkrlpV2WdcCxZHuzU8uWqVMrVebT8MgCzHYFLTpre9Q7Nl87lPuSMLLSaTq5cuyTkWCVFRkrloUbX6CkYgUUHCcJeXQNZRfPfdd/p9DDizB2jWYKLhHJuJkRa6tM2F+WHCdBXuGj0GohGkAs+zZ+XKsWNa1JeUnvR58yrg55zfRK8arVk17zcPIwUwLBFhZVoNqLU2PzBhZWUDHXymseYKdKrV+h3sgY6r3339mzf/G0rbMYVbPLhPuOcBsNwH5h7hvZyrQO6Ps7+pX3W0KwFjLQCWfWL/Dh8+rPuBLjeupA2+LAbOnDmjQNy03Q1mAVxcRQTMhlIBmOXm8QfMApYAguEkM9gza5aCkIINGtheWz90qJzds0eaTZ3q8H8As1bpwbpBg+TU1q3S8LffnK6Cr5w5I6t69pTSzz8v6fPnD8I3if15//7wg6z57js1gUe/SYveJ1euVM3guX37ZEb79vpdynfpItW6d3eqIwxnIMsEACNNQVuLRYvkvBeDvL0e1pE/LNf7hV27hLOesVgxp6y8vwHji7wgRfr02njBGyBrZVwN20gqzwBXd61VjUWU9XeC4xGfmjYWz1zbaGKRdmAHyNhDQZz997GXEfAdjIzASAnsAb0nxyZYYRjhQFlz2S8a7BnqQLzXm+24+l9ft2NdlPmyHcO8c4+YAj8yLwAuM75xDaFNjcvvZfaLz+aaYH9odkDGhNdMRoFnmFkeoRJR0fcW+8+9xL6zn9YGIJ4CfIA6IDjUIgJmQ9Gay08we3r7dn2G5QuXoMgre/ny2nPdSAGWffaZesRmKVHCYbpa9bLdu+vvaPLQmpbu2NFlQRcMKEVBD3z4YRC/jahvJgD234ED5eaVK+qNe89jj8mEBg1uF6ZlyyabR42SOS+9pJN/qzlzJO9DD3n9OeEAZIlln38u28aMkcbjxun5PL97t096WEetZpPcvCnnd+5UYBkMiy8TsPkwjhj6d//xR/npp590n1588UWVDxAwHm+99ZZMnjxZGZDy5ctLr169pFSpUjG6UTGZ8GwvM+C79u7dWwYPHiz79+/XApIXXnhBPvzwQ500CxQoIP/8848ysbVq1dL/yRhdQNe+fXt56KGH5I033pBDhw7FuB6aNm2qqdiRI0cG7HiQCblsnAlu3NDubTDV9mOXKzcCe1baKhkJtbRsIMIdM5hYw7gO8OC6YJHHdc1zfB8j40rAfsAGwwqzn0ZGwGuAu/jeT2d6YsYXxkscEwCiZvFo/15Pfw9VGUIEzIYSM2u5YPwCszt26ITrTeFQfAYTIcxsGYsd1z/9+mnb0SpOCrRs/rI1aujz0q5ddTtVPv/cpZQBgFn2lVckTZBapsIk09ELSQHnoEynTlL+jTf08yY2aaLawRLt2smfbdoouMOloPaAAT5V9IcLkN02dqwuNDg3RR57LBYT4Mwf1h7c8Lux1jLgloUJizf05izegglkz+zapR7HoydNki5dusiKFStk2bJlCkgfeOABqV27tjz22GM6AU+ZMkU1aEOHDpV69erJ9u3bVVNn2FRnE9/7778vQ4YMkT59+kjVqlU1bbl169ZY78uTJ4+MHz9eP2/btm06SfG5HJNXX31VP79ly5b63mPHjsm0adNk9uzZAZNZaFHXiRP6O1pYCrusbLi9G4FhYc25NcfATJKG0Qo1QBCJ4ATXBZpXQCFAlsVdXLoOeOSBHe1KwL4BWLXBy5kzCmxDWUZw3eIJa+QY9vOD/X1mXXC6e7DI4PuHWkTAbAgxs1EBBLMwJO7aQIZKUM0PWCj06KM2lhVtKUDQmRRA9bLFi6te9uSWLZrKr/bVV5q6dxYrevRQ9q7SO+8E5Xtw3EdWqKCAqvLHH0uZzp1tIHXf3Lmyc8oUuf/DD+XXihXVSxf3gmKPP+7TZ4ULkMU7FxlFsTZt3LLhV86flxObN+vPBvwQMSyaSDlHgx5YUmQaXOdp8+VTCYO3kalYMe3A5nK/Tp1SIAvziA4XlvWDDz7Q/ULH2r9/f5kzZ46CydWrVyt4NOfk22+/VWA5btw4ef75511+DmnJvn37yoABA5RlJQoVKqSg1j44NoBjAs2eVTP7xBNPyPDhw21g9tdff9X9pHjNn+CaJePAvcoxJ4uSMmvWGM4E5lzZNxswjDSg1UycVhAbiYQdxpoKgAVbyP2N6wBsYaD8ngMRLLTowsV+AtjIjHBfsqjk/mZ/Q3G8vRXtCQuIJVgY4OjA6xxv/mYFpI405tyH9g/Ojf1roXKu7CM80E4iCCYKZWah8G/d0o44vgZMVbhJDGB3sleooL+jaYVlBfg5C9XLRrs1UPQF6C336qtO309rWLxn7//gA0mZOXNQipumtGypEzx6WGtHLzSFc19/XVLlyCErundXOUG9n3+O4aWbEIEsUpBJjRtLllKlpO5PPzkcBK2MAIuS0Q4K/YIZT61Zo804nE7AJ09ql7LkWNXkzKmvAWat1fOcB9iajRs36iTIhGcNJvGd0e4VrmLLli0qTYDh9Seee+45qVixohYtwR79/PPPyh77MgmpvvfcOQWxOBQkvesuzfikyJz5/+4r0Wyr0QNbtbBG62qYWk+aHEQiYYS1YQH3N2DQgKxQA0Rki7iHuY5hHmFjkRGYrl1x6UZgzWqY9syumFKTrUqWLJmCT56tzWGMvtcsHA0gDbVz4G9EwGwIyQxolsAEwUXoLzNbqHFjCZfYNX26WlPx3QFAa/v2lQpvv21zKbCPC4cPK2Anbb1rxgzZM3OmNJk40WXRDx3B6DLkynvWn5j3+utqqdV2xYoYQNboRbHduiN5cqn57bdS/rXXfK6ADxcgy/WMrILv2XTSJLnTzlnASAaMhpJBOFvJkvLk6tUK/ql8txb/xNj2xYvKyFItD7AyoMqXgJklDBCzVsZfP3tWLuzbp+x6evxqo4EZx93KJpquPkzcd999t7oM2Ic7twEiUL6OZcuWlfvuu09++eUXeeSRR2TTpk0qM/AmcNiAgQXEwoDDXpPtoaPgLRYgANNoAGsaEjBh2hdqBaN1cCRCMzjHxvOVRZmRDnBPhKLpvrHQgoll/2CKjdUWrGzu3Ln9yhpYAamrh7csKWEkGowZzAUpQtC7Nq4j9K6wxCwzYAKnMMKPpgkUZZzdvTtsnAxgTI+vWyf3v/eeDfhR7V/xzTed/o/xl8WTdlydOpKnVi2173IW2Cht+OknlSHcFQStz+Zff5X1gwerrZjVUgtQhp8tjREAAY8vWiRZS5b0+XPCBcga54KTmzdLm8WLY+iTYWtIw9uDG5XY3HmnZCxZ0mU66yo6tv/+kxwVKqgzhLdA1moHZYArE68BZIZxRVoAkIXFp5OeJwCsXLlycuTIEf3//D44ZeAhy+SEZKFjx45u32/tiGUf/D+2X7Cz2HehsfUkuGbRwqKJxSECR4L0aANTpbrN0l6/ru8zemYDYO3DWZODSCSc4BzDaBrpAOcXQIj8JZTPN/cLABYgi6YUIMj+c53aywjsWVJHD2tWwhpmoW7/ME4C5uGJU4fxhIU9Np6w+fLli2Q3LBEBs6HEzAJmmaBIw/m40gLIwvBmChOZwe4ZM5Txyl+3rpz+7z/ZMHSoVOvRIxa7aS8xyHTvvfLfhAnK0DYaM8blYEBxGO4BZV56KeD7T2p89gsvSPF27aTkM8/EKASb0a6dtqpNkjSpMrb+nBMGzHAAsgQuFNv++EMbV2QvW1ZfY7IwfcqpqodZYCA3DK2xQHJlfI/NmTYqAGAVKuR2IHcEXAl74Gr/eUgLuI+8AbIEoLFy5crqHNCzZ08pUqSIugrAijZr1kwqRMtonAWT6rvvvivvvPOOgoEqVaqohyzM6rPPPhvr/Uxm7Nuff/4pDRo0sKVxjW4WVwWKyWBoPVkEA2ApkmQcQlaROl8+1Qhb/TXNBO1sArYW77k7n5EIv+BeNa4DADmuWa45QGAoy0aMVy2sKwtqrkv233S84sF3YzFqH0Y2Y33w/3x3KyANxvdPqJ6wwYgImA0hZhZWRPUtqVP7PAEgMSAyhAkzi14WhhU26O+XXtKqaAqnXAVg9u4HH1SQWqpjR5cNBk5s2qQWWA9//32sVLe/gX0YOln0ug//8IONYdw8cqTMefllBV0Ug1V4802/gSw2TeEAZLf+8Yeel6pffKGNK9CdwYJY+5QzqTC5MKlYJwq3RVi7dzv1d7WCVvNsBa5mAnJ3X9mAbJYski4aLHoavHf69Olqo9WhQwcFokw+1atX1+/uSXz88ce6n5988okCYVK0WH85CvSw3bp1k/fee08/r127dqqPJWBucDoASAOuHYUyrdHtZq+ePq37jxY2ZbZsKtmxtop1xa6a4811GtHDJqzgvJqUNsCKazO+pAOesKTmYfW85Xcz1pjrl2sZAO4LSxrsMB66PDjGaHjjo7tZuEWSqEC0fgmj4AJhoGeSDSV7iX7p08s1NDCZM+tE3dnBCtGTwHpq0fvvy2sXL/rVmSgu4srZszIwe3a1qzpLtXjGjFJ32DC5x8nka/Syg3LmVCb30LJl8uyOHU61tcTkxx6To2vXyrPbtgXUtonbZsbTT8v2ceO0Y1eW4sVVX/j3yy/LjvHj1R8XA3mAN/voq7whnIDskdWrZXS1alKkTRup+PXXtopg9KKGheX+O3HihALaggULaprPXRiAiZsA2lXCFXA1E5K3gz8LKhh1X4BsKAaFZCVKlJB+/frFYqjRHV85flyunzunFnJkLlJlzaoFqI6aGjgKa/Geu/eGa5BG3717t/r7JgZdor10gEA6AIBl/AnEPeGNDZQnLKmjB58Bo8nDWMLxPRiLQnEctfeEZdwEpyS0+ymYeC3CzIZS0wQmEBgkDyZ4Z0FferSEoQxkSc2vHzJEJQUAPkBKlc8+Uw9Sd/KKAwsX6vPev/+W6j16uASygKsdEyaoc0Cg/Uc3Dh8um3/5RRqMHCmZixWTdT/+KAvffVeBQcMxYxR0japUSer8+GOiALLnDx6UGc8/L/d9+aXkb9JE99dUADMpAWBJ6TEgwVbuw1LLg2uUtPe5vXv1GkmVO7etZaW3jGtiArIw4fPmzdNCNKy+YNSIO5IkkesXLsjlY8f0mXsNGQWLSIq6rmOnZamAdnYMInrYhCkdgIFlzPFEOmAWR/a6UUeV9474MmcFTsblwjx7ex9yrZMR4bsYTT7MJkA2FO9pTzxhI+FZRMBsCAR6NayoCPSV/jgZnNmxIyRtubCu2j52rILYg4sXK2hgPy8cOKBWVp4ONPvmzZNkMAV33+3SiotY/NFHqq0t/uSTEsg4vn69du4q/dxzkq1sWRldvbocXLJEu3zV6NVLgRevYUlVyoHW0RsgSzovlAc3ZVtPn5b1M2ZIvvbt5b7mzSVTdLERwBOdLM9MKBRFcZ6dNU2wlwpod6lDhzT1nSZPHp8ZV3dx6cQJtd+CmUybN29ITnquwp51LVOmjE6QX331lRQvXlzfQ7vZ80ePapMJbP9Y8N6ZNu1ta58bNzwq0rK2oo0UdYVvGO9RABQZEs4lQAoGjOAcAwp5jyuW1EhK7LWkxu3DmroPZpjiKEAs4yb7ABDn+4Sih7HxhDUdxOLa+iuhRgTMhlgrWxhVf225fDXiD0Yc37BBK/2p+L965ozkrV1bmUvcB0aUKiWFsG/y4iZGY3vj4kWp2bu3S7b14NKl2lWs0dixflk32Qdem+hk0SQDWn8pW1ZZ2Fbz5kneaFP67ePHK2BvMXu2T59tBbKhmtpkAmEwPnP6tByYPVs29ughj02cKBlz51ZWBBDLJMak4sxyyt6f1Mq4XqWi/tAhbYKRJnfuoA30hvkNJyBrBa5GYmHkFWgA9+7dq6+xQNaiLtrNXr+ujho0l7gjRQrb/3ri92rt2mWqsSMRWuFKS8q5Y0HJAyaQsIJQzr/VlzRczPLZX8YZiroIsj44KYTq4p+FA4tMFgoUwYZqB7FwjQiYDZVWtgEAs7Au+G/Gty0XhVG0aoWFPbx8uRZ13ffii1K6Y0fJUKiQDXTzgMn0NPhuMLlZSpZ066O7+ttv1UO0SPPmEkgQMfv55+X8/v36nfiMSu+9Jw988IFNHkGrzwXvvCMFGjSQ/HXqJDggy+TI5GH0sAd//VWWf/KJNJ4wQZLnz69Aiv1m/w3o4bgxgDOYw8rC+PA9eZjUomFcee/Fw4fVbzj13XdLmpw5gw9ks2WTtHnyhNxk7Yh1NY4CriQWWGpdpN3s8ePaiAVmOwV62Oj3OnNxsP/cSFGXhESBk6PUvX3Y20DxOwCV+41tAvBoVoB8INwBFN8J1wHGE74XYw3gMBTvX84di37jmkCGKhTH9YQQIQFmv//+e+nVq5deoJh90x6yUqVKDt9rrGbotkOUL19evvzyS6fvDzdmFlsuX8EsfqpMXvEpM0AyMer++9VjNP8jj6g9U6FGjWK0vDSNEmBWYWo9jcUff6zPD/Xr53LgAvT+N3Gi1B4wIKDa4VXffCNbR4/Wn9Pmzi3Np03Twi9r/NO/vwKkZlOnJiggCxg1tjYMyKTFto0dK6t695ZaY8bInWXK6CSL0Tjfw6QweT/nCtAKQwtzQlptD121ooFsjHThwYNaSEdRoNWfNtABW8l1EopA1qpFJIy8wh2LyqIYJpZ20Fz3tJpNnimTJLHr/OPpZ0eaHMS9Wb5ZaHjbUtQqHTC2dwBX7tOEwKTz/Rh/jM8qYwjeyaEIzI3sARbWeMLSTjqxF3MleDA7ZswY6dKliwwaNEjuv/9+NfquW7eubNu2Te0o7IOihjZt2siDDz6oE/7XX39t63IDbR+2rWyjg4vfVzBrbLnik5mFjQXItl2+XO52scDYPX265K5RQ7tyeapr3DZ6tPrP5q1Vy+V7//n+e0meNq06CgQiOCd0EFvyySfazrN2//6qhbUHyoAwmj7c98ILsUBuOAJZU2HrSDJwYPVq2b1xo1T5/XfJcd99OrnCPjCIw0CYPuaOdJhGM2udzLUbz/79CjIBl8gLEhOQtbJypiGBJ8bzaq91/vxte62zZ9WnOtXdd6tPLAtITzWLkaKu2MeDMJ653Acs6FzZQAXDLN/V+WJ/jOsAvxvdKzZwoXBNByL4jpBcAHTGRRbLFHOFYkQ8YRM5mP3222+1lzg+iQSgFm/EYcOGqX+ifYwaNSrG70OHDpXx48dr1xx8FsNdZoCjgc9gdvt2Le4gBR4fgbUY3a5KtGvnEsgiQ8CyqnrPnh5ve+mnn6oG0FWnL7PtDUOGqP+sp0DZVdDIYVbHjtp17K6MGaXdP/9I+nz5HL53/ltvKduMM0M4A1mbHvbMGZtkgMnXpPfOnDolF8+fl4xlykiu0qUldZo0+j5Pu/7wPiZyfFRJfTLJIy2gfSqygqTp0zstEvM3Lp08qZ+FBd6dWbPaKv3jG8AS1oYERobh6n+v0Tv+xAmVF3Hd3YWhOt7GWBNFu0g4Skm70sPy2QbYJoSw+o06+9nZ/3EMcOEw58iw41zr1or7uGLc2B9AHYtGfmbRCPtKtiMhsX6GheXBzwB0f1vLBisinrChE/EKZklBrlmzRt5//33ba9yUdNJZtmyZR9tgVYo2iBvaUTBZWScsfMtCWWZA9y5/mFnM+eNrVb76m2+UHXIH5vbNmaO6voINGni03eMbN8q6QYO0M1GB+vVdvnfLqFG6D2Vffln8CfaPFPryzz9X703s0p5as8YpkN03d65+Nj65AKVwBbLck7RANd2kuHf43ej27rrzTtnUtaucWL5cXShS58jh9Wdwj+PbefjwYd02lfZkJ9B2Xjh7VoRHML7buXMKmGlmkeLKFTm+Z4/ER1gdG4yG1dN7lnuAY0Vb36gbN+SOu+7SBeydpJ7PnZMk5897tB1r8VgoFvfYhxV0OvrZnV26+X7W7+nsZ2vAdnKtmtbB8dG1yuo6wD1JxjI+9ieYYdhvHAlYyLLAZUzk+4batWn2FQs8xkRqB5A8JKQFRThGvIJZVr1cDPbdcfh969atHm2D9o/4cAKAHQX2NHTJCReZwU2KYnxkFAGz8dX5i4ITwF/ZV16RdHnzunwvEgOkEJ7IIRg45r/xhrLNMGpIE1y9d22/flocRlcuXwMnhL9eeEH9cPm8/XPnSpOJEyVDtGG/I+D7d+fOkqtqVSnZvn3YAlkmTPbHgBuTDgXQopPNkD69THviCdk/bZo8sWSJT0DWBJNxrhw5ZOZzz8n+xYulxjffSMFSpSRYsfHnn2Vljx5S8tlnpfRbb8X5BMm5hlFjEoTRo2CFBYOn+3H59GnZOmqUbBo1Sq6fPSvZatSQYk8+KXnKl/cY2BgtHwt6/gfdYVzqKa0dxazPjl6zD2tTBnfPgYpAeRh7Gsq2X7tm073yO9cIYCmhdoDi+wIKuSY594BX5vNQBOv2nrAJcVHh6UI8FFnyeJcZ+BM9evSQ0aNHq47WGRiA9UWTa4KbhlVUqMoMbl275pfMIHe1ahIfgaYUG6r7LSy7s5sBe617HnvMo+3u+vNPbZCQv3591cG6KgqC8T25aZMWfvkSV86c0e5pNEDIUaGC1Bs+XGY984yU79LFZVcyGGnkCNiAeVpwFmpAlpQeEgIKRkjroZPlXgHEGg3ekq5d1Su4yYQJkq1MGb8+j9T41Fatbtun/fGHW/mIP4HrxPw335RK774r1T76KM5AAYO+aUvJZxo9ozeAixa+XF8bhg3T4s6CrVtLpbfflhzFi3v8PQCHAAbTtAK/X18nI3uzfFem+Z6Y5dsXN/lqlh+uwXECHPEALHE8AHQJ2bbJ3Bdck6YFMplVxppQYzftPWFN8WtiuT6jojvCsbjiQVALwTUaahGvYJaLghv26NGjMV7nd7oEuYrevXsrmP3777+ldOnSTt+HrihUfeccgdkbly/7BGbRq8JcxoeTAUAOGUCVL76QlE7kHiZObNwo5w8ckIKPPup2uzCegJB8Dz+spvZ5on1cnQWsbNbSpSWPC/bW2Q2LN+zcV1/VYpqHvvtOirZpI79WqCA5KlbUTmOuwAZFX+Vff12yesgshhKQZQI9cOCAMiSFom3T0LJy/1n9YbeOGaN66Gpffin3NGvm32deuiSTmjaVg4sWSdMpU6RA3boSrCBbsODtt+X+Dz6Qql98EfRJyLCfTH4AFV/9JOnkt/DDD2XnhAlyZ/r0ct9rr8n9b7zhsuOdo3PLooTJyNq0wt+WolZnBVN5b1+BnxBb2wYyRW2VDlDQhHY8IbN81natZHr4nWuGMTAUu3NxbgDbjIuJyRM2yq6wEDDPPMA5CnVtdryCWW5erLUo3moazXxx8Pj9ZReax549e0r37t1l1qxZUqFCBQn3UJkBFwkptqtXfQKzZ/77L96cDOi0hQzAXUcuAlaW75e7enW37/1nwAC1G6szZIj8UbOmVI625nIUvG/nn39K3SFDvBoYqWr/+6WXlAGGHXyof39JmyuXTGzSRFt+0uDB3lbMGvNee02bJzzYtWtYAVljOM7kQqr5nnvu0dfYN4otrOnnw6tWycynn9ZOavjq+hMsFiY0bChH16yR5tOnu3Wm8CdWfP21LMIH+KOPVMcdrAnTsBccS5790TWi6V306aeyftAgSZktm9To00fu69hR7nTS4tqRDRQTMWwS+2W6MZk+9Z60FA11s/xwCwMOrNIBAFJClQ5YAzDIdWfay3J9kqIHGIUaeLf3hGUf45tsiCvwevHiRVvHN74z4JUFcDgB+HiXGSABaN++vYJSvGKx5uLAGncDHApYFaF9JbDi+uSTT+S3335TpoHUKMEEEorUt6cFYLSxpbiD8AXMwuTEB5g9snq1Nkio+9NPcqeTTk/2elmY1mRu2HIM7Zd99pmUfuEF7SVPuGJc1/bvr6xwsSee8Gi/cUbgf5Z8/LHafZE6N4zjyp49FdziI5vOhSTlv8mTZefUqdJ43DiPdM6hAmQZrCm0gBlh0GJ/GNRgaK3NDvS9Bw/KpCZNJGuZMvKIlwsFRzKO8fXqqRaZ7mi5HnxQghUrvvpKFn3wgVT+5BNdaAQDNFgnagAKGlTOqzefZRjS69euyabffpNNv/6qzgTVBg2S/BRI3nGHnIDlPXXKrVk+1xdAlvNHKpB9CYQNVCS8C84T1wQAlmskMUgH7BdYgEKkBOa64zoHwHOPhBK7Z+8Jy/4lZE/YqGhdtpENaFHvXXfpPIBWOZyvz3gHs61bt9aJFYAKMKWv+MyZM21FYfv27YtxYQ0cOFBPRosWLWJs59NPP5WuHrJjoRakXfWGj/7dJ2Z2xw5lCL2ppA/EjbHw3Xclc/HiasflCetEcdXDP/zg9r14uhIwathyIZ/AtskZ27dx2DAtPvMEUB9du1ZmP/ecHP3nHyn70ktStXt3uStdOv3bgcWLFQSh/XXltoAF2JxXX1V3hXs86DIWCkCWFTgSHiZX9gHQg9SHwFWAn637pnKAxo3ljmTJpOmkSbYuZ74EFlLjHnlEG0q0mjtXcpQvL8GK5d27a7YAEPvgp58GdNucRyZpJmtTyIUO1ehF+ZujgiZry177uHjokBxcuFDb9xZs2VIKNWggqaJZEU/M8pmI2R8mJOQh1kYUkQh+cF6N6wDsFvMV4JUFRahL3IIhI+A+MPZlvA7DF2pSAsZCZAScN84V901CaC7hKKxFhZwbvqfxATfnyGSXzM/WzoP2r3EuYddDLUJi1ENS4ExWQHGXNegclNBCmVnaecLO+mjNhZNBXLOye2bPVkuqZlOmKODx5P18P3eWXMfXr5f1gwdLjd69JVWWLOpJ64qVpVId4FWmUye3uuIln34qa7/7TjKXKCFtly2Tu++/PwYb/Gfr1pKrShW39mIUvGFUX3vuXLeDdHwDWcAUC0YGNRaJx44d0wGcSYZgEckAZc1skCWY0b69nNq2TdrgXOCHdzHNJMbWqaPNClrPm6e65mAF+mUWQg926yYPRi+InNlSOQOdjp6tvq+ARQMYmSCYBKzV9EZPal9lb8/2HFu/Xv5+7TU5NH++5KxWTWr37SvZy5b16HuyLxTt8fmwSfny5UuwbFIoAwQeRlfIwgbtayiBtmCHNTsBwGF8I/PDMUFGEUpg3njCsvAD0FmLW/0Ne8DnCgwG4j2u4padS4gZk3jwvfm+gHnTndE8DIvu6jV+D1XQHxJgNrGHseYKJzAL2IGVxY6qYMOGHv0PelmADK1gnW43KkrmdekiGQoXVtb04rFj2lHsgQ8/dLoftJAt0qKFy+3unDZN7bPoV1/1yy+lQpcuMbSwbGf6k09qO96Gv//uEpyf2LxZVvfuLQ98/LFkiC6aCkUgy7E0WklYVyZapAQM4rCJBLpZU01sjaXdusn2cePUkizbfff5vA8U+/1Ru7bqj1svWCCZixXz6/u4Ap27Zs2SY8ePy0OTJ0u2cuVk7969DrdjBmVH1k6mkInfAamAFcMu4UYQCNaTa3ree+/J1hEjJF3+/NIYiUvTph5NqkxCnDPjrZ3YwFMoSAc4B4lNOuBMRsB3B8QTHB/juRroY+IO7DkDffzO+bLqQU1hqwG2zrblbbgDhs7+buzf3AFJ+4d9M42LFy8qQAVsssDl+gxV4BmMiIDZEHIzwNoK1Sx96X1hvwCWcRVbfvtNjq9bp6ydJ5MpYHH3jBlS+rnnXL5v55QparHV7M8/VTt4YOFCfd2Zv+zumTMVyNcfMcLh3y8cPixzX3tNLaXyP/KIPDxvnmQoWDDW+5Z/+aXs+esvaTl7tlM5g36PqCgFxekLFJBK77wTskCW9BmSAgY0tOUM5Eh2YCJMiggGhffZt4HeOnq06pWrffWVS0syd4HTw9jateXWzZvSasECSZsvn60lqDsm1Nlk4giAcv3tGDNGNg4dKqU6dJCS9er5rBM1hVwcF1NlHih26cbVq7K8Vy9Z/fXXauFWo2dPKffKK3qd+9pWOBLBlw7wzHXE9eCsRXO4h7X5hCOm0DRwYMzg/uT6Y0wzjQ4YUwC1vJeMgSeMo7fhDeAz+8t4w/0LuDPnzdPthGowrxhHDMCraaaRJUuWkCuqi8uIgNkQkRlwc+vkzIrfBZhyFjCOqbJmlbgIJmU0iYWbNvW4iOfIqlVy+cQJKeBCYsB2seICdBopAhIDGGccBhzFWlKzFSrI3Q88EON1jidSBdhj+tU/OmqUFGvTxuEghVQCXS76SorTXMXmX3/V1rYUMLnSkMYXkOVzjdUdrgSs+k1XL+u+MNADjih2sB4TNMMzO3SQ4k89pb6snqbkrT8bScfhZcuk6Ecf6TVy8a67tJDPERg1PetdpeSdBecZWQGyj2o9ekglHzq/Wc3QOT6B7m/PPm4aPVqdFS4dPKhFjVW6dVMJjbv/M36cpq1wYmJa4lNbaAAbICFQ7Lcv6WV/3udtOAOFHBfuEaO15DWOEWMLx8ceJLpjFIMFGO09YclchJpW15+sAA/AubFzS6gLK18jAmZDRWbA4JMkiaYdPTXet4JAiqBSxhGYXTdwoJzfv18emznT4//ZNX26pMiYUXLagU5rIBc4u2ePNJ082XaDql7Wib8sVfHocBuMHBnrhgZ0/vXii1Lq2Weles+eTv1vYbT/fOIJyfvQQ2rh5K6AbcFbb0nR1q0lf506IQVkmbwAp0zGaNUM+wpoRRML+2pW7UxOvEb1Kj+bx7kjR2Tvhg1y//DhqiWGyfU0JW8FochCptWurQWJrf7+26fFmaffmUXVii+/1HNMMwFfeqqz7wDYYJihH1ixQua89pocX7FC8tWtK7VmzJAsxYu7/V5MypzPYKVtE2J4C/a4BmDieQDWzMLKAARzHrhGHG3Hl/AU7Fnf4+z9nmzHl7C/NxhPGMdY8HE8YGApmAqVazKhecKaxYJVj2+ssmCZ4wK8RkVF6T1hnR/4nX2zytRCKSJgNkRkBjo4RkVp+toXVpZI6YbpCURcPXtWWTBAojf6R/Sy+evWdapFRau68uuvVYaQpUQJW0EWHb2cdRXDWouWqkVbtYrxOsdyVa9e2pih7tChTveJ9PefsLV33CENfv1VZR6uAuBEU4ta334bUkAWAEuqzxQCmcHOWHCxgjcdhoynIPtGIRgTNxN41PnzsrB9e0ly65Y8Pn++2pX5EjhE4FqAVAb22huTf2+Cc4zrBC1qKRSs+Oabbv+Hgdg0NOBnACzsdTAmvrP798uct96SXWPHSsZixXTh50lzCOM4waQVakVdvuoW/WEbvQ1XYM8ANTMx8xrH2WgLvdE5hnoq2tswUhZAIccIsMK9wXFCNsDCyr7xRnxGQvKE5V7g2DMuA8y5ziAjAp0hsg9zL1gfpsiVMAs7HuyPyaCFakTAbIjIDGiYALjyCcyeOKHPcSEzwIMV8O1pkwDDfmKST5csZ4FOlu9x3wsv2F4zellHTgawpJtGjFDdqr3mcO9ff8mJDRvkoX79XO7X0q5d9TNazZvntlqfxgH/Dhwotfr0cco0Wr1a42JgZfA5fPiwDjAAWQYiunfxzCTEM0yFaZNJihCgBEiyWqtwLH9v1EjZfRwefAWyh1eskHH16qksBPDmrhucr8FxXvjee7KqZ0+p+e23UuGNN1y+lwkCVonjFWwbnqsXLsjiL76Q9f36aaODh7//Xhdo7tw+mNBYeABm2T/Ol5lsggkcvQ1vGEVvmUb7v5vP8ye49o3rgCkAgoHn+g+lhUIouBHA/sHCcm8AEhnLyL4Yz+L4joTiCWv0vAa8EkZzHMhGGrdu3bKxq1aW1dz31kwEn8/xNMVo4RgRMBsiMgOddK5f9wnMwmASwZYZXDh0SNb06SPl33jDq9QxRVpIKGBmnQVFR5mKFpWslsp5JAa4GjhyKdjw008SdeOG3Pfiiw5bmGYvV86lndfuWbPUj7Ra9+6Sx003MhYZf3fqpE4MOCw4C4Ai7EUgB35nAxLpJ2MJZICZGZBID5rCLjMwcX0BdGEwrED2xpUr2hSBVsgU8/kqCdi/cKFMePRRdT6g2YSvgNhd8D1oT7v6m2/kob59nXadAxQy6cF48H2D7fnJNbL2p59kRdeucvXECd0vZCspMmTwSBcL+wXI4vzBODHRWb1l3YFGT2x14kK3GCopWuM6YHSdLDAj/ruOZQSMWeiCOXYwswBZ49QQCscs3D1hzYLadNkiAqHHNlIZe3b1ZnRzFbZrz67yHG7g39OI/ys1ErfdDGBKfGVmo8FssJlZmMxkKVO6reJ3JDG4u1Ilp/sHoNoxcaKCZOuN7UwvC3Cg1W3Rxx+PxajiUQszS8GXs0ECuyhsuArUq6dFTu5i3Y8/KrP8xNKlThk2461IaihYAxLPJiXFgM5K3vod2RbSAZ6tQFaPy/HjCuasWieO47S2bbWLW6s5c3y2zdr7998ysXFjyVm5suqdPemG5kvwvSgQZEFF2+FydsVeMNGmkIvjxbmIi5ahO+fM0f06vW6dFG7WTGr26uXWso1gQcICiPPKRHPixAndb86RMTSPhPtrwlioGaAQ1/rCcDlOgCnuD6uMADALWCTDw2KZxVQoSAmC6QkbV9ekAa/8DsFhGml4c19bC/Cs2lUru2rAaproYrxgtaDWToUWbXmoRQTMhorMIDrSO7CN8oSZpbLeF39ab9rlwoaiT/SGdUMLS5FWxbfecsncXjt3Toq1bh2jY9SJjRul0nvvObTvopOUI1Zu9bffSto8eaRIy5ZO9+fPxx9XUK6FY24GFiQSiz/4QFPFgDVHwQ0OECF9H6wBiZU9QBXQw2RjPyCyLSYk/td09TJhJjBYAOv75776qvw3aZJ293L23dzFzj//lCktWmgBXePx4z3qwOZLsL/z3nhD3StqDxhgY8g5tmbS45gAYOMq9Xhs2zaZ9/bbsn/qVG3329pNcw8r6OZcmeIOc97jAngnhDDSAdPRyFegkBiCsQZWE1BlZARcbyZlz99Cxe7NkW43HGQE7LepReDBmGSuSTJhrvaf/+Uati+0spIZZm4w44TRdwf6O9yMBqvWTKB1njINExhjI2A2Ek51diZ8ZWaRGARzItw5daokvesut1227OPgkiUKVF1ZciExQF6Q+d57PdLLrunbV7t02bdERQaB/y3+qNaGCNZY/OGHqu18fOFCj1r/ktK+4847dZuOwqTvcQbgZjcMkT27aphVbwckBjpALAMkn+FoEOFvWG+Z3ufWYHAF7FERb70+cAD494cf5JEhQ6RQo0biS2wfP14L6Ao1bCiP/v67JAtSGl+B92uvqdsFrZCRlhgLHnuWKS7i4qlTsuDTT2XrkCGqC643fLi2c3a1MDLMGIserg+uAfaZSS8CYF2HyUZwb7EAMNIBmLpQnFRDUUZgFkr8jWIu/ga4ZUyJbykBgAkAa7qIGcAdqsG9bGzcrM0YOJ6Mv/bjkAGJ9oDVBMffgFXGMlNoFchxIcqSAbQHqyYM48qD78N8EgzgHKyIMLPxHLoyM00TkidX+ypfmNlgSwwAgDkqVHDpreoodk+fro4Dztp0Xrt4UYFy5Y8/jvG66mULFYqllz22bp36vDb64w+H7gYwrs4aM/A5uBzU/OYbj5jIffPmqcVX3WHDnAJf0vdmAALUMgAxoPk7IHFdoKNk0mFwZ6B0FAxQFGrAAJhOPCaY+AHCVocDYsPw4erMQMve0h07+rR/m0eN0na3RVu2lPq//OJ08eBvcBzmvPKK/Pv991Kzf3/J3rSptrQ2TGZcTnrXr12TFQMGyD9ffSU3LlxQuQ0PZ7IKo9/kHHIuOFeco4jVlmdMl2FfrXrwiHTAexkBAXgBxHJcQ0FKYDxh2V9TwBqq3ewMeDXMK8eX69AsBgB7BiByrxvAajy3DaPJWAVINPNFoMHqjejCXytgtboTmAyg8Qs2DGsoHnNfIgJm4zko+sLJgAAw+XJhKTMbZFsuwKy9BZanetkC9es7Za12TZ2qYB7vVms408uu7ddPAS4NG6yBSf+6QYMUyN7lwAMP/1rAV+EmTVSb6y5uXrumnb5ggEu2b+/wPaZ9IIMTrVNJ79sDSl+C7QJCGWxcTToMWABZa1cv+1Q2E5p1ZU1b39nPPafspjtfXWeB3GTWc89Jifbt1frMnaWZr0HXuNmdOsmGwYOl3FdfSe4WLXTSi4+2wJsmT5ZlH3wgZ7dskXvbtlWmPl2ePE4naSY1Jj3OC//P5BdhEp0H16txHeBnY5nlLk2b2MOZjIAwUgIWxRxD++LPUPCEjcuMijdhBa9cj7CnBsAappXvwYOwFloxHxipWKB9X+3Bqsn+EexjQnIn8DYiYDYUGiZEBwymL4GlVdq8eSVYgW70/L59aqTvTQAgMdCHAXQlMWC7GSzyCtXLbtgQq9AMBnrLqFFqC2bPBG4cNkytpRzpaAGmU1u3luTp02tK2JObG+0tbXIbjRnjEIibTlsMXDwzKPub8mRwYlsMQGjFXA2GMCxG3mBfpQ+gMhZh1n1iQTK1ZUuVFaA79WWQWztggMx95RW5r1MneZhtBAFoaCHX6dOy8PXXZdfvv0vN77+X8p06xfmgzASy/59/ZNG778rhv/+WuytXlobLl8e6D5hQrOb6JgVumDJXzHpiDXvpgGnJGQH83skIGCsALVa9NceW6w4ZDqAmvjvHGU9Y9peFaCh6whpW1fhxE6YJDA9jccfxNq4AgQSKxrXGXgJgBatGAhAXxV7hGBEwGwpOBtGRPn9+n7YByMtupx8NZACCCG/BLF2/qP531iL2ypkzsnvGDKn+9dcxXjd62dx2etn1Q4bojWsvI7h144as+e47LSBL5wDUL3jnHTn+779qPeWJjAMQvuyzz9QXFzsu+2BgQ6NqBjn7lrC+DGRoKWEtmMzdDfSmq5cjAG28bmGJrds5tW2bWmdhWfbob7/5xKau7NVLFr7zjpTv0kVq9u4d0EHU2ooSRnZD164KZOv+9JOU6tBB4jpOHTwoCz/5RHb+8ovalTX8/XfNHpjvzATN5Mc+8xosk9Efcn5YaPBafKdzQ106EGxj+IQqI+C4IVexstaAIFhYFgemgUp8sdqOPGHje3+srjEcI+5TIwcwhZhck4Btw7IGan+tRcBWwGqkCMa1xoBVY7kYAaueRwTMhpCTQcYiRXzahikAC1YcWr5cUt99t0O/V3d62VzVqjl1P6CSHncBe+cBNLG4OljTuLyPgqV7n3wyln4VW6+zu3dL43HjHBYpmQp4NL+eBMVGtGJ98NNPHf6d9D0TM2DSn7SdtW0pA6gnmjEmCN7vjLkF5AKiWLnb/ufwYW1mkCp7dmk6ZYrXjgPs57LPP5eln36q0gSY9kCADzNBA2AZ2GG5786RQ+Z27ixbf/lFWXRnEo9gxaULF2TZt9/Kpj591Me4SrduKkvhmDEBcb44B0xy9rpEAC6LHILX47uwJr6D48H55ZhFpAO+hdUv2V5GYHUAAMQSuBLE5+IgPj1hrZ7c9q4x1gYihmFl/4wkwN/jZS3ysj4bJwBrEbCx4gv1jlrhFol7tA0xmYEvYBav0MunTgW1AAxmFlbWmxv++uXLsm/uXLcSg9zVq0vaXLnc6mV3jB8vFw4ejCUjYLDAQJ/3wzpa48zOnTLzmWcULJfp3Nmj/f5vyhS1/gIYJ7fTvxpGlgm6UKFCfoEV4zHKCtxTxsL0RrdnZEwAck31srX98Pj69VWb7UtXLmvb2KpffCEPfPih+Bt8d74LEx4TNCCegZ5rGT3vxp9/lvojRkiJp56SuAomnn9//13Wfv65nN+5U0o984x+32QZM8qZc+fkYrT8g8nP/vhzjJjAAeWO9MuJJUxnI8A+z0Y6EOrV6eEmIzDHmuuN+4jrLT4bCbC/RkYQTE9Y+yInV57cRgJgire4FhlreHgLXr2xrTKMrvmciN477iICZkNIZuCLZvbyyZPacCFYzCwA48iqVV6DGADpjcuXpeCjjzqVRmC2D2Nq/31ofFDBzpeWwi+8TLOWKhXj9UNLlyrYbvbnn7EaMUxp2VJSZcumRUqeDF44K+C9mr9ePbmnefOYf7t2TYEsg2nhwoV9XlEzKFLcxXbQsnk6ySNDYB9g/Bx9F2vXLxM3rl6Vyc2bqyfv44sWOSxYcuvt+vrreuzdtY11F+w7Ex5AB/kDE7R1wuM6m/Xss7J55Ej1/y3etq3ERQAKdixaJCs++kiOLV4seWrVkvojR8pdBQrIsUuX5K5btxTAIttwdNxhxViUuCvWS4hhtShigcfvLM4C3ZYzMYQnMgICAAULy3UXn6l7e0/YQPk7m3S8lVnl2ZGNlVU3ao6fyQSwHwBKMl7uHDASg21VYogImA0hmQFp4FDr/nVyyxa5fuGC93rZadMkXf78kslJV6nt0ZKAIo89FuN1R/6yh1etkkPLlqm5v6PWtXxGwfr1Y7y+5JNPtPis7fLlDt0NHMWK7t212I1uWNbBDxDGBMJrgEVfgKyVvYOJtMoA3P0fYInPBvw6A1Rs2+oli+4U9wZ8flvMni1ZS5b0bn9v3ZK/XnxRdcoPDxwoZRy0DfaUsWFy4Zgx4TkChQDZmR06aHFfg19/lXvbtJFghzaZ2LFDlnXtKnvGjJF0BQpIjeHDJXP16iopcAfIWIwg6WAy47gnFkkB59S4DjDZG1Dh632R2MOdjMDaDpXMCwFAi6/Fgr+esPZV+fY2VtYmAa5srEwBIceETA9/d6bBNp9pD1ad2VYZCUBCsq1KDJE4RuAwkRmk8MDE3xHDSQSLmT2yYoVWrHuqNzWDB2AWVtbZYIDEgMIwexC+3+hlLYVcaF5pJlGwYcMY78Vt4L/Jk+WRH3+MUVUPU4v0oOqXX0q2MmU8Bu0AYzShphUpAyb6WAY6BlV+9yWFbNg7tuENe2caMjCoo4Vz5YBgZUVM29dtf/yhcok81at7tb8U1CHPAFzW+/lnr3SrHCOAjhZyRUU5TMvHeP/Nmwq6uR4oTLN2gQtGsE9nT56U5b16ybaBA8kPSqn335eSL7wgGaOL5tyxOEygfEcmzfjumhTsMAyckQ5wHk1P+Yh0IDBpeUcyAmt3O8Au1yXXW3wcc6snLOcfGYErfb+10MoKHk1Y23N7amNlJCyAaJ4JxmIWneyL6aIFsGVfHdlWmc80TWsSk21VYogImA0hmUEKL9rE2jOzwfKZBRhmLlEiln7UVVA5f27PHinopOvX+QMH5MCiRVJv2LBYf1O9rIWVpXgJUIbjgX0FPg4GgOHiFm0l8oIZHTqou0PFN9/0eMLGUzZdvnw2OzDjGMBAyaBnAKM3wQDO//nC3hl7LZgGHo6CwRrpgz0rBpDn2NT+/nspYieXcBcU2k1r21Z2TJjgMbg0gIfJju/MBAOL7O77ApoVyI4Zc/uzfPAx9iaYCNcMHy4bv/5aLh8+LEWfflqqfvaZZMiZ0+P/RyJi0rsJdSI0hW6mNacBDRHpQGBlBM7S8lb2My7bM9vvL8DQeMJaix2tTKf1YdWPGnaVxZ4vTQIMG80xYGzhOjQFU8gG+Hxe52EPkCO2VYkzImA2hGQG3gBGq8dskqRJJYVdG9NAF395E7CydApDf+goto0dqz6x9o0PKGRTvWyXLrbXaISQNHlyKWlnz4S2duPw4VLpvfdidCXDUuvszp3y5Jo1agvmScBAAqJbzJqlLXtNy1GTtt+3b1+sdrCugoEX9o6B2Bf2DpbB2Gs5kyMYsEvhh5WtoWMZLXjROJf1sOjN9rlXrsjUVq1k98yZyujeY3d+XKVIATzsr73nrSsgO/2pp/RaaDh6tBRt0UKCEQAH9vG/+fNlU48ecmr1atVE15o9O0b7ZE8WJUyk7vx/wzE4RlyrsK+Akoh0IG5lBCaMlIB721N3k0AHYw8AlmuBxSiMMACRfWOBY8Ja7ORvZT7fl+NkgCsg2thlsU3rflgdASK2VZGwRgTMhpDMwFPwZS8zgJUNhnk9XbVObNwoZV95xWtLrjwPPeTUAoqUMl3B7AG46mWjomz+shQwAWZLPP10rPf+S4o4KkrKdOpke+3I6tWysmdPtVPyVCOK1y0pebqb5X7oIdm/f79OOga8AhgNO+tJMAnQ4pZUnC/snSk0A6Q6A8FGfsBnWN+zZ/Zs1Z6WfOYZqfL5515nCCY3a6bnoNmUKVKgXj3H77t+3VbIxcTiLEXqCfv738SJ2pbYW/bYm2rw03v3yrbvvpP9EydqhoEFS/5HHvFqUcIE64n/b7iEYb1Mb3lTLIOUxdPFSCS8q+53do9wLvQ6PX1ajz1jTVycA3sbKwMkCdPtiodJz/vTTcqRbZWRAZiH0cpaF8UJbdEYieBGBMzGc1BBT/gKRpEZBKv4C3BIIZA3zOzVc+cUENX67juHfz+za5ccWblSTejtA3YUbWz6fPlsoPfSsWNSzg5MwyD+M2CAglzz3QG+ALls990nFe06h7mKxR99pK4LD/TsqUCW9LgBLUwwJm3lLpiUYHRhGHxl72Ak0OgiG3CljSPVbdJ3Jo6sWaPOBfnr1r2tIfZi0qFz2oRGjeTo6tXSfNo0dY1wBg4BPv6kPhXIPvGEegw3GjvWLfvraTBJwhyZJgY3r1yRzT/8IDuGDJE7U6XSIrbSHTt6vGC0Lkr8bYoRCmFcB3gAZLh+jPY13L9buMkIDANKUSn/Y3TlgW5/atWuOrKxYt9MIRQyEhZs3gJpq22V1QXA3rYKIMz3M9pW/gZwZRHFcwS4RsLfiIDZeI5rZ8/qcxIfq6GVmQ0SmEVicGeaNJK5eHGP/we7LVLIziy5to0ZI8lSpZKCjRo5BLOGlWWwo/CLlHCmokVjyQIAuZjZm1jevbtqdZ9avTpWq1tXYH3d4MFSe8IEuX7nnZIvRw7b5AMoBbx5opMFHJhCLYCoL+DAFIm509YCsPk8a0EYfroTGjRQ5rHhmDFeMfww0/jQ4vwAa5mrSpVYHXz4PPsGAb4EQPbPxx+XnVOnqoyhcJMmEqgWlOyXNotInVo2jhwpm3r3lqsnTki5115TyYWzxh2Otsl5YBETzpICq3SAazkiHYh/GQEBIw6I5fy4K6TyxsbKkVE/44h9+1PCLEz/1951QEdVbdFD772H3qRL7yBIr9IFBAvoRwUbNkBFFETho6CiAn6KoiC9CAhIR0rovdckQAidEEggwPy1jzmzbh5vZt5MJpmZcPdak0x5/b737n77nrNPqlSp7GFQjrZB9XZ1ZVslDgS4DrFucb7AeYjjBKKM7cBxCtTrSsN/ocmsj8E+sR6GGCS6MrttG7sYuFP6FPGyIL+OSvNCbS3Zvj2lNdSqZ3/Zffvs8bKwlLq0Zw91Wb483nRQind88w2VeuYZyhlXZCJizx7a9uWXVPfTT03LzzrKot+Aila//ELF6ten7EqhASGnjjxdVeCmjrAAkEvcxD0B1ER0cK7Ikyhr2C7B7UuXaF7LlpQue3ZWVY3H1RlwzOe1aMHV02BHhrbGvkP5RaeL/fGWGfuDe/f+JbJLl1KH+fP5HPAE6BQxhAvyINnQiC/E5yPLl9Ohr76iK3v2UOkuXajR6NF2Zwp3SgpjnwNtuF0NHcB/nLcSOuCNCkcanoURSNuIKwGmtxpbLkTSqK6a2VgJUTTzPpUETSS0GlVj1SrLkW2VkGJXtlUSroD9xPxSPMBKMqiGRkKhzzAf4+716/82hIedJ5TZnBYTWTxRZlWnAFfAjRHxsig5a4Yrhw9zgle9zz9/5DdYcgGSNAZVFoqsMb4RyUnXjhzhoXQhSQgvyF2xItUeMsTytu5fuJDytG1LRUqUiEdkAdz00eG4InGipgYFBXlMfiTZwpl9lYQggGypQ96IaYYii7jrnlu2UEY3HC1Q0Wpus2b8/9l16zg8Q7L1se8gdN4C2ogTy5Yvpw4LFlBJg8WalaxqkAEcbxxnEFhRtPDbsa1b6eB//0shf/7JVeC6b9jglh0ZHiZwbH2VdOMphDzg/AFJkdABtJ82c0+cMAIZGbESaqMmU+HB0Gxkw2jWb7SxUosEWLWxEmBZIJZYv5j9y4gLyHhCbauwnVKoAO8xH8gr1F5fVSPTeHyhyayPgXKjQCoP/SoTS5mFfVbUhQtuxctCSUXRAWchBmmzZjVNLkLp2+ylSnGVqsjQUDqxcCE1+e67R2KJYTuVv2ZNKtigAX/e9tVXdPXQIeq9Y4el8AJ0HmGnT1PYpk2UFo4Fhox/3ORxE3elsqKTAgnydChaYmzR4blSgNFRIJZWJbwYsv+za1e6fvw49di4kbIXL+5W285p2pRjZXts2EDZn3iClWjA20PriGVe0q0bJ6d1WLjQoV2bmZIEAguyKvHBqvrFivipU3Tohx/o+OTJlCFXLvbERQlcq/HnUHnxMAKC7KtKSu4AJEoNHQDhsGqDppHwMAIQPSsjFThnkTiIaxuJU3jYlcRJIa2iroqNlZBNd22sJJHLmMwlhFiWi3NcFFUhxO4+tGF/hLxiPTjn1HLUGhq+hL4D+hhImALSuDE8HG9o8cqVRPGYhSoLuENmT//1F9uLSdylcVsRYlC6U6d4VloqmZXEo70//URpM2emCgazfoQTYDrEheJGDJU3+IsvqNaQIZaKI4iSenrqVAr9/Xfqe+xYvN9xgwZJdRYni/2Acov1u2PXZbYMdAboHJ0tA+QbjgroEIWwYH6UfsWx6LpiheXCEMDNs2dpTpMmHGYBEpwmf362HnOnKpk7RPbPLl04jhrV2xw5JKjKFwgs2gEEFsO3xlKUXA44IoKOTp9Oh8eNo9hbt6jWoEGc9Gc1xAIEAMldICqeJL0kFUSVFtcBqXJkdlw0fBdGgOklxh4vTAeyiJeEFnhqYyVxscZ4VTXUQFRUbIOoxuI+kNDjIOQVy8Y2g7zKqJU+/zT8CZrM+hgoFeupxyxUXSRbJUYCGMhslsKFKbNFQ3mJly3aooWpQnpp715WEaG2GgE1F6ED9YYNY4uo/T//TBVffpkJrVGVRWEDWDlBmUR4AUrZ1v3kE0sqKIhBytBQ2jNqFLWcMoXVPHUaqJMgjY4UOiGW0ll4AonHRaeGYW1X2414XHSkKuH6Z8gQOvzbb+wIYXQecAZUTAORhZfus6tXU3T69BQdl+Tm7YQMOE4s7tKFwtauZasvMzssqRYGAgDVx5k9FKbFg8ZJxMWOHk3XDh6k8r17c5U3qPlWILGLiE/GekBk/RFiVi+qNB4ysL3+rhwHMowJj2oYgVmilWTkS1wr7g24psUNxaqNlRpmYJbEJXGxQohxjQgZxnqxvRghwjrxYJwQ+zhsCx6aQF5x7mEdcp/Scdca/g5NZv2kApiRuLlT/SsxwgzcLZZw58oVngck0QxQZUEeizRt+shvoevW8f/CjRuzUwEy7KsOGPDI0DjCFBqNGcPJcnAvuLRvH/UKDuaiCo6AjgHkkYdj8+al6S1bUlC9elTxpZfiTQfFFgqMo+EyKBNYDgiQJyVtVTKM9ai2WmZAZ4bQAkyHDkyw67vvaPvo0fT0uHFUtkcPy+tGvPLcpk05UazN4sV0I0UKypM1q9fVWCGyi+BZu349dQSRbd7c/ptkOINUgiRg/c4ywIWAhuzcSUe//ppCV6zg9uuF87NWLcvbhPaDGg5y6I8hBSAmUANBTHAscI64Kq2rkXDgvMDDDZLmcLxxbcs5KnGlaAOjuorzEg8cuL/g/MX9xdhWZrZVxphYNcxAXAfMkrjMSDfe46HanRLZKnD9SaliftCP8xvGMrXyrxFo0GTWTyqAeaLMIvkL8LYyC7UXtlUoPmAVZ1es4CIGJVq3dhhi8ETXrqaqLYbLYSuVMW9eJmtwKsheokS8aXZ//z2HYlR6+WW6fPAgbfn8cy49iwx8RwAJQuyaJGhtGzWK1eEXdu+OF1cJAiFqjBnwO5aD2FZPExukqheG81Vy6ghYn9RtFxydM4fWDRxINT/4gKq/847ldUMVn9u8OWUKCqKG06eTLUsWKpovX6IQutjoaFrcsSOXK+60dCkVbdqU9108YAF02FbiPKEQnT9xgk5MmEDHpk6lzAUL/lst7NlnLXfeIBMIKQCBwDr9KbbPSEx8Vbr0cYA6XC+hG0LghEiKFyoeeMziSqW9kCSJ36BYYh4sU8JjXNlW4eEU87jbxiDdIM8JcRkR8irKq4St4LzDQ7p+cNIIZGgy62PciyOzVn0wk0KZRdUvkGx342XzVa9OmUyy4MODg+lWaCiVcaAkhq1bR8XbtGFSi2SupuPHPxJXvG/SJKr82muUOkMGDi/IUbo01R02zCGBgQqHDkNUuJshIVzqFr6jqn0XOh6EIGA6V4UQPCUZUtVLLcjgDFCEsE6QcFW9Xv7881TuuefoqVGjLK87fPt2tu7KWrw41ZkyhfKXKmWJTHs6yrCoQwe2VXtm0SLKXKUKhYSE8HFDBwwPXivhDNj38HPn6MzMmXRw3Dh6GBtL9YcPZ19hs3hrM6DtcBxBABDj56ltWmJAJSZWk4o03LOxEhVULRIA4Du8B4Fz5emMZWJ6sYMDCZRYWPwGUmvVtiqhsbtShcsd0gnyinMM243/ALYR14K7Vfs0NPwdmsz6GBiSBTD867Eyq8R+egMIF0gBQ+3q1S0ruVBmq7zxhunvUGUzFShAhRo2fOQ3kEyY/iPEADGxuStV4vcqDkyZwuQalcDgMXtp9256butWUzszUWON4QDr3n6b0ufMSfU/++yROFmQTCNR9UYhBHeqegmgnECpUy24EE6xqGNHLijRaupUy9n65zZtYuuurGXK0NMzZlChUqUSTfUDkV3Qrh2fO/WmTqW05ctzp+7KcizeMmJjmSCc+/tvOggV/cQJVuIbjBhh+pDk7JgjbATt7y8hBWZJRVoNc/8YqjGrzmysQNhwnCWuVB4ccK3Lg4OQVWMIgBBg3AMwP6bDvBiZEQU3sYigOHngYcdKJTHjvEJepTQtVGZJ2vKH60BDI7GgyawPwUH+cebU6Q1ep1aVWRA0TwsuOAIISZ5KlbgMqNXpY65fp5ImllzImj82Zw6V6d7dtPgCVFlKkYJunDzJPqQocap2FCDKu779lsr27MlWUls+/ZRqvP/+I/GS6HTEIcBIYFBx6uTixbxsNZwDw88Y9jOqpd4ohACgU8E6XClARqsolcjCfQAVunKUKsXFBpzFB6sIWbOGFj7zDOWoXJmdBLLlzUuJcf5im6+Gh9PqXr3o+r591Hr+fCrdooVbHSc6bTyAXNyzhw6PHk3n1q3jxLb2c+aw/607ywEZxrkAVdvXaqe7JU4fd4iBvzHRSrWxMg7Zm6mg8uAg9wOxdpN7BH6XeWR5UoAD00sCHr6Dao75ExviCYvzxUolMdXtQsgrPuO4SCKlPs80HidoMusHyV9Aeg/U1TuJaMtlpqI6czHAduQziV89t3EjuxWU69nTdF4Mn8NfdtPHH3MIQJmuXeP9fnzePA5RQIzoir59KVvx4o/E8jpSY+UYr3nzTS6L+0SXLvbvxSsRMazeLoQg2yQKq5VOBR2tVB2ToXhU6JrfqhWHVnSOsz2zghNLlrC3a/569ajLkiWUzothBdKBgixABUr98CH906cP3di/n23C3DlvJIkm4tQpOvXTT3Rs+nSu2NVx8WKuEGZV/cJycKzxSgyLMXchFm9WS5w+TpDsfVURVdVVNdHKVZEAscTC/PiP4y2KpAz/i4oqYQCOlgfCjPMH5zXaTLXCSyxgnbhPYJ3YJoQROCvaIQ+PYpeF+YW8In5Xk1eNxxmazPpB9S9PyWxiFExAfOrVI0c4ycideNnirVubKq8IMcharBjlN8k8x805ZNUqthgLql+fnQqMv+/4+msq2qwZk16Q7Oc2b7bHTYIAYggfHZSj4WT40IJMd1u92t5JYD4oeKoC6o1CCAJkR6NTtepDi04JyWFq7KQM20dfu0bPbdlCmSzaSO397Tda8/LLVKxlS+owb57HleVcFTGAypgjUyZa2K4dXUbZYRDZuEIWVpaH43zpwgU698cftH/cOA5rafzNN1Slf3/L6jMAQo2HDxBYT7O6vQEQK7XmvStv0uQKGbo3hgOI1ZRk74srgLNhe2N1LCG+6rIwn4QGgNThHHDHngrLxfWK8xpkMrHDUuRhEPcarBuE3awymEwrRRDwwj5K2Vpsq7ft9DQ0AhmazPoQUN4EmTwgpYiZ9baTwcUdO9iVwGryFyyzLu/bR7UHD37kN3jBQll9sl8/087q6uHDdDs8nFXd9rNnP+J0AFU3YtcuavG//9HaN9/kBKCgunX5N6gZ6IScDQOClIMM1/n4Yx6mV+NkMZ90Bt4ohCDLAUnGf6txtuIli2FB2Q+EVizp3p2uHDjApWZl250BBD14wgTaNnAgK9Btfv/dUkU0V9WmQM5AFoxm/Qj5mN+mDbd915UrqWC9epaWK8r35TVraN+XX3K1NxBYeAy7E/stDyTYThxrX4QUGOMbnRGT5AKxmzLGmqI9BKrVlBBWI0FUbatwDF3ZVuG8kzhYUeLFxgwjMrh23FHycW7j/oF5cO15s3yzGYyesFBSzUg3jgEcE1TyCpKuq7xpaDiHJrM+RNS5c/b3GT0wcIcyi1r03gTUTzgr5CxTxtL0iHNFQhKUQCNQ+Snm2jWHfqirXnuN/z8zd66p8oiEMFh2HZw2jTIXKsSJQFbUWOmwVg8YwEUWUCFKgHAEdA5CHL1RCAEAqQIplSE/qwCxwzwSm4vtxnFBQl2nJUuoQM2aTucXH9bdEyfSriFDuGpay8mTTVVyK1nbUI3wH8cFChASR4zhFkxkW7emywcOUNe//6agOnVcrgPLBPm8cfAgHRg5ki5s3sxljxE+katsWbe2FeQRDzNQPhPLmcFqfCPIGoaG/bWKmCeQEqnGcABRREHWRV0VX1KjuiruAmJbJaqqp7ZVqi2WpzZmaiiBFDhIzIcgK56wqvKK4yXHVJNXDQ33oMmsD3Hr/PkEkdnEUGZho5W/Zk3LGfOIl4WJvVkCG0IMUKFLtcIS7Pv5Zzq/aRNlK1HiEfcC4NqxY5y4BSJ8dPZs6r5hA91GLGJEhKWkjB1jxnByGVRDCUuAAoRhaahn3iqEoFpvuUuuoAwBKvndPGwYuze0/vVXp+VfARADKMpnZsxgIgvrsmY//uiw7STBRiWt6EClypAMYUKpcqQuIgwFRBb2bd3+/tulgo/lIwkuMiyMjn/3HR2bOZNyV6zIJFgtpmAFaD+QGRD/pA4pcDe+0Z+hEk2VsKo2VmrsqpmRv5xLeIGwyXtVoZW4VbWMq7u2VThPVTcCT2zMsF14iMWyQIITO5TA6AmrElNsi5BXvMe+4J6Be5CvExY1NAIZmsz6EFEXLtjfZ/CDmFmuOrVtGz35n/9Ymv7+3busvtYxKScLy7GTCxdSjffee6TzurB1K6154w1ObHKk2u4cO5aJ+olFi6jGhx+SrWhR7nCtkJgDU6fSxkGDOLxAyqiio1adArxRCAFApwSCZdV6S4D1Y14h1sDeiRMpeMQIajhqFFV44QVLHqoXZ8+m7UOGcIJc47Fjed+ErKikFR2nkBSQVgkbcCfJBbHN81q14tLD3VatclqBC+QPx/fm5ct0bsYM2jtuHKXJnJmaT5zIdlvuOHBgX9B2AI5XYifmGK2OpNJTIIURqCVY1XAAMxsrkERjkQBRZyUMwGhbBQg5VQmvN2yrsA41jMBdf1U1BER9YExMKzRHnrD4XsgrjiGOD8grHoR0UqCGP8OmiB94yT3ASgVLX0CTWR/iTlwHDaRyc5jyHoaloqO9qsxGhoTQnUuXLMfLIqY19vZtKtGmjWn4AYajYcmlIio8nBZ36cLq3KU9e6jI00+bKs6Hp0+njPnzU1D79lTklVdY9bSS2AHy+/d//kOVX32V6o8YES9OFp0LFBkohQkthACgo0Qn5W7CGAgSiJ6agHZi4UJaM2AAVXvrLa5s5gi4mSDMAoQ0/LffaMuwYVT1/fep0qBB/L0M46LTxDQ4ZlCjEkoymMi2bMmKOZLpHFVek3jG69eu0bXVq2nniBH80FXtnXeozkcfuVUcBMvCMQapQfsnRD13BziG2AcojhgBMAu18DVUZVQlrWJjJWq7IxsrNZQADzw4xsb5hayKbRX+G6ti+Vs1NGw/SCVe2G9c84lFGs2s1/BQi+sb65dKYWKVhe0IRCVfI3njQVwMvJBWvCSkSMQPvBxZ4fkLNJn1IaToAXxW3T1BEqP6F1RZIL9FMnvmr78oS6FCXOjALMQgb5Uq8eIhH9y7R3/GWW+V7tKFq30hRMGIvT/9RGly5aISb75JRevXp+IlS1o6PqHr19PSHj142U0x3B43D5Q1dGx4IRwgoYUQWMEOD2eCCKXOneVIaIBaTADFDZb27Mnlfp9GZr/J8qBOohoZSAduLDuGD6ejP/1ElT74gCp/+GGi3mxibtygeS1asBcwE1mTYhpCRrCN0YcP067PPqOInTt5n54aPfqR8sRWFW8ZFk7sGyhIEI4tSAjWBWUNJNaXN26zRCujjZUoo0YbK0muEmUFbaO6CqihBPivlnBNSqhhBJ6WaQWwn+Iikth+vmrMtBQlwDEWNRkPXVCCNXnV8EeV9V4ccZU4eFwnKmH1xX3AG9Bk1oeIiXMzcCdZRxB95Qr/96bPLMgsbLQyWTTYR7wsytAaO/x7UVEc72osN7v2nXfYLaHHhg0c01qgTp1HCjOgvO+FkyepwtChZDt3jkpbJNYRu3fTomeeoUJPPUVtfvvNfkxFdULcWmhoaIILIYBUghCD7KDTdAeSbKZ6WF45dIgWtm/PLg2tp0+nh/CSvHPHHiIgahk+g4RjeHLn0KFMZGFlVePddykxgWIYc1u0oJunT1O3NWsoX9Wqj0wDIgLiGRsRQYfGjKET8+Zx9bgeGze65TsL4AaLkALcYBNqkeauTRLOi6TwF5V1qxWt1AQpMxsrVV1VwwhkfnEEUOdVyS4Il5mrgC+AawgPDRJGkJBqaBJKgOMBAplYdmhqzDTey3mJY49jjPuBOH1oaPiLynovLhZefXhVnUGS0/mqyawPAcULSOmBEmEvZetlZdZqiAFKjeLV6OuvH/kNRBYhEGWVEAPEse6bMIGaT5rEnrNh69dzkQQVuPiOwxosVSo6OnIk9T182NK2XDt+nGM5c5YrRx0WLLB7q4JkIbwAChsIaEILIUhpWhBjd7wsVQsudNrYBnSIV06dovktWlCGoCCq/v33dC48nMkGlo1p0MlD/UGnX7x4cUqbJg2t7t+f9k2axMpz1f79KTEBj9t5zZtzFbJn16xhpV0FbpRccSsqis5MmUJ7v/+eH66QvFa+d2/LSYRyfBB6AQVRrJZ8bZPkLQsrI2F1lM0vHYxsoyRp4YVz2ZFtlTqvP5DVxAwjUIklloXrJLGKUkjcLUYbcG+S0A0cazwc4LgnJzKgEXiV8oS0xsbdG3A+JgeV1RNoMutD3IuM5BADT8ist8MM4Al7afduKtOtm+VCCTC3R9lRI47MmMGqa7Zixfhz+PbttPr11zmxrHK/fqyiQvHDvLggoXaAtEER2/nee3R11y4mT2ktVHKCz+3c5s2ZRHVBlay4eaC2ScwahvVxceO/EfgdHSr+y8v4GS/piK2WphWIqop1YznoGLnm+61btK5bNyZ8HZcsoZzFisXr2HFcQJzRaWKY3fbgAS3v04cO//YbtZw6lSr16UOJ7YGM44rqa8+uXRuvrCxIGuKOY6Kj6cpff9H24cM5PrrWkCFcbCOtm3ZZOLZYHsh7YoUUSKEGtCFgZpPk7vJANo1k1SybX4bxpTIZjp+QVbyw/xKrCmCbMK/M76x0q7/DW2EEAI6VxKnjeOBa9HZHLaQbD1bYZlyTWBdGRNzxstXQSCik71BDA+Q+kdxVVk+gyawPERsV5VHylyizyA4X26mE4vL+/exAUMCNeFlYahkJJxKZEH4AdQ64HRFBizt3prxVq1KT8eP5u7DgYCr56qsUW7Agkxh0FlBPod6CyJbq0MGUJJsRLiQlAbCJgiMELnYMU4PMInZNkkDMLnR0XJge5EJe8lkyt/GCOiMG5lBXVZgRYIlNkuEd/AcxET/SB3fv0vwXXqC7ly9Tz82bKZcST6omPUEB5uljY+mv3r3p+Pz51HbGDIelgb0FlEme26wZRZ0/z0RWrNVwbLBt6OxjDhyg4I8/5sIO5Z9/nhp++SXHT7sD3KDRVjg2iRVSIGEE+O9OGIGqfqiJVmo2v5BNtL2QTzl/VLIKUgRg/2Q6vHBuigOAVLNKDvBmGIGaMCmhBN60RBPHCpzT2F60M9oJynFikGUNDeP5J84zjlRWcQtxZpmoocmsTxEb18l5Qki9bcsFf1koxCCdroCYWIQJPPXf/z5iNQYngdKdOjHBAQlb8uyzXNGq9Zw5dD0yklWVGAyDpE5NxYoXt3dKyJZf/+67lDJtWo4dtbINC9q2ZfeFnps2UcYCBViJRYckhv8gL+hIHQHrFgLqrBACOlCzQgiOyDBuQHLjgSoFMgxiivU9fPCA/urViy7u3Mnqs5ogJ2ostl0UStif4RjCHQLFJXBsExNIooOrAh6WUH0sT8WK8azAUly5QruHD6fTS5dSwfr1qRdCU5xYdDmz7cJxAcnx9hC/GZkyDgmr1lOquorv1bhTeQGYX6zPZD3yoCLEFm2vEtbkQlCtKt847gkNI5DlIZQA5xyOqbcKU0icNO5DOP/QhvhOttlduzoNDXdUVjU0QMQOcZ7RKmvCoK9aH+JBTAyXjk3jQULSrbAwylywoNe25WycAb4VYh26di07E6CCk8D28CEtf+klJqMoP4uLdNOIEZSuXDlq8u23FJM6NWXNkIFyZMtGi2HT9PHH9o4eoQIz6tThsIvG48ZROhceduyK0KULJ091W7+e7mXLRmFhYTx0LIHu6JQSkuhlpRCCKzIs5WClRC46zDVvvkknFy+mjosW2UvzihoLdQikV+L/Yu/cYVUbDw6Y3swCzVu4uGsXbfroIz4P8tWoQd3Xr6fc5cvbQwDS3r9Pp8eP57hnVGNrN3s2h6S4S9ZAeBBqgYcDb7oFGGMy0fYgyiArIC0gWaKsylCdEC2VvBqH+c1eWh1xrHwntHIV2gvLQ1t6I5QAbQviIF6vaHu5vvAeDzm4b+gQAg1vq6ziRAJolTXxocmsj8CqXtxwgicFE26eOUPZS5XyyrYgvADFD+p++qml6RFGkKN0acqhrH/3999TyKpVXNnpftq0dHDLFop6+JCKN2hAZapUsZOWC8HBHF4h/rKIn0VFKSiBZXv2pBrvvON03axsvvACXTl5klqtXUv38+ShXHHE5ezZs3xcEZeXEE9STwshqMDNDCRQiCyw7csvmQyC7Jds394+HdRYdNyq7yyUZ7gcIN6487JlVLRpU0oMwDd209ChdHzuXK7W9sy8eVS6c2feLrg/pE6Rgq4sWkTbRoxghR3evSjQ4O5oAm7qiBvG8fRGSIGEgojPJ5avDtWDXAH4LN/L0L6qpKoE9XFRUZNC+XYXaC+o9Vh2Qh50pDSzkFcJD5Kyu1JaFyos7hP+mjCn4b8QJxE1NEAekFWVVYqR6PtK0kCTWR8BxQYEmTwoZQsyW9TNcqCOELZhA92/cyee0uqss0C8LPxD1XhbVNyqPnAgFW3WjI4fOEBrWrbkaSqPGBHvYoaqmxbks3p1dj2AvyqQrXhxajl5sst1bxg2jNJWrkxPvfUWFalYkRUVfA/LK3SEIEoJGY70tBCCCmwHXBTUalGIB970ySdUf/hwevKVV+zZ+1gX4jhV0oyQCykZi3K8hRo0IG8DaviWzz+ng9OmUeagIE4qq4DQkLgCE7g539m5kzYPGcL+spVeeYW33d1zFcvhZLGYGCYPVtpGQgAQy6hWnsFxlTAAeUlWPx4G1BhUeWmykjgJdN7wcpVlQolFuyE0x5OQEyGvUHNBXiXGECoxzhdsM641ENrEcj7QeLxUVqvlvzWSDprM+ggxcWUWAXcVVsTa3r54kQmgN4D4xyxFilDuChVcTouEHxAh+MvKtizr1YtVPSQBRd26RWeg8pUpQ80nTHjkqRRkFl6wKIywbuBAnu/qkSPUbubMRzxnVaCzOvbPPxSdIgWrneWVYgtQNkF8SpQo4fEQZ0IKIahA5wlijY5UsrZPLV1Kf/frx1XJUPrXkRqrJrWJr2uBmjXJ28ld2776ivb++CM/VDT++muq/NprHB7CBQ+QwR0RQVs/+ohC16zhhxPE6koSmLtEBSQCN3uQCFHNjLYykiglBBWQpCq1XCqOrQwVQ2XD8dNkNXHhaQKdM4BwYpk4P7BMd0sE4/wBccW5gPNGfHQlxEGsuxAmhOXiXPFm0phG8lZZjbGsaslnfQ75LzSZ9RFAWgTZS5Z0a97Is2f5vzfILMgDwgZKtmtn6UKFJVeaTJmYkAL/DB7MfrPP79rFQ8/n9u+nExMnUudFix4ZikYy0/lNmyh/zZq09u23OUnsyMyZHD9r5qKg2uTcPHSINr/0EtX+4AOq1Lu3fRoMXaNTLFmypMedbEIKIajATVF8bUVhQlgFErgQVtDkhx/shNGoxorzA+ywboeHc/KVaoeVUMA6a+e4cbQzzhe49pAhXHABjhgYMr52/jzd2buXjk6eTGdXrKAcTzxBnZYsYbXe2XkhfqriiSrZ+2gTAGQTbQTyjmkliUqIKpR1Kbtr1llIZSW8QFig7mplLenCCNA2uC684akKQoyRD6nvbtUaTezLQF4xL84bnAsILZIHRknsQngQrkM86LhLkjWSv8oqxFWq4cnIjqisCHHRCYCBCU1mfYRbisWTu5ZGCDHwFpm9dvQoL89KiAEA4gu1DoUJzqxYwbGyTb7/nlVd3CCuHztG2QoVMi1Ty4ljd+/Sha1beR6Y/0Pxqzt0aLzp1Ox5dFq3g4NpVc+e7GFa68MP7dPB1gkkp3Tp0h53WlIIASTJU6N+bC9IqrgWyFA64lEXtmtH+apVo2ZTp1LYuXN2yx9jJ47zAXZYCDHovmEDJ195A3iA2DdxIgWPHMkJdlX692ciCycMbG/o4cN0cdkyOjZ1Krcd3Cxa/fILlenenR6mSGHP+FZN/EVFVTP/1Qx/QGzRRNmQ4X8r5AXkGMoaXpgHZCqxKjtpOPbh9UZJWHkgBYlFW1oJJcA5JDGvuKdgPtwHoK4aH2TUAhi4fhOjAIZGYKqsqpUeziEhrVINT99Pkhc0mfURos6ds79315UA5BM2Wt5wM8AQeOoMGahwXEKWM6DQwYUtW6j5xImcsAX3gmKtWlHVN97g38PPnKHD335Ltd9445EbBWy7Vvbty+87/fknha5bx7GYUHRRfAGQ+DYQWSgrsKeCJdXK55+nin360FOjR9s7SKh9IDtQZD0lsmL9424hBBUgeyDV0vnLfmN/ES6QMV8+ajBlCl27dYsTyswM42+GhNCcJk04IRClfpFc5whCIoVIOnp//949OjFrFu0dM4buXLhAJbp3p4oDB1IGWJiBKJw/T7fDwvi3hxkzUsWRI/nhCMmIXK3s4sVHrKxEWVXLrEpRADHHx0OBJy4SUm0J7YEOSCtrgRtGAKANcT7gGoPihXPf0XIxrZBXkBBczyAcIL5mpMPbBTA0AgcyEqSGBTiKZcV7rbI+PtBk1kcA2REgAcddMpu1aFFK6YUhNCitRZo2pTQWVMmzK1eyBRcI7MqXX+aqVK2nTfvXPxXeoSEhFHPmDLsSqLi0bx8rlIgT5nVlzkw7v/mGGo0ZY4/TxU0K9lpCYkGYzm/eTEu6dWPVuMXPP9vtrTCUj44PHZgn1YSwDCQlQdUBkfVEfcINFUOa2G+VDHORhevXaflrr1HGUqWoyhdfUOqsWVk1kkpPKvGMPH2aVsPiKnVqavzHHxSZNi1FhoQ4XK8M04v/qfE9XqHLltHOkSPpxrFjVLJTJ6r96aeUq1w5Xt+JVavo8OTJdB7V0rJk4cSuagMGMMkFQcBxlU5B4lXlv9lDA0gQyDyUWLSHu8cSHRFICdaLZegEHd+EEXirfDDIBVRYtKsjkimFSNhzOiaGzyu0PUIPsD2OSCmWDeIt1cS8Rbw1/Ftllf84b8UOURwDtMqaNLApfZYUCPI36DuBjwCfWAAkJr2JIb8zIDnIGyEGMTducAxr0x9+sDQ94mXzVK7MbgZwIoDCmil/fv7t2uXLdOb336li377xErlOL1/OMaOw8Yq6eJGKt2pFy198kQo1bMgWTwIM06tFDuCQsKBdO8pfqxa1mzWLUsYldiC5CkPd6Mg8cS2QQghCnDwB1CbE8SI2Fp0piAE6WNxsU6ZIQacXLaIMpUtTua5dKa+SlCZJTUI8QTbXdO1K6bJkoa6rVlFWk/ADdxCyZg3989FHdHH7dirWogW1mzGD8levTrExMbRnyhTa/9NPdOPQIU66a/rjj1SkUyeKwTDtvXsUfe2aPWbMCiEVMo99Vr1xrUASdHDcdIJOYIcRyLLxoAaiieVBUVXJMTtjxJFXKRGL6w/b4Iy8ynmG8wTnC84xzJOQamIa/q+yygiQhCjJg45+cHF8HG0ORunc+c4VRDRBqJyU5vYnaDLrI0gSV0YP/BShzILkJRSstD54YMmMH/6uGPKHBylcCJABL16pQPiJExQ6fz413b/f/t3eCRNozRtvUIl27ajSyy/Tog4dOCEq+soVLpMqyjI6Oig0SNgAbpw+zUP02UuUYMKMRDKQJhBZXEwgXJ5cTFYKITgDOmKowgBIGBQoxOeh48YFfu/GDVrety+FrFxJbRYupDJ16jhsW1arW7SgTAUKULdVqzyyZxOE79hB/wwZwu4DSKTDsYWPLxwv1g0ZQgf/9z+6e/UqlXnpJWo4aRKlL1iQUqRMSbZUqShXtmxuPRSo8cyIYbTaDlI2FPPhYUSHESQNcMxBYL0dRmAMJcD1JMsW1wkuexwTw9cACAna3ErsM84V8Q/GOrxhA6bhe5XV6GBiprJKeejkBG8QTclJcIQUygidccROXiKkGF+qF3cgQ5NZHwHVqwBYYrkLkFkk6HgjxAAJWFktbEP4tm1MQlGNCtM3/uYb+28go5eCg6lI48bszADiu+HDD2nX2LGsvjb6+mv2WE2bPTudmD+fiwZkj1OW0VlhmFqSokDAkNGPIfDOy5dzNTAhoegQcVE7K1HrrUIIuIGgIwYZELKNbcW60bmqihIqksEpIPiLL7iiW5uZM6mskwcEkM/5LVuyuo4iE54UzQBgaYbjemLBAspVvjx1WLiQSnXowIUoljz3HCfo5a5Xj2r/9BNlr1CBsuTMyYQGx9GTDgPHAm0FAms1RhHEFaQExAakH2q2N8qSajiGmhSlVrjyFnA9YmQCpEQUXgkvwDkC4BzDueZO4p4acqI9YQMPRl9W/BdILKuorP5SpERVNT0lmu6omo6IphnZNAshS2rYFLcaKdkuDx/+Bk1mfYDLBw5Q9OXL/N7dcAEkYSHjPaFhBqK0Pvmf/1iaHtnw6bJnZyLdKzg4XijBuWPH6Nj331OrSZPoQWwsF0I4uXAhNRk/nqrFJYdBBX4AL9i2bVmlFcBJAB0eLmSEPUCRRZnfZzdvpkx589rdBnADROcs6q23CyGAdIG04iUJBSACmB4XMoZOsQ3qDQUX+omFC2nd++/TrZAQqtC3Lz01ciRvtyOc27SJFrRpQ7krVqTOf/1F6bNnd3t/IkNDactnn9GhX3+lLIULU+tff+WHm5N//kkLEa8MI++mTalhnz4UVK4c5UigUbw8cOCm7SiJTQWmQ1tBwcXxAuHxZulaDWthBBJ77g2IWoprCe0IsikhNniBLOM7tLM769QhJ4EF8YpWQwPMVFaQVtxzvOGGkVCi6Y6qaUY0xUrQGSH193ubLY6Uqi+VoMrLSMzVku3y8kciC2gy6wNsHz2ah3k9dTIAEkpmL+7YwUqrFUsuWGohTpZSpKCnRo1iq6l4KtDp03zjgmXXipdeolN//kkdFixglRAASb20Zw/706LKl1z46HjFMxK+uyjfiljiHv/8Q9mKFePOE4laiJEDmULn7M5NQwoh4AJUCyGI6griCiUJF7F4nkoSCuaFkovfMa+RwEXs2UOr33qLwjdtooJNmlDnxYspT6VKLo/jgvbtqUCtWuzhmtbNUAk4SKAkLgpOpM2WjZ7+9lsq2bkznVizhjb89BOlzJCBslSvTvlKl6YKbdtSKg+S41TgGCAsAGTFVWiG+HxienR2OkEnacMIQCqgmHs7KQrXCtoUL1HT8MLDnzgOuEtYJOREyhDrkBP/g5kvK84F1TFAwqvQ/o+4qdy/b5/HFdF0RTZdEU2jqmlGNP2dbFqFHEMzIvpAIahmarFKSKWEN/o19btAPlaazPoAVw8fJr58bTbK4iMyi6pfSDwrUKeO0+ngXrCyXz8msqU6dqQa770X7/eIsDA6+uOPVPn11zk+9uisWdRu9mw7kQW2jhjB/0GEJWFMhhRBUFF0YX6bNqw4d1m5kh0ORPFB54wQAxBKdzpNybKXIVZJ0sKNGRcrvlOHvFRA4UJCGlQmo81UVHg4rR88mI7+9htlK1WKOi5ZQiVdFBaQ5LnFnTtT4caNmeg7q3ZmxN3ISNo5diw7QKRIlYrqffMN5a5fn66fP087Zs+mK1u3UrrMmaniiy9SqUaNvHIzkpAC7L+zkALjkLb2+Qz8MAJJ6MI1IFZZIMp44ZpJSJln7Qnru8QgI6kE6VFLReO/+LICZkPdgLG0a0KIZiComokBtQ1cqaVGyDFVyWnaOBsy+fw4HldNZn0AkDaKe3LyRJmFwpkhd+4Ex8sWb93apb3XxiFD6OapU1Swfn1qD1cBZXq2uDp7lq5u20Y3y5en/T//TK2mTaMyXbvap4kMC+PSqakzZqQqAwbY50MiFRPVTZtoUceOlDFvXg5fQNIX4vFARjGkjaQveJdaseASr1IoqrgJ4OKGogSFVwzVnZll40YC/1rcDIxDtCjbu33MGNoxejSXfm08bhxV7d/fkvqJUIQl3bvz8W4/Zw4XnLCC+zExnES3+4cfKGvlylT/998pfd68dCU4mNa9/DLdi4ig4j16UJ1hw6hwuXIJtkvBzRUkBsQf+44HCDOVT/t8Jj2kbRLDW1WGjrF8JHOBwKL98aCXEA9mWbb2hHV8bDxNBrI6hC6qqUpshSDJ8LmUAxYbPiFDyU3VTCyopNSMjMp3RojFlZGUGr/Tx98aNJn1ATDsnhCPWaiyCTnBUW3q0t69VFOppmWGMytX0o4xY9j4v9uaNfbiBoLIGzcobOFC9jAFYUVVr4ovvRRP1V3Rpw//L92pk32bQTbRGZ+cO5cLKQTVr08d5s/nmFyQSUwHuyeJlTVTnXBjRqcL0iuJWqIWYOgLQ5dQrayouTKcjo4cIQ3q+vDb4ZkzaeOgQXTn0iV68rXXqOHnn1N6i0loUKqX9e7NLhBtZ8ywRH4Rd3x4wQI6t28fpS9ShCqPGkUp79yhQ198QZd37qR81atTuT59qGCbNhRUuHCC4mGhxoBsgMhgX6G+4RiYLTOxDPY1rIURePOY41qRQgU4BwB0umh/s7AadyFFNALVE9ZM1XSXaLpKDDJ6Rpspl6qVn5miKS81llX1ZRVfUKnGJ3ZXyc0xwBuwqpQaHyAkrlRVRvEex1r9TpPSxEXg3F2SCZiEQZmNgyfKbIJDDJYt45jdYi1bOpzm3D//cAwr0G31alM18dzRo3T6118pNjKSGowcSdXefDPe73t++ontogCokoB0nqcmTaItw4ZRhZdeohaTJrHfLsIJQCQRh4dYWdwMQEpVZwH8x/ziQ4hOF59xc0aCl7vDrbjpg0BDmTDG5J7fupXjYkEgi7VtS03GjqWcTzxhedkHpk3j4hLln3+eWk2Zwl65rkhl+JEjdP3UKVZfQSdjLl6kA/PnU+zt20yIa37+OWUoV44JJ4Z83YXEtmJdULFxswXZgApupuyqBvvoBB09XGgkHEJIJJYb56a3wghwfoldFtoU140kOOI3rEPiHz2F0RMW50piecK6IpFmxNNdVdOK3ZGrIXZv77uZL6sxlhXtira0Wj46ucGY7ORILXVESo2xpTim6nf6QcA/oclsEuMB7ErihhxSpU/vkTILQ/yEklmEDWRwUKzh/JYtNL91a1ZUK/frR3kqVnxkGtxII7ZtYyJba9Agqj1kSLzfrx07Rhs//JCrhZ1dsYLL5XJW/MWLdOyrr+jQlCnU4IsvqPZHH3Fnej4khH1LcSNGrCY6Xdycz549a1cW8AK5FS9LxPRhOsS2uusbi/lBmLEfRtN/uAWsff99Vo5zVqzIqnTRJk3cWj6I/JoBA6jyq69Ss59+sif8GUMiQBJZXb50iU7++iudmjmTcj3xBMfUntq4kdJly8aevqVffJHuxiWooaNyp5MS30+sC/sLYgQCi+NtthyJmYSyhvfa5zNxgA5VtX7DsZbEGpzTIJyekhEsW8grri9cM6K64zNCebBehN4gjMfT9Zh5worNHs47rMsToukNuyMhI/5md2T1ocboywpgu0VhxQNIclZZnSU7qd85S3ZSldHklOyk8Sg0mU1iqKpsm+nTuSCAVYBcsjJbooTH60ccZsjq1VT3009Nfw/fvp3mt2rFJIpSpqT6cclbRhxZtYpOTJrEDgYNv/oq3k3h4f379NcLL1CWQoXYRzd7qVL8PuT0aTowfDidnjWL2s6cSeV69rQnW4FY4T+Wg5s4CCY6daNaiJsXSCg6YnT47vhYGj1n0ZGr89+LiqItX3xBe779ltJkzUrNf/6ZKvXt63bZYCRrrX/vPar29tv09Lhx9uWrQ/q4AUNZjQ0Lo22DB1PY2rXs0ZsxZ06u4AXf2GYTJlDxLl3oelQUpc6QgfK7YXuEmz3WhRc6Bck8d2SrIuQayppkxluNVdawroiL6or2kTKu8mCREFIi5BUvXD/orNHmWC4Ij1hgYfQD5wC+l4dCtLe7RBPXoSQMCVHA9kvipicm7oFmd5RQOKp+BaDN8EoOKqsx2clRJr5ZXKlRKRVrKElEfFyTnTQehSazPiSzzob5zYCCAlB2ExJmELZhA92/c8fUkuvirl00r0ULyl66NF3et48ajBhBGfPkeWS6k8uW0fWwMIo+e5Y67dkT70ZyMySEs+4jdu6knps304q+falIkyZ04fhxOjJtGp1btoyVTijDooxCYQCRBbGEKluiRIlHSCxuhvC4BDkDKXOkKjoDbqJYPuZTPWfhuYuQgH8+/pju3bzJJLQeijwYnAxc3bCvHT1KB6dN4zjjWoMHU/0vvohXCUkd0r9+9ChtGjiQTi5axMlvWNeNU6e4XZpPnEhBjRrx8bkVE8Pxhq5IpcQQg7CAMGHfnIUPyDwgViAf2D50ENqNIOHAcQXRE9VVHDTUanGu4kel83dEKHEuo81Un09RofAe8+JcgGIqpBO/4zwCacK55YxEmmWh44VzGdcgfsM1CMKsiYTrc8Hoy2pUWaUQiz+rrBJH7EopdZXsJOepmuykxgZraHgCTWZ9SGbdIUvesuWCJVfWokXZ/krF5YMHaV7z5pSzbFnKkC8fRV+6RNXeeeeR+UPXraM9M2cy6avx/vscy3lq6VIKXb2aFV8QMgypI4QAXrHXjhyhJ3r0oJMbNtCFRYvoueBgylq8OLsUoHMH0LmKcwGIm0q+VK9TDLFbzeAWcifvRaUEWQOhQAeDF5To4NGj6ebJk1Sia1eq+d57lCUoiDBwBbLgbPk3z55lv168QN6jr13jJLnGv/9OeRs25P0x1qDHPCvfeosO//YbhxLgWN27fZsVYMQcZytZkom9FJNwFisJUgOyJBnoOJ7Owgdku7FfYlWG5WP7MK/uSDwD2kGIK/7jM0ijtD3eCzlFpw9C6GqoVOL3hEwCYp8kMeLi0CGJjuoLbYxQAiwnIaRTLUMsnrAII0ioc0ZyVlklPEBUVrS/v8WyJiTZyWgLhc8Sf62TnTR8BU1mkxhQV4EUHsTDJYTMIkTh/ObNbBMFD1h13cie/6tXL05Gq/f55xxmgKpSaQxE6kJwMCeFVZ8wgba9/DLFhoRwZTD45eYsU4bjY4s2bcpeqsj2P/LHHzxfTObMdGPZMnpu82ZKmTkzhYaG8k0dhAodLTrlsLAwHtaWYXDcRKEq4eWODZFaEhM3WIn/lOIMEosWc+0anVm1im6cOMGerTWHD+dQCFAKbJcpCbx2jSJDQv59nT3LJBTbhONWvn59fkhARa7MWbPyutQO/3ZEBPvt7ps48d/4WZuNMuTJQ9Xffpsq9ulDabNm5fWGhIQ4VZ6FDIGYS6gCCI1aXtds29G5YvkgXKIOJlZyTnJPLBHSipc4AagxeHihnfCQgZcjVcrRUKmq5sm68Duml1ARR7HOWB+Ip4QSeFqtR3vCWldZ8b0Mf6NdQfiTSmU1KzdqRlBdJTvhvNTJThqBDE1mkxggQoCRKFols/CXtVo5CjewiN276egff9Cx2bPp1rlzTLaQlKRi59df05VDh6jXtm209s03KW+VKlS+d+940xyfP5+W9OhB2atUoSvbtnEcKaaDOgsCCyJoXDfCDdLmykWpoqKo45w5dOfuXbp64QJ3yiBkUHhwwweRFRVSOmSEFKBTsFKS06wkJggeOnWQASxDOnXYom0aNoz2T5jAnq2NRo+m8s899wg5YDJ96hSFrV9PYevW8f+oCxe4aAGssYo8/TQVbtuWCjZo4LQ9oMSDxO4eP54egvjYbGxFVvPdd6lEu3Z8HLGNILGIUzXbX3SaIK8g6PgN0yGm2NVQtRBYIfYgsJ7EGCdHmJEAs/dqjCheokypJTuFCLiT7SyG9WIph5cMPwN4+BJi5KrNMJ+UbE6Icqo9YeO3jUpazVRWHOuEJOl5o9woYEx0khhmd89JDY1AhiazSYzbFy7wf3iqugt3bLnCd+ygv3r3puvHj7MCWKZbNyrbsycVrFcvXmb9tePHacvnn1ONd99ltfHC1q3UbdWqeNPAb3bJs89SyjRpqNKgQbRtwADqCoeCRo1M1/3g3j36+9VX6fKhQxTUpAk1+uQTjtGT4VHcZNFB4waOoXioTUJwMZ0jUudo+BM3fXQsCFUQL1Tc9EFqkSTGmdX377PDwJbPPuO449qffEK1PvjA/lDBYQNnzsQjryD/OA7s69qrFzsyINY3XdasLo8/iixsGjqU9v7wA68PJBjLwDrzPPkkT4MOM+LCBXu5XSGnkowFgo79QeeJ8AEQdFedkkpgJRbPk/jiQIKj5BJXcXxGEiDHViUO+B3nJh60rPoWyzbhfJcKS0JYhRQJ4RCFFuequ8PPOP9BYrGtCMHxtJ0D3RPWGyqrtBOANhabK3dVVivJTuL/aoSZLZSaga+TnTQ0HCN537H8EKiIBYBguguUfbVCZlFydVGHDjz83XXlSk7AMvM4RejB3//5D6uqsMj6vWbNf0MFmjWzT3N0zhxa1rMn36Q7rVpF4WFhlCVfPir01FOm68bQ++KOHeninj30MCaGKr/0EhNW8YNFKIEosMisFg9NvBevWGeqEpaBjhfEFyQAZBXAd1B4MbxvNP0/tWwZrX33Xbp54gSV7d2bGo8eTZkLFOD4VZDWUCGvoaFctjdftWpUpnt3Jq+FGjT419nBIkDk1737Lh2YPJlJLCqfoThFzffftyfTiSMDOlFsK0iSeHRCgUVnJ6V2nYUP2I/5vXt2AovjHKgE1hkRsBJfarThkTg+s+QSY5IWjp0kaeEcwnnljNCJkiYkVV5qdSUhq0JYvWGjJCMXON+xfGynJ6EESekJ6+8qq5BWVWVVz0XM40myk3o+SrKTfKeTnTQ0vAtNZpMYUefP83/jsLwrYMgbMa8oMOAM9+/epT+7dGFFsfOSJZQpf36H0+6fPJnObdxIXZYvZ0/Ym6dPU4cFC+y/Y2h87VtvMcGrPXgwpcyXj4689x5VHzDAtNO7GxlJC9q25epi5d97j/YNH04pSpWye06K2irlbKEC4TfE0EKpdeQVi3mlJCbmBwFG54vvUPAAHQS+Mw7HIqltzTvv0Lk1ayh//fpc9CD6yhX656OPmLxCica+IVziiS5dOHSgYMOGlN6ias7DsmFh7AJxeskSPpYgyLYHDyh9rlxsWVZ1wAB75TQ1mQ0kBEoryIQ4LIgPqBU7LBAxLAekHvsPAisqtL96RJq9N8byuRtfahVYl8S5GpO0HD00YBqjsiq+qYBsG15oOyEsidEGOF44d9DeuG6g5LsbSmDmCYuHx0AfglZVViGu0k6isgpxlQdpOQ8xHZRpV+ei2UOSTnbS0PAfaDKbxLhz+TL/z+5mEteeH3/kpCoMVTsDyGfErl3UY+NGp0QW8Z8bPviASnXsyP+h+jYZP57yVKrEN/XNQ4dyclfGAgUob/36VOatt+j8gQN0+/hx022IuX6d5rVqRfcePKA2GzfSvi+/pHyNG3M4BVQPdJwAlg0Cio5FYkDNQgok616yqIXo4TsZWgURkeVKsgy+v7h1Kx2bMoXCli+n9DlzUuEmTSjyzBla2K4dT5uncmVOghPy6qh4hAokycF6C0QdLxxjvGKjouzTpEybll0iEEdc4fnn4x/vqCj2tkVnihcyzdExWg0fUKtxYVnoSHFcvUVG5HgL2QPMqhgZ67yrCpZMJ//NSjzKsKmqUHkbkvAmqqua/S8Jc1i32AxJ0qCQVVVdFSIkhFX8VJMK4kqA7QTp9uSBRU2KxAMjHvoSUgLZVxA7MqmOZlTCzV5SgED8cOW8U5OdVEszDQ2NwIQms0kMZMQD2d0oi3rv1i06MGUKVenfn+2cHGHfpEm0/+efqeXUqVSgdm2ny1w9YADf6FENDGb9+WvW5IpVO779lrKWL0+ZSpWiWlOmsPVW9gIFKOrUKQru25fLzxoTniIjIij4p5+oyOuvU4EqVShdzpxkS5OGKnz4Icexqh0nCB06FnRKIKfoUCRjG9+hw5IXSIMM/YHUwrIKHY8QQiEkTC5iY+nsvHl0YOJEunbwIA/vE8rgXrlC0Zcvc7IVyCvCIzLkyuX8eCN2d98+O3G9tGcPXTl48N/qbRiezJSJi09Agc1UoAATY5SsDapT55FKX9gvqNASf4ltBQm1OqQrWfFQoWVeSZzzZtlUOY5CAESlkv9Gv1EzY3sjwRVl0xGMyzGr0GTlvaq6qpW0JPtflDsJx8B5JECbiLoqQ83+Qmxw3mDbsQ9iY2cVZkmR/hJ64izZSbUfUxPwAEm+kzaT9jImPwW60qyhoeE+NJlNYoCYArnLl7c8z6Hp05lUgsw6AkIQ1rz5JlUZMIAq9enjdHn7//c/NusHSj7zDHut5mrShJqPGEHXDhygiI0bKXL3bjo2diylSpeOHsT5rYKoyTaISnjj6lUKXbmSLgcH09NdulB0pkwUfeMGpc2dm7I+eBCPyMI7VQzX0emA2AphFXUPv6HzhoKEaaUzduSVeePMGU7sQozq3Rs3WL0GspcowQppiTZtTAs/qPHFIKyXobbu2cP/r588ya4DSHiD5RhssxCrDPUaBBZevFC0S3fqxJW6jNskIQBQ1NBxQ1HDy6oaJob3eGHZUiLUk05aiByIqxRvEHKgxvaBLIm1UFKUyDRTdx29F/sjtfKUkB51X6QdxPcVaqQQX2OtdSMpluMkCrM/lD+FY4U765OkSFGZQfY8CUdIinKjcn7JeSDD/BJrjBELcQ3wlmOAhndhDMtQPzv7zZ1pfb0cd+ZLiuV4a78SAvRluLf4G1LYvLWHAQIQBPE49UWDjEVpydhYeu38ecocFORyeiRpTS1XjofGn5kzx3QaVLCaWqYMq4TPrl1LqZzEXB76/Xda/sILTNSQ6HU7OprKvv02BT3xBP3z6qs8dN7m99/pn8GDOUQA3rBQIREbej82ltIWLmz3zkz74AH91b49q82tV66ku3HxZDc2bKDVffvSSyEh9CBNGnsZT8m6hmImdenxHebBEC7UVqiEUGFBLCQ8wdgZ45RFgYY9P/xAp/78k1VYKNaIhw2qV49qDxnCJFZVSXGMbpw8aVdaRXW9ExHBvyPJK0+VKpSvalUOzwDJDQ8OZqKP5UDRBXmFCpu1SBGHySVq5Saor1bPMcwD8o5jC2A+dOjuEBEJFcBypPIUtkPIHI4zjj3+i6WUP0MIplRREwXZqA6riVby3lh4wwpptvLeFTxRlh29t3qMjJ6wUqRDflenNc6rHh8zn1L1ezkOKmR7RREVVVv+y/bJw4fYj4nKKsqqGWENFIKRkOUkF6htZ2xHZ589/S0pluPOfEmxHPWzeu2qI2kP465R42eZVv3dLGRM/ewPZNYdvubfvVkyBCyiAGfxrCrO/v0322u1mjrV4TRQWZEg1m7WLIdEFifo1uHD2ZoKNlGIg83Zti2VLlaMStSqRQtatGAP3GfXrPnXkzY0lDouXswuCAgrSFOwIEVevUrQFqH23D5/nuY0a0Zp8+Wjxn/8QbHp0lGhoCDu9DbPnEk5n3ySbFBW0qaNpzDKsDNUVrEjks4YGf7ojB1laEPVhkoNEov41UxBQey7CxILsllryBDKUbUq3bl9m04cPkx3r1/n140DByh8zRq6umMH3UcCTeHClLdqVfbbRfIXSGz01at0atEiOrFoEV09dIhSp0/P5YZx3Iu0asXFHkCmokC247yCzSx8QMQlSc0VIZHENhwfvBd7MVcEVjKsJSZUTWAR0oqHAylC4e+qloQ9YJ9AXMV7VUIfRDmW4hBCxK3ul5CrpNgPT9Rms2msEB4hiICQQrZ7i4gw7eyMHZ8KNc7UqERL4pP8ZpxPCKuaTIX9kOklNEASp8wUbuN2GTt0Yzy22XSBTlQ0/BuuyJ/6We7H7k6vrsvsvfGz2XWRws3RnORyfmplNgmBE+cbdAYpUtD7FlQeJB3BLgvZ8Cho4OjkmlmvHocDdF+3Lt730mHCLmrZc89xKAJUzBKvvMJxo+WaNKEsefPS3GbN2FMVqi5I3Zynn6bGY8dSjYEDeTmSRQ2ihc4JQ/vz2rShkgMGUN7GjakAfCltNtqF8IVp0yjq3Dl66scfKffTT9uTvJB0IhnfcizwG5aN9yB/4m5gBLxw9/74Ix385ReOZ0WIBlwhbKlTU/n+/alIhw6ENBDEx17btYtCFy+mqzt3cqhA7iefpILNm1OumjUpQ7FilBY10KFOpktHkYcP0+l58/hhAMpzuhw5mLgWbNGCcsOPN45Qy9C0vBIy7ImbGI4lnjTxHvsMEmtUSSXeVEgeSIIoW6JOghiA/GMZku3vLhw94ZuRCE/32ZGNlSTmiAogRBwPOtgnf1eOEwsqsTUO3UuiI84F1XZMIIqnMQvfmIznblsKYVV9WeXBFMuShwy5RnS5Ww1vXAeAKyKofjY+HBqJpfGBMSEE0hnMSKGrByL1ATIhL0B98HRnPn+DO8qsJrNJCFTj+q16dR7if9dJYoxgy/DhrKb23r6dvU/NcH7LFvqjfn3qtHQplWzb1p74AaUTHQrU1nMbNnBoA8IGEHubOW1aqvP222ylBSILZ4Nuq1dThqAg+qNmTcpauDB1X7+eSTeSZdCJQeVDJ3bj7Fna+8cflLd5c8qUMydlTJWKzmzYwElW6WCvVaAAZQG5VQga3ArkYlEthkSdNYslRXjF6eXLWYU9u2IFuxLkf+opsmXIQFkrVKBsZcpQSlhd7dpFZxcupFvHj1OazJkpqG5dKtSwIVfmQhKcmjAXe+cOnV6xgk79/TcnrWUqWZKylivHNlpps2ShHMWKUeZs2ZggokN2RabMbqjGYR25mYqKKmEVWAeOiRoDqladEsIqy1JVLmPp04TCSFhlvcb9sHIspLMwUxjVbVYVPzWb3IxAJ/b3CYFxn40vNYnJ+HJ2TI3D90IixUcYDy9GIusNyEOUMXTG+FAnYR3+2glqeAbjPc3snBVyaEYWze6FzkYGXBFIVwTQ0XfGkQZnIw/eJpGBck08jLuujaEFZuEG6m+47t1NSPUUOszATwF7LQCkyxUu799PwSNGcPynIyIrpWiRkFS4WTO2vAJpQmeX7soVdie4iJjPVKmo8ddfU/V33mECiwpWsAib3aQJ3Y6IoEYzZ1J0tmy0ZeBAunPpEtX/9VcKDQvjjgydKVQykNqrEREUc+cOBXXoQClTpKDbly/T5fBwevDwIW9DnvLl7QlYOOExhI7EJUB8YnExOLMYQrnZg9Om0d4JE+hhmjRUqG1bqtO9O8Ui7jYsjKKOH6fj339Pdy9doowo3tCwIdXo35/Ja97KlXlfZRj+JpKewsI4Dvjq/v106/RpJuiZChemonXrUq4KFShLwYK8TUIosZ8q2XLla+ropgiow64SxynEBN/L/ELkJBFJ9bME6RUl2NkNNLGhDiWbFQlQY1fxX0IHZP+xTxKvq4aQOOroXH1vJMtWlmNUcBwRdmffGeGsc3MUE6s+kDhTT+TBVDxhZWTEW22p+rKqKqsorBhJQTKmVlkTDkekzkj+jETR+GDoiiiaERL5bBVGgujqZbwHqvdMZ7Hh3lALjWTLGYGWY6A+SKrHy0yIcHQvUT+rx9fKPcSsTRx9ZxQtnB0TWwKmsfLQIO8hQCUVmXUHWplNIlw5coR+hYfrgweUtVgx6nfmjMNp7968SbMbN+Ywg+d37aLUDir8ILt+Spky1GLuXMpSrRoP5ae6f5+2fPopK5oEb83cuTn8IFfZsjwPhvYjTp2i1c8+S/euXaP2S5dSntKl6eCvv9KJ1aup4muvUe6qVZl8ytAkCjFEX7tGd2/fppuHDlH44sUUsX49k8KKr75KZZ9/nofvBbgpYFgAai46Y/G3BIk1KwiA6e/GxNCO77+n6+fPU5ayZVkpjYSv64YNdH3fPnpw+zZlK1mSCtSvT/lq16bcCBsoXNhOsIw2Pvdv3qQLq1bRjcOH6UF0NCdt4aEgqHZtylqokCkJVb+TBDVJpALE7klUMXX7RVnFvmKfxdtUlEchCPiO9zeO0MqTrtiNJWWMq9oBGpN9xB5JtdZSbayEuGJ/sN+qzRe2X5LNsE+ehAs4UztdKaCOoHaoVl/qg4bZ8VOPozvE2sr3AB4kPfWEtaKyynkZKCqrs2Pm7stsSNrVkLYzImLcPhXOyIN8NlMWjb8bH2CN82C98lBsRkqc7Yu7JM3R/hr3Xf3siJx5Oo2jY+rsODk7fs5+M5tGfRiVz2a/qfNaJfLaYo4CL8zgxx9/pDFjxrCyWLlyZRo/fjzVqlXL4fRz586loUOH0tmzZ6l06dI0evRoatOmjd+6GVw5dIimV6tGD+OIAcqkdl+71nRaVJBCFS0M/SOGFdn1jrDqjTfoYd68VLFPH8qaPTvHxG4aOJCiQkPpyf/8h9Xd9rNnx7Omunz6NC1p144To1pMnkxhO3fSPcS4wbc1NpZK9+xJV0NDKeb8eYo8fpxjU+9evUoxERF06+hRirl4kfLUqkWVXn+dirZtG69MLk4lNWtZEqFAZIUgiaIXc/s2xURF0X3E/8Ey6uJFuhgcTFe3b6fru3eT7f59SoFyndWqUfHnnuMKXpI0p5IuQCVY6KSxHTdDQujYvHmc6IUkL1T1snrjEhhjFtUa7pLgoparFIsxkAPsM74Xk3exxBKfXBA9d2q+G4F9VAmolf9mkH0wZqSrKqt6TNSQCVV1Fhsl8f61MszuKfGU7XT0CgRS5i04UlmF1KhxrEYHC1eqlTuk0Nl/ea8uX1XE1O0x+2/83fidkLjEgBmBMpImR+tWp3e2fc5ImNl3Vu5fjqZxRJodTeOKnBmJl6P/yQ1Wybuzad2Zz515bYm8HBlhSwoEFJmdPXs2vfDCCzRx4kSqXbs2ffvtt0xWjx07xkqjEVu2bKGnnnqKvvrqK2rXrh3NnDmTyezu3bupYsWKfklmV7zyCh2cMsX+ueagQdRo1Kh408D+CsPrm4cNY1Wy87JldjX1zpUr7DBwbO5cunfnDmUsUoTSITa1UiWKPHSIslWsSJHHjlF0eDjlqlGDspcpQxly5KAMGTNSCgzPnztH148c4fKu5zdsYMW3aM+eHHsaEx5OqdCxPHhAJ3//naIvXiRbXIY0AEKZHp6xxYpRrnLlqEq/flSgVi17+UgxqxfLHfsQExTmqCiKxW9IXoqMpJjLl+lOeDjdDguj6EuXOEELJBo+rhny52f7LJyM6XLlotyVKlGmggXpocGDUgiLmsxiHMYykhpj52z0wjQSPpnebLnqjVtVZGX/5XuBUfVV4UzVMCp0ZjDreNR1GpVnq50g2hX7YySkxjYw6/TMjpWz9jEqG2bb5Gx73fku0HDq1Cl7wh/gSL0VODq//AFmbWNse2ekytl57EjpcrRMR9sgpNNsu/yNUPhqOd5cZ3KA8Zpz9tnR+4QsJyHLTeHhb2LtmBQIKDILAluzZk36AcPicUQAcZZvvvkmDR48+JHpu3fvzkO5S5cutX9Xp04dqlKlChNifyOzyMBf0acPpYBieP8+FWnalNrOmEGZ8uXj32Fvde3IEbadQnJWme7dqcl339nV1Lnt21OWWrUoba5clCZbNkqdOTPF3rzJw+gpM2SgG/v2Uchvv1Hm0qXZWUDAqmbdupQqfXpKCQUwbngfYQ7YFgzbo+lTZ8rEcaQYisf2MaAgYtg7Z062qBKoJvW8DgeECdZW0RERHMYA5RXLTp0mDVfOSpclC6ukGVEYIU8eylygAK8HpPTArFmUoWxZyoRwCaXSFy4eT4aqQQaMlifOCJba2XkCrEc9Rmbqk/G4Oet85bMZmXG0fne+d7Q+Ifp4LzXtjQlxroi4q9+Scnp/gCcEHYmSxuvN0fTqZ3noMH5v9tndhwNn6/cVHkdC4YvlJNY6NTQCPgEMw2G7du2iIUOG2L8DqWjWrBlt3brVdB58/+6778b7rmXLlrQorqKVERIrJsBBAcScPrGRoXRpylGnjr2MKkICHsAWKm79QW3bUo5atdgftmTHjpSjZEkCpZTfs1euTNcOHaICNWpQ5IkT9BBxmBkycPIVSGeF3r2p3iefsILJCmFMDEWeOUNXDhygKzt2UEa4BYAEp0lD92JiOPQABQJAJuMBQ8vZslFQtWqc3W8GyWKU+vSObkgXFi6k1KlSUc4nnmBFF+4IjuJ+AVFKUY1MiKUAnTmGtD2BlLxNyqEuOTb+PuRtJMbGz65M7K10YBoJI+iIl1XjdtWHRkfHXBOKxwf++uCmoeEtCA+ycn77lMwicxwkBpWSVODz0aNHTedBXK3Z9PjeDAhH+Pzzzx/5XrLskwzBwf/+HzTI8TTDhzv+bfZs8+8nT07ghmloaGhoaGho+CeQkA6F1hmSvSs5VF9VyYXSd+3aNbacERUD7B/kNiwszC9rDmu4D92myRO6XZMfdJsmT+h2TX6ITGKuBEUWRDYoKMjltD4ls/AaxRAayi+qwGfYOpkB37szvcT7qUCGvRnQOJrMJi/oNk2e0O2a/KDbNHlCt2vyQ9Yk5EquFFmBT30zEINZvXp1WrNmTTzlFJ/r1q1rOg++V6cHVq1a5XB6DQ0NDQ0NDQ2N5AufhxkgBODFF1+kGjVqsLcsrLngVtCnTx/+HbZdqHyD2Ffg7bffpkaNGtE333xDbdu2pVmzZtHOnTvp559/9vGeaGhoaGhoaGhoPHZkFlZbly9fpk8//ZSTuGCxtWLFCnuSV2hoaLxs9Hr16rG37CeffEIfffQRF02Ak4EVj1lHQBjCsGHDHglH0Ahc6DZNntDtmvyg2zR5Qrdr8kM6P+ZKPveZ1dDQ0NDQ0NDQ0PAUybPWnIaGhoaGhoaGxmMBTWY1NDQ0NDQ0NDQCFprMamhoaGhoaGhoBCw0mdXQ0NDQ0NDQ0AhYPPZk9scff6RixYpR+vTpqXbt2rR9+3Zft4mGG4BlW82aNbmOfd68ealjx4507NixeNPExMTQgAEDuOpb5syZqUuXLo8U3tDwX4waNYqr9b3zzjv273SbBh7Onz9PvXv35uswQ4YMVKlSJbZVFCAXGa42BQoU4N+bNWtGJ06c8Ok2azgHytEPHTqUihcvzm1WsmRJGjFiBLelQLerf2Pjxo3Uvn17rrKF+yzcoVRYaT9UVe3VqxcXUkBRqpdffpmioqKSdD8eazI7e/Zs9rmF1cTu3bupcuXK1LJlS7p06ZKvN03DIjZs2MBENTg4mItnxMbGUosWLdirWDBw4EBasmQJzZ07l6e/cOECde7cWR/jAMCOHTto0qRJ9OSTT8b7XrdpYOH69etUv359SpMmDS1fvpwOHz7MXuE5cuSwT/Pf//6Xvv/+e5o4cSJt27aNMmXKxPdjPLho+CdGjx5NEyZMoB9++IGOHDnCn9GO48ePt0+j29W/cfv2beY+EPbMYKX9QGQPHTrEffDSpUuZIPfr1y8J9+Jf1v3YolatWrYBAwbYPz948MAWFBRk++qrr3y6XRqe49KlS5AEbBs2bODPN27csKVJk8Y2d+5c+zRHjhzhabZu3aoPtR/j1q1bttKlS9tWrVpla9Soke3tt9/m73WbBh4GDRpka9CggcPfHz58aMufP79tzJgx9u/QzunSpbP98ccfSbSVGu6ibdu2tr59+8b7rnPnzrZevXrxe92ugQUisi1cuND+2Ur7HT58mOfbsWOHfZrly5fbUqRIYTt//nySbftjq8zeu3ePdu3axZK5AMUZ8Hnr1q0+3TYNz3Hz5k3+nzNnTv6PNoZaq7Zz2bJlqUiRIrqd/RxQ3FHlT207QLdp4OHPP//kKo/dunXjcKCqVavS//73P/vvZ86c4aI5alujJjtCv/T92H+BIkYoL3/8+HH+vG/fPtq0aRO1bt2aP+t2DWycsXBd4j9CC3B9CzA9+BSU3MemApivcOXKFY73kUpjAnw+evSoz7ZLw3M8fPiQ4yoxnCkV4XAhpk2bli82YzvjNw3/BMpUI/QHYQZG6DYNPJw+fZqHoxHWhcqNaNe33nqLr02UM5dr0ex+rK9T/8XgwYMpMjKSBYJUqVJxnzpy5EgedgZ0uwY2Llq4LvEfD6gqUqdOzYJSUl67jy2Z1UieSt7BgwdZGdAIXISFhdHbb7/N8VdIzNRIHg+aUG6+/PJL/gxlFtcq4vBAZjUCE3PmzKEZM2ZwifkKFSrQ3r17WVBAMpFuV42kxGMbZpA7d25+kjRmteNz/vz5fbZdGp7hjTfe4MDzdevWUaFChezfoy0RUnLjxo140+t29l8gjABJmNWqVeMnfLyQuIckBLyHKqDbNLCATOjy5cvH+65cuXIUGhrK7+Weq+/HgYUPPviA1dkePXqwO8Xzzz/PyZlwmQF0uwY28lu4LvHfmDR///59djhISi712JJZDG9Vr16d431U9QCf69at69Nt07AOxKyDyC5cuJDWrl3LFjEq0MbIoFbbGdZd6ER1O/snmjZtSgcOHGCVR15Q9TB0Ke91mwYWEPpjtMxDnGXRokX5Pa5bdHzqdYrha8Tc6evUf3Hnzh2OjVQBkQh9KaDbNbBR3MJ1if8QiyBCCNAX4xxAbG2SwfYYY9asWZyV98svv3BGXr9+/WzZs2e3Xbx40debpmERr7/+ui1btmy29evX28LDw+2vO3fu2Kd57bXXbEWKFLGtXbvWtnPnTlvdunX5pRE4UN0MAN2mgYXt27fbUqdObRs5cqTtxIkTthkzZtgyZsxo+/333+3TjBo1iu+/ixcvtu3fv9/WoUMHW/HixW3R0dE+3XYNx3jxxRdtBQsWtC1dutR25swZ24IFC2y5c+e2ffjhh/ZpdLv6v2vMnj17+AVKOHbsWH4fEhJiuf1atWplq1q1qm3btm22TZs2sQtNz549k3Q/HmsyC4wfP56JTtq0admqKzg42NebpOEGcPGZvaZNm2afBhdd//79bTly5OAOtFOnTkx4NQKXzOo2DTwsWbLEVrFiRRYQypYta/v555/j/Q4boKFDh9ry5cvH0zRt2tR27Ngxn22vhmtERkbydYk+NH369LYSJUrYPv74Y9vdu3ft0+h29W+sW7fOtA/Fg4rV9rt69SqT18yZM9uyZs1q69OnD5PkpEQK/Ek6HVhDQ0NDQ0NDQ0PDe3hsY2Y1NDQ0NDQ0NDQCH5rMamhoaGhoaGhoBCw0mdXQ0NDQ0NDQ0AhYaDKroaGhoaGhoaERsNBkVkNDQ0NDQ0NDI2ChyayGhoaGhoaGhkbAQpNZDQ0NDQ0NDQ2NgIUmsxoaGhoaGhoaGgELTWY1NDQ0NOwoVqwYffvtt5aPyNmzZylFihS0d+9efRQ1NDR8Ak1mNTQ0NBS89NJL1LFjR31MNDQ0NAIEmsxqaGho+BlQZfz+/fu+3gwNDQ2NgIAmsxoaGhpO0LhxY3rrrbfoww8/pJw5c1L+/Pnps88+s//+3HPPUffu3ePNExsbS7lz56bp06fz54cPH9JXX31FxYsXpwwZMlDlypVp3rx59unXr1/PQ/XLly+n6tWrU7p06WjTpk20b98+evrppylLliyUNWtW/m3nzp32+TBNw4YNeZmFCxfm7bx9+7bDfTl16hR16NCB8uXLR5kzZ6aaNWvS6tWrnbY/tmvChAnUunVrXk+JEiXibbvg9OnTvK0ZM2bk/du6dav9t6tXr1LPnj2pYMGC/HulSpXojz/+0OedhoaGV6DJrIaGhoYL/Prrr5QpUybatm0b/fe//6Xhw4fTqlWr+LdevXrRkiVLKCoqyj79ypUr6c6dO9SpUyf+DCILYjtx4kQ6dOgQDRw4kHr37k0bNmyIt57BgwfTqFGj6MiRI/Tkk0/ysgsVKkQ7duygXbt28e9p0qSxE9NWrVpRly5daP/+/TR79mwmt2+88YbD/cA2tmnThtasWUN79uzh+du3b0+hoaFO93/o0KG8HpBrbFOPHj14G1V8/PHH9P7773Ps7BNPPMHkVdTlmJgYJuLLli2jgwcPUr9+/ej555+n7du363NPQ0Mj4bBpaGhoaNjx4osv2jp06GD/3KhRI1uDBg3iHaGaNWvaBg0axO9jY2NtuXPntk2fPt3+e8+ePW3du3fn9zExMbaMGTPatmzZEm8ZL7/8Mk8HrFu3zobb8aJFi+JNkyVLFtsvv/xi2jqYv1+/fvG+++eff2wpU6a0RUdHW27RChUq2MaPH2//XLRoUdu4cePsn7Fdr732Wrx5ateubXv99df5/ZkzZ3iayZMn238/dOgQf3fkyBGH623btq3tvffes7ydGhoaGo6glVkNDQ0NF4BKqqJAgQJ06dIlfp86dWp69tlnacaMGfwZw/yLFy9mBRM4efIkq7TNmzfnoX15QamFuqqiRo0a8T6/++679Morr1CzZs1YsVWnh0r6yy+/xFtmy5YtOaThzJkzDpVZqKflypWj7Nmz8zxQWF0ps3Xr1n3ks1GZVY8Rjg8gx+jBgwc0YsQIDi9AqAbWC/Xa1Xo1NDQ0rCC1pak0NDQ0HmPI0L4aRwrSKABxbdSoEZM3hB8gthRD+ICEH2CIHTGjKhAbqwKhDCoQm4uYXMyLeNphw4bRrFmzOHwBy3311Vc5TtaIIkWKmO4HiCy27+uvv6ZSpUrxdnbt2pXu3btH3jxGOD6AHKMxY8bQd999x5ZfILTYz3feeccr69XQ0NDQZFZDQ0MjgahXrx4nYCFuFaSzW7dudnJXvnx5Jq1QIUF43QXiT/FCnC3iUKdNm8Zktlq1anT48GEmpVaxefNmth6TWF4QYvjEukJwcDC98MIL8T5XrVrVrfUi8QxxwkJyjx8/zsdGQ0NDI6HQZFZDQ0PDC4CCigQvkLR169bZv4cTARRRkFGQuAYNGtDNmzeZ4MGh4MUXXzRdXnR0NH3wwQesnMIF4dy5c5wIhkQsYNCgQVSnTh1O+EIoAtROkFsorz/88IPpMkuXLk0LFizgpC+op0jsUhVmR5g7dy6HQGDbEU6BxK0pU6ZYPjZYLxwQtmzZQjly5KCxY8dSRESEJrMaGhpegSazGhoaGl4AQg1GjhxJRYsWpfr168f7DfGiefLkYVcDWFghXhXK6kcffeRwealSpWJLKyiiIH6w+urcuTN9/vnn9hhVuCHARQD2XMjVKlmy5CM2YSpAIvv27ctKMpYHQhwZGely37BOhDf079+f42Fhq+WOqvrJJ5/wfiOmF9ZccDNAYQqQeg0NDY2EIgWywBK8FA0NDQ2NZAkouAsXLtRV0TQ0NPwW2s1AQ0NDQ0NDQ0MjYKHJrIaGhoaGhoaGRsBCx8xqaGhoaDiEjkTT0NDwd2hlVkNDQ0NDQ0NDI2ChyayGhoaGhoaGhkbAQpNZDQ0NDQ0NDQ2NgIUmsxoaGhoaGhoKeAjkAAAAP0lEQVQaGgELTWY1NDQ0NDQ0NDQCFprMamhoaGhoaGhoBCw0mdXQ0NDQ0NDQ0AhYaDKroaGhoaGhoaFBgYr/A3VvmBXH2eT1AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIjCAYAAAAQgZNYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQe4FEXWhoucMwIiKFlMgIIg4ppds2teMyYMv3l3TWtOu+awusY1h9U1u2tac1wTKmIAJGNCEVFyvP/zFvdc6xbdM90z0zM9c8/3PH1n7kxPd3V1ddVXp75zTr2qqqoqo1AoFAqFQqFQlCHql7oACoVCoVAoFApFrlAyq1AoFAqFQqEoWyiZVSgUCoVCoVCULZTMKhQKhUKhUCjKFkpmFQqFQqFQKBRlCyWzCoVCoVAoFIqyhZJZhUKhUCgUCkXZQsmsQqFQKBQKhaJsoWRWoVAoFAqFQlG2UDKrKDssW7bMnHbaaaZ79+6mfv36Zvfddy91kcoahx56qOnRo0fRzzt16lRTr149c9ddd5lS4N577zX9+/c3jRo1Mm3bti1JGdKMUt2fL7/80vz2t781bdq0sed/4okninr+uohS9QE+Zs6cafbee2/ToUMHe++vvfbaRNproa836HiU5fzzzy/YORSZoWRWERt0FjyosjVt2tT069fPHH/88bYzShp33HGHueKKK2ynd/fdd5tTTjklkfM88MADsTpTRfnU47hx4+wA1Lt3b3PbbbeZW2+9tdRFUlRj5MiRZuzYseaSSy6xE44hQ4YkVjfffPONJRwff/xxWdR/nPK6fXSm7dVXX13ltwsWLLDnCfouSdCXP//88+bMM8+0936HHXYo6vkV5YuGpS6Aonxx4YUXmp49e5pFixaZN99809x0003mmWeeMZ9++qlp3rx5Yud9+eWXzRprrGGuueYakzQJ41pOPvnkRM9T6Qirx7XWWsssXLjQWkaLDQbpFStWmOuuu8706dOn6OcvB5Ti/nC+//3vf+ass86yk+NikMMLLrjAWtUGDRpk0o445YUMurjnnnvMCy+8sMrn66yzjp3Q8Ty4ZJbzgC233NIUC/Ttv/vd78yf/vSnop1TURlQMqvIGTvuuGON1eTII4+0S0NXX321efLJJ83++++fV83SmYYR4u+//76sl4UzXVtdglj1SwHaEMjWjqqqquxkrVmzZqauoRT354cffrCvhXy+58+fb1q0aFGw46X1nD4OOuigWv+/8847lsz6n6epXsq9b1eUDiozUBQMW2+9tX2dMmVKzWf33XefGTx4sCUD7du3N/vtt5+ZMWNGrd8x819//fXN6NGjzeabb26J3p///OdQTdQrr7xiPvvss1WWybAssJy93nrr2UG4c+fO5uijjzY//fRTreNAtnfeeWfTtWtX06RJE7vUfNFFF5nly5fXKtPTTz9tpk2bVnMe0USJzILyuKAc/rJdpmtbvHixOe+886xlkHKgAUYLzOdRdIV77bWX6dKli73Wbt262br9+eefa+0Xpf6DELUuwbPPPmu22GIL06pVK9O6dWuz8cYbW2tstnoM07hhnfnNb35jBz0GNiw1X3zxRa19WALltxMnTrRyAfZDY3nYYYfZyUImcH7qHay22mq1tG18t8suu9ilTiZq1Nstt9xiv5szZ461LnOfuF/ct8suu6yWRUv2o0yUh3KxbM6ysH+t1E2Q1StIfxf1fkj5WSkZOnSo3bdXr17WKueDcrKsy2+4HtrQIYccYmbNmpXx/iDRQOJDe+L41NNTTz1Va5+lS5day17fvn3tPkx0N9tsM0umwsA9wBoMTj311FptBXz00Ud2Ak0ba9mypdlmm20sQXMhz+Zrr71m/u///s906tTJXlcQeE5pq4B2I+1TrveNN94w++yzj1lzzTVrnk/qC+uxf78oz6RJk8xOO+1kn4MDDzzQfse+J554ounYsaP9fLfddjNff/11oJ6Szw8//HB7bzkf9xpJVdTy5gO3zXHfeS4A91DO45Y3ShuIcy9kXyaPf//732vOKZg8ebK9F5yPPnSTTTax/UoUoLmmD6acvD7++OOR6yXKWKFIB9QyqygY6MwBAxdA83bOOeeYfffd11pusbpcf/31ltQxMLkz8B9//NEOVJAtLAd06D7oYFki47jz5s0zf/3rX2uWyQCDO50iHT0DCKT6hhtusOd66623apZL2YfB5w9/+IN9hTyde+655pdffrFaXMAyJ8Twq6++qpEzsG8uCLo2yAkDG6TjqKOOsteATpBzTZgwIaPTy5IlS8z2229vSe8JJ5xgCS0D4X/+8x9LUCBRcevfR5y6ZABm4EXnxjHZ57nnnjMHHHBA7Hp88cUXbV1BwBg8IQOUecSIEebDDz9cheRxbUhdaAt8/49//MMOmpDMMEAKIXcMakhjKM+AAQNqvh8/frxdWaAORo0aZdZee21LkCHs1DOfQ3Defvtte83ffvttjSaYwRjyzX095phj7H3lPBDafBD1fgAIPkTjiCOOsOeFEEFWmNRwnwDPDxMGJgncv4022siSWAgJ9wryFQQmkdwLZD5nnHGGnXD861//sk6Yjz76qNljjz3sftw77gntDlLNs/XBBx/Ye7TddtsFHnvPPfe07QfCSP1DDKWtcF7KC5Flwsf1MslgMgBZGjZsWK1jQZ7oL3iusQYGgXuDVIp9eAY5Pth0003t68MPP2zv+7HHHmv7tPfee8+2ReqH73ynVJ5JCPuVV15Zs/JCvVM/Bx98sCVglBVy5ANfA76HwCGvoOxMErmH1B2TqGzlLRQ4N88F18395L4AeUaitoE494I+ib6deqJ9MKly64Zr5F7Q9rkX+ErQfz7yyCOrnM/Ff//7XzvpX3fddW17pC/mGQoj1T6ijBWKlKBKoYiJO++8s4qm8+KLL1b98MMPVTNmzKh68MEHqzp06FDVrFmzqq+++qpq6tSpVQ0aNKi65JJLav127NixVQ0bNqz1+RZbbGGPd/PNN0c6P/uvt956tT5744037DHuv//+Wp8/99xzq3y+YMGCVY559NFHVzVv3rxq0aJFNZ/tvPPOVWuttVbo9U+ZMqXW56+88or9nNds13bvvfdW1a9f35bbBfux/1tvvRV6/R999JHd5+GHHw7dJ079jxw5stZ1Rq3LOXPmVLVq1apq2LBhVQsXLqy174oVK7LWI/XH8ahPwaBBg6o6depU9eOPP9Z8NmbMGFtXhxxySM1n5513nv3t4YcfXuuYe+yxh22H2SC/p/26oJx8zrW6uOiii6patGhRNWHChFqfn3HGGbaep0+fbv9/4okn7O8vv/zymn2WLVtW9Zvf/GaVa6VtsPnI9X645X/99ddrPvv++++rmjRpUvXHP/6x5rNzzz3X7vfYY4+tcn65d0H3Z5tttqnaYIMNaj0n7L/ppptW9e3bt+azgQMH2vseF3LOK664otbnu+++e1Xjxo2rJk2aVPPZN998Y9vf5ptvvsqzudlmm9l6z4b3339/lWvM1E/89a9/rapXr17VtGnTat0vjkFbcDF69Gj7+cknn1zr80MPPdR+ThsUHHHEEVWrr7561axZs2rtu99++1W1adOmpiyZypsNxx13nP1tEPw2x3PhlzFuG4h7LwD7U04X1B+fu33l3Llzq3r27FnVo0ePquXLl2fsT6hX+irBf//7X7tfUJ/kI+pY4defXEtQ/SmSgcoMFDlj2223tTNult+wOjJzxQrFjP2xxx6z1kcsZ1h8ZMOKyNIjUgEXLOEwY84VWEqwSDKrd8+HNYpyuedz9Y9z5861+2HlYObP8lmhEXRtlBdLC6Gh3PKKVMOvHxdieWUpPGxJPW7951KXLBlTf1hnfG2lu0QYFVg4WY7HmsVyogCLEGXBudAH1k8X3EesL1hOcgWWXqxsfp1w7Hbt2tWqE54Blhxff/11ux9lbNiwobVqCRo0aGAt6MVo2wArlFjtAM8o1mWWagVY0AYOHBho1Qq7d7Nnz7aWKdqUPDds1Df1hfQFyzXAwooFj8/yBfWLhQ3LHxZ7weqrr26t/1jB/fuNRZ16zwduP4FFkWvFQghPwSLuw73ngNUJsUy68NsCx+N+7Lrrrva9e4+pV1Y2sGinAXHaQKHuBc8U1n2s3gLaPdZpJBGff/55xv6E1QnpMwHPEc9IFBR7rFDkDpUZKHIG2iZCcjF4s3TOgEncV0CnRscMcQqC7yENAW7cuHHN/3TgrjaN71yC44Pz8RuWmDM5/AAG2bPPPtt2yv4g6GtOCwH/2qS8LPGKNi1TeYPIFsteONvdf//9tnNlyQ0Jg3Taces/l7oUWQk6tEIAXS2gHfmA+EPefQcSlvtdQDYBWlKWpHMB9RtUJ5988knW+8U1QLJ8KUXQNUVFnLYdVCdSL66+lnvH8mscIF+gTSFdYQsrC+2d5XDkFvQPtA9CLLGE7Mo5ogJ5DOQhrF0waUMHLhKKsHsYF9OnT7dLykgvfG2y30/QB/pL17QF+kO/LH70DK4PeRDh4cJCxGXqD4qJOG2gUPeCevRlJK68jO+D+iDpT4L6QNpSlAlCsccKRe5QMqvIGcyWw2JAMsBg4UH3FTQr9wd731v8pJNOsrooAXrFTDEPOR+DPeQuCEJCGDQ4FkSHARdBP1ZFOrbTTz99FWeeIIRZrsKcAoI84TnPBhtsYAlpELB2Z8JVV11lLZg4KGC1QkuGJgyHGAbVuPWfS12mAWEWn5WrfLkh7H5h0UGvGQRIW1yIw0u2dhT3fiRRJ1IOQNgk33LtEzU0kBBmaZ9omdFM33zzzVZHmzTyjT7BPeB+Y4mkX2AFhUkUVkeeO7+fYPVFJvJxIcdiMhqmrc5lEpAE4rQBQblGAinEWKEoHpTMKhIBDz6DJ7PyXAZ6SIMbQkYsbpnOh/MQjgmZOk8IMUtiLMMz4ArcCAzZSKuUhc4uyBIQBZR3zJgx1iM7lyV5ABlmw3KAMxLXDlm4+OKL86r/qHXJfoAYsplitUa9PvFkxwHLB0t6OCWVKtwR14rTFLKCbNfw0ksv2X3dCUPQNdGO3KX/sHYU9X7EAcfkvsWBLPFj1c9WD4CVFOQ1bNQHzxuOYXHJLGQdh6qwdgGJzDb5i9s2ccbEEZMJteuMlCkaQ1BbgPDQt7jWQayb/vUR6QACna1ec+0r4iLsPHHbQCFAPYbde/k+7HcgSOoSdLx8xgpF6aGaWUUiwAMWCxGhXXyLEP/TSWQCmiY6S9nQB2YCGi4GA8Km+MDTWIinWK3cMhEd4MYbb1zldxCnoKUkIXGikwScO04WKcqLlYdg5T6QV4R5/QKWu7gmF5BaBnUJ65VP/UetS1KOMghjESYWq3+ObPXog+V5AsFDINyJAqQL6x7e7aUCdUIwf6QOPiir3A/KyHu8wQXUJV7wQe2IAVliqwImOEQnyOV+xAESA84VFKYozIKLdZjoAUQRQI/ow70Ov31B7JnwRAk754N2TFvDyuuGw8PLnRBwaClzlZTI5Mivw6B+gvck2YgKsVz6fYvfFjgX9wPdbNAEw63XsPIWGhKNwT9PnDZQKPBMEUmC509A/0h/S3STMP2r25+4/Q8TkjCdrYs4Y4Wi9FDLrCIRMFBjISR0EQMQzhsQH2a1DKCI9wuZ5YXlIMIXQawQ/TP4YT1gVo4DDYMQ4Ypw4MAixnIeS/NYIAgJEzSAQ6Afeughq08lviMDMk4aaPMIo8O1sQyJBerBBx9chWBmAvpBwtngwIQDD1Y3CAvkhs8lzmkQ0G8Rvoe4i1hdOS/XIINivvUftS4hECwdY2mjfnDGoW4hSWgcRSYSVo9BINwNobmGDx9uwxJJaC60wKXMc07cU7STxHCVMFcMqFjwCA9EHWM55rq4lzjF8RkDLZadIDJPSCxkJpAerhWtIZZ12perz4t6P+JeD+WmDVEOroe2zDVSBpzDwnTykEcmTzj2YKmDVEI0CFnFvQdcN6SH4/J8EJaL8+Wa1Yu2DAnh3DhUoVGFUEGOL7/8cpMreE5wVuOaeT4gi+gzkRXwHc8Ik07aOmQzKM5yGLh2nkfCtkHuJTQXFl/f+nnppZfafoBzU6/UH/eDJW2s8rzPVN5CaIRdsAJAGXhu6WO4h+hS2aK2gUKBZ+mf//yn7RfosykLfQt9Gfckk7yDZ4ZQaJSXdk490p/wjLFakAlxxgpFCpBQlARFBUNCrhAmJhseffRRG5qFsEZs/fv3t6FXxo8fnzHUViZk2v/WW2+tGjx4sA0RRtgeQsicdtppNoyPgLBXm2yyid2na9eu9vvnn39+lbBa8+bNqzrggAOq2rZtu0ooF0IEbbvttjbkUefOnav+/Oc/V73wwguBobnCyrpkyZKqyy67zH7Pcdq1a2fLfsEFF1T9/PPPodc/efJkG5Kqd+/eVU2bNq1q37591VZbbWVDpeVS/0FhZaLWJXjqqadsWB72a926ddXQoUOr/vnPf2atx6BQOoDrGDFiRM3xdt1116rPP/88UmitsLBpcUJzhYWUIhzQmWeeWdWnTx8bJqpjx472uq+88kp7LwWEFTv44INt2QmrxHsJp+Zf63333VfVq1cvezzCCNEO87kfYeUPCgNGOY8//viqNdZYw56/W7du9twSHirs/tD2CZPWpUuXqkaNGtnf77LLLlWPPPJIzT4XX3yxbQfcc8pLuyMcnFtPQQgLzQU+/PDDqu23376qZcuWNjQSbf7tt9/OuW8SPPnkk1XrrruuDVnnXi9tjmec83GvR40aZcPE+XVCnfFsBWH+/Pn2eeMZ5TiEGOPZ4xiXXnpprX1nzpxp9+3evbutV+qXMFjc9yjlLWRoLkDd0t5oG36YqShtIJd7ERSaS86399572/ZEn0fb+s9//lNrn7D2Sh+4zjrr2D6WeiMcXdgz5iPqWKGhuUqPevwpNaFWKBSKSgZWWqxnd955p7XsKuousK5vuOGGNjufZApTKBT5QTWzCoVCoVAkAD/1LUB2wNK461SkUCjyg2pmFQqFQqFIAOh5R48ebbbaaiur8yVUHhua9VwjMCgUilWhZFahUCgUigSAExGOa0SiwOGIhBY4Mp511lla3wpFAVFSzSyhjfBeZuZKmA+8rPG6zhb7Da9oMnMwsyXGpmrQFAqFQqFQKOomSqqZJbQNIWAI9REFhOIgzAZLNojoTz75ZBsWKCj2o0KhUCgUCoWi8pGaaAbEcMtmmSWF3NNPP10rsPR+++1nAzs/99xzRSqpQqFQKBQKhSItKCvNLEGZ/RR6BBzHQhsGgmq7WWdIL0jg5A4dOhQtNaBCoVAoFAqFIjqwtc6dO9d07do1Y3KMsiOz3333nencuXOtz/ifbDmEQAnKW04GEFJ6KhQKhUKhUCjKCzNmzDDdunWrHDKbC0jnicOYgLSSeJTOGD/etG7VatUfkI+5adNf/58/P/zgzBRcAh2y76zPPzf/2nZb02vvvc2ERx4xez3/vGnTqZNp0KiReXLPPc1P1ekNwb6vvGI+vP56M/mVV8zi6tSJez78sJn24ovmk1tuMZ033tgs/P5788u0afa7rW+4wbxy5plmWXU8w/rLlhnX3txxwACzAakyx4wxn91xh1nq3Xx333qNGpm+u+9uum+5palXv76dIEx66ikz49VXDVmqm3fsaIaefrqZ+f77ZsKjj9rrb9enj1kyd6756auv7DEat2ljum28sVm9emvTq5dZ+OOP5sfPPzdzp00zyxYvtsdd+MMPZu7XX5ufJ0wwy53UnT4ob/3GjU3jVq1M46ZNTUPuT1WVWb50qVmyYIFZ5vzWvTbmcOzLNfH7Bg0bmvoNGtjNNGxollVVmaoVK8zyxYvNisWLTdWCBfa4QSBJrf2mfn3ToKrK1A/ar359U79ZM1O/SRPToHlz05CyNm5sw/HwXdXy5WbFsmX2fEsp96JFZsn8+fY6pLwrM4EHYznHoL1xnqoqWw5gVULuxr6sQMg9zfKQB+1br0kT06RDB9OsSxfTtFs307JHD9O4Uydbb8tXrDCLvvnGLJwxwyz96iuz4JtvzKKZM009rrVlS9OoRQvTsHlzU79VK1O/dWv7Gf83adrUNOC7Fi1s/dhVkeqVkaqGDU1VgwZm+aJFZvm8eaZqzhzbnpfNn2+WLVhgli9YYFYsWGDrjW3JokVmxcKFpmrZMtNAVlfq1VvZlvmfeqhXz9YN9cb/9agz57prqatoC0498L7Biur/nHqVV3tc57cN+b23j7vvMimTMaZRhnvBHssyPJ/F2BcszXFf6rd+Mfetvvf22qrbE89FTTuo2e3X9/ZeVP9fX47rtCH32Nxj+kHZ1z1uzTGrX1fIcWmH9BHu+b1zcFyeZY7Bs1zr2pzy8b197jmmv6/b3qv3r+kjqveT9s5vpbXbPevXt219RXUZap4N59lhPznv8upz2P+r+56gOrbPEMfmuFK/8jy4z6lTZzz38h3PUU3dch3ymwYN7HWxr9wPu291+eVz0nlTRnt9jRrZMvA9z7L0N/Wqz2fvD31zgwZmBa/V11xThuq+1u7P/xyb940br/y8YUPTkPTlzjGlPPZc9GnV+9pLWLr01zJUH9v97Qr2pV4p26JFti79Opb9uTZ7L/hoyZKa6zT+SjN11rRpzb2s76xQ+8e1G7xH2h7lDXj26c+Wfv21GXbUUb9+CPeQ/jIILVr8+n7RImOWL4+87y9z5pjua69tUzdnQ1mR2S5dutgc0C74n7zZQVZZ0ISBuUmTVT5v3aWL/V1WRNknw76LfvrJPLbttraipz/yiIEmP7399rX2cQfZR7fayr7SiIRSP7PPPva1y6BB5ocPPrCNvsdWW5kZr7xiXjvhBNO8fXuziDzTVVWm2WqrWaLYZdgws3DWLPPz55+b1086yT4ETVu0MLvcfLNp2aWLbZRT3n/fLP3lF9MIsti4sfnps8/MuAcfNAtmzDDb/+MfpsO665pGS5aYH1591XQZOtQsX7LEvHXqqaZVt25my7/8xWxw5JFm/nffmdHXXms+u+su06hVK/P7V14xnQYMqLme2ePHm08eeMB8fu+99vf2eiE+zZpZEsyD3XXIENPtN7+xREcIfOu11jItu3a1JLaBc/+WL19ufv72WzPt+efN1y+9ZB/65t26mdbrrmtJ63JIEKRnzhyzdO5cs2zePLMcUlRNGmtBOn7pcPk/4KGsuT/yndsRyG/5bv58U8W5Zs+2Ayx1TpkswW3SZOVr06amUceOlrg1rFfP1n/ow+2cx5KrsA7D6SB5bVTdqcr/8r0MInRsTTt2NE27djXNVl/dNFtjDftK2QBlWgBRnT7dbl+99ZZZ8uOPweeW+oFgLlpkFs+aZZwuMxYaNGu2kvy2amW3RtWvkGr5vBGvbC1a1Aw0bj0xMbEkmIkCk4bq93abN28lOea76s+YZATVdy0ETF5ksKlFYt0JhvtZNVm2r+5nznvkT5YYV7+GTaxy7bzj7NugXPatriO7b0TXj8YxyrAKyfReawhEvXr2Wa55DuU759mreQYbNDCN5bmEhFUTMdtXyP9sDRuu3PgcYsYkllf5zP3eeS/HqnUc9qkmYKt8Xj3hl/f2WPI9hoDqzzg3BM3+z+eyNWxo+3M2+1vvGRJyJ5+Hfe/+H/SeZ8USV/prSJr3rIW92ueq+n/3O/f/TPu5r25ZwiDlzLafXweZPvPrzn11t/q0EaefF0h9ZZJVumUNqgP3t+3atavNnfLkSBn3rR6TokhCy4rMDh8+3DzzzDO1PiOGH5+nFV+//XZOv2vSrl0NsRPY/6uqzICjjjIbHn+8eWzXXc3c6dPNoh9/NJtecIEZePTRplmHDmbB999bIrhw9mzzwPDh5pfp0y2R3OfFF03XTTaxxxrzr3+Z0X6sw3r1TN899zSzxo4192y4oem+xRbWIjz83HPNpuefbxsU1tRmHTuaKc89Zx7ebjvz/YcfmgYtW5q1Dj7YdoJPHXKIadKokem00Ubmp3HjzFdvvGFadO5sNr3wQtNl443NhIcfNl/8859m8S+/mFZrrmlJ3s9TppgfxowxK4IIZwRY4lVtGZbroIxN27c3DTp2tOXi+pf88outQ0sgATP2asJpZ8fLlpmqasItqN+0qSWhNZ189UzbPvDLl5uqpUvt79gMvxcywj7Ll1tyzWavTAY4vg8iplgRhNA1b24tmHbDqkk52KoHDiyhlMmuJFCO6jJUVZfBktp27ayFtXGHDqZJ+/amUdu2K39Tv34N6ecVEorFGAs59wArKGVkf6aIjVq3NsuYGMyfv3KCUE0EM86wfchgWj0g2lcZMKtf5TMZJKk/CCjlWzJ79q+Dtv9b5zPuFXXH1qhDh5WDLHXG8XlfPQjL/mKNqiGW3LelS1fWRzVBXy4b9xKCzAYxnjfPtiX2tfVe3Rbs+2pLvLx3txXVr/VWrFj52YoV1lLEq5Be39peULjETEiYQ8Zc8rXKZ/IMOOSsFolyPjNBBE0+84lYCDGTNl5zHO6bQ8x8Mua2MWlHNSSM+++QM3kVIiakzCdmQWSs0N+5ZM39LAwu2XD3DSNsmchc3H2DyuB/lu37oGvL9F3YvmF1FlQnfp0GETUfQhLd16DPXCJZv9pK7H7mnyOoroVQ88rG5/Je/seYE1bXK5z9gtpPlPvqHzOsbiIZAutSNAOCSE+cONG+J1f11VdfbcNutW/f3koBkAh8/fXX5p577qkJzbX++uub4447zhx++OHm5ZdfNieeeKKNcIAjWBSgr23Tpo2VGxTjhvw8daq5rWfPWL/psN561uIJSd3t0UctCZzy7LPm9dNOM1tde61Z9+CDzS3du1vrJUSQ/4eecYZp3qFDzTGWzJtnpr/8sum43nrmoa22MoNPOcUMOeUU+93SxYvNHeuvb1p37Wo2v/FGswBL5tKlZtrTT5tx115rpQJrbL21+eqFF+w+SAXssj7a5NmzrcRBCGETrIxYw+bODb0eiGWr9dYzS7CW/vyzWQKh/Pln+x1krVXfvqZVv36mZd++lrAtmDbNWm7rLV9u5k+fbuaMHWuXsyEGAgY6iBqkhXqCWPz65a/LulGAlQ/rJOde+M03ZsmsWbV3cJeSqklqoAW3WTN7nOZrrmmtxc26dTNNu3RZ+VuWZ+bMsaR74ddfm/kzZtjXJT/8UPtUMtAyqEJimzVbKVvASskyfps2K4kuFt42bUyT1VYzjdu3X/k9y/fVJBAL5eLvvzcLvv3WnmfhV1+ZJd99Z+sQ4tS4ZUvTpE0bS/jZsOg3btt2pQwAcu9aaKqJifte/rfkvJrsiPVXlr3cjtz9rtbnQpqo1yVLVlrvkWMsWbLyfwgi1zJ3rm0/i3/+2W5Y9WmPS+fPt22dV0syFy2yEgVLRtmWLFlJ0Gk7EdsEdS/1bevceV9jMW7d2r5C9GUyVIvIVZNiu1UTWiGnLNWubFa/1gtkW+67JduO5aum3l2LDwNX9fEsKSsxMcu0T5z9XRSKfCX5XSHh10fQ/1GQycoWtgEhQnK+MJLqlzno3C6hCtonG1kPOr7/PoxI+hvEUsglr/4kQkiivLrv5dUnl/I716IbVPe5INMxgv4Paxf1RE4jUpmQepENSRybvJf93HNxvVLPxUAcvlZSy+wHH3xgyatAtK0jR440d911l02kMH369Jrve/bsaYnrKaecYq677jorCP7HP/4RmciWAu4SeRQ0bt3aWlYhaKBtr16mdffuZuBRR5kBo0bZhjTjtdfM/G+/tdaiA997z9zer58dDH/zl7/Y39DgWPp/65xzrAb3qGnTaho2D+bb11xj5k6aZIZcdZVdXl6tZUsz8733TP1Zs0yLNde0MoOJ999vmnTqZOZMn26+//jj0PI27dTJdN1mG6vj+frf/zbzvvzSErhWa69tie6cDz808yFwr73mVEoD0wwy3q+fabbmmqYJZLJJEzPv88/N5P/8ZyXx8EipHeCbNLHEBmDFWuQRQasnrbbAYIWDCELM61drNC25mTfPkiKISdsBA+xx506YsJLA0jEtWbLy92IlEqJVbTWDOHJ9zVmah7h262a1oFbHu2iRJcMQx7lffmm+f/VVs/Dbby2h4Zohny2QT6y5pll9xAjTqvo9x2gCkaStQHogXxA5sZhC7uhEKQfaLe4xHSwW39mzLWml7hZ9/bVZ9P33luTZTTSn1aQuMsGnsxJCVG3phPwi+aCcbI0g2BBtdMKNG1vCxjmsNXPJEquNtkv+ixat1LoK2cQiXG31tEQVsilkLx8ImRbLWzW5a4x+t1rmIZMDa7mt1vbyvLE1Ep0zkwT2qX6ttTn72HpxXq0F0IEMejIQuq9Bn4UNfP5AHPRaSNLmEpo4vyskohC6XL6Tuop7HEGmevEJjtxT37IWRIbCyEscYhQ0KQiy/AZdt9SLEL0wYiZbGMGU/4MI5SqT2wDLtFuvYoH0iaRfh3y/jP4jQDqQqc78ext1QuYfO8wq7u/rf+a2xUz15j7r/ubXrwu3fbmb1Ke/La72ZfHbow/O1bZt20ga1jobZ7ZYKLZlloH7WtehLANw1Bp7++32fXMcxJo0MYePG2dJxQfXXGOlBQyqLx5/vPnk1lutxQlnLRy0Oq6/vjl07FjbKLFmv/zb35o5kyaZNTbbzOz10kt2pkVD/nz0aPPaTjuZ7r/9rWnQpYtZb+edzejLLzfTX3zREtkOG25o5s2caWa/++5Kq49jKYIw49SEBfOXqVNNs86dzYYnnWQmPPmkmfX226br5pub3kcdZS3J7190kZnxxBOWPKLNxOoH2Vn07bd26TYqeYGgWFF/9f6cG4vs4h9/tCRxnaOPNoNPO81qa3jQIEw4u8388EPz45gxZs6YMdbSa5dymzc3q40YYVr06GHmjh9vfvn8c3tcCBVky56vYUPTAce1dde1xBOyjxUOcAxIL5bOuRMnmjlffGHmT51q9Ze/FnglAYdUtVl7bdN1q61Mnz33NKsPGmRatG27yiDmdspLkEJUb4JGELJqTbO8pyOLC3uupUtXOp/hRDV//konvBkzrHRk3jffmAUzZ5r5339vtdbIMSwhZpnfdRyovkbbJhwrR83StQwq1cvnrjU9CKIjZhNphSWaLVqs1MdW62axIjcSIt2unWmKgxryCSYBtMkQS4P7f1TLVlrgWoXCSLBYSpIgf3H3S+L63c0ngf4g7T9PYc9akFVSzhf2PpOFMOgzlyiGvbqWL/m9b7WMYlWVOsh2HWH3L+gawiYyriXSn/hkes1Ud/LeJ7tB5DcTaXcRNJkIK1820uu/ZrL6+iQziNQHIQ7x9D/PVPb6HikOI8t+GdPSV8bha0pmi4ArIzaMIX/6k2nbu7dZNHu22eTPf675/LvRo819Q4aYPZ56yvTaeWdzU9eudqnVWgMXL7aka/60aWbUlCmmqm1bM/app8y7I0eaYRdeaN4991yz2V13mdW33NJMeuwxM/aCC6zusR8k9JprTIdNNzVLZ80yw887z7Tp1s28fd115rv//nelJpKOtX59s+aee5qNzzrLVLVpY8kyDX3J5MnmzWOOsTIACEnfgw82bYYPN2NOO80STReQno2uv96SKd7//MEH1iMSR7SWa6xhox18dvfd1sKFVhhC033zzU2H/v3Nd598YmZ+8IGZ8/nntQiwJbnVDzIW4A7rr2/mff21+QXZCuVu2NBqdfGuX7Jw4col6WppA7BWuVatLElvusYaps2GG5p2gwbZZWPkDTg8IW2A8EGarRYTwtWy5a96PT5r2dISO0gbnzfv3Nm0WH11e24bOcGth5ABjo1ORUgrWz6diWsdwmoR9BpkDQwigrxy/Th2YfVF/sKqABsEeC4k+PvvrcXTLrtXk8+aZXmW6dlkWb56a9q2ra3/hiylB3SkQR2/T0aCLFxh/0dF2GCaaaCNul+aBolMcOstbEAN2qKSxzjWx0zkx9/CNI1hS9D+92H3Kei6goiF+963IMa91lzumUuCg76PU7dBFlWZEAbVWdj5fMLt159Pmt3fuNeV7XrCSKe/ihF1y3Qv/GuKSjqjWD2zlTOMfFYqlMwWqHKKRmarrXm7PvywWXvvvVf5etLTT5vHd9nFbHnVVab3rrtaWQFo1qmTDdO1xcMPm9cPOMB0GTzYrP3HP5r3/vhH037wYDPk8svNuwcfbBYtWGCatWxpvhFntHr17JI3Gk5IyKETJpj3LrzQjL3ttppzQhBb9+ljCSMREbCq9jnoIDPoT38ys19/3bx51llm6bx5pnn37mbu5MmraEgbt2tn2g0caBouX26arLOOWWv77c26O+5oSdHMKVPMwqVLrYVz6oMPmq+ffdb+pkWvXmbAxRebOR9/bENB2RBP9eubpk2bmvlffmk+ufZaax3uvNFGZsEPP5gfP/tspbMTS/gtWtiOgjLVeDk3bWrlDMglWq6+ulnzt781HQYONFWtWtloA3Q2NYMfnc9PP1lNKxIMPoN8I/fACo3GFQsuZBtrtSW6331nGrdoYXrtsIPpt/feZs1ttlkpFSggpOPMREplmc0F9eZaJl1y6loQooBzSPIRNizHcj6IN9FCwpbDy4XAZbMEZvs/KrGOikxETerTtdZmI49hlrJM53fLAYJIX5jF0SdBUUlk0D0BmayytP8wshRGtLMRa78O/FeXZGWSL8hx3ffyKlsmUimvQfWaqS7DEIVchln8gtpQtnOF7e/+Li7RjEvkohDPsO/C4JPlcrR6lgOUzBaocopFZodVW2FHXHihtebx8D13+OFWI7vGppta6cHzRx5p2vTsaTY56yz7Xhyreh56qI39+uS221ptatPVVjO/jB9vCR1aTJb0F4lDU716puv221siO+2hh+xSLkvO1mmoOpIAxLDriBE2ZuHsMWPsZ2hMM+ktIXcQa5yReuy7r+m0+eamMWXr2dMSn0+feca8se++Vlcoelh0ip023dQ079fPtB8yxHTs339lXFIiIXTqZJagl37xRTPhqaeslqf1OuvYrWW3bqZ5mzam/Zprmlbt2plfxo2zltt5ixeb5j16mIbt25sV1GG1ppY4pIQSIwas7ZrQdc6ZY5Z8/bVZPG2ajaqw8OefzcKffrJORtZj/+efbfxbrhnpRVsmDytW2NBlLMW36NLF9NljD9Nvr71sxAdfLxkFlnjjVFctK2BAFoLqd6LuEpZPSuU1KjHNVh6XtFIeOb+EuGODwOZ7PkXmewFkQF1EyLPFi+0r90gIELIT11HDJTdBA6nIU8JIYybiHvX7MGcZ99W9xmyvfnl9sugSSZfchBFL3+IqiDPhiEPk/degc2cilJksmVHKGJVsBpFr/7e5Es441kO3fcUlnrlaPTMRUiWepYWS2QJVTrHI7O9fe80uq4PXTjvN/PjFF9YRCuDAZB1qqpMioI396csvrbwAbPfee+bzP//Z/DJlykoLKQ80lkqsj3Pn2qV5rIldd9jBDL3wQrOkXj3zwamnmtnvvWc6Dhtmpj3+eA1R7bbllmaPf//bWiPvHz58ZadR7byzwYUXmrnvv2+tqYsXLDA/jx9vdYvrnHGG6b3nnpaQ0SkQhWLSpEm2Y2k4ebKZtWiReeeww6yTF8vx8776yhJNKy+YNcuG5/rtv/9tljZsaBbNnWvlEj8SS3fZMmv9xCJKp9IOYjxnjpn96adm3nffmRY9e9rydxw61LTs188snj17ZfKG99+3OlaiI7APdfDTRx+Z2aNHW+c0qwNGe1ods9QmY6h+lf9xNMPiCnGFUNtydu9uyWvfvfYyXYcPX0VC4EOsqS5hZXNDq/h6WCGnSc7euacuYWWTQYAyuKRVyqJIHjKZgLAKeeVeUf9i/ZZJhFjjZctmcZTjR3n173eY5TKMYALfSuhbLrOdwyfNSZHLIEuZP5GIQi6jkKmgcsZZppcyhd3fYpNOt5y5EM9M9zVT+bJZcRUm4yQ07iYrH7IKxAZ/6uBETkoSSmYLVDnFIrP7v/mmWWPECNt4rsrwQIpOFAkAy/UAj3oIZuPVVlsZ2L66k1hjxx1N6/XXN11++1uz7ogRZvbs2Wb8I4+Yzy64wDr31GhOqyUOa/7ud2bfJ54w82fONA+MGGGWLF5stn3sMbOkQQOz+OuvzQ/vvGM+v+KKGv1o9x13tJEIFuG1/8knZuHMmVZT2u+440ynPn3MvOoOa86bb5r1cIDadltLAJEdYGl+48wz7XH6n366+fmzz8yPb71lvfJx8Frjt7+1sXHRWbbp3ds6/NhQUOgr8aCXpfz69U3rtde2RHb+lCl2f6QTkNc5H31kA/6vrLh4Tip42aOBbdWzZ40Fdo1NNlmlsxSnLZew8l4AGXQJqzhvJU0QhUi7hFXKxbl9K2suDmWK3MG9ca2tItugfdmMcdVwrfRCXnzrapAl0/1eIMeX78Ksbz6CiFS23+RLLoNIZhRyGWfJ3Ee2coQRcPdVJqpxrIXFIp1SRtd6Hod4hl2HW2dxiWe5TJQLSQ7jbrmiXoAG3G/L/vMi9999xqVPko3xjARVQYmokoCS2QJVTrHI7H6vv24zYJEt647+/bMfsJqAZkKrPn3Mrq+8Yr4aO9a8d+ihpuVaa5kfP/rItOjWzcwjFS6/J8xG//6m27Bhluj+9q67zMvHHWctoOhMF333ndnwvPNMi0GDzMy777YhurAK++eGlLbv189alMV7ve9RR5meo0aZnmuvbVq0aGGttZZIzZ1rntxmG7Pa0KFmyPXXmwVffmnePvlkG8rKyh2qf7/uYYeZvieeaFoTOmy11WoGYmQKi+bMMdNefdX88MsvZsrdd5s27dvbCAdtunc3TSG+OYAHeV51prBWrVtbqYW1+FYTDpmdyoPORmctpBBdL6887MXqpCkzRMglraIDpuNxSWsxy6X49d4QwxmZjEgEhFi5xFJefRIo+/n7+paTbMS0UOTSJXeuNTiMQBZiyTyoLP57t76kbAK3nlwrov8+TaTTLXsc56JysXpWIjlMcotbt8uXL7d9DZusDsoqjns9Qk7lVd6nybhRNnFmFSshEoKf0GkWgMhCLgkd9cIhh5i548ZZAjjr/fft8jqRAwiSz2c4jG18882mfbNm5rN77jFP77VXjSNWs3btrGVzWePGZszpp9uYohDkboccYsZfe61p3qWLWWfvvU2roUPNGgMHmqd22cVKGvDkX15VZdpstJH534EHmqV//7vpuNZa1hO+avZs89U335jeRx5p+hx2mJl2771mzBVX2DBk2zzwgOm2zTZWp7to2TKz2sCB1mrIA0iyjI4dO9pGjTX5w1tuMcu7dDGznnvO7HLLLTbqQS4PPMeGcMyZM8eSjdWaNPl1oDbGzJ071z7gxNQTCyuvQlTEEguJhLSsvD0rtYxuKK18Naa+lVVCd7lL0C1btrTJRlzLnqJwEALh65zdgSIoQoRMemTi41vmhVTJvu7vxCoiREPe+6/+8aJaK7N9lwkuQQ4jl2Hv5Rlzrb6+ZaicSKd7H4Oc0rKRz7hWTyGd7v33J0FSpjib6LHTTg59i3mS5DBNkDEriKhWOffCtaLyiiVVZGzlfP3ZoCNfCXDEl1+a2/v2rfmfJXVAvNhM6LDuuubnr74yyyQdKwTJm4Xj3IWO9ZOzzzY/vPJKzeerDRtmZhOVYO5c03T11W2Mzt0eecQsYEmaRAGEl6pXz+z0+OPmk3vuMfOmTjVb/fe/5pv//tf03WEHM2f+fNNuo41Mw0WLzE6vv27adOxojzv7xx/NC6NGmTnjxpnfXHKJjSCwtFs38/Hpp1v96+iTTzaDb7zRvLbddjY6QJ9Ro8xaI0eaD88913z12GNmwxNOMBuecYaZz4O5bJlNZIADmEsaeFBnzpxpxr/yivny5ptNt333NSu++cZsddNNpmnz5vZhltmkEAuXZLjaQgEdosgEIKsQQZmdZiOenIv9sDj7YHCSsvMKyXW9/zm2T3R5D8TKKq/83rcANyekmDpg5QSZxPib22bk/zB9YhBZkEHSjRThL9P5rz4hiTrZoXxYeucTJ7g6yLmPKOTSPW8Q8XTbcxCpDPrMJfRpJZ3udbkTlCAi6hNQ3zkzaOLiEqYgAuWXn2sKI4due80GJYflC5lIuOOWEFa3vUl/IeMUY4HrBFrXoXFmEwbL8hJKSzD45JNthi4Xh3z8sXlkhx3Mgu++Cz0WzmBLiJVaHVqLYPbki3dBaKtvnn7adNp6a/P5pZeaXkcdZabeeadpv/HGpvfRR5txl15q5k2ebEZ+/LFp37evfWDevvZa8/5pp9lsYW/85S+m/YgRptvmm9uwVj+OHWtmvffeylStJFnYc0/z/fff21nQ9++8Yyb9/e/mhw8/rDl/n//7PxvmavZHH9lMWD1GjTKz33/fdBw+3CYX+Oa556y1mLizq/XubXoPH26TPPAwtmvXzlpffWBFfu/yy824Z56x19CxWzez5tChtQivdPj+rNTdZODA4vrjjz/aZQtIbDFnq5l0tq6jjzpgBcMlUNk2n5C6+tMg8hBkwfH3lbYlshI2GWQKbfmhvKwYQFrZZNLGubG2sEmbjkM6i23pLMTycJj3uv8+qvXQJ5z+e5fYB00M0rKsrEgv3CV/n6gGLfkHLfsXcgIXFa5MQZxSmTwLucb4s9Zaa5liQDWzBaqcQmDik0+aJ3bfveZ/4sSSdSlTithswPGKzFSkYV2KM1eTJjaPPVbRPb/4wqzRpYt54ayzzGdXXWXaDhpkeowcaWa+9JL5+ZNPbKraLjvuaDb44x9N1Vdfmc7rrGP+feCBpi1hrbp2NR233NK079bNNGzXznz7xBOm6YYb2pSsMx980Gxz333m4/vus1EBWq69tvmkOqTY6ptsYoadeaYNsTV/+XKbZpiHddq0aWb2F1+Yt/bd1zTv2tXqYSHrpHElqsHGt95qy7zaoEFmDdLDNmu2yrWiI3525EhTr1Mns/ZRR5n1t97aLFi82EoDOnfubGenUcED+cMPP9jf4I0ZpA2SQbEUnUhdQhxCKgiyXAUtq8vmL8GyyWDBhEEIqFhGZILB/2INF9KabyIL97qDNl9KImTTtbj45Eze+4TMtRbLe0HQZ0H1GuW7OHDLGnTMoM/dMvuvYe+lvopJDjOdI9v5c/ltruerhHKmpSyyEiHPrvvebcduSEU/nGLQsZOusxXVZfRXLn2JlKwwig8GYzN8CSJbTEuwamZTBIL5uyBLFSluATFTIXV46oPW3bvbAP3ZsHD6dLPOqadaKQFo3rGjzXBFJACWvpcvW2Ym3XOP6bzxxpY0jz37bGsVxUkKve13zzxjvf1JsDDxpZdMgzZtzGp77mlTvOKQNfPpp23M1TV+9zvT8OuvTavOnc13bduae3v3tr/vPGyY6bztttZBqvfWW5utrr/eWldn/vyz6dWrV81Mk4ek0wYbmIM++MD8+6CDbLiwXZ580nQbNMjMeO018+Kpp1rJwdjLLjONjjzSrDVsWM01oo396IYbzOtnnGH6nXCC6fv735s+G25oj92keXP7UCE9+OmnnyypzaQVZWbJvuyD9paHlofEfaB9CUKYVScoP3ZQ3uy6ZGURIpiJlLpwJRduPYVpJ93fuMTUjRbhyjaC4u4KYRWHPuQfcmyxsPLsiKVVfiPlgeRG0UD6EQjCLIU++fYJN+UIshC7Dl/AbWv5WAH9srnn898HxUJ24VsyowaWL5dnJox0ZyL6uX5X7PPlWpZM36WhLPJ/lN+4E2lfcuK3cXcMEH2q34bdc7r9YaGvvSogTFpYud1NiLkra5CMlK7jsKwQYQxk/E0bVDObMEhC4GKmsyRP/FILCekSJ9wFms9qpyNCYi2ZN886YNHwXr/2Wpsoocc++5iOu+5qPjv/fJsils38+KNpv8EGNiLARgcfbCZ/+KENRfXBsceaxd99Z4/R87DDLBGe8/zz5tPXXrOJBQZff71Z9O23Zte77zbfffut+d8JJ5gB55xjBv7udzZSAY1/9dVXN998843p0qWLbfRCCsgktt9bb9XM8OxD16OH2ez++82yjz4yjTbd1Lx0/PGmXd++ZutLL7WE+bnDDrOEd/P77zdr/uY3pnPXrrU6CToOrLmQkhkzZtgHTAi0kFTRngLIAefFOiuzZJymXAlCNrgaNteyKFY19/MwLWMYAS5HzRPXSMg3rteNSetbTN2BJGx539Uii+VUltqiLLe55xPCKmGvxLHF16hyPNmfjQmOD3/Z3LUg+gTPvRZe5b7K964WVwaLIKujK41xrTq+w5fIEDIRa1duEYYwcin3I4yQlgPxTAK5WP8UpYU8q0HOU244ReBPkl0v/1LdY5dw+ps70W/oOHy5m1tujoMRCLkd4zTfsQLFaiXjaDmORUDJbJHJrIvlixbV/t/Rvzbu0MEG/CdhQhA+RiZQ/RCyfL+MNK7GmCkvv2wmXHedjTww7sYbbWSCjhtvbNoMGGAm/eMfK89TVWU6bLKJmfHRRzbiALFqW/frZ+bVq2c2vvFG09gY8+3jj5uFP/xgNjzuOLPOgQeaBiwvtGhh3vzLX8zMN9807QcOtClzp82YYUls27Zt7UMBQfzqq68syeyBdKFhQ0tw0dgIeUB+wCDbu3dvUx/d7qJFNrvZmAsvtPpiUtaiz93lnXdMl7597bHDgGSA8yA74CEVIoSMhIeS73hQCwGXaMSFq/3zN7dDKheIdRNrpqvbdImTa73wdcxC4kGYtROCKU5OYQ44PoEDYt0UbStWBN8C6MsT3ImJex753p+I+FZNOYaQZ/cYQlxpq5THJ6tRBw/KxgDEhIy64Xccz70295hBOk+FotLgL527hNXtL/x+SIwZpQ5b6Gpr/c0tv6ullX4tisPysmXL7PjIZJ1+Q8grPipIB9IUiisfqANYwli6cKG5LqKuE6cuUqlmQmNSvX7/vU3duqBakkA6WUgvTlq+QxgJBnoddJBZa599zIs77GATD/Q97jjTvHNn8/GZZ9p9Bh5zjPn8oYfMJvfdZ/pusol1iuIhovFDJkRHOP2pp8yK5s0Nj/0aw4ebetUDKYTRBZZSiA4klMgEWO8ADx9El2OT6tZ9iPhs6uTJVgIxd9o0s+Zhh5nGzZrVEEc38YDMmP2HmA4Bxy7OTWzaoGgDipVwLaSZlsP9z+hgmdULQaJtBIWcyhZ2yLbbiMvQHFc6e4n2IMvt0hbEaimkUkipP6C5kxLfMu6SXD/SgXsdYnWVyZnsJ+WBtLKJVCAXcD6JUwt5lYmaOH5xXDd2pK+L9a837P+o3yVxzHy+U1Q+xBoZRFRd6VLaY6aGEVX3GmQVxN9yKf+yEPIKccXymoY6iQrVzKYIpESNimxE1kYU6NzZktkOQ4fWkFmx3uLYtYL0rWPGWOkCaWlJe9uid2/Tqn1706JHD9P3hBPMj++9Z3584w37m9Y9ephOQ4aYhgMGmGZt29rB+bvvvrOWNxo+xFaWQ9c87jjzzlVXmU7Dh9u0rzh6Edlg3rx5dpYLGID5v2/fvrYhQmy7du1qNbVYSzkOv/MfKGtF7dXLNPjd7+xDzm/EoioDu2wc37Vmyowb4s1SCUQ2jYOfbwUM87yPSjDzha+dzKarlOD/YollskAb8fVjuVoEOabE7GXjvRBJ35lLiKdEsnAdK0Rz6ta7S0zdwUXgWjXdTDdiQZWQWG4CBAmPw3601XzaHNfCNdO2eeV8Uqdyb/hMvncHbP84YfpA9/+o32XarxTHLGcUewKQad9SH1OIalCIPBe+1IbnjLEmyC/Bfy/nyKec2eBKF9zNvQ53pUj6lULGfQ0ir02aNLHGpEKQV/8aJZpK2qAyg4RRyM64w/Dh5pfPP7fvG3lL72TP6rL99mbSVVeZDoMHm2+ef77mu9U22cTMnTfPrHnggWbKnXeanz/91CZWIDHBLg8/bMZ/8IFNO9tjhx3MrFmzTPfu3a3u1QfpaPsdfrglEEgLeGggjhBWiA3/T58+3TpZ0fFAhHmo+B4nLcisDPxB4KHn3Dw87iAtD2dQCj13iYZzJEli3eVkXzebyQvfvQ7fcYzPpPNztbRhulrfW7sYYGn722+/te/pICUmbyb4kgrXUuqSSV8+IB0/EyhZRnM7fld/6g6AYrV14etN3SX+TAMJx4O0QhwhrtIeabuUyc1IF3dAcMsqKW3FQiNyBM4TVzOsSC9KPQFI8pj+xNp9nv0+0V/d8FdfXMfHoPP5GtEkr8+9trDQb3Id7gTbD90mdSK6/ELAjaAg0QbqV0/GRXYE6L/YspH3oFB3YXIxuWdKZusgvnn77YIdC8vsompL789jx67y3YJp00yTNdYwXSClo0dbB7F1zznHdOrTx7xx9NFm+rPPms0vu8xMevpps2jePLPTc8+ZH3/4wXxx9dWm3wEHWIspxIWHLmiJniV8HiAhsva8DRrYffmdEA3IrIDvcNRCJwt4SFg2zQQeFl9WkMnpIh8da1iCBX9p2S1bUDQDIVz+snUm7SMb9cH+0pHIjD6K05TbkQaVKcjhLIwEB+lPuU/cc94zw5dJCJMSvwP0Byvg1oNrHZXvZClenMdccsqGBdIfAP3YwRJiKygbVhT4Flex8tJZ03Zpy5mIq+9YEhZLUq5DBnohxxyfelCiWrnIZuksB+QSM1XSaMtKR5omZFEcqtyIKZkcqpIG5aTPFcsroG4xKojjcxg5l+sULb97ze51uis97v0KmgCkNctkOktVSSigZfan0aNrjjdv4kRrjSXN7NK5c02zrl1N+402slIFvuv/pz+Z5t26mS+uuMJsst9+ZtbYsdaBa+hpp5nGrVubl044wcz89lvzw8svm18+/dQMPeII24ARhU+dOtVa4NxBXFK+8hDxIEAiBCztQ1b5Xhy9XPAA8jusvVE6AQmFFCQpEALjbv4ySlAsPXnvh4nyg1W71rtCWj85N52RkH7qlrJwXrRMnNe3AoR5pod5q4dJEcJWB/wZumyuMxX3TRyo+My1lLpSAtGrQgohoWJ1lGuVtuQOaCIjcJcSRXMa1zkqCqR8sglxlWUzBge3LclAwLX4A1+YY4lYl1zJhNxn0dIWKmatQlEIZPLyd/sON9qIL8NJU3tO2qEqachYAYGVPpQ+hXGClUuXTIrVd6kTJ9vX47rXyQS9FIS8GFAymzDqFfDBWORkB1v84482I9iW991nXtxrL9PnuONM1XffmYl//7tp1auXmTt5smnbp4+ZM3Gi+fqtt8zCmTNNmz597G/X3HprGwHBLFhgJt5yi+mz226mSXUCCRo4hBYnH0gqEBKGFQmNLO/XXHPNmoFfLKn81k9iABnFAYyHME4nESYpkFkmG+USZyAXvkMAZeMhLnZ4FToVykgdCKmjrJSHjom6wvpJfVLfYXAJo1gL3P/97/33cr0uSfYJM4SNcoiVRSyeouUMIsxB5ZRZviQa8D33i1X/QdmzxPtfAoC71hn24fr9AdwdCKQd+VYml8Qz6eN/zsP9ZRUjrZYMRWXDX3lyCavvQOVa5mQymQZiF2UlJJtDlfvcptH5KRN5xXdEfAO4RmSAbnp09941qjaMFFKPW07QXraMyKygYatWNmxX6759TbMePczap5xi2qy/vmlXHZ5r7tSppkn79jb2LPjigQdsGK/VBw+2/xPPtd3665tZY8aYn8eNM1tfcUWt47N0gXWWAZqHgwEaqQCRCHi4eKhw6IKg8sDIzNBPccfgzsMH8S1Ep+g+uGmNVEBHQ6cESRUiSScr3qQMEnwHwWfDmQENpmvpLhYkYgX3V+qU8mNBD5pMpBV07C5x5RqAT6BFCyuxFV0rU5w85yITEQs0xxJZAhPAtBEARWXB1Y1HjZlaykl9uTlUFZO80n+4ennujxhnGCfoq9yEMGkm5aWGktkSxpnNFcSFnTtunFmxYIEZfc45pufhh1upQKvVV1+5w4oVNm7sD++8AwM0U6udwXpst93KMtWrZ3ruvruZ9c47pmmHDqbH9tvXLnO9epZ4SaSCfv362QcLQubOAHEKwumKOLLobX3Pd7JuFYrIphl0SHRO1JGrERWHIQYf6pFUuuLYFNdSXUgw+cASTLm5jxAwJh1IS6JKQUoBcQKRaAcSVcCVMvhL/i5hzWU5VM7JveWcvBe9L/WVT/gthcKHK5HyiWo5xEyNc23uJvAtjVxXrs9uWoi5JGSREHvu6iHkVMZV1+mz3K41DVAymzDq57jE2KRTJ7P4++9r/m+MpbU6XmvLLl3MvC+/tPrZb55+2qx71llm2t13m1ZDh1ryyufEkwXEk11QLU8gWoGg06abmhmXXmr6//73NkkBAzXkVTSvDOKi7+NBhPxATAUM5FjAsOBCaF3vdh5ewntB2CpxBimWQOqFepNrlOUhOig6MQgsJJH/kW6UkvhQNpEzUF70oSIbYeLha7GKDd/b39WAuYkMXK9d2qB4/hfKuUTurZBXkYXwLJTKgq6oWzFT3QmYaDnTEjM1H4cqV/7lroaUK3kTXa5IANz76aeH5Rq5j4wD+YbxUwRDyWzC6Fy9tL/aFluY1Xfe2Xxy2mmRfte0c2fTebvtzPT777f/tx8yxHz33//a901wFiKO7A8/rLQczZ1rZr33nlkE+a0ms9+/9ZZpteaaptPAgWbSv/9t6rOM3KlTzfGRKNRbssQMGDXK/g/JoXPBmop1joFcZARffvmlfQj9ztT1whfwYGOpLTY5kqD1SXnMcp2QPkkkIdcOJGyYpFClLFgUkGaUegCSJAeQMzpTKRNLXNxrklokKdmI6u3vtycJOUO9InuBtCYxGZBoBtSPLPmJ3jWozSsUYe07aNnf11+7ZK5clsfL3aGqEOTcJay+3IHrFt296FmZ9LLixYRbJ8DFgZLZhIFlFDTp0MG0cCyb2UDoLTeVbQPHseqX6jBXC77/3rTs29fqZ4lk8NXjj9vP2/fvb3Z8+WVrffvizjstmW0uEoRqVDVqZA5+++1aIZEgOhBRNJSuxz2dLYM9ljzpdCUOJ5m80NLKQ42WluMUg8i6DlbSYbqdq+8I5r6PMoCI8xPngOj4BJb/RasJWLJPOtZtFFBG7pc4lUHKJJEEVnPuEQMpVvh8BxqxZGYa5Pylf7FMyADA7zmOOBAWIglBGFyZgqSE5Zy5xo9VVC7ceJ7+RMxt3y6piau/LjUq0aEqCoKuWRKwCMKsyPyWVS4MAjJWinyMiXc5+RtUEpTMJowaT3JjzP/22y/Wb+eOH1/z/qcPP6x5P/uLL2ret+rXz6xYutS0GzLEfPXEE6Zh8+Zm7xdeMMuaNLGDdafNN7f7rLHxxqFl46HkIQRYZSdPnmwfTIDOE4LGsYg5CqHlgXdlBJBXEiMAHMSSnIm6Ia4YKCh3mP7UD9El6UH9jhr4RBcyyDXzv7tUJISQDeurL7EoJSQTDHXDYMO9lLJxDUgeuP58HLz8ZXj+h3j6Dgquhdx1vOJ3hUhCkEtGMQkDxsDkZrZT1C0ExUx1w/gFxUyVSVgaY6bWdYeqOBIA6cuDtLkS5tG/Zo5Fn0r/KUlURDZQbs6ylQwls0mj+sFgmT9XrLHHHuaH114zzddayyZGAE27dDFLf/nFEtXlCxeapp062XOse8QRZlm11hUiuqCqymx8002mc7t2NYSOh88lD5BD0cNK+CKsnRBF9udBh6RAWHmYheCK9VU0mBIou9CgM6GMbHQ0mQhsWPKFOHo2CBfXLRm73Iw01AVL82mxuIj8gcgIdLIsa/Xo0aNWh8z1oI3FQst9jjNABWlIxXOfe+7Xg5uEgE2SQvAb6i5bEoJChOMSL2D+pz1CXhl0NERW5SOTl385xkzNhLrmUJVJnyukVeBmEoxrSRbyKtEGXPLKuKdOn+mEktmEIR1Gpy23NDMeeiinY/Q46CDzzX/+Y4beead5e7/9zIqFC81aBx1kVpCpq2dPmyih65ZbWlnCGoMH24cQaxeDOg/van37mgWLFtnoA3QC4owEGPRdcisdBQ/tlClTrIxAroOYmXwmVi2xAvLwMxhAdgqxdO12KBBYWcInYkISy1pigeHaJayWdPayfJS22Tf1Q1klRTAE2yft3Ed0sVyHGxc4ijWTOhArKpMbcWKTY7iJLdjcJASUJygJQRJ1QJsTvauEyIK8aoisyoJPYMISobhZm9IeM7XQDlUSdqtcHap8ku5aVTNJACTsYa7XzXEx3khiICWv5Qkls0lDZAZeYP84ePeII2ycWKyvbddd18wePdpm9yKFLccnsxfEtj6Blnv0MG07drTWUwkhxIMOsGZCVLCwQnZluV6SI7jZupjB9+7duxZBorNgX34DeWEfdymbDgHNLbKDXDtTOhOsiHTYlLuQTlQyQHCNdI7y6n8vTlFp1INRP1hh6eCxUAdNHoSUo5llUuInsohCXvkNv6WjF7LKMWVAEaLPJpEFkrR8+mG5KJO0b+ohDVplRbIxU11LajnETM3XoSooqkG5kfIguNfuElZXAiBxcbNJAHI9P2MV/Rn9mqRolVU3jTZQnlAymzB4+AZcdhlPUM7HWDZnjiWtpK9tO3CgJbO8n3r33abLjjtaXeySRYtMq/79TfOuXe1DCWGVzsElIWJhFN2rkBEBRFX0skGWPjqBoJS1gPPKkrdLkKMCcs1vIbC56lBloPAJq5sOV7JTufpOiByaqF69eqVusHCTG1BuLJ7uPXMhYdEgeb7cAEg2Ga6Xeyk6Uhk0JS4imwTyZiv0gBJV3iDkVVLCcs+QKpS79akuIJOXf7Z0wOW6FF5XHar8/te3qrqRHVyNbjGuPRN5xaij5LUyoGQ2adSrZ7rutJOZ+dJLOWX56jhihJn75Zdm2bx5ZuHXX5tWa69tuu2zjw3NNevtt81PY8bYfabdc4/Z4IILTIPqiAPScbC8TGeCPIAHWbRhkEYeYhlYhMBBHMKIKGTPjWgQBL4nuoEs90YBZcWSTFn8JAuSPlXKmelVrplOUQirhEbJRFCpF84vochYmqcD9CMgFFtTJ8kNKJ/ohMM6fHHwggAiB5GJCNchxFVIoUsgXOct2UpB5im/EFcZcETewLWr3jU98DXmLlGthJipmVBXHaoySQD865dJsCsBKGZkhzDyKhNh7ke53wfFqlAymzDkoVlQ7e0fFc27dzcLv/3WrL7TTqbJ6NFm1ptv2sxfxJLttvvu5ufPP7f7tRkwwCwlH/ysWaZlr16WDEjWKQidOHyhd4RkooGlQ5LlZWQCRClghiqxPYM6HbHYsX+26yWiwfTp0wNjzYrlQgZDysf5ZcCTqAguJLOTu7mpSmXLpbP0EzxAHrkGOj13wBZv+KDYqEGhv3LtvIOSG2RaQpf9kWYweeBecz1cF/eT72VA5R7LwFrqzpx6FKcyCZFVDCcxRbyYqa6Xf1jMVEkqUe6ELReHKln6L+frzlcCUGorukzYWbkS8sr9kL5EyWvdgJLZIoGIA1HQdsAAM+eTT0yjNm3MoKuvNou++860XbrUxp1t0LSpWfLTT5a0fv/663b/DkOGmPa9epm+f/ubmfnjj3Y5mocYoP9hhgrBYXZMpwTJ5FWW29mXuKOQXToE+a0PrH6QoSigI8E6yHElSoJkmhKyLJ0fRAzrqaRjLGanKAkecCzjvJAqZvMio4gSBcEN8SMyjKDB341FGUR62d9PbiATAZEG+Jss5wFJ2iAxD+nEZaApNVxpgx8iq9SZ0eoK/DB1UWOmus9lOU8wojpUuUS1UhyqskkAgqIApFn+IORVLK8SMYW2yqoi/Uol3C9FPCiZLRIm3nhj+Jd0FMuXm56jRpm2661nPjr5ZNO4XTvTqHVrm7YWx69mq69uli9ebBZ9+61p3KGDjWDQbLXVTNuNNjItWfqvXtKR0Fl0SjzckDUecPkO8KDTidFZIT+AeEI26RSwAvqQji+qbABwPpaHZcme/9Fw+uGiII6lyJDCwCYJHuis6eiJ9oBVOWpH6MahjGPxkrirrn6QY3G/sMTyOXXjDjJumBne8zuIoSzlMejIwFNqSIgskQ24IbLSFJe3LsZMFaJajjFTw1DXHap8J8k0SwAKSV7p7+i/sbymufyK4kDJbApANIJlWFR79LARCQCEFSevhd99Z5qwVNKtm5Uq1CPQe4MGZvmCBabbFluYjkOG2M6IBx7SCkGTSAM88NLJs/RMJyDL53yOZIDP+Y1YRN3sSOwD2YQc87u4oKOElDFouDpc9Lp0TlHDRRUaXBdyBldbSjmxEEuGLLdzDNPORrXYSLzaoGvlnkjINJlg+KFmZEkeqy+Wd/aDGCIZSUPIMAmRxeamhPXDeSkKS1x4jmgPrjVRklGUW8zUMNR1hyoXPmEX0uoT9jRJAApNXjE20PcpeVX4UDJbYnTdbTfz8yefWDK7kFSyn3xSk762HgkMOnUyVcuWmZa9e9uMYC26d7fOX1htu22+ualfrRWlU4OM8dBDfiQcF2QH4gZxlbitQjQkdiyQ8Dh0HLL0CzHBsgviWGUBx+G8WOJYPock0slC3OhcWdovRQfrlksiAkioJ9EMu+GufGcXXqmXICmB65Xtk96gzpfjUB/IN1x5h5BXpB2US5bkxbpG3ZUy37ek+YVcM9hISljaHNKWcho4yxGi82aSGBSxopzgE1UhaH7sWJeoij633C3K2SQAvgzCdyxzdcrlDCGvjE2ykiNh95S8KqJCyWwRMPn220O/G3DJJWb2+++b9w4/3Cz45hvzzeOP2887b7mlJa02Pm29eqb9kCHmh9dfNw1bt7bEd40ddjAdN9vMdgKiuRSrDKRVlpbEMYqOgU5DJAiupRWii5YWgsfvBbxn4GTpOxfLJyQN0sy5cT7jvBBuSZ1bbNBJUg6uXcg5ZYWwUzZIvK8ZdnV0bt1EiZcp+lA/+5DcLz4XizUdOeRQ4qdSb3zH4M095r7xPwSm2AO4aF4pn8Sipf4oi5LX4t4HnCW5B+6qQjl5vvvxY32CJisSleJQ5UsAfBlAJglApckgopBX2jV9X6VdsyJ5KJlNGDyoE669NvC7ln37mvFXX22+f+WVlfsuXlzzXSOWZ5s1Mw0aNzYrli83TTp0MItnzTIdhg+3aWzb9utXqyOgsxSvf175js+E7AKZyfMbV+fJoIH2CCshgNTRodDZYqGl0+GzKB0MnbNYgoX8cU7+5zxh8VGTBnWBfECczQD1MHnyZFu+TGGv4upnM10j56Qc1CtkXyy91K2QVxnERddLuYotyZDwNmy0A4k1W8gkForoYFLJ8wnZi5uSOElyFuRUFeZQJc5kleJQ5UIy4mWTAIh1uVwlAIUkr4wPjAtpTVCjKC8omU0YK7wsNi4ItTXlzjt//cDp1NDRYpltstpqltAiO1g0c6aNP9sCp6XGjWs82aXDlEDzEqIJax6dpljT6DDoPPjfB50qhI4OGC0evwXMlBlIWfLGCpcJlAfyxW98QpfJqpk0xLmLuhD5BcvjWGmpJ4m4kDTCZAVB5UWagWbMnRQUWzogQcXTbgGsK9ZYllyLcS/UoSq8PnwZQKVLAPIlr36aayWv5Yvly5fbMUwiIaUNSmYTxtdvvhn63Q+vvlrzvj7B6hs3tlm8FkybZlYsWWJ+eOMN06JHDxvZAGew1TbayJJbZvI0LDpQXiVOK/ICyBrWRz6fOnWq6devnyWWEDfIKqSWmXAY6ICRG4hHOr8V3a2kug0jQjhRYblLG/khooLE2qWslFMeSuokaQg55f4Exd51QbnQQ0Ikk9RDqnQg/ZC2gCynUNZY36EqKJao71AlIfzKOdlBISQAYlWtZAlAPuSV/k0Ss1Bf1BMGEHFGVpTX87Bo0aKaTVZ+xTk5jVAymzCQCEQBJLZeVZXZ4KKLzCdnnmnj0s6dMMFGOMARjIGs92GH2YbFe8naRYcKScOSCknDw106jj59+tj3dLyiFwXZEh8A0dkCzsdvsCq6g6qbZpVGno2olQKiEWYJXyyj1Bfv44ThyhV07JyTQTATIaEuKSuDaT7pfLOVRaUD6QcDByshWLXitoWwEFVRPP8ryaHKhUoAkiWvMhYJeZX4vIr0o6o6eRJ9DWOirPaKbruckthoi0sYSAWigHBbkFYSIhCKC3kChBZ9LHpZ4DYosaJIXmkaHcv77gzYHQTF6QrCmwtREi9iiCvkWMJridUoW2On08slKkI+oIxYV7A0QxR5YIkEINdQiKUSSbcrWdXkVSQfWM2pI+qP84btz74Q7qA4v/mUTaUD5WuNlfTKYQOQhELL5FBVSalUc5UASAIUlQDkF3rP1bzSzkT3L1Z7RXnIBBZVbzwjPBvcR3gEjt6uz0a5QVtgSshsfRwj2ra1UoPexxxjkygQSxYyu/SHH2wUAyGwfv5zBrYowfsZICFxuYIZGtIFOjUaPh1Z1IYPmWRwYeaeBKGFpFMPAhnQeFAnTJhQM5Ch6RVdcZB2WOAuuWaDWLTkVe4Jm4RLkwHA3c/dvxBLliodKF9w73hGaJu+NVbSKTMZkzZOu4ao8kxWokNVkATAJawqASgdeU1LchZFMKqqw0nSl4jF1ZUJuHHMKwlKZhPGwmpHqmzAKrva5ptbi2z7wYPNL+PG1Vhm61dnznLJWs3vqolTJociF/kQJs6Vi45TyDZSBbS3hSa0dLp0uJAAwPIXVlDqhM6YMjPjZB9CkPXq1Ssr8ReSGRcS6ovrK4bXuUoHyh+u/IVJIs+L5JmnzYqFlYlRpaX+9SUAQlg1CkDxySv9pjgLC3lNU1pshQldpVlUbW0VjiBRdSTFb13QLCuZTRg/fPpppP2WLVxo2g0aZOaMGWPaDBhgIxtYMvvzzzbrF52LdPCupQ8w6BUrditLoMzO4ywrsdzPIE25WTotJKFlBspSviQ6oDPmfJJ1i89l8JeyJ+Wgxn3gHKIbSwIqHagc8AzTXmg3IkNhYgZxZZNnpi5JALhu/i/n6y5X8kq9Q17pu9LmxKv4NU24WFt9mUDbCpzsxoGS2YSx6McfA5295o4bZ99v+q9/mbf33dfKCNDNYpldROrZxYvNsmqZQYOmTWuySzEo0NnQEYn1kIGhGJolCbXCoBs1vS0PILNFCS9VaEILGUBnKrF1sYpSF+iHXU0sZaeu8pFZZEstysBQaCc4lQ5UDly5gKSMpv1LEo9ys36pBKD8yKtEGxAShNVOLK91lQSlERhphLSyMY5KnHaRCdSFGMVxoGQ2YSx3wrsIhMiCln36mC7bb29jzoLW66yz0vr29ddm4YwZhqZa/9BD7XdircBiQ8ckllnJKJXodVSHAMPSyVI9nWCUB4lYqb7VuFCEFoIqqV4hkpSLpVrIrVs213pbaIisQKI5FKJzUelA+YN7yGAkm8gFaCd8R7tFhpJmxxkJ4eUnAwiSAEhShLqSCKCcyKsQIYl8w30qZ0efSoIYK8TiKjIBicvL2FbuKzTFQnp70grBiiwkk/ixfY491vwyfrz9v1Hr1mb54sVm+fz5Zv7UqXarqo7vKI5fPACSyUuAtZSOKqkOCgcrluglfiAPX5Rg/pDZoKQE+RJaCCrhi7jmSZMm2Q6BSAW+5ZW6gmxiqS10eBGRFUCe87Ewq3SgvOFGF6BNQPpoa75cQNoL/5cqpbNbZjeMl0tYs0kAKjWEV7lCyWt5yQRk45mTZ0xkAvJ8KeJDyWzCaJgl/FPVihVmxqOPmrYDBphPL7zQrHf22aZBkyZm2bx5tSId0NixRAJihdLwsTYCHgCWHQjMz0BZaEgWF3Eyg0CyrJ6NzPI7lrLCHs5cCC0dAtePwwzHhdBCDMIiK1BOjlvINLqFlBVwLOL/cg8h4tSDEoV0I1N0Ae6fLxegzZK4g8GrWLGY40gAxGKsiQDKn7xKuu66rJ1MA/xoAr5MoNKjkJQCSmYTBsQ0E1YsXLgyTFPjxubrxx4zfY45xjTt1KkWmZXMO2KJZQCFyIkFhe9Z9p82bVrBySznYCDG6ingYZTlxkyzSAgf5cqEKISWMkBgsfLSSfAbCTNChIQwrSGdCL8rZLpakRVAXPKVFVB/hApjIlJqS50inlwganQByAbPT6FjCAPKwvGFqKoEoLLJK32ZOGzR5uj3lbymRybgZsuSaAKV4MhZLlAymzBaZUiX2pTBrX59U796QCQm7Sd//rMZ+o9/1LLeYLUTK6yQWDo2cf4SyP+ZBtewlLSZCKmIzQEPLoM5VhwsA2EkjA4Y4hnFIhpEaLkOOm4ILAM1Tm9YX/mMpVrIdaa0enT4WG/Zr1CzXyEm+coKpHxYZBmM0poesK4hqlwg6v1FmsMzUGhrLAMmqzC8ihVOJQB1g7zS33LPJVmOongQZ2axuEqyEpEJ0I8zRlWSTGDFihW2Pbob/U0hEg4VGkpmk67gDDd9xGOPmYbNm1syK1hSTVrXPvxwM/aii+x7HhTJoCVaWSw9DGj2N0uW2I6Pzo7BM8xSyXc4SfXt23eV7yQ1rQyKdJQ8rBBW13EKSyLWUEgY78PILBreONZGl9BSfs4tnt48OFwjJJZXypMt9BVEgjoqhIc4JIfJBPcAK2++s2zqmuuEHCURXUGRjFwgKlxrbKEmKgwiPFM8jzyfSH2iaNYV5UVe3WgDQl7p67jXSl6LLxOQjf8l9m65yQSqqvXxUTYfEuLS3dIatk3JbMKYNXZsxkQJoIHTOOZNnGgdwFY4lj+JJydWWF4hQZBZ+RwLJg8Zg3LYIMwsHzIYZL3lOzpTGdj5nsbdtWvXWvvye/aVzpWy+efj+BDjuNEDhNDSccjMTyxclEu8cLMRWa6DsheCSFAWZAWcsxDRCoTISkgcRXnIBaJAtLGcqxCTHlmBkTTIUVNHK8qLvIp8DPJKv06/oOS1OBBtuRtNgPsh0QTEMavUUUck9XkUQlrlrNYKfEIqpNT/rBzIeRiUzJYymkF1w2ngWVhIY1vVtu0qu/NA0aClEdLw6Ph4GGnEDM6SDYwGjXMUhE6IIZ0npIz9/dkVBBWCJdYezgORc/fjHDzc7MvMFOsQhBorlgs6BY6Ty6ArD5WUlxSfWDA5F8vy2QgyZeY3hdDJioUNS3QhrGDUH0RWUkIq0i8XiAqeCSZdPBf5WtslAxjl51nOpAtXlC95pQ3SVsTyqpOU4skEJJoAEAdIGSuTvA9RCWlQOnXK5ZNPOAFlbuB8VlfbkZLZhLEsIAWtT2bX3G8/88Xll//6G6IWdO1qtn/5ZbOEdLbVOll5lSUoXiW8Bw+iOIEAXl3nEBo5A644b/lklofbdVCRjDAu+J2E5eJhoxOGOPqWXnS2PsGNVWfLlllJAWUWCxdEVpIjhIFyoJNlv3zIikwEuM5CWNhcIlvoVL6K5OQCcayxvObTVmgfrGZI7GQmbxrZovLIK5MTsbzWVdJRrHsgpJV+gTHFjSbAhDbXWLuFXraXqCI+IS1nK2kpoGQ2YTSOuJQ87d577Wu9Ro1Mi86d7QPTtFs302j58hpSyQAtEgDpCHlYafyQWQifgM/5jEFRZqT8TvI3u0vcPHRRHh5xHmM/OgjILMSMDlssjXQaYj3OR58EIRVrqJscIROwZlG+fMgi1wJBp34K5TzG9UBkC+E4VtdRDLlAsayxEl+Y1Q2RxSBlUZJTOeSVfpG+hOde72uyMgE3W5bEQ2dDnuPLBHTZvvKgZDbpCs6wPC2D7oIZM2o+W2O33UzzDh3sQymZvcSyhGVULD+SylZIK5+7Whn5HHAcBn4GXEn76obM4v8oJAsyyzEhqjii0FFDlhnQhcxCKCEVmZZ/pdPhPZ+5HY+vT4qavYtjoRvONcsXxARrLNeGTrhQ1jwhsoWSKtQllEIuEJW8YI2lfLlYY7kOCCxtjucOC2xanSoU0cirGBiUvCYHd/ygPxD/D9F/0mdDXN2lfMYpxiRdtq98KJlNGgFi7BpUk9nXd9qpVoIEHlZZohCSyquEqHIJrVimAA+0xJrkGGgzBQycZMGCKOLQ5ILvokQeoCORDCUQWDmndBx8TufRo0ePVX4LIeU78QblfFH0SZJhK2w/IbEMLHEtqRL+i7JRljXWWKOgQn8hstR7IZM2VCpKKReICtFx82zFceDjmZSBlbbMJDAs0Yci3eRVjAbcRyYjYnnVWKK5IWjZnr6APoBNfEKkzkU7KhMIkd+5Y6Yu29c9KJlNGCsCdDMNmjc3W77wQg2Z9dPbykMpRFWssxBUNxyI6G9kkIcwsa9YPIUAyoMuyRfcLEBBetkwCKkGHJtjisQBKQDlgGz7A7SE/YLkxhm8w+QFQmAZWCDTmTKAhV0HAxMkFqJUaBIL6ICRfSiRTb9cII41FkS1xtLOJCYsk0yeEyZcSnrKh7xK23TJK32ca1RQ5Ldsz//yezYZZ+gDRF9MPy9+IgpFEJTMJoygMBn1SSHZurVZvnDhKt9133ffWr/loRYSK69u7nRJYwh46CGAdMAS+YAOmN+JZVB+I0RU9smWcMG/DjpzOnykC5BJLJAch+V0H5SJfeJ0RL68ADLAcRhgZDkprmWLa8A6Jilu0ScmMSBRVmLwIldIY3DpYiOtcoGkrLG0XYkJK84mapkvT/LKfeOe1xXymqS3vcjmJGOWGF0kmgB9geyrUMSFktmE0bZXr1U/lGUqTyfXtGtX06p371rEkQ5ABO72hlWTVHnPd2JVpEPgOyxBvJIgQToGljUFdB4QQz4TvSyvkDw3ba0LP54snTvnER0uZZDwYLUvtcruF1fLirxAEkNACiSAOJ/FnZ1L3Fuuj4EpKRLrElmsvXVVB+nKBWi33K+0yQWigPZMO6R9Z7PGykQJEguwLsddiVCUjrzKJJ8+VCyvpY4tmivS4G0vUjc2nguJlU6fmNbVF0V5ozyf1gpBPW9wDHqw6URYnkTbCSEDMqjSMdBZSKcrHTLfS3YpZsIsybtL9XTYdOSQWY7LfqIHi5oGVyIrCDhWkBVanFyievIKgRBtWj6B4vk95IKNa4RQJ+lRTH2gR65rRJZ7xX0uB7lAVDAA4xAI+c4UE5jnj/YlDpZY48uVBFU6eaWNug5bMskSy2ua7ls5edszxsjEVaIJuGGweIZUIqBIGul5eisVAR1No/bt7etPH35oxl15pbPrqvuKRUs8M92wV5K+1rUYsT8di5BX9nEjFwC+Y6AGdD50Niyj8nlQDFohau5SqZBmZtyQbMoGODdEWkgj1lAG+GzgvMgKRPDfq1evnAcX6giCAYmHDCdNYl0ii2W7XCyP+YL2iiMgbZB6TrtcIK41NqzdsA9ti3YvqWXRnJcjaa+L5FUsr8V4TispSD7Pu0gEXCdNyZbF+FEJfYCiPKFkNmEExTJYVk38lv78s/k5Q7pbVzogYV/oTCTEU9ByD99BLDN1KBIsWhIsCInGQsEAEEZm/YgHdKxTp061ZFlkBJDIadOm1eSulg44DHSKQqw5DmXnt7kQWZFYQDKKucxL506yhrpEZBmAJc1vFOfBcrfGSuQL2jfXrqll00teXZ8C+jKxvOb6bKZh2b7YcGUCbBgYAPUpIRQlso1CkQYomU0YS+fPX+Uz6bSqIobxopPkN8x8GXCZ/QIIn99Bi1NNJkgnJNZYSXrAhqXN1dcKsL4JwYQE49ktS0lSHsBvkUVwbKxXQVZZiSaA1ZayQIZ4pQPl/LlkD4PEQjQ4fzG1ipBxLHnocNO0TJkkRBecbQm+XMDzxWSE++dbY7lW2pY8IxoTNp3kVZ53+hHpy9xJeRxCWupl+2LDTVrjaohlVVAME+V4bYq6g7ox+pYQcyZOXPXDLI4kLiQGKqSRwRaSKFbXIKunxEvNBNEvQf569uxZE22ADktm4EHgNxBQCDUElDJhmfWjIFAurKwSlohBRyIPQHA5L4ONHxKLfZnxx+00KROW42I73NRFIiue/ZWiC6bt84y52dkYzEVGQFvW1LLpkw0AN4STTOrZlzYq/gVpXrYvVbYs0bcGJa2hratMQFGOqBsjcIqcvOxn1YSrgRdIP2hfOm+Z8dPpurFe6Yh9QiHLWhnLVB1sWqy4WENlqVgiJLgWX0mIIPnjsV65lhCsV34IKggmM3qW+CC/RFYAYRpWiTgQlHAhEyTeLOSqmESWc1JvuWSAKldA+rjuYmiQi2GNYiIi1ljajqSW5TuNCZscsllJJVa2JIDxo7vQ59DfBFlG07psX2xICnOxtoqRQpwzad9RktYoFOUCJbMJg4xeLhq1bWvWPeeclZXvx6xcscJ2NHQ+NftXW0ulE3eXsvg/KK5rFHAMBnGJNyvHxGKKBcRNSSuRDGQZ3x0kZH+XzNKRcg0iF8DLW+Jzhg0wEFk62DgDEBYYyCyW0WIOXFwv1skkQ3ylCdxPIX5xs6yl3RrL88V72hKWWSZgGhu4uN72tCeJP0pfJxN2kVFJiljR+iuCE5CIVEBkabKipzIBRV2AktmEUc+b+Tbr2tV02nxz+16SJjRq184s/ekn02HjjVfprOmM6KjEmuo7YeXauUtmMTo/V/fIe4iaT2YZSLBa+ZZT9kdv6Opmg+QCmcopsWixckaFOI7xm2IOcJI5rK4QWdoImcy4v0w2yv1aaKu0fSZltB/aDm2VAb8uEqVSeNtzPCaEsomDK/2Aq3kt17BuScsE3GgCkukRI4g4ZtUVyZNC4UJbfdJwrBIt+/Y1G1x8cc3/RDMATTt1MiP+9S/Trnv3VX5O544lSTr1KGGuokDkAQwmDOTu575ulk4zLFWtJEsQ3WwucgHKQGccdcmL8mApzDX+bK6Q7GEQ2bqwPCea4EpIyYsFH/IqsZlpz5USEzbt3vYueaXu3b6C+mflhr6FNqbk9dd7Sj8nFleJPCPZsqgz/BDqQj+kUERB+ffkKYe7xNZ+yBDTqm/fmv+XVUc62OSBB0wDJATVmlhAJyUxZWX2XUgImQ2KKyvxa93oBXSsYY5ldK50uBIWjI42zqAUNRYtgGhLPNdiWka5LqzHdYXIiqNeuTu30S6xLEOoaJdpSC3rLtFLPvqgLej7MKTJ2z6IvEp/RhnE8qrk9df6cqMJyKRDognQZlVioVBkRvmOUmWCRT/99Os/3kBStWyZfYXIAgijdGRCaoVoFnoQEtlAUOxFtIMMRCJpgNiyfxipkfi0dLxiuYwKyWAWhTDJkjfEt5jxXLE0Q+wg0JVOZCURAu2w2BKOQkFSyyKXYSLGygPRNXLNIheFfAZ9F6QVFYi1M2ijbYd9l8b7kY280p9AXukf0lj+YoF68bNlSV1JNAH63HKePCoUpYI+NUnDGdCydeMyaMp7IKSt0CSK4zLgB1lbGXjQhdKxik6LpeYwMFixP6+il4sKln5ZLssG6gUii8NbMR10JERTsZ3MSkVKiB/L5KQcEyEwGWQyJTpMyBPtReIaZyOkYQgjlqIZzUQ+KxFKXqPLBMTaKjIBiCrtkmeMSValthGFothQMpswVrj6U58MeZYbGVDFOUs0ZUksD9KJcmyJMhAkQQASWSFTIgbpkCGmcaIrcA6uMRs5pV5mzJhhSW+2hBCFBNZYSFAlePCnMRGCWD3DCGYm4imTPZls8byIkyTfS8YniK1LPCVhSLlYPdNKXqlLCa4vsoE4uvdKqx9X30p7dKMJ4GyozmwKRbJQMpswmnXoEC4zCCGzDBQyyIuDRhKDRJgeUs4JQcDSFUR4fTCQSdSDqMCay/JvJlAPaGQZEIqZbUqyPhU7fm25JUIQ72raSib9ZxgyWTxpm0GfA4iDpJaVSQ5Z6SAPkqBDURjyKvdJyCsrMPQJdY28ikzATfMqoQ1F30rED0lKo1Aoigcls0lXcCZLYsgg7w7aQiyT6Bwl41EQJH4sW7aMYgAnhUwawTBrRqYycDy86SlLMcNCQbIpG9rcSh6UqF8mK1ETIUj8YPaXtJeybCq6Z594isWzEPWI9Zh7Q5uU1LJYXyG1hNxiVaDUzl2VSF65v9Q3z2pdIa88G7Q3N1sWoI3TxqgL+ry6EJ5PoSgHKJlNGO3XWcfUb9zYrGDZ3rfMhvzGz+JVipzfDF6kqpVUh9kQ12kBEuXGpg0C1kKOi1W2mM5PvKIRrmQimy0Rgmj+hLhK4g7JGlesgZxyollGu8z5iKMpllfKhPyE8rhZ6RTxyKvIM2QliOddpAN1gbzSxtxoAiITYJWCtkWbU5mAQpFuKJktQtIES2SDIhKEWDJlAJHXUnjRS7xZCelT6MGDpW03vm0Q2WW/YjkicS7kDAxe2aQPlZgIQXK2Q17FCiVLp5BHLKDFIosQaZERYB3zU8tKkg0IrlpjcyevYnkV8oq1sdItjX40AUnVLdEEit3WFQpFYaBkNmHYThEiGiQpCCGzMthIBIFShWqBzIhjTSEBCSFSQthx+b6YelUGNMgdFuByz3KVDQzkLMlzrZDW6dOn18gFIDPcl1LF/6StQWCJsiHWX39VAHJL+SFfao3NjbzyXIvltVLJq8gEXH2rONTStlQmoFBUFpTMJg1IgRBZx7pKlIOqFStMp622ypiVp5QDIkRCLHWFCofFgAJhgYgEgfNBZosVCku8+LEAZ9LvlitcuQD1yqDOdUIciykXyFQ+yCttQlLLYhkPkj1gjUVywCSvmOHZypG8ck9FNiDklfteiTFMIel+NAFZXaIPY4Kq2bIUispG5fVsKYM7KDd0yNL8adOsZXb1nXde5TcMOHG9ynMB3t840QSRRtGNkTWJkFvZnMAgIwwkDBqZyBHEBU/oINkEhIUyFYvISrrWXLz404oguYBIRlg+jeLoVQzQViCnvNLGMqWWVWtsMCCvaLzF4U4sr9xvsbxWGnl1owlItiyuXSQxSJdUJqBQ1D1UVk+XRrhk1gkthZYWVFVbEeiIJaYrnXHSuk2II57hEk7Gh8S5hXhCVIUMBQH9KxYzrHwsW2NdYwsipJkyhFEefleMARhSzfnKOV2rpMF0owtwj7inIhfgM0mEkM3hrhjlFRkBhAupQ6a4wRJtgfZV7GQZaQb3lEmfxGnmnlcaeZX4wW40AYlvK/rWYvUVCoUi/Sh5T/D3v//dXHHFFdZCNnDgQHP99deboUOHhu5/7bXXmptuusmSJmbhe++9t/nrX/+a2pA8QloBUQ0EXz3+uJk/aZLpvN12K/erJn6FCmOUDeJYA7kIIrMMJAyaEAiINcQvKCECgwxRB8Tix4AKAZk2bZq1+rpL95CusAxhnA/SEiY/KCSwCHIu0rWmwUoZBblEFyhFIoSgclPXtDPeQ7Kj1LtYYyHh5ZpWN0lrrHjX87yUu+5VZAJicZWELTIxo3/iesvlWVUoFHWMzD700EPmD3/4g7n55pvNsGHDLFHdfvvtzfjx4+0A7OOBBx4wZ5xxhrnjjjvMpptuaiZMmGAOPfRQ26lfffXVJo2QQXiHsWPN108+WfP51LvuMqttuaXptscetfbz3ycFCBEEB6IRZHXFMoslDQsaG4RVAoS7+xABwI22QNkhv5AWBl2ILXpUjg8hDotOwGQGspzktbuht9Ke1StTdAGejWyB2fNJhFAIUGYILOWHkHJvwyz7YdZYtLGVIv/IFzx7WGMhftQJz2E5ho/jOvxoAm62LCZlXF+5XZdCoajDZBYCOmrUKHPYYYfZ/yG1Tz/9tCWrkFYfb7/9thkxYoQ54IAD7P89evQw+++/v3n33XdNWrHGZpvVvF8yZ06t75p17VrzXpw2GKyKYYFgIGGZDoKBpdKfPIgjiQwqDDKQDDSxgHISAYABlWNIwgTZH7KFDpKBC+ugeMgHkROWnTlGktb1NIfeCkpG4MsFog7ucRMhFBIQE+QmbNx/2leYJjuMADOpQUOr1thVJyY8gzyryDNoF+UgE/CjCchqgsoEFApFRZBZlpJGjx5tzjzzzJrP6Oi23XZb87///S/wN1hj77vvPvPee+9ZKcLkyZPNM888Yw4++OCMA6RYtgADbTHRpmfPmvddd9ml1nedttii5j0EC8sLnX4xCIhEKGBjoGSgEdIh3tG9e/eu2R+CIeln2Q9iyHshoBAoLLW+5VUC2lPvQWQV4oaDGeSlLoXe4roh8dQL75Fj5BtdgOOwNA8RLpblmXYDcYZkUc/ULzrkOG1Y9Nu0ObXGrmqNBUwieU6pn7RJqkQCIxZXVyZAWbHMIwlTmYBCoag4MguBobP2yQ//jxs3LvA3WGT53WabbVaTJ/uYY44xf/7zn0PPg572ggsuMGlAkw4dzMQbbzRzv/zS/t9x001XiWBQDDJL3bnkVeQGEFY+h6hCcl0rqoRNEmcwiBf7C/g999M9rvvbMEsS9zPJ8FCUFSKbhtBb1I8QWOqJ+ou6/J5LIoSkwLm431wL10S9QrZycdCCBEHAKbNaY1e1xlKv1HdanBXF6dCNJuBKYFQmoFAo6qQDWBy8+uqr5i9/+Yu58cYbrcZ24sSJ5qSTTjIXXXSROeeccwJ/g+UXXa4AIhHmTZ8Emngk7tvnnzfzJ09eZT+sGUIekyazDI4ugcJiKcu7WFgZlLDy+YCQYg2H/LpL9bIvFhisa7xGgTh9iHSh0ODYECXkDqXyhKeuIX1sIFsYqnxCjCVltYN4U5dcA1ZYJh7cY86X63W41ljqQ7WxKwE55F7SB9BPMdmjropN9MVY4OpbRSYg0QSYgBRiIqZQKBRlS2ZZdmJQlGU0Af8Hec0DCCuSgiOPPNL+v8EGG9jB8KijjjJnnXVWIAmUpfQ0RDPww3MJGBiwqoluNWnvZAYml/SI5hWiL5m3qFcfMsD6xIN9IbgMbjhYRSGznE8IWBKDNJYtiEAprFmQAOoS8se1US/UaRL3lUQIWMsLfZ0iNeEasG7LcjETj3zvF+2Pey+RDdTZZyWoa9os/YD0CdQRKyLFkAkIaRVZFu1JZQIKhaIcUDIyCyEaPHiweemll8zuu+9eY+Hj/+OPPz7wNxAtn7C6+drLAT65BVyTxFCU/3MBAyFECtKRiVBKFigXYp3t1auXJTJhFpegiQHEkd9zT/mtH/UgCJA9LMBJWORKEXoLyzrXBAHknLloR3OJzEBdF4oQQmIgVDKREfJaqHtEmWmjWPsg92rVW9Uai76ctkToQSb1meLw5nouP1uWG00A4ixhvxQKhaJcUFKZAcv/I0eONEOGDLEOXYTmYiCV6AaHHHKIHfTQvYJdd93VRkDYcMMNa2QGWGv5vFxiLc4ZM2aVz1wSK3nUc00LiqUT63Y2MusH0Gd/iCxlYbCLY+Vz091C4iB1kNtMAypyhkLHlKUOJIRYMRygIB1YRmmz1BfXTr0mTaC5PkmEEBbqLAqYPDJBpN3QJriHyCCSuAbXGlusDG/lZo1ldYNnRxKL5Gtp96MJSIYwSKvEb80W4k2hUCjKASUls7///e8t+Tj33HPtQDdo0CDz3HPP1QzQWCfcQfXss8+2HS+vDOZYjSCyl1xyiSlnyDXmQ2axyEou8mwIspxKaDA5VtSBFCLrxoVkgJTIAWHAohiWK51BlzZBWcI2fieDsJzXdVwLilFcKFA+kWNgWeR6kcwUixDkmwgBggOBwnJNnWGh514lZY2TCQb1ptbYX8EzRp9HO2ZSR90zCRVLe9xoELQLN1uWKxPgHifpZKlQKBSmrjuAISkIkxXg8OWCzvm8886zWyVBSIRL0uLCJ6BBUQWA5DLPRniiLi1DilwrsBBO16HNBYOtSCGCAPGBqFFGkSzIxjHd/10nNf6XZA2FhDg/CYGF9HGOQmhH4yKXRAiUH5IDgeWVNoL1NSkNb5ADHmS5FPWVVtCWJIEIRFNCx8WxtEublBTYMpFVmYBCoaiLKDmZrRPwyOOQW281Y886K5DM5kowGBCFzHIM938XkIts1lvIZtQwViyxQ4xcSAgv30IqTl/+/gIsSqLfA6XSVAoBFLIgS7JxEgAUujxxEiFICDDIL/dSwqgVq/xijeV+IvdQbWywNZb7SB2xopDN0h40qaJN6iRBoVAolMwmjoWzZ69CIDoOH14rqoE4r4njUC5wLbOQB6yrPpnlPGg8s4UmC0pvGwQso67jmoBB2U/EACC4WJ/Cji1JGUoFSCDOYxBByDwWWCxlpbQoRkmEIN7oEjqLfSCvkka4mJAwYSxrK9H6FTx3ktpZJoqilw0j/JKQAgILkS31pEqhUCjSCrXMJowfPv4Y0+sqnw+9886a97JcDpnNNeYqZFYsriw5siTve0IL+cymh40SjcANyeWDgZYBm4FYvqd8kFlSEIeVX5IxFBsQQYg052dJnDKmgSxkSoTAvcTyysa9FuctJgOlyLREeZjAUJY0BPdPC7iHTEZ4JsUaK1EdaHe+pZ3veK4gsPIMJ6lpVigUikqAjjgJ46fqbF8+mnTsWGsAg4jmQwB8yyyWHB+SrYd9syHKwCkhuYKA1IABGzILScRpiVBDYccttlVWSAPWMsgE5y4FkY6TCAFyI/IBgJWbcpcyjrJbVkh3PtEVKtUa64bYgvQjK+CeIrfheZCJCQSWZ1OSkpT6vioUCkW5QMlswrACgizEkMEs35ikLpnFCsTAGGZxFW/nfOGG5PLB55BYcVrKlIVLQkQlGYXAPZckGsB6DFlMm6ZTysfys6R75ZVyYn1NMn5tXECuCxVKqpKtsW4kClZfILc8o2y0SSYmtH/NhKZQKNKIFStW2DGd/ixtYybQ0SdhVC1fbppmsVZJ/Md84EoDRDPra1+xoPF/JjKbrSxCqiQUWKZ9ITeEG2LZPpNsAZ0qFt4kl1GpC3GiwmocxZGq2BAHOazq1BcWvKRDZ+VLZLl3aSLXpYRo0qkTP+EBqwA8C5Iymn15n09KYIVCoSh0CuslS5bYjTFTIggBxh/GfnxJlMzWRVRVmS2efTbjLjSWQhAVOYYsXRKnt3fv3rWIKMub0jiDkC3GLBYnGj3kKiy8Ft8zcEuosUxEVtLohmlp8wUEHgkD9cEyeBqdZ7gvEByIEJ0ES8zUbZpJjhBZrMdKZFdOliRSiKu5ZjBggsIkCnLL/dWYrwqFohRYXh3i0iWrvAoYczBSsTEG8cr4nbYxMwjpHS0rBFGS7BaKzAaFl3IjCkCaaKBYicLi0EJmw2ZdEEKICwSG7Gs8BJBaVz4gMTNxWMKiOGPGjIzRESCy7FvI65dsaJAtHkaWddOmP3TLKCGaqNdMmdvSAu6ZyCDqOpF1rbGib5bUxtxfcWrs27evJi1QKBRFkQIsqSasQlbdiElCVumrGHsZm8uBrGaDktmkUd2IMiFsaZ9GKHFCfYhkIJP1ju/E012Ox3tp5D4JlYQGYccU6xLgt5I6l3JAGPktS+Nu+CGJORsUpYEHTJapBZSL/TNlAAt78NzQWizhQrbSlvVIojpIGakrLHpkfSoHvaQS2WBrLM8CdYMVludB2j9yg1zD7SkUCoU/ZoqE0CWsK6ojIokUwLWu8n9dMDoomU0YC3/80WSjKL71lIbK/2JdDSKzkDbIEJtYTP1j4hUNQRXSyn40bAZf33lLnI7Qw4RZMSGzYtnl2DwsEFGcvJA0UGY/Zib7E9UgKOUrx+HahHBKSlr25X1Y1i+ZZQokrS3fQZ7TElrLBfcRKQFkVsJ/iRQEIqREtnwgkzA2niXaMfdVkhhwr5nkZXJ6VCgUiqC+RcY9l7C6EYgYX4Ww0ueIFKCuQ8lswpgzcaKJk2CVgRBySGOF6LkpW11AUiVkEw3db8yia2U/CCr7QPAgvXzOAOxajLAqyXJ3WCYiysZgjfXJDckFYZXf+CSS/7kOCfruAnLHgC+A9FLWuEvt1BFb2jSmlEksmdQ5JN2dWCDBwDKbLSNbGsB1MOGpy9IC0XdDVAETSdor7VravawMYGnXAUahUPig7w/SrYqRhn4DgiorPBhock1zX5eQrtG/EpFFZgAxcGUGMjOj8fI+iMzyuTtbC5IGuJZeAJmUdLlsEEkBx+L3Ei4oSN/qLmMEheTK9KDxMHI+l8yKx76UG6LMli07WRC4rjQRLDdyAmSHa3KJjRBZyG3UtMFpIbJ1rUOVeMRcP/eTe4clHSLr1oVEoqAdcr/rWj0pFIraUgCfsLpjqMgA6poUIEkomU0azqC2IiBZgRuBwCWzvIaRWb6HTIaRWX7Hg8Hn8nvIo1hmeXUjGmA5hHDyQGEdDXqoRO7AQxlXMC5OMa4cgvOIjpbPIQLlTAIk9ahMErBcB0VOYD9ijfJ9OTh7QeIgs3WJyPpJDKT9cs+INOHXA/twT3mGmLwoFIrKD2Hl61bdMdXVrTJuqhQgeSiZLSLqN2xomniOUJA79yFwyawsn/uAmIoeNojM8pDx8PCKRZDvxRLqkmdZ1sDy5BLLINIiqWnFcSkukDQQIovzUC7OI9bd77//3pKEtMkEooDrYDIA6cPKimwgTP8qmmDqrxycguoSkeWZEwLrJjGQz8L0r5L9zI8rq1AoyhdBulU/hJUQ1nILYVWpKD/2UGbwm3aDkAEPHR6DpxBYcXTynZ0Ay/wMnAyk8uC5ukuJJ8tAzKtEKXAfNB4+sZa6mj/INZ/7hAwyS3xMsnnlIgXAqoXnN5pCyscSO3CdZ3IFZZO4tplkCHQ28t7f/O+y6R0lNiyvUZIwSOxd7gf7px11gcjS7picsQEGJUliwDNAe2UCx70NqgNxmtTsZwpF+YawcgmrH8JKHKYrKYRVpULJbMJYxfPesz6KVADCiYUSAppNZgCBcq2jvgOYS0aFzPoPoTiHSUYsIE5UlAHi6l+DSA1ycWzh/BAFtKKUD0sW18k14yyTCygX1l7KFeZw41q4ZZOoCGwixXA3yoeVFSuyr4ukbiQ2LHUUVfMq8g0s0GkHJA2CV4lEloELks595NoYpNZYY41aETVoU3xPGw2yxsrEhFfaXaXVkUJRV7JZuY5WvFfdavlCyWzS8Aa6Bk2bWu0skgOf7EJShVyFkVlIhuhW5fd+UgKX7EJmIYw8rPxOwOccy42KwHHEouuSWQnvBSHLxSr7a1XUs8fnPFhkJf5sLuRYYtpiOctEuvhcnN6igjqlbITNYnmZDk681LHe8VkcSQTkiPJCjtIOrpv7D8GrFJImSQy4Lu4bz0ZQCl6eGyQD3OMwkspgiD6WY7gRPRQKRemyWQlhrZRsVor4UDJbRMyfPt1qZlcsWVJDZl34UQ1czazoYiGUsuzJgylWRndgFnIry+XivOLGqoOcQtZchxa+54H3M4TxP8eCEOcTbohycizKP3Xq1IwpcaPICpLSKXLd1BfXPGnSpJqkELnEr4UcMhmAAKe9E60kIkudQ2BpK9w/LLBM0IIsL7R1JCNce6aYvxwT6YGbFEShUCQDWSXzdatB2ax4HiX+arn3XYrcoGQ2YTRxtKAQ2EFXXGGqPGurEDLXSguxdDWzEM9evXrVCkMFuYUcBi2FCtkVb2wecpeIygzV9b6WVLZ0DJAAvuc956BjyVUO4C5fy/m4BumkoiYMiCIrKASwwEJuqAvOg1WWc8Z1fBM9Zjks15c7kaVtuASWZ4K25ktFfGCNhaBCdjNJBjgubcJPCqJQKHJ/ZoN0q34IK9fRSkNYKcKgZDZpuIMjBLNZM7Os2nELJygsrbJk7VpmfSmBRC6odfMaNrSDrOs85R6D7yGoEBQsuD75w9LoEkmRGXBeBniApYrPOUc+5FGW7iEMyAM4LsdjyTYKQYgqK8gX4tjlpsKF0ENoRXYQhcwwAeA45RBurFyJrIRD4xmQpBy006CQaGETI+4T9zRTBAqcHnkGaLuqqVMoCpvNSgirZrNS5AMlswmjygm71aB6abJhtSXW18OKZMAVsDMoSygr35mMDgA9rKvFhJRINi4hs5AxPvfJqG/RZV8GawZvztWzZ09L4Pg8X8clzs/MGksl5xVrNETiq6++ymhpTVpWIOCaIfGuQ5AA2QHnpqxY+zLJI7DiUoflQH4g6dRvuRBZN4kBAyNtnXtDm4pa/qjWWJ5HJlBBzoAKhaJ2NitXt6rZrBTFhpLZhFHPIUWNvYDqEDxXDyve9QKxpjJ4y/8uOeI3fO9aCrFSoemT7+V4HDtKuCmJmYnFmMGb3xUi4DOkSVLhYhEWQEIoLyTRd8oplqxAwLkkBEsQsFqj94UIcU+CLIBSh+VEZNOu5/WTGEBg3dTAUUF7ol3LNWeStzAws2rAPQ5L76xQ1LVsVkJYxehCHyfWVfpHpFgqBVCUAkpmE0b3Lbc0v/pXBkPixfpkTdLaCpmlI3EJEp2Gq+OUsFNCxvitpLMNkhm4gCQwyPfu3btGnwSB4Jx0Ur6TWRyIhylWZOQFPnHC8oXlVwgt3xdLViCgnqjnbLpg6gArJkvz06ZNs++lvqkryuxKFNKKtBNZ2qtojt0kBlH11T6QITDJQEebLZwW7R7LOvc21/MpFJWYzUocrdLevynqHpTMJoxum21mpsyaFes3dBTSyYgzljhMuYSSzgVy6C/lu8cRyyydU6aBGdIgnRbgOFOmTLGEGC9w9J+S6CBq5ygbS8J8znKwm9zBBeeTZV32K4aswC0z1tY4xI7YvCI7oF54jyXPJbdpRVqJrJvEgHvCRE2SGOQKscYyYcx2b2QlAOKbLQmGQlEu0GxWiroAJbMJowV61hAy6xMJ+d914pJ0twzoEEOx4vq/gQhAAN0lfFdmkM0yi1XS/V6WjRj8sWZhhYTABRELSX6AdZPySKo/yZ4CmUV/m202z3k4FsS5GLICX14Q1wrHMjekBwLORpnTbsmjbmlDaSGy2ZIY5AMJpUW7zeaIxzPHPaS9lot+WKEAms1KoVAyW1KIBEDgxpiV/yGzQhAZ+BmgJQYspARrINIAiKyfPIHfirbJ19sG6aJ8ooplTEJ4oXdl6dW1BPM7rHyQVb53vxNAUuQ4UYAV2E3YkDSiygsygQmDWJOzaTFLTWTTEPPWT2IAgQ1KYpArJAIB1xolUoboY7Gwxw2/plAUO5uV6FY1m5VC8SvUMpviDgwCCBkVT20R3vMqyQ0gY6SIFa2sm+zAJSy+ZZZj8DtJvMD/ktZWwPGFoKJdhQxxPsojEQYgIpmSCaAtReuYRuQiL3DBvaAOIUHIJKgbSBH6XzdcWpqIbJBmOV+4bS7se+omahKDQlhjmVxEiUBAG2dVgTYQ16FMoShkCCs/OUBYNitxUtVsVgrFr1AymyKIRZaOio5MoglAliCF0rmh02TZXqy0DMKipxVJgg/XgYv3HIPlVH7LMrsQDIHoFt1jQUpxoqET5VhY0zLpGSlLNq1uqQkelrhcykfdQFwhTaJTFtkBdQRJQvObhuVq7i9kshBElvvJigBtj1f+d49JO6IepE6xvkrKZNpXUiGuaNNoY7nOqIkNJOtXMSUtirqJbNmsJCqNZrNSKHKDktkUQSQBDPwuScAqilWLzo9OTyy0DNx8B6GEWOCEFCQXcGULQsIgFWKJgnhBbAUSDgtS4EKyKrlxYjMBAu5be9MCBhMhMnFBHaKvhAj7FlhIPlY+pBfojEstO8iHyLK0STsQ8irh3bj3tFGIvEsC+Z52yrVzTslWx8axaGe8CtktlFWW8jGBwNIbhSxTTvbnOSmHpBaK9EOzWSkUpYWS2RSSWckvLeSTQV/kAJAIiAXv+Q5yCWGR+H6QWZdoyu8A+yMNwJIo1kQ+E5LCewZ5CT8VNMhHJaccC2KDpTKt8oJcCJ7UIfchU11wX9inlLID2gWkPdt1ykAs1laIKG0CskdbYsLENYRZLyGpsnJA9A3iBvtJDGiDHJeNfSmXTLIgtuwvW9TlU8qINpZjZVslEECmWZWA+KZNCqIoj2xWroVVs1kpFOmAktmUQYJQi+OXDOqufhbdoXSiop2CzMpSlgsGeMkshr5TMiYJxKIr0gOO436fK2RpOY3hjVhehsznYjFlKZtripIRTWQHkF8IHySvWPUhRNaXOjAo87lLXPmMdiTpYCl31HJCTJGkIEHJpDmljUJ02VxIeSgH7RqHQpmo0XZdksv9kmtxrbGSJCQb5DeQ+7AQcYq6iyDdqtuf0obdeKsS3UUt+wpF6aFkNmWgwxSxP4OveFeLVUysT3wnGcAkuLt45vvHk9z16Gz9QZz9IbgQCchMIYgsgJQUMypBVDA4Qb5ysRhDEBnwopInACmEPHEPSA1cDNkBhJuBmHLSJkQmINEzIIZiWY6TBtYH10Rd5pPUgt8JWQ2yhIk1l3Yq1lxe+R1tFRKeLeyckG7kD6qPrbuQtuMTVs1mpVCUP5TMpgwMyqJLFOcv+dx9ZXAWC64QAZEZuIDwQsIgrEHWKEgsVkYIkJtwIR+IhTgX65cs3fkWvFLLC6jvfMJaYfGkPiQpBDKEQkI01Cy780pbwBIvxJWJhWvZzBfojamTpLKzSTg6NkknKxE0RMbAdVIO2rcQEt+ay//8huNly/ylqOxsVtx7iX+t2awUisqCktmUAIIF0aKjZQCGpGI9FEuseGeLQw0WW3EIC4orS8cO2ZD4tEEOW65FAutdlAxfUYAFLBeyxqCDxpRBh2XrQhNarMUQo7ghmCQrVb7EjQEUQiWyAyQAucgOuG8iE+DVjXzB8SR5Q1LEjbJDIAsZGzYTuC7CZ0FUXG2sP1kSMiPWXNqhxLKlPjiGK1nQCAblhyDdqh/CSsiqSIk0hJVCUflQMpsSCFkV72pfbyoDr1hi+V88xgUM3gKIDlY6SRPra2nF0gVhFEecQhETlp/9SAjZQBnQ7ELwGIBYki+ktlEC9ceVF0Dc0NgWyuvdlR1ItINM5Jp7J8RVQmFxDOpFNK60HSzrEDmslklaH6VdFYvIijU2ihOda3mD1Mj9pp7kGZB4t6IVdsOJudZcteCWPpuVS1jdPkp0qxLuTRxmFQpF3YWS2ZRBCILfObtWJDpvOn03dqxkPaKT571YEnF4AaINcwkIVissqJClQgWMhySIljfu8j8aTrEgQ5ZYJhc9cCnkBULcsHQWmrgFyQ4kFJaQV4kyIcQ1LJ0wZRQtb5KDOuWiPRVDd8q1Q2K5rrjnY1LHqoRrxRXpjr9CIZEcaLdcH78V50qZOLrW3DQ6NJYTpL59whqUzYqNlRStd4VCkQ1KZlMCsTyEQQZz9qNzdzt/IOkOxQoFGWKpXiy+7Cee3HwH2cXqBQHC8ii6xEIs5cd1IpOkDa40ARICkUV2EDXsUiHlBZAbIW5JERjuo0Q7oIxcI8QVazka1ygErlhElvpgQsC9SJrISlauuOlleTb4nRDgKPXBPkKc/HPJM+WGE4Nky298a64iOJtVUAgrIayazUqhUBQC2gOnBKJfDYMMzBJGSTzTBRLOCKIBWRWdGNYmgFVP0tFClhi4IbvsA6ktRHIDzs+543j7y5Ivy+0+GOwg38gPciVRDKpx5QUMvlhMi0HcqH+kFbkAIku7SZrISn1g6U+StIk1lte41ljRWyOridP+MkEc0Hzttjg4srnhxABlDgsnVlezWWkIK4VCkTSUzKYEWOQyOWDJYImFA+srg6gLPhcCixWJQR0iK6G+GFQkjJEbI1UsKYUgbVh7IclRB2+IL0Qgkx6VeiGrkxDaOFbSXOUFEDeswmm2tmGB5PpkQpIUICmQROojSorYYltjAZMh7hkkNokoGD5Es5zJAQ2CJ+HE3BBkrkU3rQ5objYrl7TKhFss066jlURWUSgUilIgvaN1HUPQ4OhCLLEQQIisT2BkGU8yb2Htk6Vr0V4y0E+dOtUuYcvvGajikBSOH0aeINFBFtYgcF6W8aMQVCQCYnmLE1GA8kD848gLqF8hHWknsoWyQGbLlpVkbFzuK9ZYkIsWlwkUMhXaRZJkOwpcB7Sw0GmSRtkNJyYOaEJ0k3Zo8rNZCWENymbFxjOk0R8UCkWaoWS2xFpYAQSUQb1fv36B32NlxWIFkZWsXy4JZKAUqYEMiOzrZxST+JxCnCWiQRQw6OGUxfEk1qdAwkNFsWYyiENMIUlRrZ9o67i+qJZWyoMzT9zoBWlN9uASWZA0kaWuJbpEoZwDfUDqkEpgeY8b45h2TgQH2mSSuuZCgfJlc0CThB6yZO9KFoToRr3OONmsxLKqURwUCkW5QslswqjKooX1nU3kvU/yGOwgdAx2Iidw95EwXfwWsifHEFmBWIvkGC6ZjRJfVpabsaQy0EK8GVz5LeXGyhpF+8lvOQ6/i0uScCzjeiBALK9nOgek10/lGpUApDXVqQT/z3TthYCkPuY8QfGJS22NlckQk7Bck1ikBa4Dmg83A5poy30HNJ5x6Tv8EFZiXaU9MxGuRP2uQqFQACWzSSOiZRYw0DBgMVD36tWr1ncMVFiwJDg+cEkA32NhgYyxLM/gx2APcXWtXnyHRYtjye+yLc+Klc5dboaEcI5JkybZcvB/lGVeSAxlyDXbGCQY4swyrav9dYFFFhIWl5TmmuwhaYiXfjGJLPWchP40H2ustFeej1x/X04QaZB/HyQtK32FyIREE59WHa5CoVAkCSWzKZEZCEH98ssvrVUlSJsqqToZxCTtrQDrDAO8LENjccUKixOKC47J79hf3mey1gi58Zeb+T2aVAnDBcHAa1k0g0G6P5bwQb7L+Cyx4/ATRD4Z3DlPjx49Yh8Xcg4pr6tEVhJXcH8KTRSZEDEJkcx2ucgChAgXIvZwOUPkQknJPxQKhaLcoGQ2JTIDIa+8QiAZ/IP0pJCtCRMm1OwLWcXSyXuJMct7CK84pPiA5ELc+C7TMrIQWUiyu594nkNw5XOILJ9DoiUougDiIml1kSnkC64LKzHES1L75hO9wHX8SpP2UogsZRJLepLnYkLC5CBuNIFsYHWA1QDIeC7xjCkbYeVoW7kSYYVCoVBULpTMJo2YllkBZBOCCMlyw97wijWV/SEJLDdCwlzi6mpvg8gsVjeIC7/LlCIU6ydWOpeAQEpwRvO1jpwnLFataFELqdnjOFjoINuyHIulNltUiDBAlqJoh4sF0SVzbcUgskwCuM+FlFkUwhpLO6dstJ04kSwUCoVCUXegZDZhzJk8uXaFVztshFlmxeLKEr7kKYeciZUWgsDAzudoRrFWSTxZfgthwEKKxRRSG7Qcy76S4CBs6Vo8ql0rHcflXJCKOPAlEYUC10pZpk+fbq8jV3kBdco9ScuybbGJLISTa4+buS2KNTaf2K/idEg7L7S1WKFQKBSVA12vSxhfv/lmrf/DrH9uQHKATAAnJ7Fq+mRW0toCSKlYvbCQivNXphiyWGdFNxsEjuFa6TgvS94s4acJED6kC7lELxAwcShEBrRCElnud9JEFnBPOVeYM11ciLMgEx+ssbkSWSZpHIf2pkRWoVAoFJmgZLbImlkcWMJIgEvE+J8NS6gbqgvSC0EVMguZYx/5HiuuWGYzkVkIQpCF2HW2cZ2AIItYP9PoLc219+nTJ6cwUpJkIg2EySWyxZA8YDkFhSLN1CNWcqQpTCxy1bYi+aBsSFnSYi1XKBQKRXqhZLbImllJSxtEBPzBX3KgQyx9y6wEYec9Vlz5HkuYkGLJ/BUE9hdnMx+QYI4v5UGLyv65OO+kHVi1qcdSOxXJcn+xiCyEkftciAgJkilMHLRytcZSB+i0xVEwjRMnhUKhUKQPSmZTEs0AuBl6BKKbFbIlUQ4k5Bdkln2EzGJNxTKGhSyIqAo4DlYvtI2ZJAacG+KTdFioUoFrK6RWNB8iy70sBpFFWwyJz1WW4YJVAZzw8rXGQohps0yY0Nmqo5dCoVAookLJbJHI7OeXXJJxP9G/unFpJQUtnwlJkAxAMtjzOzeMF9YsSAWhqyRSQVCsW8gDFjT0omESA7GUoVssteUyCYiUo9RL2UhPkIMUSreaCVjZkaEUInMWlljkJ1hR80mwALGGEENi05i0QqFQKBTpRuUxlJShSmQFGYiDSyokJ7uQRz8agcRvld9Iylp/SRaCJuQIj3BfHythu/idaxF2JQZYLSG1aU3vmi/S4PiFFVwiUyQNrPCQWUKa5UtkmfDgPIauNSgecpx7wHEgxJXazhQKhUKRLJTMJowV1WR2acByvsC3nLoWWSGpvGd5GIIp1ln3t5kIhTiRuRCnMpbYJTOXKzGAIEN+8s3WlVaI41emOLtJg/vC/cwlyUNcYI3lXIWI1Uq9cSw/1nAu0gqssvkSYoVCoVDUbSiZLYLM4N3DDjM/vPZaxv3EMcwlqW7sWb7HioU1VbJ78b1YZTORCiyvPpmV37E8zHKxkGKRGEiq2krVLnLNOH6V6vqof5boIZdJSzi4VqQMWD/zPRcTH6y7+ZSba0cfiyW2GEReoVAoFJUNJbMJo0nr1uanDz4wyzJYZv04s64mVhIh8L0s/2NlE3mBhN8KI7OQWIhqmGWW4xOWCiusSAz4rNRWy6QBKSuV1VlSx6JtTtoiifWXcF+FILLEPcaSmg+RpTyS5KLUEg+FQqFQVAaUzCaM1QYOjLSfWEZ9hy+sV7yHfAaRWT5HbxkWTxaCigUyjMwCSAWWWJEYcHy8yivVYsa1S4izUgByyUQhl7i4cYAFXxy08glzRXtE10pbyseSSvtCWkB5kr52hUKhUNQdKJlNGKsPG7ayoj2P+TAiJaTDTZIAgZXECEJoXctspuVyJAZICfz4tq7TmFhoIbRIDNIQripJiISiVOcGSVslue9EosCKmo/1V7SttI9cQ3kJGUbCovpYhUKhUBQaSmYThgz+DTxPbTJW+cC6KjFk3SQJEC9kAJBPjofVFILqZwcLs86xb1C2L5eYcA4ItliAwyy95Q7qlrosRcYvlujRmxKCKkkwwUHGQNSCfO6jhGYjMkauWcIkvS1tlHBglRjiTaFQKBSlhY4sRavp2lUdNqhDWF0yi2UWa6mbzQvrFoQWOUBQWK4oMgMfnAMrHlbZSo1gIM5Qbpa0YoH6x8JZiGgC2c4DeYQ45iOjoL1xHNpZru2BiZSkt63kNqVQKBSK0kLJbJGQjcCgjYXE8ippamusug0a1ITjEgctkRlkO3Y2y60Lzo+1t5L1jKWQUAgxRG+aZIpW2gPJBzhPPokgKC/HQQqRqxwC67dEa6jENMgKhUKhSA80uGOR0GmrrbLuI45fPXr0sO8JpwT8VLYCCC/kMxt8sis63CA9Jw5glez4Rb0W2/ELiyyWySSTAggBRcKQz3mEECMryIWEUr9EPaBdsoKgsgKFQqFQJA0ls0XAXp99ZuY6WbaAm6gAiNXVtbYKqRRC4FtZIRuZ5ANucgUX/Ma3EEJC0HOutdZaplJRioxfWIK5Z0mGORMiCwHNJ60s7YLj4OiVi3WecqCxhUwXIsuYQqFQKBRRoDKDIqBR69amvrfU71tUGfixGLqpZSEUEmmADf2rT2Yz5bKXGLRyfIllGyQ9wJqGbrZSLWmlcPxC08yWq/NU1OtCwoDlN5/lfNqdSBRyIbL8ftq0aXay0LFjRyWyCoVCoSgaYjOXO++80zrRKKLDT1cb9hlLxK6jDMRASCckE8LgklDeZyKz7C9L6uwrVlyfzEJkIb6QkEpFsWPnUveEo8IRK6lzCpGlneRD0nHUkugHuUgUqFv5PRMihUKhUChSTWbPOOMMuwx5xBFHmLfffjuZUtUBuBZYAUvELhngvSxPQz75TRwHojAy62pvIbLsl2sM0XIBso5iOX5hARdyl5TDl4TNgsTmI2EgXJjEo81FS0ybgrSjjy1VEgqFQqFQ1G3EJrMM0nfffbeZNWuW2XLLLU3//v3NZZddZp1cFMEI0rUGWWZ9QDhlyRerKSQpTgD8TJZZSBZ6TqxylU5kxfGrGLFzhWQiLUiK3EkiA9pGPhpgLKpkI4OI5lo3/J72k2SUBoVCoVAoCkpmIUV77LGHefLJJ63GbtSoUeb++++3A+Juu+1mPxdtpuJX0uCDZX0X2cika6GNQ2aFpLihvERmQHrRfNKTlguKaZVlksdSfZLL7VhCua/5xG5FP0xZeW5zJaJYdSHWlRzKTaFQKBTpR17ePmg8N9tsMzN8+HCr6Rw7dqwZOXKk6d27t3n11VcLV8o6IjPIBOoX0hHXQUv292UGYqmsdCLLdZJGtRhaTggilu4OHTokdg7CtXHP8tE3E9WBrXv37jk7/EmK2qSzmSkUCoVCkQ31c11avPLKK816661npQZY+P7zn/+YKVOmWBnCvvvua0mtonCAwMRxzvFlDBBhl8xCuuqCRQ0iWwzHL+oT/XGSDl8cn3uXT3QEpCWsFKCRzSdyBcSd9lOpaY8VCoVCUT6IPZrtuuuu1qJz1113WYkB5PWf//yn2Xbbbe33EIc//vGPVoKgKCzixIBlCdglv65lVr6vC2QWC2TSEgMIJjpZHL6SCm2GVALCjCU0V7KMVZdj5Eu4kRFBrCs5+oVCoVAoKjhpQqdOncxrr71mpQVhwHKElVZRWMQhSv7SOr91tcyQmiQzUqUBoktO0nqIBZwJHSQzqfOQzAJraq6JCCgjqym0gUI4+0lK4EqNSaxQKBSKCiezt99+e9Z9GCwrOZNUEij00jSxgN3laDk+xIbNzTBWqcCamXTGL3SjhMfKJ/NWJiDhYUMWkCuR/fbbb02TJk0KouXFus9ESZ9vhUKhUKQFsU0rJ554ovnb3/62yuc33HCDOfnkkwtVLkUekNBbQeRHrLOVHhMUEoc1M0nHLyymSAySkjFAGpFJ5GORJakCcpJCOaVh4WV1ptInQgqFQqGoYDL76KOPmhEjRqzy+aabbmoeeeSRQpVLkQcyee9LzNWkLIlpq4OkSBfpiCGahDZLAljW0aXm6qjFpAXdOhniCkW2JRRXpbcdhUKhUJQXYo+SDLBBKVSJg0rcSkUON6FA2sNJkyZZLWwYmcVay/cQnbQ6f7Gkjt7aj8ObptiyTAhYus/VYhqFNCJfyJXIYi2ePn26jUObT3YwFxqKS6FQKBRpReyRsk+fPua5555b5fNnn33W9OrVq1DlqlNgyT9fUgRB5Rh41UMEg5yRiGggZDatIZUgoThTsTxO+KdcwPVTF3ESTMR1+MKRKonjY/EluxdENpdkBhBtiCxSgEJKLDQUl0KhUCjSitij8R/+8Adz/PHH2zA/W2+9tf3spZdeMldddZW59tprkyijIgIgqDj5QGIgREGAfGH1w9qXRs0jiSQgcCxj42AEqUP3GjccVZJWWcqEU1kSlm2uH4svoe9yIcqQeCYBSB8KGalCQnGp05dCUTfAMx83sY9CkasxrxCr07FHzMMPP9xa9y655BJz0UUX2c969OhhbrrpJnPIIYfkXaC6iEJY+VhapkFgcQ2zukIUIbPEAk4jXBLKtRAPFV3qtGnT7JJ+FGuyOH7lk1ggU/koV5DMJl9ARLH4cp25tAWeSazy1BmTmkJCQ3EpFHUHkFikXpqWXlEMMKb27Nkzb6f0nBjUscceazess1ioipEqtJIB+ch32R8ym21ZGpJER5XGYPeQUJyesCy7ECsoFkfKTRisbMvh7JNEqDOOjdW00EAawPVBRHN5oJmgiDSh0PIRDcWlUNQdSCg/xpJ80l0rFFHAhAkjDG1uzTXXzGvczsscmIT1S5EsmQVpnHxkIqGQ/aiyAyy5kMJCW00JSZXvwxb2MIs0IBeLKiQbZ7FcpQnZwLE1FJdCUTfA5JU+hT5Uo5YoigF4JISWtpePMSb2tItB/eCDD7aNncETAuVuinjo3bt3QaxpkKKoZDaNzl+Q0EwJDkR2gBYU2UFQtAOszoV2/KJeWf7n3IVu31hBeIiJOpCLxpWoFayOJEVk0V5z/TqoKRR1xyhSF+KQK9IDaWvS9nJF7BHw0EMPtd7S55xzjrUm5Wup+vvf/26uuOIKa3UbOHCguf76683QoUMzkp6zzjrLPPbYY1bLh8UOx7OddtrJlCMKRSxpCFEITRozf8WJPpBJdoCmFWJY6CU3Eg4UWocKCGUHic0lfBYJG9iSWgqUFLiFtnIrFIr0I21jhKJyUa9AbS02mX3zzTfNG2+8YQYNGpT3yR966CEbHeHmm282w4YNs6R0++23N+PHj19FOymWt+22285+R4IGnGWw0iWdsrQcbiRkNhvhQluZBCnLF3GjDwTJDkCQ5jYfMFli1phNp5trPF3acy5kkfriuiGySQ06GopLoVAoFOWC2GSWARSrTSFw9dVXm1GjRpnDDjvM/g+pffrpp80dd9xhzjjjjFX253MIxttvv11j0SSSgiKaZla0UGlCrtEH/GgHEM5COn6xhE994VSVxPI97TgXDS7WXEhwUgkbgIbiUigUCkU5Ifb6JNZTiObUqVPzOjED8ujRo8222277a2Hq17f//+9//wv8zVNPPWWGDx9ujjvuOGuNW3/99c1f/vKXjFoLQhZhBXO3SgQEJNtyM3WRtsxfEFlCheVKzLDKI3fBklgoCz1tEy1qEoRRsofFze4ly/609ULIezJBQ3EpFIpKBvyFPvTjjz/O+Rjnn39+QVaoFSWyzP7+97+3Fiscl3AM8TWfDIRRLUwMzLJELOD/cePGBf5m8uTJ5uWXXzYHHnigeeaZZ8zEiRPN//3f/1nN5XnnnRf4m7/+9a/mggsuMHVBZpDJMivW9LRpoVgyJ85uPkB2UCgLvcRrhcgWWovqRi6I47DFvUNSwbOWdFg1DcWlUCgUioons6XM8gUZQBN56623WuI2ePBg62mOA1kYmT3zzDOtLleAZTaJWKGlAkQHgprNMotetpBZoQpFnCh/WqIrSHSAJOK1ijNZ3MgFkj6XiWMhndvCoKG4FApFXQf9blSnakU6ENv0NHLkyIxbVGBhgpCydOqC/8MsdVi0+vXrV8sCuc4661irVVjqPax2eIu7W6UAizTXLshkdcWanrYQS9nCcRWz4yJdK1ZiHMuSINccH2eyOO2PCcqMGTOsFrgYRFZDcSkUinIF/eXll19u+vTpY8d9fBLIVAree+89s+GGG1pDwpAhQ8xHH31U67evvvqqHT+fffZZayTj9zi7x8U//vEPy0k4T//+/c2NN964irSBSExbbbWVHY+J4BQmq1TEQ07TjkmTJpk777zTvl533XXWWkojoPGst956kY7BwE6jeemll8zuu+9e0xj5//jjjw/8zYgRI8wDDzxQywo5YcIES3LLNS5ePsv+kFmWxaMAy2yciAHFIJDoXEvtwCcWU2bgWGSTkGGwGgBRRLoQFVgFkCRAYpOIphCmyeVZUigUCsHSBQvM7BDpX5Jo37+/aRTDAMMq7G233WauueYas9lmm9l+HckiK2677LKLjYR033332VS9J510UuAx8Ae68sorTa9evWKPl/fff78599xzzQ033GCJM4QZB3d8QlxDH6FFOUffvn3t+/33399KJtUKXGQy+9prr5kdd9zREsvXX3/dznwgs2PGjDG33367DZkVFSz/c5OZKRFbFgkDDkES3eCQQw6xBADdKyCFLg2FhnjCCSeYL7/80jqAnXjiiaauAAIrlkMIT1DygFyjHRQTkGtmpqXU8CJzYAkf63CbNm0SOUcukQskvS0RHugIiwEmFlgTynVSqFAokgFE9t7Bg4tevQePHm06b7RR5P4Lwxr8QIgjfj2QWmSJGMDgJ/RxGNzoX+ETPi688EJLenMBUserrrrK7Lnnnvb/nj17ms8//9zccssttcjsn/70J7Pzzjvb9/jzUB7ILJZcRRHJLDOXiy++2BJR12K09dZb24YU15kMjSKzGZbL8Qx87rnnapzCSM7g6kDRuj7//PPmlFNOMQMGDLBEF2J7+umnm3IDDZ0ZYlRCxLIHUgp+I40eggrxyQZ+lxZdqgCCV8iYsHFBnTJzR9KSVIQHiVwQJ7EBkxM62iTL5UNDcSkUikwWUohlKc4bFV988YVdpdxmm20Cv4MvuL4KREUKAoa1XIARjpXqI444wlpj3THAN5RQFoGshOGroGS2yGR27NixdqnfB8SECAVxgaQgTFaAjsUHjfCdd94x5Q6xuEWx1rH8CyGiwbMUITILyKwI1TMdR6ygaQHlZSuVFZBZPBrWJBy98olcwKRDUucWM7kFEwus00lkElMoFOUNlvqjWkhLhUJN/HNdCUPKAJA5kADKhb8i6o45Mm4zXijyQ+zRi0EPa5MP9CFxNIGK6ICw0tjZeNhEWsCsj9kmM9IwIsI+OFqlicyShrUUjl/UIxMuzs+yf1JENpfIBViKIbI8Q8UkshKKKw2OeAqFQpEL0J9CaPG58YFD1ieffGL7WEGhDWKsJmOEIHwoDmjuxiqsIoWW2f32288u6z/88MM1IaHeeustqwNB46pIjswCCBgEBMKDdROyxEPqz/74DZZBXiFVaUpji0MUZLKYoP6IH0t9JZk9K5fIBSJ5wPpebCcADcWlUCjKHfTr8JLTTjvN9r349CBh/Oyzz8wBBxxgHa1Y/sdJjKgCOGAVGuhf8d9BVrDDDjtYI9MHH3xgo+S44UEVySD2yInDFRm4GHghU+uuu659pcGcffbZyZSyjsMls5AdscxS71hqeWh8Mstn7Js273QkDxDrYi5pi0MVpD7p0GxIGOJELuC+SkawYhNZykkbSpPVXqFQKHLBOeecY/tQfHAwXDD2HXPMMaZly5bm3//+t31PlAE4y2WXXWb22muvglb0kUceaftS4t6feuqpdmzeYIMNzMknn6w3tAioVyWpoWIC56xPP/3ULlHSQDDzlwOwCjJzYqm5WDFnqScfpOKNCoTlLGMww4OQETMWT/dp06bZeL1Y17iWDh061PyGfbE+pm35mE4mbuKAfMkzzoV0bEmfE3LIubA6RyXrEFk6vWLHP+ax5xku57B2CoWi8H0YTsYsjactyY6i7rW5X2LwtZxNQQzYxV4qrhTEFatDPLAuQpCQGbjhuPg/SDMLiXPJbRqAFRInp2J1kjwIkPpiLN/nErmAiSB1UopEHpxbQ3EpFAqFohIQe4Q//PDDM35/xx135FOeOgHi3+VDZt1wXJA0/vdlBpDGtFncmF0lFc/Vry/0UtRLHHJZzMgFLO9TxlJMCMURTiejCoVCEQziv7L6GQRixx544IFadeVMZrF0ucBKyDI6HvPEmlVkBvqdXMgH9QwpQzrgKkP4DALlklm+Z79SJiQIs5RCLpMmlkQFQLuEFCPpOsglcgHgN0hHSpHIQkJxpSmJhkKhUKQJzzzzTGhSIomFryhjMvv4448HEgiyacS1ONZFQLDiQiyzrjzBJbQ+mZUkC2kCZcKqnKSVVBIOUMe5TBqKEbkAMPGjLkrheEU7wkltrbXWKvq5FQqFolygfWR5oSDMAoJC6AlyIisyIxd/O1dmIPWNjEAIrE8S05YkAbCsjfUyKeAUB5El1l+xiKxELsAJLyq4b5DZUmU/w1mwGBZrhUKhUCiKhYKZyfC4j5JaVWHyJrNYaCFSkFmskZATNwEAZLZYqVCjOhtR1qQcv1gZIEsaGtBiWaQhsVhlIc9RiaFIEtDWloJMSiiuXLPcKBQKhUJRETIDP/ivDNBPP/20GTlyZCHLVnHAWpqLxRQSC2kVSyzHgLxBDidOnGjlHS45Yt9ixyzNRDSTdnRCx11MDWgukQsA5LdVq1Ylk4Bgle3SpUtJzq1QKBQKRVKIzXhIW+uCwRzL4FVXXZU10kFdB4H0c9GMCpmV30JixfqKVhOHpx49etRkZBNHsTTJC5IimlwvjmVcfzEgDmZxIheIVRQpRNIOcGHAkg+JTluEC4VCoVAoik5mX3nllbxPWleRi7UUy7erlZVXWbLHSgtRJNYsn/GaFucv9KGQ7lyc3uJYZdu1a1cU8i6rEJwvjmRCsnxBZEsxydBQXAqFQqGoZBQvp6giZ4hV07XqilyB77C2QRzTFMkAAkU2LJa1kyJwYpUtRuzaXCMXACQhJLAolfRDQ3EpFAqFopIRe3QldW1UcvLhhx/mUiaFRwqFzLpL9cS5QwMpYblYwgZYZtOQwlaWtZMk1pA0JAzFsHZK5AKkInFQyixfQENxKRQKhaLSEZvM7rDDDubGG2806667rhk+fLj97J133jGfffaZjTWbJi/6SoAkQMAq61pmRR8LkWWTZBZpyPxFubBiJhmnj3NAMIuhlZXIBTixxSHOpczyJeD8GopLoVDUJZRiHEzD2FuX0TCXwfHEE080F110Ua3PzzvvPDNjxgxNZ5sQmYWw+kQKqxuWWUguxEn2Tzp9azZgMSb2apLlKJZVNtfIBaXO8iUknPJrKC6FQlHJ2HLLLc36669vx8P77rvPbLDBBhn9e8aNG2eOPPJI88EHH5hevXqZv/3tb2a77bazSaF23313m80Ug90NN9xQi/uwMvfss8+abbbZxhpSjjjiCPPll1+aJ554wuy5557mrrvuKtIVK/Imsw8//LBtAD4OOuggM2TIECWzGZAL8cICye94SP3f+5ELZN9SAgJF5AVCUCUFiHsxrLISuQDdb1y9aymzfAk0FJdCocgXSxcsMLPHjSt6Rbbv3980itF/3n333XZ1+K233so6fkBYWTF799137Vjyxz/+sdY+EN3jjz/eRmkSqRwkGTIL0RVceeWV5txzz7XGPEWZkVlkBDSWvn371vqcz5IKil9XgfURYghBDXNyEvIKqUU3W0rnL6zCODsRtirpesGhKkni7kYuiCudkSxfpUyHSAfNkpcueykUinwAkb138OCiV+LBo0ebzhttFHl/OMnll1+edb8XXnjBJnl69dVXa+JuX3LJJdYyK8DKCpl98sknzb777ms/w+p66KGH1hp3ILY+EVaUCZk9+eST7ewH566hQ4faz5jd3HHHHeacc85Joox1NuUtljWWiLHwZUuZConFs7+US8oQOM6fJIFiVo1TVZwUssWMXFDqLF9SBuL7llKrq1AoKgNYSCGWpThvHAyOSLjHjx9vZWNuAhnhMgIMcwcffLDlNZBZ+M6nn35qnnrqqVr7sRqtKFMye8YZZ1iNyXXXXWfN7mCdddYxd955Z80MRhGMqORm+vTpplu3bnZpG81jEDkUwuuSWdGRlgKQTMhs0kv/kMykrbJMCnKJXJCGLF9AQ3EpFIpCgaX+OBbSUqHQhhykBoMGDTJfffWV5TdYYf3VNvVHSA9yCnwJaVXimhwIryWekbwGETfRywrYN4z4FgNYkTt16pQoyYQwI6VIIgkDdf7zzz+b+fPn21l5165dY19LqbN8SR0VMyOaQqFQlBPWXntt66yOJA4HXfD++++vsh9OZFheb7vtNvPAAw/UcgZTVAiZxQL3yCOPmMmTJ5s//elP1hqIGZ6GkYs1q64gKjmCqJI5C3kBr0G/g7S4TkkS07UUkQzQ9bIlPUsttFWWiYIQWOoaXXKuYaxKneWrmJMKhUKhKFegje3du7cZOXKk1djiX3D22Wfb7/x+UxzBGNv22GOPEpVYEQWxmc8nn3xi+vXrZy677DJzxRVXWGILHnvsMXPmmWfGPVydAqQpKjHCyoeVFdIaREywwrohnyCxpdJIQqCSTFnrWmVbtmyZ13Eg3ehJp06dasuNFZalIyZhHDtXEljqLF9iXdZQXAqFQhEOxk1CaeF7sfHGG1vCetZZZ9nvfCf2/fff3/bpvKqDe7oRe+T9wx/+YD36mNG44Zd22mknc8ABBxS6fBWFKVOm2Fh4mSBaWIgbs0GJM+tDYsy6KIVOEwIF+U46WQYENFerLHWFBZbOC9KPBRbiXygrdqmzfLmE2nVqUCgUiroAIhPEQf/+/c2bb75Z87+E8+rTp88q4w6GJeLJ+sAgoihjMou25JZbblnlcyxb3333XaHKVWcBeWUGCJllBunGkfUtlaUKxh+0rJ0kuFbkFnHOA4FFO8oSEnUI0cwl8UE5ZPkCGopLoVAoooHkCKzEEc5r4sSJ5qSTTjIjRoyw8gNZwUPWhvxgk002MRuVgQNcXUdsMishoHxMmDAh8aXmugAsfMgLeJgku1eYZbaUAfkBBJPyJW0RZnZMKK5sVllxfoLYAQgsUSGSJP3ffPNNSbN8AQ3FpVAoFCtx//33m6OPPjqwOpCUffbZZ3aMOP30023kIMaWbbfd1iZIcC21W221lZVU4h+kqEAyu9tuu5kLL7zQ/Otf/7L/QzBoEDSMvfbaK4ky1ilIlAKIGGQ2KI2tLO8T0L+UwCKZ9LI2pD2bVRYyx6oADl3UG6sExSCX6MWZeJR6UkEoLqQTabDUKxQKRSkBRxk2bFjgdzj6gkMOOcRumdLj+uEvFRVGZpm97L333pZcQDK22GILSySGDx9us2goggHZQLcZlcwKScxkmS2ls5FEAEg6FFgUqyz1CpErZsatNGT5AhqKS6FQKH4FvjxJplNXpBMNcyFlpIPDDD9mzBjr/IKeBDO9IhxRl+LR77hWSCGzTBiE4PoxZosNZqxYZVnCTxIQdizQEgswbJ+ffvqpqHFV05Dly48kUepyKBQKhUJRFmQWHSde6x9//LEVS7MpCg93eUPIrBvWC4JXygxTTGBoB0lbhrNZZYVUQvKLSebSkOXLDcWVb7gyhUKhUCjKGbHMeywr47XN0qYiOTBp8MkspEWAvCPpUFjZnI0gmcWwymZKxIC8AEJZzLqQLF+l1itLKK6kI0koFAqFQpF2xF6rJrjwn//8Z+t0ooiOqBoetJ8uUXLJrFhsIVSlCODM+dGJci1JOxshY8hEmEVeUMwIGpLlK5dUt0lYx9Erl9o6rFAoFApFqRF7nZj8xOg6GdBxfvEtZ6S1VayKqKQDz3i3TkUbC5GUBAo4H4lXZpLAAowVEvKMtZhzQ6AyaVgLAc7FNYZZZUslL0hDli9Xs1zq2LYKhUKhUKQBsUfl3XffPZmSKAJDgbRt27YWoRUiWwwSB2HE8ilhwopFHJExZLK4lkJekJYsXwCLtIbiUigUiswgxNagQYPMtddea52ETz75ZLsVCmRDZbWS9LiKMiCzf/vb38xRRx1ll7YPO+ww68VeSm/6ckRUIujvR51DYAFkimDPxQg7gi4a0lzsECdYZdnCYreWInpBWrJ8SVkg88W8foVCoSh3kL00kw+GovA4//zzLdEnaEDSiMRI//CHP9Rk/erZs6e1nCkKD8hqEOnlc3nFQlgM7/VS6HK5vq+//jpUxlAqeUEasnwJNBSXQqFQxAerfaVOcKMoMZlFH/voo4+aadOmWULx1Vdf2axfQZsid4gmNozMigyhGFbxYof/4togsjh9hZ23FPKCtGT5knuC1VpDcSkUCkVtEL6SrF70j8QAd9PTAlazkBsIGGtvuukms+OOO9oxpVevXqukrh07dqzZeuut7ff4S7BCjUEpDIzVf/3rX63Rj98MHDgwcjrcV1991Zbp+eefNxtuuKH9PefGgPHss8+addZZx8rcDjjgAOvL4o4LJ554oo1sgwFqs802s1bofI+b7VrkuC+99JIZMmSIHSM33XRTM378ePv9XXfdZS644AKbj4D92PispDKDs88+25xwwgnm+OOPtwXaeOONQ4mYhu3KDTRIiFMQUaVRYRUUUlsMZAuLVWjwYHG+MKJWCnlBWrJ8uQ5oSTvfKRQKhYulCxaY2ePGFb1S2vfvbxrFMCKceuqp5rXXXjNPPvmkJXZEXcIhHc1sGM455xxz6aWXmuuuu87ce++9Zr/99rMEFoIHOd5+++1tdlPIIWPUkUceaXlQGCmD/N13333m5ptvNn379jWvv/66Oeigg6xVmGypUZfmcbSHHO677752w4jzwAMPWCK9xx57mOuvv96cfvrpdv/TTjvNGhvvvvtuO1Zdfvnlttw46rdv3z7n40a9FiJcMXHg82OOOcYcfvjhNqnW73//e/Ppp5+a5557zrz44ot2X3w9SkpmmY3sv//+1jI7YMAAWzBmKYrCgRkRusygeoXE4oBVzFzRELmkU9UKIKlco/vglVpekKYsX0BDcSkUilIAInvv4MFFP+/Bo0ebzhttFLl/vP322y352mabbexnkLtsWSr32WcfS1DBRRddZLObQuhuvPFGS/KQ291zzz01hh3I4K677mouu+yyVQwLGID+8pe/WH4EAQZYe998801zyy23RCazF198cU1CqiOOOMKceeaZZtKkSfZYYO+99zavvPKKJZ0QbqzLd911l7Uwg9tuu81eB/UBwc/luHGu5ZJLLqn5/4wzzjA777yzrTesuRin4C6SvTQV0QxwBFp//fXNnXfeaStE41sWFkKYgiyzWLuxzPJaTDJXjHPxMOLU1r1799B9SiEvSEuWL6ChuBQKRamAhRRiWYrzRgWkDAPMsGHDfv19+/Zm7bXXzvg7IWru/+Ks9MUXX9ildXeFEu6D4YWldJ/MYgnFKLXddtvV+pxysbwfFRgMBZwDS6oQTvnsvffeq7lupGcjnGysOG4PHTrUlj/X48a5Fve4GH8AVuxiO0zHDs01cuTIZEpShyE6ZBCmmWV2w1J7MfSyQp6TBrM/afRhxLkU8gLJ8pWJYBcTGopLoVCUCiz1R7WQ1mWIlvbpp582a6yxRq3v4hhF3BjyjIt+THk+y0Vy2CjGceNci39cUExJpEDjaxUJQWTts88+s6+ufCAbmS0GySxGJAMIM1ECWAYKu6ZSyQu+++67VGT5ckNxpSF9rkKhUKQRvXv3tqTq3XffrWUEmDBhQsbfvfPOO6v8j14W8IrzEquHArSgGJSCLL7rrruuJXo4wvfp06fWlpRhhOtGDvjWW2/VfIalFo0v5ckVhboWylYsP6rSpjKqQwjSu8pn7iwmkwMYjaISIhmIJRqSmimTWSnkBWQ9g8iXOsuXAB01wvo0EGuFQqFII9BmogNFI4rfCQ5gOCZlGy8ffvhh64lPBID777/fLrOjNQUHHnigOe+88+xqNM5T9MU4wh988MGBjrjI0v70pz+ZU045xY7ZHJMxDKJJtIAkVrWRQBx77LH2upFVsMqJAxgri9RHrijUtbCiOmXKFCvdwHCVpHQvHSN2HQYNxZ25hFlmmeHQQIsR+zXJSAZibSWzWSaSWgp5gWhl0xIxgPuARklDcSkUCkVmXHHFFXZ5HActSNMf//hHS8AygdBRDz74oPm///s/q/f85z//WWPRRFNKOKuTTjrJRnDi/7322stcffXVocfDiQzjA5EAJk+ebMe5jTbayEZWSApEY1ixYoUl2fifQM4pd76reYW4FurrscceM1tttZWNDITPFVnTkkC9qmK6yKcAJH8gPASNvFipSQlPsd5661lZAU507ueUBcKCRRAwe6HRuMCKycM5e/Zsu3+Y13+hQNSKTDrWfEDCDZpcpnS1Yrlln2ImbuA+EP4qLVrZGTNmWAtDGpzQFApF5QOJGZY0YosWO2lOscH49vjjj5vdd9+91EWp01iUoc3F4WuxLbNYEQkDQaBcnHd8oe/LL78c95B1AjJn8ENeYYGUdLUgSD9abAewpCIZ0DCxNqJHzQSRFxS7M2WykJaQc1gYuOdKZBUKhUKhyIzYzAiTOxukFisjoSvcTREMiCgIEqS7EwLRajJbcdPYQnKLQWaTimTA9SAbyBa3FWLPfpkst0mAOpbYeGkJxYVVVqFQKBTlDxIKIBkL2vhOkR9iW2bRl/zrX/8yO+20U56nrlsI86qEuLhKDyGzLMfzHkIDgZXsakmTWQhdEtZAyBlENlP5sdyiWSUUSLEdniDQyDvS4GilobgUCoUiWRRbYXnhhRdap6ogFEvyWMmITWZZIic8gyI/SA5k/4ESqyiWQnS04l0vJDDp0FzIAAq9vI9FmesMyyjGtRIOCyJJOr5iSClcUDaIdBrS1koormI7vikUCoUiOWCY0tW25BCbNeAhSB7jOuY3VnCgNw6CEDnql/eQWbwo5fOkiV4SYbkgZ75Tm2sJxuEMB7dsltsk9alEbyjFuX1oKC6FQqFQKBK2zJKbl/y9zz77rPXQ9+OEEoZBkR1iYXUnBUE6UTSkLEHI8nfSllnfQa1QVk/f0sjnLKcTSoQIDpnizRbD8cvPclIKaCguhUKhUCiKQGaxsO2xxx45nEohwBIZxQrIPhAcl+glbT0sdCQDLMs4VbnHlOxfyBmSCgEWFViG0SanIUkC1vq0xLhVKBQKhaJcEHsEJ+itIj9gjSR2mm+ZZTneJTMQLMiWkD1xBCunSAZYXzt27FjzP6kBhbQhnyg1cDhLQzguDcWlUCgUCkVuaJiPtm/8+PH2PXmKix1KqVIgZBaS6sabBRBLl1xCbpMks4WOZIBjF85fHFPCTXGNWGOTlktEAWVjK3VwcKkb6kWhUCgUCkU8xF6zxrJ2+OGHW2edzTff3G4EwScPsHjoK7JD0uz5jnR+mC5XYpD0UnihIxm4WTtIYcu1oE1NA5EVq3HS2dSiAE0xDnBpqReFQqEoJ2y55Zbm5JNPTv0xFSkis3/4wx/Ma6+9Zv7973/bXLtsTz75pP2MSAeKePAzqEFm5TOfzBaaeCErSDKSAWQWOQVL6IBc0WmI4yr1TLkIWF1q8Azlm0dboVAoFIpCYOrUqXas/vjjj025ILap79FHHzWPPPKInbUISKCAk8++++5rbrrppkKXsSKBJQ7trBBKscjyOn36dKuPRVPqktmw8Fa5YvLkydZySuw7kTkUKpKB67iWxiV0rKFulIhSgTr35SQKhUKhUCgStMwiJQjyuIYQqcwgGGFhpyR1qlufkFmIICQLy2xS6VWXLl1qj40lFvLM/4WMZCBL+DNnzrQOYGkja5LxKw3lUKusQqFQ5AdWNE877TQ77nTp0sWcf/759nNkkbvsskutfRnv4Cy33357jXzykEMOsSt1SCivuuqqWOcm9OTFF19ccwwS8Dz11FPWkPO73/3OfjZgwADzwQcfrGIcJMQp4zDH8M+b63HffPNN85vf/MaO8d27dzcnnniivUb3uH/5y19s3WBYw9h066231nzfs2dP+7rhhhtaTuAaLyuGzA4fPtycd9551lnIDb90wQUX2O8Uq4I4qj6wyBKoH9CY3AeS75K2GEoyBggdZPqrr74qGOGU7GW8srnXlxQ4X9REHky66DxKTbApL2VJQ1QHhUKhCMLSBQvMzA8/LPrGeePg7rvvtmPqu+++ay6//HKbPvaFF14wRx55pHnuuees34bgP//5j+17f//739v/Tz31VCuVRDL53//+17z66qvmww8/jHX+a665xowYMcJ89NFHZueddzYHH3ywJaEHHXSQPVbv3r3t/zJOjR492q5m77fffmbs2LGWfJ9zzjnmrrvuyuu4kyZNMjvssIPZa6+9zCeffGIeeughS26PP/74WseFOA8ZMsQe9//+7//MscceW+PU/95779nXF1980dZbOeQPqFcVM5XXp59+arbffntrPRw4cKD9bMyYMdZx6Pnnn7ezjDSD5WV0nK5zUtKgij/77LNVPmcGSEMhPfDEiRPtZzjTEYMVa12SgfxJHwuRFYcviTxQCJkBdcvMFxlFMSIX0BanTJli61NCnmXCjBkzLIEvZHKIXED9MCnUSCAKhSINoD+iL8UyJ2MDxPLewYOLXpaDR482nTfaKNK+WA4xAr3xxhs1nw0dOtRsvfXW5tJLL7W8ZOTIkdZyC3bbbTcbkpFQo/hO8P6+++4z++yzT00iHYxQRx11lLn22muznh9LJ5bQe++9t2Z8ZTyCnEKqwTvvvGMNfoz5WI4PPPBAa2GFPAso39NPP13DF3I57pFHHmnH3FtuuaXmuJDZLbbYwlpnua/+ceEo/Baj5DHHHGM1s7QBiO6gQYNMsdtcLnwttmZ2/fXXN19++aW5//77zbhx4+xn+++/v70xSS2JlzvCrKxC8txECBBZ/7NihOHifIUidzQ8JBJ0EEkTWR5CHmIeBOoOK3CmuoNkg1ITWZEY0DEpFApFWtG+f39LLEtx3jhgud0FfaukjYfgsYwOWUT6RgbTl19+ucaSie/CsGHDfj13+/Y25Giu5xfp4AYbbLDKZ5QJ4vjFF19YqYALLLCQZzfme9zjjhkzxlpk4Wi+YzmkcZ111lnluHAUfiv1VY7IKdYTy6KjRo0qfGnqKHzjOCQzSZkBjZrjJ3EOOgUeRAhlMSzfJD3gPNQZHRAzajdJQ9D+aQjHhRUclDKNr0KhUGRDo+bNI1tISwm/L2V8k8hALMOfccYZ5n//+595++23rfEDy2RS55exNegzP4JRoY87b948c/TRR1udrA/XETtTfVUsmUVwvOOOO9qL530mYL5XRIM0Qp/MYmpPMqYsVtmkrOhYGyGziM6TBvIClk3kAYXUkioY+URQ/fGgcu1pSBmr4bgUCoWiOGCVcPfdd7eyAgjtYYcdVvMdmlO4DVpbGUsYxyZMmGCX5pMCFtK33nqr1mf8369fv7xWNDfaaCPz+eefW/lirpCVSz98Z5oRiTHRCNBq4P3H+0zkrJwuvtRwZ1S8F1KLRiRJq2ZSTkeUH5IGWUw6wYPIC9AYSz3yiv4UHVLQ8j1lo25LHY6LsqOXTUMaXYVCoagLQGpAVAM4CvpZAREBSPqEExh9MjznrLPOSlzqR1z+jTfe2Fx00UXWEQ2SfcMNN5gbb7wxr+OefvrpZpNNNrEOX1wzTnGQW5zhOH4UUAcYvHCcQzuMgS2KP0opEeluQba4OHkftimRDYdPoCT0hdQp5A+LIsvlSS/PQ2aTsMyyxE8HUIyQVyIv8LWvPLgs4WO19QmkJHEoNWQyUWpSrVAoFHUF2267rTVy4MCOEcTFFVdcYWUHu+66q91vs802M4MTdnrDgvqvf/3LPPjgg9YX6dxzz7VOXYceemhexx0wYICNzIBlmWsivBbH9q85E+Ajf/vb36wTGb/ztb0VEc3gnnvusbMIP1MUWkluCtqUNKMU0QwAlu1Zs2bVIrOQf2K8EjsO5yUIJg5KLHskBW43S/F4Mxb6uIT14FqSdgSEqFKfLAkFEUK+R8juSh2whBK+SyZlpQRh0ChHGpzQFAqFIopnebkDLSkRgpAa7LnnnqUujqLA0Qxi29HRmnBgH5AFV4eiqA08BcMgMgOWO5J2ToIsF4pEUW46CJb7aYzojpImsiIvYIYdZtlkosXM0g0SLUkcSg0mMGxKZBUKhSJ5ME5h3GA5n1VD9eupTMQWNoZlicLalIYl3HKBW4cumU2a5OQrMWAJn4kLG22B5XJi4kIefWt9MeUFPtDO0iYpn6SMTVrHGwVpkTooFApFXQCrn1j90H6SkCDuOEDsWhzgw4BBR1F6RL6rktaMbZtttqnVILA0YZkj64QiOkThIROEYmgoIbO5Oh5RThIOSEIH8bgUa2mmkFhJRC/IBNon+lmWKfhNWpytKI9ffiYzYjFXHa1CoVAUDkjqYqopa4EsWR9//LHekkohsxLFgJuKgBorooBBmAZD+jRFPGDNhMygFSlGelWslGLVhEDFiXOKgxfLNL6DF1Za2kOSRCwoekE2QGDJZIJTWhr0X2h2ud+ulyz34Ouvv7b3RBI60A4oL5tIJpTkKhQKRfHBSmY+Ya4UKSOz5513nn2FtJJLuBhLypUOschCZn2SU4xkCVjTcTaLQqKxvmNVDHIcQ4+KJhghd1KkMaq8wAX1CVlPCxH0dbvUl+h/3XpDysF3bIQT43+ugWtxSW4xJj8KhUKhUKQdsUWE6667rrXOuqnfAAGHGVwxySvCyRV6SUiN+xmkNgqRxbKXj94Vq6xMQiCn/I/sgBSw2UDsVnSoPjGEcGE5hHRJOCwsooUMPRVHXuCCepVMW7yWUjPLRIL6FtLKxABLNxEX/HLxP5Zud/WDa+H31AUaLci9TE64p2xCctNC3hUKhUKhKAZimwKPO+44q5v0wVIp3ymyWwoFkFqxzGYjIOwTVO9xABESMst7SCxkNhsgUWwuuRJAyLA2chyIGVZGZAeE/4Kw5aNVihq9IAycH2suYbAg46WElIXrIUSbaGejEmwhrXI91DVh0HBqkOMyocDZgbqnrXDN3AvuXb73QaFQKBSVj6qqKru5+QMwBrEhhUtrPoHYpioySRDsN8hBjO8U0YG1ESclrGzZAhpDPsXKmCuwokqsNo4n8duyYebMmYEpYGnUNG4aPhZjWQpHcsB3EF2uDY0t58pFRpGLvMCdLED6WDGgLC6ZLzaoZ5zmIObUEe8LYUGlTql732IviSO45xBn0eNSj2LFLZZOW6FQKBSlcS73X8O+c+Fm1fTfJy2HLBqZZSCE3PTq1avW5wzSaQh9VC6QBsTMBwjZyCQxkIaYKwlyyRwkh6gEEB3KENZAsbhCeIJIIGSRY0DUfKcwfoMsAckBFkOshViC2T8qgcpVXiDldnWlWDP9RArFAtdB/bJ6IcQ+afAsSkQHAW2HdkZ5qB8IvrQ/X6qQ1g5LoVAo6gqykdCohNQloz5BdV/LGbFHrN/+9rfmzDPPrGXRg6z8+c9/Ntttt12hy1dRgFj4FkYx2WcjeJBZdKiuiZ/3rv7WhSxn+58JSRH9LBa9MKkB+0MAg7Jm8Z1EMcjk+MX5kCHgOIZFkuVvsndlI++5RC9wAVFzw3EJsY0iqyg0uA8QSOqxlDFmqUfaH5MKJhoiVWCyAMnmeyY3xOcVqQL3n89UqqBQKCoFxJt1DTDnn3++GTRoUEHP8eqrr9o+lTE607I9m/hD+Bufy9I+vxXSynEldjrjauPqFTd34zM2vmdjX37DxrjMVqyQoMVAbFPqlVdeaTbffHM7CCItADiEsQx97733JlHGioFYBSEL0ihppBDKbDFaadAQRvYXCzifYbnE2umD/dBMQuiCdLli4YVgCyn1wYSFz4Ms7vIbIdnZHgi+h8ixQSghqjxMXHcQEUZewL5xQocJqBeu1584QCape9pusR5gnLWoR0K7pDXrF3UhsgO/DYlUAUIukhLuiStV0BUZhUJRzvjTn/5kTjjhhLyX7V0LKURUXsV4E7RsH2QpVRSBzKL1++STT8z9999vxowZY4kYaWz333//nIhHXYU0eshkEJH0ITMxWRYGzOzCxNjynVhgXYkBn4slmPsX5BzFeZhRQvyCwHe0BSx3cdPEQn6xBlImSCtl5RjUBdeZj7wgyCoblEihGBZS6oiyQNjTSmQzgTbCvWLzI0S4ocOkDUoWONnSFBZNoVAofHkffRefibxKCGghlu2lzxcrqSJZ5CSMgxAcddRR5u9//7u11B5yyCFKZHMEVtWoZBBy4csMfDIL0WAZXyy+YgWFHIrlzSW28vC5JBlgiYMQBmkn+b0sWfA+19iylAEZARvlY2kbcpSPvIDr4JpdAuaCa3K1okmAjpB7QN1A6OKS/TRDnPyQKkDSiaYgUgUs37QFBgTajxtZAZ099xZLfpJ1r1Ao6p63/cSJE1chl2ysItMP33bbbXZlFO5CAiiR4AlpvfDCC83GG29cs2x/9NFHm9///vfm0ksvtX0csqwTTzzR7ivL9pz3lFNOsZF2GG841wcffJBx3HrzzTfNb37zGzs2Ux6OydinyB85eWwhJ7jlllvM5MmTzf/+9z87mF1zzTXWKex3v/tdAYpV2eDBkKXZOIQNYumTWZ8YsJwh8WiJAsCDIrFgeeiAr3HlQeQ34iwEGeF/yhkErKmQQonGkC8oGzIVsQZD/nK18kOYRP8ZVodMIMRiWmhwDTh6SZxYSG1dWIYXksvmrzTICgGDClZxXmUQEV2XWHM125lCkS4sxVl03LiCHjPUox6iWr1P2379TMOQuOq+dRRiiIRMPmPyjA/PlltuaWWQxxxzjPnrX/9qiexzzz1XkwRK+mYx2rjGm5deesmOk2hfySTJCjTj3iWXXGK/P+2008yjjz5q7r77bsuBLr/8cpsdFWIdZMCYNGmS2WGHHczFF19s7rjjDrsievzxx9vtzjvvLEzF1mHEHmVvuukmc+6555qTTz7Z3hQhVxCEa6+9Nicyi4X3iiuusAP/wIEDzfXXX2+GDh2a9XcPPviglTdwzieeeMKUCyBuuTgiYQl1w3OFWWZl40FEswkgELLUwXuXhPKe/eQzCcUVRAglHBfHhrQVkhDSkQTJA6KCDhF9apg0QoDEAIshpLeQRJN6oUPFQkld0ln5UR7qImi3QeHDJBEEGxMs7p20b37jklzea4QFhaL4gMjeO3hw0c974Pvvmy7V581m9KEfR/YG6Ev23HNPM3z4cOvYddBBB1kSCfkE/fr1M2+//bYltZlAnwPpxNiz3nrrWevtqaeeai666CJr7IEL4Ui244472v2x/r7wwgvm9ttvt/v5gEwfeOCBljuBvn37mr/97W9miy22sMdKQ8r1ckbskRyiyU1jhoMJXkDmL0TUcfHQQw+ZP/zhD+bmm2+2WcUgxMxuxo8fH+hFL2CmxPkw2ZcbGLCxakeFzFplWV8QpJcVsimOYvwGaxkOW9IhQB5cDY+rm8Xayu/CHiwspxA0CfOUprTGYinORnqoB6zOXLNYq/MFnRuTMeQR1An1wwQhCetvpcDNXuZnoeMZEWsu1naJpiBaNN+aq1AocgPPlRhGRAYkBhG+a9mrl9nvnXdCE6/U0oz++mHe4Z/a9++fk9Ts8MMPt+MdxJKx4IsvvjB77LFHrX0gutnILIY1V67Gb+jTkU0x8Wb8GzFiRM33jLMY4ThfEPAxEn8jgcglSC2/zjrrxL5Wxa+IPQpQ6RLFwAWDSi7aj6uvvtqMGjXKmvABpPbpp5+2M6Izzjgj8Dc8dMxwLrjgAvPGG2/Ywa6c4EoDojysMogHaWYZyN3Ys3RAPMA8aEJkec9nktLVj1Ur7zkeDl2ZHK/oJAizxUMdxXGtmEA6kC35hECSVRQikQIdG22QehPHOiHW6gCVX5xcX/ssaYElFTOTK98BTYgur1r/iroAIUVCSoM2IalBpFRCNvnhn9iatW5tmlevlKb9eWK1+PnnnzfvvfdepDTtxQRjJlpc0d66yNXZWZEHme3Zs6fVoPhLucxy4s4sGJBGjx5t49YKIF3bbrut1eKGAXM/VtsjjjjCktlMkHhtAjR7pUZcB5hMZBayyvGERIm8AALL4E59suyC9VUIVlBMW76HyLIEHxbzVrS2lAUCl8lyXqrEBHGsdEgp8kmkILF8qWs6I7ejh2QFZU1T5AfucVAYMYmyILEZaevimexagIXkauYzRRohTk20ZXkNI6ZBz4aQUtlkgud+lim2qGQMlFW9cgL6VbjBs88+a3r37l3zObzk3XffrbXvO++8k/V4WFLF/0R+gwGH8UIi1Lz11ls1XIhx4P3336+REfggcypZUgnTqEgBmUUScNxxx9lGzwDCDOif//yn1YP84x//iHUsiAAPpj/o8/+4EME53oBoUiDUUUC5sOCWs2VWMnT5ZFZifrqhtnjPQM9gLg5jdIg8hJkkBDyw6D3RPqOZBRwTIbss20NgIbvSyaYp3Ig4pcWBm0ghLPpBGKiDb775xtYlUgX3Pspgk6b6qUsOaD64F0JyWVngvTyDEjNXSK6GE1MUctk+m6XUt5KK0cLfaJfu/xLwXrESn376qY2qdPrpp1t9K5IvwDONJRQ5AJGX8K/BcptNYgDoLzCYnX322VbWiNMYzlrUPUahY4891mpjGSMxZuAAxljCb4JA2TbZZBN7jCOPPNIeA3KLHOKGG27QW1lsMstNgPhwg7lxBxxwgF3ave6668x+++1nkgQD0cEHH2w1u1G1iFh9IeACZp2lSGnqws3MFUdmwOZ3fjxYMjBzbUJcxfGL2SIPjcRXZRIStKzOMXgoiYAgYF/0QYQm4Tzcb6yx3Ic0LeHI0rPvYBQFuSRSoI75jV9ffkQFRTpA2w1zQJP0vmKRkuDm/Ma35qoDWt1BlGV72TIt27ubrAj4VlJF/iAkFuMTMgM2Ac5VRCOAM0BGcV5n5Rf+giNXJmyzzTbWSUvCe+FsjkOZAJ8h2gichDERvyGIclASIzBgwADz2muvmbPOOsv6+tBusCATAkyRP+pVham6I4DGA2nKdbkZAoJF7JFHHrEOZYKRI0daQvDkk0/W2h9rLHpdd/lDiBwDDU5j7vJCECRgPlbGICJSrFmkgIclm2ZTgtN36dLFeuHLsgbvJag9FkJCf3AsnJsgW3htso8sgUNMeeV++VZDrIxBwf25x1hqsXqy5ILVnONQlrQkyZCUvmGdSDbgCMZ1R0mkQKdGXWGNDbJw8zgxi+ceKfkpX0j2MzetpBtOzCW6SkrSi6iENOqyfdBWSSlBGWvwi0FOWJe96w899FA75pZTlKRKbHNx+FpebsB+dqC4YFAYPHiwjecmZJZOhf8xxfvo37+/GTt2bK3PmGExK8IyXGqLay6IY5kNgoj2Jb8zdSpOXpLCVn7LvYL4BZFQP8KBgN9geaex8SqarrQQWUBDz0dAD1GH9GNtzkRAmbhhVcdSHXb9oitWIlveCMp+5oYTg+C6Dmh87mdAUwe0wkCX7RUKRTZEIrNYQ6POPD/88EMTB0gAsMRioiesBaG50HZKdAN0MMSPQ/sKSVh//fVr/V6Wc/3PywVxNLNBBNdNpCAyhLAQXAzMkDH/nOyXiZxKKCR0qQzgaZIYQB7zXQKOkkiB7yTFbqZzhaXSVVQGXGeyIMIlllzfAS3ImluXoMv2CoWi5GTWlQAUGuhFWOZFy4Joe9CgQVacLU5hpMSsZCtXrpZZcfpiY9CE8EJWZVBlf5/MovUMOh8DL8chjWxQ3FW+h8CiERU5QlqAZSxXeUFQIgWO5RINSU1LG8Qim+l+iYW8Li/P1VXQLiScmJ8VTzTdkFys+0wKZVnbt+am3QGt0Mv2Qd72ldzfK8oDJENQVCCZldRvSUFSugUB8XYlN7pcLLNCWN3YgPyPgwuWUyGtDJ7uMilyDPbxY6uiS+H3EN8gz360Q+hsOVeapBzipZ6L45cP6guSTqguIfTUCVnO0OpEceiSaA8KRdxwYmw8n64Dmm/NLRTJi7psH5SURb3tFQpFGpGTZhZyg9MWDkcSmgJ5AdZUSSmniIYoA5RrmZXoBUJmRWbAIIj1FCuqWGYZIMVqyTH4H+cwN0Ys+0JgcZzjWL5nfxrDcLkkvJBOfESBQCYgy8MQWdp0VF14vtpdRd0NJ+YnIOG5FGsu7ZxXcUBzw4lJnGn1tlcoFHUZscks6dgIbYEFCq9tsndBZh977DErCbjnnnuSKWkdhmuZlVizEEyxzMqynhBdyfQlWcAAkQggZSyBSupaBkfIK58JWYUQM1kREpy2MFw+eWTpv5CAvEJiAROzqCQesgGx0CVSRSHAc5stnBjPNDIb2pws4cur6MhzibQgTp5iJVbUHcikSdqAQuEjrdE7ckqaQNgKAgS7JGennXayMWcV0SHZtLKBTkUyW/mWWZEZALHIiiWVwU6OD/GDoIoDC45Tkn7Y1ZwyMWGSgsWTY2MVCtLRpqHTTSJLDXVDHWApi3PsQml3FYowQDJ4pnluWU2R9irPuCsfUCKqyAW0G9fSr1D4kEly2ZNZ0rXdcsstq3yOFUuybiiiIWpg/SCZgSQJ4HMhsbzyvWhmpcHxezdZgsRtE7LrLqPzP1IEtKNIEVwinSYgB4B0JoG4ulfqSGLwKhSFgjy3Ql75nwkwKylEzNBVAEWhQXtjNS4sm55CkVbEZikQIqx1PiZMmGBJkCJZmYGQWUlXiwWVQQ5LLCSWDkgCvItXteSXduPNQlYllJc/y8IqiaUROUKpEksUy/GrEKDzp57SuPSiKB+Irp2IB5BX2rmQVzettEKhUChqI3bvuNtuu5kLL7ywZhmLARytLHmH99prr7iHq9OImnzNtcyKRlYcRACDnpBZBj/R04p+llBArrVR4l7yfRghxMoIoU0jmRXymBagMdYoBopcLa88n/ShhIajLWEwYKWrR48eNtNetmQeCoUinUCyx3hL9tI04K677qrYVOuxe8irrrqqJoUtFj9yH/fp08d2uJdcckkypazgwcyNORnHMivWSTkOFlkILmTWjVpAXFiIlh8WiP+5f74XtQCyS6rdNGpj0kQemVBwT9IoxVCk0/KKRIaU0JBXycjnk9c0PncKhUKRVsQegSERL7zwgnnrrbfMmDFjLLHdaKONbIQDRXYQPQCIpZVEBZDKTF75vmYWa6tYdcXzVPRNEoAcKUEmMiphgTIt1aeRoCXl+JUr3MgPCkVQ6lskQRIyj+cT2QBOlWl8vhQKRfEgTpvaF+SPnNeuRowYYf7v//7PnHbaaUpkY5IfIHpV9zMfWG3DLLNAEiBAbiHEYqEVgpqJ8CETwRpUbsuXaYoaQH1DUvyMT4q6C8grbZRJK5ZXnmGeQ8grlldekcjo4KVQFH4539+23HLLmuV1YoBj5Nljjz3sCrO73E6EJj/T6cknn1zze0Bm0s0228z+DgfMXXbZxcbad/Hee++ZDTfc0K58DhkyxHz00UerJIGiXM8++6wZPHiwndy++eabkc7Pe0kwhVGRJD/nnHNOLbniTz/9ZA455BA7RnKtO+64o/nyyy8z1t2TTz5pDZKUuVevXuaCCy6wnKLcENk08L///c92zNxAATFlyQ7GgM6NuP7661fJWa4Ih9sIGfhIVuACkstDE6SZ5TMaK4Mm34lcQR7qbIDMltu9SlvUAFYlILLq+FV34VpeJSQebQK5gBJWRSVg6YIFZva4cUU/b/v+/U2jiAlryEzJKqeAyEqsFm+++ebm3XffNUcccYT561//ankKpDSXrKY844QmHTBggO37zz33XEuM0cNiFOIz+NF2221n7rvvPjNlyhRz0kknBR7rjDPOMFdeeaUlj3GMM3fffbe9FkjzBx98YI466ihL0keNGmW/hxRDXp966ik7acaXibCpn3/+eWB0ijfeeMOS37/97W/mN7/5jSXnHLMYmV9LRmZx+mJmIGR27NixtlKpvHXWWcdcccUVpmvXrub8889PsrwVA4gZzh+uU1PQ8kOQZVZCcUFm+Y4HQogpZC9KiDSJU1tOSFvUACYbkBZF3QGTQCGvvGeAgLwywdJQRopKBET23sGDi37eg0ePNp032ijSvoxl0hczrkJahw8fbvnIQQcdZHbYYQe7igz69etn3n77bUtq48B3cL/jjjusbwpEcf311zcPPPCAHY9vv/12a+Vcb731rLHp2GOPDeRTkN64gLRfc801dgxce+21LQ/j/1GjRtWQWCSgm266qd3//vvvt7954oknzD777LPK8bDCQqxHjhxp/4dLXHTRRbauKpbMMvvgIgUPPvigGTZsmLntttvs/1QYF69kNjtEKiAElcHQX+6XwNVBmlmsQRJXlt+6FlasQxLlIBvSQgrjkMdCZ/zKFaJbVgJTt8gr1laeOQaxNKZ4ViiSsJBCLEtx3lxw+OGHW8MHvj2Ml1988YW1oLqA6MYls5BFrLFYemfNmlUj9yMSCWSW82C1dZ2tOU8QkCDkgk022aTWuM3xkUwsX77cnp/+CV4mYGUX0st3QcDvCfLrOu9zLCYEhAeMmsq9rMgsWgx3efe1116zegzBxhtvbD10FdGRaTAUxy7fgsrDifWVzyB3fuIASBabS5Z98F25EVkIumQ8SwOo+0oNcVKXwbMj5JU2p+RVUdfBUn9UC2mpcfHFF5vnn3/eLsPHScPOWOmHyvSz6O26665WCogBj1VoxlFIbFTjkQvfzyLK+ZPAvHnzrHV2zz33XOU7PwJSxZBZiCwaECyw3LwPP/zQVoJAsoYooiMoJJd8xqukr3Qtr2LVhYwG6UcZjHEA4x6FNUZZHi0npM3xi/aOQ4+ivMHzggWCTl0mTJJhi8lmuU36FIq6ikcffdQu3+Nc1bt375rPkUFiTXXxzjvv1PqflZZPP/10ldVoGSfxSRk/frwlsmhLAY5bLjjPvffea62aMvb65wlDtvMLgq5Dohats846tj9jH5EZSLnXXXfdwPPi+MX3hFctd0R2ZUdEjLYCwfCZZ55pzc9yU8Enn3xSqwEpVoU/8yLepA9iw7IJqWWgDSKlfE+MWH+whahybzLNFvmunJZIqbc0LXn4GdUU5QNWOshgiLMIzpK8MgBAXrG6MFlntYMJpN5fhaI8ABHEkQmHJ7Sq+I2wMcaeeOKJVlKAwxVSgRtuuGEVicHWW29tHapwamcfJJMuucSQQh9x6623mokTJ5qXX37ZOoO5OOCAA2yfgX4VHe0zzzxjzxkF2c4vQNLAeSGg//znP63TvTiZ9e3b1/zud7+z54doIyFAL0zUIj4PArIJzolh8rPPPrNyBCSkZ599tqlYMoteliU3kiQwO2FzCRFi6N/+9rdJlbOi4Q6akFGxygLfMivgsyBLJQMzlqVsZLacLLNYQVkySgu5SJOVWJGdvNJ+hLySRIRnjPun5FWhqAxABDF4IDMg/J1sLJ+jM4WvXHfddWbgwIHmv//97ypkbfvtt7dhrnB8QjJJnwE5dldEIXmjR4+20oJTTjnFOr27wLj073//2zplEZ7rrLPOMpdddlmk8mc7v4DP4ARDhw41xx13nCWyEn0A3HnnnTbkF4766GnhEZDqsPGe8/7nP/+xdcJ5qSscyvzISuWAelVRc6pWA6shN83XLjID4vO0W/ywyhCjjesodkpUGiGhL9xYsUAsrDQgBlsaHlZIBl8mEMy4XP0rMzYIa8+ePVc5ByG+eIgRqKPrCQIzVvSe5aKJYTbKtaQh1BHkCA/VcnzY6wK4PwxqaF5Z7uO54VkRR8m0TIgUijSCZwY5IWNLuYwPuYC4s8RxDYvxnkYQTWrQoEHm2muvNXWlzf0Sg6/llAEsCL4jkmJVQE6zQUTfEF8hby6RzZb6FkCGM4nHRWbA7C9IqpAmSOSGNBBZwEOVllS6ipXPg5BXnhmeFSaC3CP05Glu2wqFQqEoDNLBEBQ1gIRC4BigIaX+YCxkVsJ2BSHbAI4xnvNgBUZ4nuaJSNrSxTJTJEi1Il3klVl7p06dlLwqFApFHYSS2SLCJ5kQyR9++GGVfcQa6aamFUioriALLd+JFZffZwrPhQyBpXIkB+hR06ihlXSx1FNalkOwaJdbCuByhmR9E/IKIK+0WSWvCoUiF5Dsia2cQCpcRTiUzJYAQkT9pXN0x66eFkLqakj4Xrzog8gqzl9yTJEa+M5jblYxjo2+FucYvLhdsr148WIb1gMPzlKlvSVcUppkEOr4VbzMeNx7Ia+0edoBk5q0tAWFQqFQpAdKZouITAMxpBQrrWuJZX/IpIDvxakLCyGDvhuuyiWzEFAIqU9EsfpCcgnXIftxTlnOxxqK1RYiwbkhuugPcRgrNpGAPIY5sZWCZFGfvqVckR8kljKWV+QDgDrGYatjx45qBVcoFApFViiZLSLCAkcwkEMYhYxCGiUDGPj+++8tsYSEsvE9ZBZiGkZmhez6cK1dAkiDRE6AyEJq+YzzcHxINB78EMtiZeCS60zS8Uu0w9QjG2SV/+U+ca3UI1ZuvodguamFFbnVuVhehbyyQiCJClTCoVAoFIq4UDJbJECGIJthA7yks4NAidSA/1nqx+lI0t9BBERP68eShYiJLAESxu/k+ELAgtKw8h1yA86F3MAlkHyHNhHiQYgsyUkP8XMJoAvKT/ncjd/EIcKFWtLn2pFWuOXlVQirlI2NOuZ/uRf8TizZRDGA2FMHAvmte4y0pNtNG3kVyyvtWiyvSl4VCoVCUQgomS0SMkUfAEKCeHXJKhu/Fc9tyBjfIw+AYLnwNbPsS/gtLLsQQ4gE+wTFa4MEi/QgCBA5vPg5FgSF80PexHnMtVZSXrEis1F2uQ7KwfkzWTdzcfwSwipklU0s29SplBciH8WJS6zCbGIB79atW6BVl1cmDu45xXruEl0hypUM6oV7wP1jE2025JV7r2RfoVAoFIWGktmUQEgOji5YJV1HLSGzkALJHw/J8gmyS2YhU1hZSb0H4YSE8iqkKhdwXiy4UfZj8wMgU14sw0gaILSQmyByBwmC/GQivOLlLo5CQljZOHYhraRBVmIhq2FJQiifEF1eKacvYagUi66kG/bJKxOHcr4uhUKhUJQHlMwWCdmSHUDqJHoBZIzIBUIAxUkGMgppELLoQ8J2CSCwXbp0sb9HA4v2FcIbRBJlWT1JjSplY2mZuLZYMlmyZ8mZz9zzQh4pt18+IYWQJv7nt0mHaBKixjnigPvJvQzKoiN17cYUzma5///2zgVcpnL/469OThddkELkEnILuSeEJFQiJUnIpZIKKVIUJVFSOhR16iBJpRNKFwkpd5E6yo6iSLkluqhznJr/83n7v3PWHjN7z+zLrDV7fz/PM3vPzFqz1pq1ZmZ91/f9XYIM+55jgbMv8SqEENF/J+fMmWM6dOig3ZMLSMwmCdq1ZQQulkvm8rqVTmAierxJWy4cIbI8lxN1vA7h6o2PRWwgBKNBXOPu3btNuXLlTG7DNpLwhmhHyNG8wQld3itiD9eS7Wd7nauJg4lznUzRlBvlwbwhDKqOIIQQuQf1ZBkRnDt3rnZzHkZiNiAgzpywQYg6kcp9VzPW6/K5JKtotWSBuMVIVxARhTCLBstBOEa6u7kJ28NwNDfENAlobAP7gVAEtoNpLunMD4JUHkwIIUTuwDkwiM2DRHzk7WyUFMVVMsC5c6KWG6LVhSN4y3O510Q2PUik2QFfZNxSVwEh2SC8nWglJILuZMT8EpLgl5BNRnkwIYQQ2eeVV14xNWrUCIeuXXjhhWbw4MFm+vTpZt68eeHzJp20MEu4/9JLL5lmzZrZ88/MmTOtodKlSxc7+sdIKcubNWtWuvU0b97c9O/f3wwZMsSenwiJGzlyZLp5tmzZYs4//3y73GrVqpmFCxfqEOcyOksHEBc/iYhClCJgXecvF14AXjHrTf4Cno9WtSAWzM8X09WZ9QPCHEgw86vjWCTRypgJIUR+4vChQ2Z/WlrS11u0ShVT0FNHPSNo7oMIffjhh83ll19uq/h88MEHpnv37jY3A5Nm6tSpfy63aFEb2gZDhw4148ePN7Vr17bCkxHCunXrmjvvvNOeP9944w3TrVs3U6FCBdOgQYPw+hDIgwYNMqtXrzYrV660oQyNGzc2rVq1ssZSx44dTfHixe10qg4NHDgwl/aScEjMBoRdu3bZKzxv3VbEqWt8gFMJfMFc4wPELDGd0cQsr2N6vDGZ3jCGZIYaOFxiW1CELM44+xaXWAgh8isI2Rl16yZ9vd3WrTPF69SJW8xyDkREunMlripwDuS8GplUDIhMXuPljjvuCN+/9dZbzYIFC8zLL7+cTszWrFnTjBgxwt6vVKmSmTRpklm0aJEVs++++65JS0uzr3Mhag8++KBp27ZtlvaDiA+JWZ+ITCjCEeXLxhUlXzxA3LmGBy7Jy9sAwcXMRov34eqQ6gXxuqyucQPVAbiKTaY7y7qpvOCt4+o3iGuGmdTtSwiRn8EhRVj6sd54qVWrlmnZsqUVsK1btzYXXXSRufLKKzM9j9WrVy/dY4wchCfidefOneFGO95Om07MemFEkXMYbNq0yYbIeXMtGjVqFPd7EVlDYjZguOYCgLMa2T6Vae6x61QV6ay6VrhuWYm4rDi/fImTKWYR8PxYBCk2lcSvRMtxCSFEXoOh/ngdUr/gHEdc6ooVK8w777xjJk6caIYNG2aH+TPCddZ0jBs3zjz++ONmwoQJVhgzHfc2sttmZKKYqywk/EMJYD4Ry/FzXxqX6e+SvhyxxKk3zMC5tVQucCEJGeFNHnPLTlbdU9eyN0jD+bx3bn4lngkhhEgMzmHErd53333mo48+sr/f1HXlf7zns+XLl5v27duba6+91rq9Z555ptm8eXNC21G1alWzY8cOG/rgWLVqlQ5nLiMxGyAQdYhSiOa+gqtyEHlF6A0zcGEKJC+5mNuMiAxRcKEGyXJAqaIQpDavSvwSQojUAQeW8IAPP/zQJny9+uqrNswOYUnt9E8++cR8/vnnNpzPmT3RIP7VObyEC9x44402MTkRqKJw1llnmR49epiPP/7YJqLhEovcJTgKIp/B1WJkAwO+ZJENEHBKEauUEiEhifsulhZccwH3vNfdjdeZjRSzhBow9J/bcLVMpqdf1ROiwX5FyCPohRBCBB/OWe+//765+OKLrZAcPny4rVJA0tX1119vKleubONjKf+I+xoLXlenTh0bd0sJLvJYEu3YxTkcR5hzL0ljffr0MaNHj86BdykyIjhBivkMJ5q8eAWpd9jfxcAiMBHBPMcVJnGmiNDIeB7cWL5QOLjxDK+47loOb6hBblY14D0QXhCkJCsuGAjvCJJTLIQQIjY4sG+//XbUaQhY4mgj8Y54OijblVmnMOrURhL5GgQ1jmxm6xM5h87YAcIb94q4RFA5MUt2PQlJOIY8hwBFtHorGjgQt85pdV3EMsI7f7JCDdz2x+pI5hf79++3BbeFEEIIkRpIzAYIBB5i1rmqkWIUZ9a5pQhfYmMRoYhCr4OKi+sqG1BjL7O42Wht/HI71IAyJojzILmyXDA451sIIYQQqYHErE9EE0w4pIhYJ/BclQEnZnFKnZjFrXUilKFxxC3/mc4013wAUZtZ3Gy0cAIXq5sbQyOIa5Ybb0OHZOHCHoQQQgiROkjMJoFo2ZM4rsTnRBOVzlUlOYr5XP06/kcKT9fyFlFL9iaZnNx3YjYeZxaiOaQuuSy3XNkg4dztSIdaCCGEEMFGYjZJcZiR4Ew60ZrugBx1VDj5iGFvMv2d0ESgUgHBiVn+47q6zl0s001zogyxm5Egzch5ZX2uzFdOgXvMUH7QarjKlRVCCCFSE4nZJBBZgsvbPjYSJ1xxYBGk3pqyiF9XqcCJTdxY5uM5/rvKB16nNaMkMG/SWW6LWbaN7SW7NEgQ3uENzRBCCCFE6iAxmwRwWDMSs96apk6Eel1WrzPrLeHFY5ZNKSnmx+1EKEaKMpon0JAh3uQvB8uLLPuVHQibcNUYggT7RhUMhBBCiNREYtYnYjmzwPOuYUJkzVnu487ipuLUIlRLlixpBS7ik9qzPPaCgMQdjubOIlZjDfnnpJhl++j2FRkn7Dc407xH9psQQgghUg+JWZ/wOq9eEKqITq+YdbhEMNxYpiE2Ea7M6xWlkclcPEZERovdzciZ5XU5Uc2AZezatctuQ9CaEbBPgiawhRBCCBE/wVIW+QiEIpUGItumIi4Rf14x60Sqc1ZJ+oqMc83IYXV1Y1073Mj1ZZTB762mkBV4Lzt37rQu8sknn2yCBO8LxzpojRuEEEIIET8Ssz4Rq8aqS97i5lxMNwSOmHVxspFiNqNELmB5VEaIdGczE7PZSQLjvXzzzTdWsAfR/STswVstQgghROpx3XXXhc+b3lubNm383jSRJGKrH5GrOAGFyMO9pNsWYtQN63udWUQswhbB6ioaRAtRyEyU4Yx+9dVXNtnJO29Gr3NiNtEGB2wzQpb3F+k+BwH2M00oypUr5/emCCGEyCYI16lTp6Z7ThVq8g8Ssz6D0Nu4ceMRJbScmOWxt4Utgpf7Xhc2shRXLJiHygeJDK3zY4DoSwS2d8eOHbayAusLIlRWIPRCrqwQQqQ+nKtKlCjh92YIn5CYDRCI2Uhndvfu3dYZdc6sazjgFbOZxct6ofoBHbgQs87xzYhEKxoQtoAjy49K0NrVOtjHhBiULVvW700RQohAc/jQIbM/LS3p6y1apYopqCozIk4kZgMEYQC4oAhMXENiWXFREbFcdbowg1KlSqUToYmIWeZzbi/CM7PXOXc4HtgOkr1OP/30QA/vkAiHYxy0ygpCCBE0ELIz6tZN+nq7rVtnitepE/f88+fPP2LE8e6777Y3kfeRmPWJaMPbTmjiHBIXi6BFwHrDDBBgkW1wEZHRWuNmJJoZZsfdzSj5y7utrsJCZkIWoR20VrXRmiScccYZfm+GEEIEHhxShKUf602EFi1amMmTJ6dfRgATj0XuIDHrE9FcQQSja0frwg28/2OFBSAkEb7xwrzbt2+38brxCE8Eb2YuLlUSCC0IupClEgTCP2hdyIQQIogw1J+IQ+oXjLZVrFjR780QPqFxVh+oUqWKOe2008KPGRopXbq0dWNdTVcnXgFHFBGGMxtNhCFm43FYHQhi5me4PZ7XZVaei22l9m0i7rBf7Nu3T61rhRBCiDyEnFk/dnpEPVhXUxZB6A01QMAyzevURjqzTHPtbxOB+qpbt26Na7gdMYvQjlVii2kkewW9MoAraZaI8BdCCBF8MFzoNBl5ri1WrJhv2ySSh8RsQEAIuja2Lkb122+/tcLLm4AVKWYRwFmpGsBrCDeIJwkKgZ1ReS6mJRLm4KcrS7kwIYQQeYu3337btnf3UrlyZZPmQyUGkXwUZhAwMet1XIlTdVUBnOiMFJ9UO3AdwhJdX5kyZeKa18XMRsM5yEEtw+UNxWBbg1xlQQghROJMmzYtnHPivUnI5h8kZgPozLokMHAJVU4sRsbMZtWZTXTbXJhDtKEdYmWDHmJABQM6nwkhhBAibyExGxBcbKy775K9cF157ASrc2Zdghj/k1EvNVa92VQIMWBf4sxmxcEWQgghRLCRmE0iGbmXTpC6eVxtWZKueM6JWjedzmDUdSWRKxnEqmhAiEHQRSJlw1RvUAghhMibSMwmkYyy6L0VDly8rNdx9VYLcKWwqERAAwS/xCyPCYMIcogB+5K44sjOMEIIIYTIG0jM+ozrrOViYb2C1d13091jhKxzapMFojVSzKZCiMEPP/xgXdkgC24hhBBCZB2J2SQSTVBR+9TrbnLfJVvxHLGeuKLcd5n4tKJNliPrYN1sixccT7quBBX2YyoIbiGEEEJkHYnZJFKuXLmY1QAcOLCuSQK3AwcOhF1ZQhGYxmuSXWKKkAeXoObtOhZkx9OJ/iBvoxBCCCGyh8SsDzGziCxv21ontooXL25jZb2i0XvfDfV7E8GSibdEV9AdT7aTEIPChQv7vSlCCCGEyEUkZn1gx44d4fhTr5j9+eefreD1VgfwlsNCzDKPqz2bbFivCzVgO4IcYsD2kfSVjLJlQgghhPAPnel9xitmiUGNdF2pkeoeE1qAI+pXFytX0QD3mJCHIAtFmiSoHJcQQojcpHnz5mbgwIEZzsM5fO7cubl+IL766iu7rg0bNmTYLS2REUvCIydMmGCCTnDVSB7l7LPPjilmnRPrFYkIR1fpAGeUSgbeGFs/xGzQQwy4KGAfRXZLE0IIIZLNd999Z9q2bZujy7zuuutMhw4dEn5d586dzebNm+Oef+3ateaGG25IujBPFIlZH9m4caPZtWtXOjGLePW2jvXWm8UN9VY1SDYuZtcN4QcVta4VQggRFEqUKOHbeTsSatafdtppJl5OPfXUwDdGAonZAOAVs97yV65Vrbc7WLFixXxzHBHTiFnvNgUNSp2xfzJqUCGEECJv8fbbb5smTZrYIfRTTjnFXHrppebLL79MN/z+8ssvm6ZNm1pBV79+fetQ4jzWq1fPGjS4p3v37j3C/bzvvvusqGNEsm/fvkeUqSRRe8iQITa0DeE6cuTIdNO9bqbblhdffNGcd955dhSREdulS5emG6Ht3bu3KV++vN3WypUrm8cffzw8neVPnz7dzJs3Lxya+N5774Wnb9261bRo0cKK0Fq1apmVK1dmGGbw+uuv2/3BtqAxLr/88qhhBq4iE9NZJ495P+iBDz/8MN0yeU3ZsmXTJbHnJv9rOyWSitd9jXRmEWNeN9YrXql44BduO4McYrBv3z77oyOEECL7HD50yOxPS0v6rixapYopmIAjSHjZoEGDTM2aNe3o4b333mtFlzd+dMSIEVZklSlTxvTq1ctcc801tmU8QhHhd9VVV9nXTZ48OfyaRYsWWZGHWES49ezZ04rl0aNHh+dBWLLu1atXW+GICG7cuLFp1apVzO0dPHiw3ZZq1aqZRx991LRr185s27bNLhsBWLp0aTN79mz7eMWKFXaov2TJknYb77jjDrNp0yYb8jd16tQ/91fRoubbb7+194cNG2YeeeQRU6lSJXu/S5cu5osvvkjXadTxxhtv2P3EfM8995wV6m+++WbUbUb44+qyzjZt2lhtwvn2wgsvtM9xUeDgMfshWcaXxGwAiIyZdVdarvNXkFxQvlh8+YMIX0IuEoIynCOEEKkOQnZG3bpJX2+3detM8Tp14p7/iiuuSPf4H//4hxVan332WTgsDhHYunVre3/AgAFW5CFWEZ6AG4pzGRlex7IQu9WrVzf333+/FaKjRo0Kn5sR0AhlQEBOmjTJLjcjMXvLLbeEtxnxjLP87LPPWoeXkUXcYAcOLSIZZxkxy/vBsWWkFCc4Et7nJZdcYu+zHLYbMVulSpUj5kWUX3311enWh5sbDWcU4ex619unTx/rWCPKOf+uX7/e/Otf/7LOcbKQmE0SkW6h15mNVsfVK2aDlMgU5LqtipUVQoicd0gRln6sNxG2bNliXVXcUUbo3PD29u3brfvpRGfkKGeNGjXSPbdnz550y0XYeWNGGzVqZJ1fSmwyjB65XMBBjVxOJCzHgWOKq4nb6njiiSesiGb7SfzGrDnnnHPi2hc1PdvDtgDbE03M4lxff/31JjsQinHzzTebOXPmWGHMBQFhDtEaReUWErNJIjLgOjLMgPACJ2a9Tm3QnNmgQgkzvuypEKguhBCpAkP9iTikfsEwPeLy73//uzn99NOtmCUW1Rvf6s2lcOfZyOeyEuMZmaOR1eU4iKfFXR0/frwVvYyGjhs3zgr1RLenwP+/z1jbg8ObXXCvu3fvbkMLOnbsaF544YV0Mb7JQCrJJ7xili/bzp07j+jq5RKtguTMBpX9+/errqwQQuRDGJX7/PPPzfDhw03Lli1N1apVbQfInODjjz+2zqhj1apVdpj/jDPOyNZyWY7XjFm3bp3dbli+fLlNDuvXr5+pXbu2qVixYjiZzSsgvU2VsgouLiER8YJQjrZeQg3effdd8+STT9r3g6hNJhKzSSKj9rNff/111KsmPjQEdftVVzZV4ItF8H+Qy4UJIYTIHYoUKWLzOZ5++mkbG7p48WKbkJUTYDYRS0vsLYlRxMYS75rdEVPCCBiWT0tLs0P0iG+S0lzcLdUBFixYYCsu3HPPPTb5ygtD+J988okV8fv27bOju1mB9zNr1iz7nzAHYl0feuihmPOzXsQvZUW9FwwI8XPPPdfceeedNhY5JxzfRJCYTQJnnXXWEc9FxswiyHiODzEgYLlx9aUwg4zhC4Xoz+iCQQghRN6EcyRD87ibhBbcdtttdlg+J8Dp5bx8/vnn24YDl1122RGlt7LC2LFj7Y2Y3GXLlpnXXnvNlsWCG2+80TqbrK9hw4bWecal9UKcKyW7iLU99dRTrZub1Q5mVE1g/cTkXnDBBWbNmjUx5yf0YeHChdaZxjX2guhH/DtRnkwKhKJlIuVhKGVx8sknm4MHD/pWYopmCYUKFbJuooNQAgQtXxoXOM7VptzGjMHRxtnmalFiVgghslenm/JQZM9rRPDPOrMHDhzI0Y5XlPdi/3700UdxJ3SlCqNGjbLCGMc4Jz5zieg1ObNJgkLM3mEAr5AFF4NCliRXmWQ3qsRU5vBDQ4UFCVkhhBAi+aBbMOkoSXbrrbf6sAUBEbPEjuCsocqx1DOyuMlUpIMHriU3ivVmNH9Q2L17t70CyQwsesQsNdzUxSpjGFTgio0rNyGEEEIkH2KI69ata0MW/AgxCISYfemll2ygNsHHFNolfoSixrFqtNGFg+DiJUuW2CLCxG1cdNFFthpAXgCHFjErpzFzGIKgZIliioUQQuQ01EvNyRADwLjDiMlLIQbTpk2zDRzQc35VX/JdzNIxgkBmWsRR2HjKlCm2VijFgqMxc+ZMGwjNB4ECwM8884yNm0yktISfYMVnBCUtJM4yhx8Dl/glhBBCiPyLr2KWIXWyDwkVCG/QUUfZx7iu8XDo0CEbixpL1HC1gIPnvfnFN998k+k8iFnVlY0vRoeLHgl/IYQQIn/jq5ilNhrD6q6tnIPH1DCLB2qa0e3DK4i9jBkzxsZUult2Cx1nh2iFhr0ZeoQWyJmNDzVJEEIIIUQgwgyyAzXaqKMLrs4AADJ/SURBVC1H4eFYZUTuuusumyTkbvRTTjaJdOlwMbMiYzee+rtUfBBCCCFE/sZXNUCBYIbUyfT3wmOy+TPikUcesWKW9mm0Y4sF5a38LnFFV41YRJb55bHCDDJ39EuWLJlDR0cIIYQQqYyvFiDuGuUcvMlbLpmrUaNGMV/38MMP2+K8b7/9tu1+kcr89NNP4fuugoGc2dhQ3gyxr7JlQgghhADfx2kpy9WjRw8rShs0aGAmTJhgGwpQ3QC6d+9uSpUqZWNfgZ7B9957r3nhhRdsiQsXW0unrLzSLUtiNmNXltZ9QgghhBBWN/m9G+g9TMgAApVyWxs2bLCOq0sK2759u/nuu+/C80+ePNlWQbjyyivtULO7sYy8ImIVZhAdjjthGH6HjQghhAhW21lGNt3tlFNOMW3atEnXVpWGS9Sxx/Sia2Tt2rXDJlkklP3kPBNvIrqDpgEDBw7McB5q5F988cV2G6nIQ0nS22+/Pa5a+dTZ5/3R+TKScuXKWTPQCy1zO3XqZPUUeUWVKlWypVA3b95s8hq+i1nXPeLrr7+2ZbRWr15tu4B5Dx4Feb19jRE0kbeRI0eaVIYvFx80BK2c2diuLHHWQgghhBfEK8YXN0IVSRC+9NJL7TTq1iMy+/fvbw2z5cuXmyFDhtgSj5EsW7bM/Prrr9Ywmz59eo7u5KeeespWXiIn6J///Kf57LPPbG19ktPHjx+fo+uaP3++Offcc62uoj4/uTvPP/+8rep0zz33mLyG72EG4k+42sKR5SYxeyTUEqZs2XHHHaePjMg3kENAhRNufP69/92N3w7XNdD7P9pzsaa5mxCpCk6qSxzn/9ChQ03Tpk3N3r17zWuvvWauuuoq07t37/D81atXj7qcZ5991lxzzTWmWbNmZsCAAbb8Z07VmUdMc3vsscfSOarnn39+VLc1OxV/evbsaR1gqj05ypcvb83CnFxXUJCY9QFasHoTv8CdSFRuKjrff/+9HZYRIlVhBClSjEYTqLEucvlt4D+Js+4xYpTlInpj/WfZsaa5+5FVVaIRSxhnRURLPKcOhw8dMvvT0pK+3qJVqpiCxx+fpdfiuOJCVqxY0Z43ELdLly61I8Bly5aN+TrOy7Nnz7YjxIQa4Jh+8MEHVhRnF5ZLqByOcKzR2ZxiwYIFdiQzGesKChKzAcGJWWJoRHo4wVPFILNybUIkW5jGEqXufyReUcp/bsSyecVpEB1Sb0iXVwTntnjOisss8ZyzIGRn1K1rkk23detM8Tp1EhpWd0ngJJGTS8NzfB5GjBhhOnbsaF3Qs846y1ZLwrUklMA7EkrdesL9nGt79dVXW6c2J8Tsli1bbJOknCgrWbp06ahurHddgCDPL0jM+gA/uIhWV/yfqzWH6qceiVxZkZt4RVhGjmmkAIt0TPnvdU35H0RhmhW8TmoyElQlnoMDDinC0o/1JkKLFi1sgjj88MMP5sknnzRt27Y1a9assW7sypUrzcaNG837779vVqxYYasoPfPMMzbh3AlaYmuvvfba8DK5T7jBxIkT7Yhqdj/TOfV7gFscuT3NmzdPt678hsRskuHKzPuh5kvGVVR+/PDFAyKDq2yV4xKJiKBYTqm7H/l942TmFaWulrG7r1j25CLxHBznmaH+RBxSvyhUqJANK3AgVEl2oorBAw88YJ87++yz7a1fv36mb9++1nEl/AAhTDLWqlWrrPj1xsnym4FjSxWA7IAjTNgCCWrZNa2IfY0MFTja0xGTdUFaWlqGNfvzEhKzSaZMmTI2bsfhXA6J2ehwhV20aNE843CJrCVAZSROmccLJ/hIx9Q7lC9hKiKReP5TFPO98iYdun3j3U/R7gcRJ/ipTBANSmIBZgkQTkAi1hNPPJFuvqlTp9pp2RWzhDSQlEbTJ28CmIOkrJyKZb3ooots5R/W5U0Ay411BQWJWZ9QLdnM4Uf1xx9/tHFOIm9m5kcK1Ehhygkp0jFlKJ8wHW+cqRCphN/iOVbsM99BN7/3u+g1WxIxXuIRwpGiOKvimRJUri4sJsikSZNsIli7du3MTTfdZE4//XRzwQUX2HhT3FHcWkb8cC6pljNjxgxz//33W+fWS58+fcyjjz5qPv3005gVELxQPYHyX15wYs844wwrYilFynmNhlCc26hy8Nxzz9l435wqz1WoUCHrTFNj9rLLLrMVFHCtSQp7+eWXbf1+3Oa8hMSsT7h2rF9++aX9L2f2SBiSYZgo6A5AfoYTHsl5nATjzcz3Dt3zPcA19TqmOt5C+COeuVAkR4HvY3ZahscSv5HnOW8yYLyviQa/NcS+uuF74kkrV65sZs2aZRo3bmz27Nlj69UTU8v7w7WkBus777xjihQpYmu+8nyHDh3C63P7q2rVqvaGO4uozQy6k3LzMmrUKDN8+HAb3kAIAE2eLr/8cusaI2iph0s31Jykffv2NjaYxhCUGkNAI6gR9C7sIi9RIJTPVBQHFIGEUCJ+NRkQdO4gu3DHjh3WWeIKzsE28UETf8LHkgYZxBTLeQsOCFUSF7khYjk2iFFOfJFD+xKmQqQWfKe3bdtmYzL5XqcKiYjnRF8TFOc5P37mfkxAr8mZTRJ8UPmSkOzFVaRKcGUMH2KuriVk/YPPK5U2nHhlKA6RymeXeCuKlOfXH2AhRHBItihMtvPskHiOjcRskkAAEGjuhl75ADO8QWyPeyxMeF+wX+RUJ3+/c5XM5xTxSggBw47EX5122mnZGnYUQohUhnJYlPqKRbTWuInC8llPNO666y5z9913+y6ej/r/BNugITGbJOhC4rImo5XSCOKHwy/YT7St1T7JXbiwImaL/Y2IBYZ5uPDiQkv7Xwgh/qRevXpHJHblNCRtxaq+4Kr6+Ok8BxmJ2SQRbbjc+6FUs4T/QSB+qVKlknRk8g+ECeC4Il4JH+AziXAlnAPnVSEDQggRHQwWbx3b3CAo570CKRjLKzHrE1x9eT8kig3931ANQ9te11okDlfTlKpx8a4kbhEmgHhllIB9nCo/UkIIIURGSDEkiUjhwLBuZE3N/A6CiwoPNJYQicFniQskhCv/eUyCFvGuJUqU0MWBEEKIPIvErAiMk/jtt99a4aVYzcRLZHGxxDAY4hXnVU6/EEKI/ILEbJKIFkSdKoHVyWD//v12CBxBJo78nBDv6qoMcB/Bz/6iBl/x4sUVMiCEECLfIjGbB4ROqsc+uox6leJKXyLLOa9UHXAtXGm/yH0hhBBC/ImamvuEt9UnAiUrkJFOj+lkktNxvuwH+mnTNzvVRXlWRCvvn+NI4hstF7/++mvbN5umEYhW9gvtDvlPowIJWSGESE/z5s3NwIEDfVsmv9ETJkzIcB7Ob3Pnzs2hrRORyJkNAAwTZwWEkFcUJ0N8bd261ZYPyalwAMQ4Yj5Vqxc4Qeq9Ifgjn+MWLazEFaBGpJ5wwgm2Z7jiXYUQInVYu3atzVcQ/pGaCiIPQbJOVkE0JbMiAkPeiC7iW3OiHt6BAwdsuShEnB8gLt0+dDevGI0mSqOBGI288b6oJuB9TiJVCCHyHlkdXRU5h8IMfIYEnlQRs4hYmjuQSZ9dR5gaqIhZivXnhCj96aefbLMFSnsRtkBlhG+++cYO2TN0H+3GNObjNbTPZRnEqvL+EJ6IURoK0HmFKguUDCtbtuwRt9KlS9v9wnvh4oRwAF7HlTodtRC2ErJCCJF7cC4cMmRI+Pd65MiR9vlevXqZSy+9NN28JNHye/3ss8/ax+RsdO/e3Ror/JaPHz8+oXVHhhls2bLFnH/++fb3v1q1ambhwoXp5n/uuefsupjP0a9fP1OlShVrGonEkTObJBBK0ciOyHHuYTIgrhMQZgjwgwcP2h+NeHHloxCIbDMiEnc3u3GyCE9CFVyClHNAvbdktQAUQoi8xuFDh8z+tLSkr7dolSqm4PHHxz3/9OnTzaBBg8zq1avNypUrzXXXXWcaN25s+vTpY4Ul5wnXaXP+/PlWNHbu3Nk+Hjx4sFm6dKmZN2+eFbl33323Wb9+vTnnnHMS3m7Obx07drThg2wL58rI2FuEM9vQtWtXs2LFCrNgwQLbypbt5jwmEkdiNkngGkYjOyLLDYMny5V1IREnnXSSdTWLFCkS1/aznfyQMC/LINnJdaHKDiRJsV+5CldJLyGEyHkQsjPq1k36ru22bp0pXqdO3PPXrFnTjBgxwt6vVKmSmTRpklm0aJEZO3asqVy5spkxY4Z1bmHq1KmmU6dO1h3lfIRD+/zzz5uWLVuGhTEjblnh3XffNWlpaVagkrgLDz74oGnbtm26+Z566im7zf379zevvvqqdZLr+rCf8woSsz6TXTGbDGeWdeCsukQ13E6GTyipFc9V5O7du21iE8PuDO8TFoAAzSoIeMQxSWMM82sIXwghcs8hRVj6sd5EQBh6wYWlQgzgzj799NNWzHI+euutt8zixYvttC+//NKOPDZs2PB/6y5a1ArgrLBp0yZbZtIJWWjUqNER82EGIaJbt25tzjvvPDN06NAsrU/8icSsD+AiIgRzIswgGcPnxLYSB+pdF1/Effv2ZSpmXZ1UYkiJU0LIcn/nzp32y57o++cqmhhXhLWGY4QQIndhqD8Rh9QvCIHzwvnKmT0M6yMWGcZnWL98+fKmadOmxm/ef/99GxqHOUPcLudGkTWUAOYDXlGYXWcWMZibncRYNjE/hBZ4IfY1s0Qwto+rYFxY166WOFkyP4m7JVQBgRsPLs6W0ALcWAlZIYQQ8UBYW4cOHWx4wbRp00zPnj3D0ypUqGCFMPGtDhKCN2/enKWdW7VqVbNjx450NeBXrVp1xHyI6oceesi8/vrrNtzhlltu0cHMBnJmfQJBh8OYHTGLkGSoHaHH1R3CMas1ayOXy5cZFxRHlvCAaA4q03BtY5UXY4iHaWwjFQYQxIhg4AqUmFkqDmTmsnLFyrLYZ36V8RJCCJG6EGpAVQPObz169Ag/zzmld+/eNgmM8xUJYMOGDcvyqOmFF15ozjrrLLuOcePGWQOG5UUmhHfr1s3GyxJLS3xu/fr1Tbt27cyVV16Z7feaH5EzmwQyEmrZdWa5onSxswjL7JbLciWtWC4xR1xdRrqyDgQpX9RozjBhFLiuvBZh7EITvCBsKXdFuIKbJ/L9IYKZxnwSskIIIbIqMjmnEaPqjWcFRCdhB4hJ5mvSpEmWk7EQwXPmzLHnwAYNGlgRPXr06HTzDBgwwJpEJIZBjRo17P0bb7zRhuCJxCkQys0x6gCC+HKlpWKJtJyGuFE6Z3kFLEIQ8UjWZbwwLI+oc5BMhbtJsDrLZFikevXqYYHM8l39VIbmM6oewDbifuKSusoAvB4xiahkvbi/kTjH1SvYmZ9tIwiexDG2gSvPWMKdjyCusksMYz5+CFg2V8rJOk5CCJGf4fd627ZtNqaUJN+8BCONhLkRakDpLBH8z1wiek3OrA8g2nAtEXvxgkDkwEbGmHIV6C3R5abzGIeVDwACNVadWwclriLb1FKOi6F9Xs+yolVOQEgznxfCJ3iebcB1zayeLNNceS0EO8KW17F/JGSFEEJkFc5bGDWjRo2yoXGXXXaZdmYeRDGzPoHzGE+IAYIQwYpIxRnFQfV2DeM55kEgExrAfDiwLJ9heRxTpjN0ESu21dsQwXXTwk0lDMA5rrwWQYvA9G4363KtXtkWrrJwdBGzzI8jG2/sET80rJPtIW5JjQ6EEEJkBwwSXD/ORSR/kcORCB988MERNWIjHV/hPxKzAQeHElGKyMSljBSzXmcWZxMhSCwOSVO4rXxxEZa83lU/cCB4qUiAs8prWBdClhAIvvjesAK2gddHK6nlEsFYDzG2OLHMR3xSZLmUzOA9qAGCEEKInIBWs9mJpqxXr57ZsGGDDkbAkZgNOIhUVwILkRk5pB8pZl2YAWKWEAEnQBGrXEG6YXtELzGpLJP7/Ed44sDGckTda4mHZT5ew7w8/9VXX9ltQNgSJsD0vBZzJYQQIn/BebVixYp+b4bIBMXMBhwEIgIVwcmQvhOaXGlyQ+giWPnvnFngMQIWQYuo5HXeuFkEJ84pzzOkj6vqxGlGIFxJJsPVpZYeIQW8hnAEnuMx61XxZyGEEEIkA4lZH4knJtQJWf67IXsXMuDiW50zi2h1Ti7POWeUkli4siyH1xCqQAgB8akklSWaZIUbTFIYSVsE1uPwIoZdOAT3hRBCCCGSgcIMAogTsDic/HeVClyyl0v4ctUFnIB1Ma6IVQSni2vleWJneQ0JWghQYmJdfGxWE61wikkIQyiT7MV6EqnQIIQQQgiRXeTM+kBmCU4M1bsMSYQmgpYbghWhiiB1ohacqHWilHhZ12nL4Upl0RQBB5V5SRCLbGSQFVgeQfaRlQ6EEEIIIXIbiVkfcA5qLOGHcCX+FHBTcVWJSSX5i/sutMCbAOYgFAEhHNktCwHtqhngxlKuhFCBaI0QsgLvRUJWCCGEEMlGYtYHMhN9hBngwjoQsK6SAfGtOK8IXoQo4tQ5tOBqzUZroYsLSxwt7izltTJqsyuEEEKkAs2bNzcDBw4M/DKDzFdffWW1SaqWIZOYTQKRNe4yE7M4qO4GCFhqyyJwnQBF0BKzitDlee8yvclfXlgO8xIvGxmGIIQQQgiT50XxddddZzp06GDyEhKzSSBWweZYotZVKuA/81BeC8eV6gEIWIQqvYr5z/Pe5C8XLxtt2bi4xLUm2shACCGEELmDK7Mpso7EbBKIbOcarzMb+eEuVqxYOLQAEK04s4QZ8J/EMP5TN1YIIYTIL3DOHDJkiE12xvgZOXKkfb5Xr17m0ksvTTcvoXicJ5999tmwCdS9e3eba0L99fHjxye07ieffNJUqlTJGkzkolx55ZVhB3Tp0qXm8ccfD+eVMJz/3nvv2ftvvfWWqVu3rj2XL1u2zL6HMWPG2Pa75LnUqlXLvPLKK+H1uNctWrTIdiZjpPa8884zn3/+ebrteeCBB+z7IzyxT58+ZujQoeacc86x09gv06dPN/PmzQtvE8t1bN261bRo0cIum/WvXLnSpAIqzeUD3sYHXlwcrHNm6dwVKXydeOXDz4eN6gbA6/bu3Wu/SLi3QgghRHY5fOiQ2Z+WlvQdWbRKFVMwgbwOBNqgQYPM6tWrrQBDSDZu3NiKufPPP9+2Wkeowvz58+25s3Pnzvbx4MGDrehE4CEC7777brN+/fqwAMyIDz/80PTv39/MmDHDCktyWz744AM7DRG7efNmc/bZZ5v777/fPsdIK4IWEJmPPPKIOfPMM21OC0L2+eefN1OmTLHi+P333zfXXnutfU2zZs3C6xw2bJgV3Dzft29fK9iXL19up82cOdOMHj3aCmze/4svvmjnRSDDHXfcYTZt2mRrzE+dOvXPfV20qM2lcctmm1g/97t06WK++OILqz2CTLC3Lo/g7byVkTPLh57ELBdiwNVjZLUBXFmed64sIQMsj+d5nYSsEEKInAIhO6Nu3aTv0G7r1pniderEPX/NmjXNiBEj7H2E2KRJk6yDOXbsWFO5cmUrNnFuARHXqVMn68RS/QeHFhHZsmXLsDAmtyQeqAxETXjcX5xQOmTWrl3bTiPXhXMyxhNucSQI3FatWoVLcj744IPm3XffNY0aNbLPIXJxbJ966ql0Yhax6h4jiC+55BI7MoszPHHiRNO7d2/Ts2dPO/3ee+8177zzTrjcJ+8Z15f1RdsmxC7Lg/vuu89Ur17ditkqVaqYICMxmwQiwwW48vvhhx+OcGZdmS1vM4TI+FZXd9Z17XJXSwjcyHJcQgghRHYdUoSlH+tNBMSsF1xYGgQB7uzTTz9txSyt3BneX7x4sZ325Zdf2nNqw4YN/7fuokWtAI4HxCgCFuHZpk0be7v88svjqhZEqIADwYhb7MStg21z4jjae3Vu8549e0yZMmVsyEG/fv3Szd+gQYPw+82MWMuWmBVWuHpBoHLlGE2oIkpd4hdiN5qLi4B11QqcmOUqq3DhwtrbQgghcgyG+hNxSP0i2vnUGUPEw+JgEn6wYsUKO+TetGnTHFkvbiwhCcSd4oDihBKXunbt2kzPyTi6DuecvvHGG6ZUqVLp5ousPuR9r04j/OGpN58dcnPZuYkSwHzCW3GABgnceIwodSKWW7SmBghY10XMLQP3VyEGQgghRHpOOeUUW4qK8IJp06aFh+ChQoUKVsARa+s1oAj7ixfOyRdeeKF5+OGHzSeffGJjYp0TynnZWws+FtWqVbO6gLCFihUrprsl0ia+cuXKVkh7iXwc7zalEgozCAAMexBi4K4kXfgBz0ULumYowVshgS8iH0514BJCCCGOhFAD4loRcT169Ag/T3geMaYkgSF6CQMk8SmyClEsSCajAgBJZiRxvfnmm/Y87sIUaPWOUEbgsi5CGGI5vMSr3nbbbfb1TZo0sSU4SewirNC7zRlx6623muuvv96GMJCQ9tJLL1mBTRiEg21asGCBDUngPRPbm+pIzAYAPrg4sM6Z5cvGF4nnojmzkV8yHnuHK4QQQgjxP3BOiQEloYlEay/jxo2zw/zt2rWzovL222+3QjIeCCV49dVXbWgBSViEEM6aNcuuBxCoCFGcV0Zgt23bFnNZo0aNshUKqGqAQGbZderUsdUV4qVr1672tayX7bnqqqtsZYc1a9aE50HsEhaB4OV9L1myxArcVKZAKFZF/zwK5Si4CuGD6pKocpuNGzeme0yZDi8EoDO8QPA3wd7eMAS2MbO6sbt27bJXV2qGIIQQIqsgfhBbxJRG6yKZyiDaiEUl1KBjx44mP9GqVStbuYCKDqn0mUtEr8mZDQC4sd4YWg4eV3CEDsQTBxutvIYQQgiR32Hkc9++fbbWKk7nZZddZvIyhw4dsnVqW7dubUd2cYkp97Vw4UKTl5GY9Qk6jnz//ff2g+e6fXmrF/AhJMlLFQqEEEKIrEFCFa4fdWNJ/kq0+D8NENq2bRtzuqtCEBQKFChg43apRYvrSezuP//5TxtmkZeRmE0yrlYbbiwWugMn1sXKAv8jy3EIIYQQIn6IBc1ONCVxpRs2bEiZXX7cccdZJza/ITHrA59++ukRDQ5cHTfCCvji4cyq1JYQQgjhrzikPJYINqozm2RcM4TIGm/uypFhARxbynfImRVCCCGEyBg5sz6RWcFitaYVQgghhMgcObNJxpXeImZWCCGEEEJkD4nZJENNWSGEEEIIkTNIzAYEb61YV/FACCGEEEJkjMRsQKCDlxOyidbBE0IIIUTu0Lx5czNw4MCY02kX26FDB+1+H5GYDQiuWYKErBBCCBE/iEnOodwoaUkprfvvv982I0oGjz/+uG3IkNvs3bvX3HTTTaZMmTK22hEjunT6Wr58ucnvyAL0GerJusoG1atX93tzhBBCiJSjTZs2ZurUqTa5mg5YN998sylYsKC56667cn3dtKBPBldccYVNIp8+fbo588wzze7du82iRYtsN9HcgvWlQs17ObMBgC+c150VQgghRPw4p7Js2bLWvaR962uvvWanPfroo6ZGjRqmUKFC5owzzjD9+vU7og0t7ibhBMcff7wpUqSIdTx/+OGHqOt64403rICdOXNm1DADltO/f38zZMgQWzOe7Ro5cmS6ZaSlpZkmTZqYY4891lSrVs127UIDzJ07N+o6Dxw4YFvrPvTQQ6ZFixb2fTZo0MCK9csuuyzdfDfeeKMpXry4XfbZZ59t5s+fH55Oa1uMM/YX3dHGjx+fbj08N2rUKNO9e3dz0kknmRtuuME+v2zZMtO0aVPbRIJ9yPv75ZdfTFCQM+szNEugd7IQQggRNA4fOmT2p6Ulfb1Fq1QxBY8/PsuvR3Q5x5L28H/7299M+fLlzdatW62YRWg++eSTdjrtalu2bGl69eplQwYI91uyZEnUevAvvPCC6du3r/1/6aWXxlw/7umgQYPM6tWrzcqVK63gbdy4sWnVqpVdLuKXcAGm//TTT+b222/PtPY8N8TuueeeG7Wp0h9//GHatm1rl/f888+bChUqmM8++8yOAMO6devMVVddZYV1586dzYoVK+y+IGeH7XM88sgj5t577zUjRowIV2HC+X7ggQfMP/7xDxvucMstt9gbbngQKBDKTtPiFITuWlxRHTx40F51JIONGzfGnMaXjKsyIYQQwk/oQLlt2zYr+nD1YPf69WZG3bpJ35Zu69aZ4nXqxDUvQgxHEqGHpGHoHaF56623mnHjxh0x/yuvvGIF6b59++zja665xmzfvt26j9HAaT3nnHNMpUqVzLBhw8y8efNMs2bNoq7fzY9gxUl14KJecMEFZuzYsebtt9827dq1Mzt27AhXMsKZRejOmTMnZjIZrur1119vfv31V1OnTh27DVdffbWpWbOmnf7OO+9YMbtp0yZz1llnHfH6rl27WiHKfA5EPU7zp59+GnZma9eubbfD0adPHyuIn3rqqfBz7CvWjzvrPis59ZnLil6TM+sz+exaQgghRAqBQ4qw9GO9icBQOs7l4cOHrUOJQHVD+wjFMWPG2KF9BBKJYYioQ4cO2bACnNlOnTpluHwE8J49e2w4Qv369TPdHicwHSVLlrSvh88//9wO1XtLciJ244mZveSSS6xIXrVqlXnrrbfMww8/bJ555hkrqHkfpUuXjipkAZHbvn37dM/hFk+YMMGKb+fg1qtXL908H3/8sfnkk0/CYRVOu7CfEaJVq1Y1fiMx63OsLHEtQgghRBBhqD9eh9RPiCOdPHmyTVY6/fTTw5WBvvrqK+vSEkc7evRoG8OKq9i7d2+b3ISYJSQhM3Ar169fb4fZEXuZ5bi4XBgH8yP+sgvuJQ4ut3vuuce6piNGjLBiNp73EQ/EFnshvpg4XOJkIyFUIggoAcxHuIosXLiwn5sghBBCpDwIMEpyIa68JS6JE0VEkuhErCmu5bfffnuEi0poQkYQf0ocLSEGhC9kB/JkCDGgGoFj7dq1WVoWYYq//H8iFu/jm2++MZs3b446Lw5qZBkvHrNPnCsbDUIaiL1l/0beglLpQGLWJ7hyPPXUU/1avRBCCJHnQXARejBx4kSb/DVjxgwzZcqUdPNQEQAxSTIUw+mEI+DyuphaB6IPQUvsakZNFDIDVxVx3KNHD7s+BOXw4cPttFiOL8lsxNyS2MVrGN6fPXu2DTNo//+hA8Swnn/++TYcYeHChXYeQhGI0QWSzBDtVCtA8JKkNmnSJHPHHXdkuL133nmnTRYj4YtQhi1btlhRz+OgIDHrEwx1BOWKRgghhMiL1KpVy5bmoqQVZaqI+yR+NlKkkhRFbCixq40aNbJiLVoTI1zVxYsXm1mzZmVagSAWuKAkizF8T/wtoQIklkGsZCpGchs2bGgee+wxK1h5L4QZkBA2adKk8HwIbZbZpUsX69qS4OWqMuCwvvzyy+bFF1+0r6diAc0lvJUMooHju3TpUiuAKc9FyAWvxZQLCqpm4FM1Az5IQgghRFDIKLNc5C64s9Sd/eKLL6xrm1/4TdUMUpcqCWZpCiGEECLvQOkr3FbKfSFgBwwYYCsL5Cchm5OomkGSoa5stKELIYQQQuQPaGxALCr1bYsVK2Y7lkV24xLxI1XlQzC6EEIIIfIvtIvlJnIGJYD54MwKIYQQQoicQcoqyWRWaFkIIYTwE3WmFKn2WZOYTbIjKzErhBAiiLjC+XTGEiIZuM9aRk0b4kExs0lCIlYIIUSQITmZ9q579+617VgVFidyEzqz8VnjM5fdxHiJ2STBj8Ipp5wiUSuEECKwpkvJkiVtrdmvv/7a780R+UQblSlTJtvaSGI2SZQoUcKcfPLJyVqdEEIIkTB0pqT2qUINRLI+bzkxAiAxmyQKFSqUrFUJIYQQWQZxoQ5gIpUIRALYE088YcqVK2e/PPQeXrNmTYbzz54923bRYv4aNWqYN998M2nbKoQQQgghgoPvYvall14ygwYNMiNGjDDr1683tWrVMq1btzZ79uyJOv+KFStMly5dTO/evc1HH31kOnToYG8bN25M+rYLIYQQQgh/KRDyuaAcTmz9+vXNpEmTwtltZ5xxhrn11lvN0KFDj5i/c+fO5pdffjHz588PP3fuueeac845x0yZMiXT9f344482dvXgwYPmpJNOMskAoY2TrDa2QgghhBAmR/WarzGzBJivW7fO3HXXXelidehRvHLlyqiv4XmcXC84uXPnzo06/7///W97c7BT3E5KFqVLlzaHDh1K2vqEEEIIIVIZp9Pi8Vx9FbP79u0zv//+uylevHi653mclpYW9TW7du2KOj/PR2PMmDHmvvvuO+J53F8hhBBCCBFcfvrpp0yrQeX5aga4vl4nlzCG/fv350rNV64iEMk7duxIWgiDyHl0HFMfHcO8gY5j3kDHMW/wY5I1Do4sQvb000/PdF5fxWyxYsVsC7Pdu3ene57H1GWNBs8nMv8xxxxjb14KFy5schMOssRs6qPjmProGOYNdBzzBjqOeYOTkqhx4q3Pf5TfxXLr1q1rFi1alM455XGjRo2ivobnvfPDwoULY84vhBBCCCHyLr6HGRAC0KNHD1OvXj3ToEEDM2HCBFutoGfPnnZ69+7dTalSpWzsKwwYMMA0a9bMjB8/3lxyySXmxRdfNB9++KF5+umnfX4nQgghhBAi34lZSm3t3bvX3HvvvTaJixJbb7/9djjJa/v27elanZ133nnmhRdeMMOHDzd33323bbtHJYOzzz7b+A3hDNTLjQxrEKmFjmPqo2OYN9BxzBvoOOYNjgmwxvG9zqwQQgghhBAp2wFMCCGEEEKIrCIxK4QQQgghUhaJWSGEEEIIkbJIzAohhBBCiJRFYjaHeOKJJ0y5cuXMscceaxo2bGjWrFmTU4sWuQCl3urXr29OPPFEc9ppp5kOHTqYzz//PN08v/32m7n55pttt7gTTjjBXHHFFUc07BDBYezYsbar38CBA8PP6RimDjt37jTXXnut/b4dd9xxpkaNGrbsooNcZarelCxZ0k6/8MILzZYtW3zdZvE/aE1/zz33mPLly9vjU6FCBTNq1Ch73Bw6hsHj/fffN+3atbNdtvj9pDqUl3iOGV1Vu3btahsp0JSqd+/e5ueff07q+5CYzQFeeuklWy+XkhXr1683tWrVMq1btzZ79uzJicWLXGDp0qVWqK5atco23Th8+LC56KKLbI1jx2233WZef/11M3v2bDv/t99+azp27KjjEUDWrl1rnnrqKVOzZs10z+sYpgY//PCDady4sSlYsKB56623zGeffWZriRcpUiQ8z8MPP2z+9re/mSlTppjVq1ebQoUK2d9ZLliE/zz00ENm8uTJZtKkSWbTpk32Mcds4sSJ4Xl0DIPHL7/8YjULhlw04jlmCNlPP/3Unkvnz59vBfINN9yQxHfxp+oW2aRBgwahm2++Ofz4999/D51++umhMWPGaN+mCHv27ME+CC1dutQ+PnDgQKhgwYKh2bNnh+fZtGmTnWflypU+bqmI5KeffgpVqlQptHDhwlCzZs1CAwYMsM/rGKYOd955Z6hJkyYxp//xxx+hEiVKhMaNGxd+juN7zDHHhGbNmpWkrRQZcckll4R69eqV7rmOHTuGunbtau/rGAYfY0xozpw54cfxHLPPPvvMvm7t2rXhed56661QgQIFQjt37kzatsuZzSb/+c9/zLp166z17qDJA49XrlyZ3cWLJHHw4EH7v2jRovY/xxS31ntcq1SpYsqUKaPjGjBw2OkG6D1WoGOYOrz22mu2C2SnTp1s2E/t2rXN3//+9/D0bdu22aY63mNMz3ZCuvQ7GwxoaESr+c2bN9vHH3/8sVm2bJlp27atfaxjmHpsi+N7x39CC/j+OpgfHYSTm286gKU6+/bts7FCrmOZg8dpaWm+bZeInz/++MPGWTLM6TrJ8QX+61//ar+kkceVaSIY0M6a0B7CDCLRMUwdtm7daoeoCdeisyPHs3///vY7SLtz952L9jur72MwGDp0qPnxxx/tRf9f/vIXe14cPXq0HYIGHcPUY1cc3zv+cwHq5eijj7bGUDK/mxKzIt+Ds7dx40brIojUYceOHWbAgAE2TovES5HaF5Q4Ow8++KB9jDPLd5I4PcSsCD4vv/yymTlzpm03X716dbNhwwZrEpBYpGMochuFGWSTYsWK2avQyCx3HpcoUSK7ixe5zC233GID1pcsWWJKly4dfp5jRwjJgQMH0s2v4xocCCMgybJOnTrWCeBGoh7JCtzHPdAxTA3IlK5WrVq656pWrWq2b99u77vfUv3OBpfBgwdbd/bqq6+2lSi6detmEzCpHAM6hqlHiTi+d/yPTHb/73//ayscJFMDScxmE4bB6tata2OFvC4Djxs1apTdxYtcglh3hOycOXPM4sWLbTkZLxxTMqu9x5XSXZxcdVyDQcuWLc2//vUv6wC5G+4ew5ruvo5hakCIT2RpPGIvy5Yta+/z/eTE6P0+MqRNTJ6+j8Hg0KFDNk7SC0YP50PQMUw9ysfxveM/pg/mgoNzKsed2NqkkbRUszzMiy++aLP7pk2bZjP7brjhhlDhwoVDu3bt8nvTRAxuuumm0Mknnxx67733Qt999134dujQofA8ffv2DZUpUya0ePHi0Icffhhq1KiRvYng4q1mADqGqcGaNWtCRx99dGj06NGhLVu2hGbOnBk6/vjjQ88//3x4nrFjx9rf1Xnz5oU++eSTUPv27UPly5cP/frrr75uu/iTHj16hEqVKhWaP39+aNu2baFXX301VKxYsdCQIUPCu0jHMJjVYD766CN7QxI++uij9v7XX38d9zFr06ZNqHbt2qHVq1eHli1bZqvLdOnSJanvQ2I2h5g4caIVPn/9619tqa5Vq1bl1KJFLsCXNtpt6tSp4Xn4svbr1y9UpEgRe2K9/PLLreAVqSNmdQxTh9dffz109tlnW2OgSpUqoaeffjrddMoE3XPPPaHixYvbeVq2bBn6/PPPfdtekZ4ff/zRfvc4Dx577LGhM888MzRs2LDQv//97/A8OobBY8mSJVHPhVycxHvMvv/+eyteTzjhhNBJJ50U6tmzpxXJyaQAf5LnAwshhBBCCJFzKGZWCCGEEEKkLBKzQgghhBAiZZGYFUIIIYQQKYvErBBCCCGESFkkZoUQQgghRMoiMSuEEEIIIVIWiVkhhBBCCJGySMwKIYQQQoiURWJWCCFEmHLlypkJEybEvUe++uorU6BAAbNhwwbtRSGEL0jMCiGEh+uuu8506NBB+0QIIVIEiVkhhAgYdBn/73//6/dmCCFESiAxK4QQGdC8eXPTv39/M2TIEFO0aFFTokQJM3LkyPD0a665xnTu3Dndaw4fPmyKFStmnnvuOfv4jz/+MGPGjDHly5c3xx13nKlVq5Z55ZVXwvO/9957dqj+rbfeMnXr1jXHHHOMWbZsmfn4449NixYtzIknnmhOOukkO+3DDz8Mv455mjZtapd5xhln2O385ZdfYr6XL7/80rRv394UL17cnHDCCaZ+/frm3XffzfD4s12TJ082bdu2tes588wz0227Y+vWrXZbjz/+ePv+Vq5cGZ72/fffmy5duphSpUrZ6TVq1DCzZs3S504IkSNIzAohRCZMnz7dFCpUyKxevdo8/PDD5v777zcLFy6007p27Wpef/118/PPP4fnX7BggTl06JC5/PLL7WOELMJ2ypQp5tNPPzW33Xabufbaa83SpUvTrWfo0KFm7NixZtOmTaZmzZp22aVLlzZr164169ats9MLFiwYFqZt2rQxV1xxhfnkk0/MSy+9ZMXtLbfcEvN9sI0XX3yxWbRokfnoo4/s69u1a2e2b9+e4fu/55577HoQ12zT1VdfbbfRy7Bhw8wdd9xhY2fPOussK16du/zbb79ZIf7GG2+YjRs3mhtuuMF069bNrFmzRp89IUT2CQkhhAjTo0ePUPv27cOPmzVrFmrSpEm6PVS/fv3QnXfeae8fPnw4VKxYsdBzzz0Xnt6lS5dQ586d7f3ffvstdPzxx4dWrFiRbhm9e/e288GSJUtC/BzPnTs33TwnnnhiaNq0aVGPDq+/4YYb0j33wQcfhI466qjQr7/+GvcRrV69emjixInhx2XLlg099thj4cdsV9++fdO9pmHDhqGbbrrJ3t+2bZud55lnnglP//TTT+1zmzZtirneSy65JHT77bfHvZ1CCBELObNCCJEJuKReSpYsafbs2WPvH3300eaqq64yM2fOtI8Z5p83b551MOGLL76wLm2rVq3s0L674dTirnqpV69euseDBg0yffr0MRdeeKF1bL3z45JOmzYt3TJbt25tQxq2bdsW05nFPa1ataopXLiwfQ0Oa2bObKNGjY54HOnMevcR+wfcPvr999/NqFGjbHgBoRqsF/c6s/UKIUQ8HB3XXEIIkY9xQ/veOFJEowPh2qxZMyveCD8gtpQhfHDhBwyxEzPqhdhYL4QyeCE2l5hcXks87YgRI8yLL75owxdY7o033mjjZCMpU6ZM1PeBkGX7HnnkEVOxYkW7nVdeeaX5z3/+Y3JyH7F/wO2jcePGmccff9yW/ELQ8j4HDhyYI+sVQgiJWSGEyCbnnXeeTcAibhXR2alTp7C4q1atmhWtuJAI3kQh/pQbcbbEoU6dOtWK2Tp16pjPPvvMitJ4Wb58uS095mJ5EcTUic2MVatWme7du6d7XLt27YTWS+IZccJO5G7evNnuGyGEyC4Ss0IIkQPgoJLghUhbsmRJ+HkqEeCIIkYRcU2aNDEHDx60Ao8KBT169Ii6vF9//dUMHjzYOqdUQfjmm29sIhiJWHDnnXeac8891yZ8EYqA24m4xXmdNGlS1GVWqlTJvPrqqzbpC/eUxC6vwxyL2bNn2xAItp1wChK3nn322bj3DeulAsKKFStMkSJFzKOPPmp2794tMSuEyBEkZoUQIgcg1GD06NGmbNmypnHjxummES966qmn2qoGlLAiXhVn9e677465vL/85S+2pBWOKMKPUl8dO3Y09913XzhGlWoIVBGgPBe5WhUqVDiiTJgXRGSvXr2sk8zyEMQ//vhjpu+NdRLe0K9fPxsPS1mtRFzV4cOH2/dNTC+luahmQGMKRL0QQmSXAmSBZXspQggh8iQ4uHPmzFFXNCFEYFE1AyGEEEIIkbJIzAohhBBCiJRFMbNCCCFiokg0IUTQkTMrhBBCCCFSFolZIYQQQgiRskjMCiGEEEKIlEViVgghhBBCpCwSs0IIIYQQImWRmBVCCCGEECmLxKwQQgghhEhZJGaFEEIIIYRJVf4PPinFF41hLZYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIjCAYAAAAQgZNYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQV4E3kTxgdKaaF4geLu7u4Oh7u7HBzucri7Hn64HYe7HO5S3N2htEC9hQL5nnfo5kvTpE0qsc7vedKkG9nN7mb33fnPvBNLpVKpSBAEQRAEQRCskNjmXgBBEARBEARBiCgiZgVBEARBEASrRcSsIAiCIAiCYLWImBUEQRAEQRCsFhGzgiAIgiAIgtUiYlYQBEEQBEGwWkTMCoIgCIIgCFaLiFlBEARBEATBahExKwiCIAiCIFgtImYFs/H9+3caOnQopU+fnmLHjk0NGzaUrREJOnbsSJkyZTL5Onzx4gXFihWL1qxZQ+Zg/fr1lCtXLrK3t6ckSZKYZRksGXNtn8ePH1ONGjUoceLEPP9du3aZdP5CzMLX15e6du1KqVKl4v2tf//+Rr0f7xk3bly4r8Nr8NqoQtfn4TiO47lgOCJmYzA4ueFHpNwcHR0pR44c1Lt3b3Jzc4v2+a9atYpmzpxJTZs2pbVr19KAAQOiZT6bNm2iefPmRctnxyQscT0+ePCAD/pZs2alFStW0PLly829SEIwHTp0oNu3b9PkyZP5gqNYsWLRtm7evXvHouDGjRtWsf6NXV5Dj9UnT54M8To7OztKmTIlH2Pv378f4eXFPAYPHswXjfHjxycnJycqWrQoTZo0iTw9PdWvq1SpEuXLly/Mi6pZs2aFeu7Vq1f0+++/s4hzcHDgZUZw49y5cwYv45QpU3g99ezZk/e3du3aRfDbCtZIHHMvgGB+JkyYQJkzZ6bAwEA6e/YsLVmyhA4cOEB37tzhA1d0cfz4cUqbNi3NnTuXoluE4bsYe6UuGLYeM2bMSAEBARwZNTU4ef/8+ZPmz59P2bJlM/n8rQFzbB/M78KFCzRq1CgWXKYQh+PHj2cxVKhQIbJ0Irq8hh6r+/btS8WLF6egoCC6desWLV26lH8reB0il8Zw5coVqlOnDkc+27ZtyyIWXL16laZNm0anT5+mI0eOUESBYMXnA0RW8+TJQx8+fGBhWr58ef5t9+nTx6DzSalSpWjs2LERXhbBehExK1Dt2rXVURMcTJydnWnOnDm0e/duatWqVaTWkL+/v15B/PHjR6seFg7ru8UklEiROcA+BMLbj1QqFQuAePHiUUzDHNvH3d2d76Py9+3n58cRQVNijnlGxbEaIhDRWIWcOXNyxHLdunWc2mUoiLo2atSII7zXr1/nyKwmiLpjRCSifPnyhZcTv0uIWoywKAwcOJBq1qzJF88Q0GXKlAn3WAAhLMRMJM1ACEWVKlX4/vnz5+ppGzZs4AMKDjrJkiWjli1b0uvXr0O8TxlicnV1pQoVKrDQGzlypN7hphMnTtDdu3fVQ2KIHABE2jCcnTdvXj4Ju7i4UI8ePfjApwkO4L/99hulSZOGh6ZwIJw4cSL9+PEjxDLt37+fXr58qZ6PkleqDN1heTRRhuqU5Qnvu339+pWjAYgMYjmQA4wTBqYbklfYpEkTjpbgu6ZLl47XrZeXV4jXGbL+dWHougQHDx6kihUrUsKECSlRokQc2UE0Nrz1qC8nE5ESnFQhBiBqGjRoEGqoU8kXe/LkCacL4HXIsezUqRNfLIQF5q9EYVKkSBEi5w3P1a1blw4fPswnf6y3ZcuWqU/QOEFiO2F7YbtNnz6d15UmeB2WCcuD5cKwOYaFtb8r1g1uhuQwG7o9lOVH9K1EiRL82ixZsrAY0QbLiRQdZYgW+1D79u3Jw8MjzO2DFA0ICexP+Hyspz179oR4DSJ7iCBmz56dXwPxVK5cOTp69Kje7YJtgGgwGDJkSIh9BUAUQZRhH0uQIAFVrVqVLl68GOIzlN/mqVOnqFevXjzsjO+lC/xOsa8C7DfK/ql83zNnzlCzZs0oQ4YM6t8n1heix9rbC8vz9OlTjhTid9CmTRt+Dq9FtDN58uQ8vX79+vT27VudeZaY3rlzZ962mB+2NVKqDF3eyB6rdYHfIcB3Mwb8ZvB9IJi1hSzAd/zzzz+N+kztz0cUFulmmkIW4DeL9DOsG0Sk9aEcr7EOcIxS1qdyXIfI7dKlCy8r9uGCBQvy5xoCfn/YVngflk85hhiCofudEDVIZFYIhXLAw4lLufoePXo0NW/enKMBiLosXLiQRR1OTJrRl0+fPvGJCmILQ1I4gGgD4YGcJnwuhq6mTp3K03Pnzs33OLnjwI4DPU4gOEgtWrSI54Wrd2W4FK/ByQdX8LiHeBozZgx5e3vzwRFgmBPC8M2bN+p0Brw2Iuj6bhAnOLHhoNe9e3f+DsgTxLwePXoUZtHLt2/fOPIA0YthNAhanDj27dvHAgUiytj1r40x6xInYJx4R4wYwZ+J1xw6dIhat25t9Hr877//eF1BgOFkjwM4lrls2bJ07dq1UCIP3w3Dp9gX8PzKlStZwEBk6gOiEOJu586dPNyK5SlQoID6+YcPH3K0CuugW7duHJ2CQIZgx3rGdJxozp8/z9/5/fv36pxgRHIhvrFdkcuH7Yr5QNBGBkO3B4DAh9jEiRjzhSCC4MJFDbYTwO8HQgUXCdh+RYoUYRELUYptBfGlC1xEYlsgzWf48OF8wbF161bOU9y+fTtH4wC2HbYJ9juIavy2MLyMbVS9enWdn924cWPef3DixvqHMFT2FcwXywshiws+fF8IBFwMQLiWLFkyxGdByOJ4gd81oqS6wLaB2MFr8BtUhJsSyfv33395uyMyiWPa5cuXeV/E+sFz2kWp+E1CsCO3Uxl5wXrH+kEeJoaysay4kNaVW4rnIaaQXoFlx0UitiHWHS6iwlveyByr9aEIu6RJkxr1+diPICo1o7zhgWCCciGlia4L6L1797JQxO9fFzgmYFvg2I5jiK6RFaxPnE+wv+GCZ9CgQTwd6x7vwb6F3xK2Bz4P2xzbE8fYfv366f0eOI6jgBGfg98B9g1cPOs6p+nCmP1OiAJUQoxl9erVKuwC//33n8rd3V31+vVr1ZYtW1TOzs6qePHiqd68eaN68eKFys7OTjV58uQQ7719+7YqTpw4IaZXrFiRP2/p0qUGzR+vz5s3b4hpZ86c4c/YuHFjiOmHDh0KNd3f3z/UZ/bo0UMVP358VWBgoHrab7/9psqYMaPe7//8+fMQ00+cOMHTcR/ed1u/fr0qduzYvNya4HV4/blz5/R+/+vXr/Nr/v33X72vMWb9d+jQIcT3NHRdenp6qhImTKgqWbKkKiAgIMRrf/78Ge56xPrD52F9KhQqVEiVMmVK1adPn9TTbt68yeuqffv26mljx47l93bu3DnEZzZq1Ij3w/BQ3o/9VxMsJ6bju2oyceJElZOTk+rRo0chpg8fPpzX86tXr/j/Xbt28ftnzJihfs33799V5cuXD/VdsW/gpk1Et4fm8p8+fVo97ePHjyoHBwfVoEGD1NPGjBnDr9uxY0eo+SvbTtf2qVq1qip//vwhfid4fZkyZVTZs2dXTytYsCBvd2NR5jlz5swQ0xs2bKiKGzeu6unTp+pp79694/2vQoUKoX6b5cqV4/UeHleuXAn1HcM6TkydOlUVK1Ys1cuXL0NsL3wG9gVNXF1deXr//v1DTO/YsSNPxz6o0KVLF1Xq1KlVHh4eIV7bsmVLVeLEidXLEtbyRvRYrXnsWrVqFb8O6xb7V7Zs2fj7Xr58WWUMSZMm5X3AUJTjZFg3zX0iSZIk4X5+3759+X23bt0K83X4zWjvq/PmzeP3btiwQT3t27dvqtKlS6sSJEig8vb2Vk/X3pbYVx0dHUPsI/fu3ePjhCHSydD9TjmGaX8X7I+C4UiagUDVqlXjq08MgyDqiCgKolCI2uzYsYOjj7hyxtW2ckMUEUOPSBXQBMMpiDpFFFyxIiKJqI/m/BCNwnJpzk/zKt3Hx4dfhygHroYxhBrV6PpuWF5EBjAEp7m8yvCf9vrRRIm8Yihc35C6ses/IusSQ8ZYf4jQaedWRsSCBhFODMcj+oEhbAVETbEsKFjRBtFPTbAdEQlHNCuiIAqDKJv2OsFnI0KluU7wG0BECcUsAMsYJ04cjqooIG/QkEKUqNi3AfL/lKgdwG8U0eVnz56ppyGKimFTJZJqyLb7/PkzR7qwTym/G9ywvrG+kPqCyDVAhBXRVEyLLFi/KBRC9BcRe4XUqVNz9B9RcO3tjYg61ntk0DxOILqL74ooKPQLIuLaaG5zgNEJJUqsifa+gM/D9qhXrx4/1tzGWK8Y2UBEO7qO1ZogSo/XIQWrVq1aPG9EL5X0BkPB9kBahTFg1AXHFO0bUqW0wf4X3ucrz0fkWIDfMY6VmvnEGA3AqAhGNRBh17ev4riMfRWjNwo41msfU6JqvxMih6QZCPTXX3+xzQtO3hhCwQkTvq8AJzH8+CCcdKFdIY2Daty4cdX/4yCqmSOE5zQFjjaYH96DIeawCn4ATrLI18KJWftAp51zGhVofzdleTHEixNHeMurS2whRQL5aBs3bmThgpQFpDAoQtfY9R+RdakMVeqz1DEW5NUC7Efa4GSAk4R2YY3mCUNzOBRDkxiSjghYv7rWCaq7w9te+A4QWdqpFLq+k6EYs2/rWifKetEcrsW2Q861MWDIFfsUUldw07cs2N8xHI50CxwfsH9AGGGoXTOdw1CQHoOLNn37BS7akAeupFDo24bGAtsnDOljyFx7qFv7OIFjoHZuLvYFHA+1l0XbPQPfD0PXsIfTZxEX1vEgssdqTfB9cTyBYIPY3bJli87XhQd+exCcxoDfNUS3Ntq1CYpQDe/zleeNFdXKtsOxU/u7KyltyrFKG2xLnLd0HXexznVdkEdmvxMij4hZgXPh9HlA4gSDCA/yvnRFSLRP9to5TchJ0ky2R76iZmGVrvnhZA9xpwtFhOCkgc/CwRYnXCTnI6qIyMewYcNCFfPoQl/kSrOALKzvpixv/vz5WZDqAhGUsJg9ezZHMFHMhqgVIgbIUURBDE6qxq7/iKxLS0Bf9O3X6F/E0Le9EBnVV9ENoWAs2D66llN7PzJ2e0THOlGWA8A3VF+USRFqyMuGYFb2T+QyI2caVk/Io41uIus+gW2A7Y1oNI4LGEGB2ELkGb877eMERl8iIvqA8lm4GNWXWx2RiwBDj9Wa4JikCEpEF3ERgSg38k/DOyZpgvWFURbk92tfyEcFEJWIUqJuAOteF7j4xEW7vgt6S8TY/U6IPCJmhTCBSMTJE1GJiJzoIRpwcFcIrwAB80PxEIpTwjqRQRBjWBTD8DjhKuiq6tUnWpVl0TT9DutqXd/y3rx5kyuyI9oVBice3BBlRjESvjvEAgzJI7P+DV2XShUxPCjD8mo19PsplewowNIG6R8oSjKX3RG+K6JVuiJH2t/h2LFj/FrNCwZd3wn7kebQv779yNDtYQz4TGw3Y1CG+CEQwlsPACMpSK/BDesDvzcUxBgrZiHWUVClb7+AiDRGaBmyb6KIB4WYuKCGw4NCWG4MuvYFiA8cWzQFFSLc2t8P0UMImfDWa1R2kDIE+MEiQotiUhxbDAUpE/ALRvpEZG0adQHHDnw+UnA0zxOa0Vy4AmB9RuQ3g20HMYztp3mRoqShKccqbbAtMT9d6TW69t/o2O8E45CcWSFMUJmMCBHsebQjQvgfgjIskPeHA5FyUwy39YE8PpwMYLGlDapJFeGpRK00lwnRg8WLF4d6H4STrmEdRcQpeZIA8zamixSWF1fburwWMUylrwIbIDUC30kTiFocdBVbr8isf0PXJSp2cRJGRBherNrzCG89aoPheRjB40CueaEA0YXonmKQbg6wTnDyRKqDNlhWZXtgGfEYLgkKWJeoRta1H+HkqHirAlzgaHcvMnR7GANSDDAvCBVDI7iIDqPCGy4CyG/WRvN7aO9fEPa44DHEdk4b7MfY1xDl1RxyhgMALOAQNYxoSolycaS9DnUdJ/AYRvyGokSvtY8t2vsC5oXtAeGn6wJDc73qW97oAvsolg1OGrDCMhTksuP3DIcAiDNdaRO46I6Muwf2R1i4aV8Q4liECyhsLwzXRwT8jvF9//nnnxC/NWw77MsY3dMFtiW2O9xokC6ggJQyXccOXe+P7H4nGIdEZoVwD4I4WMG6CCcgDFlB+CBKgRMorGUwXBlV4OCCAxyEFYa3cPJDBAlXyLh6x8EANjFIpEdEDMN5GJpHpAMFDrpO4BDQOJghPxUFEDiIIeKA3DzY6OC7YTgIESjklmkLzLBA/iAse3DQRwEPom4QLBA3mK74nOoCub6wi4EXIaKumC++g3JSjOz6N3RdQkBg6BiRNqwfFONg3UIkYXhSSRPRtx51AWs0WHOVLl2abYkUay7kAhvS/zy6wEkTOWyICCk2V7jgQCRl27ZtvI4ROcb3wrZEURym4aIMowC6xDyKbZBmgpMfvitO8Ih+Yf/SzOU2dHsY+32w3NiHsBz4PtiX8R2xDCgO05d7CfGIiycMPyNaC1EJoQ/rIGx7gO8N4YvPxe8DtlyYX0S7emFfRnQK80ZBFXI/IaohjmfMmEERBb8TFKvhO+P3AbEImy8M7+I5/EZw0Yl9HWJTl02UPvDd8XuEbRvEvWLNpYg7zSgrIqA4DmDeWK9Yf9geSH9CVB6Pw1reqMgRDmtfwTEJ3wPLaQg4DuA4A1GIC1TNDmD4Tps3b+bfeESBZRX2J9icwVZOuwMYot/4XUTEtgzg+Ij9C791eISjOA3zw4Um1kNYebgIIKD4D7nH2FcVEYzfNaK9YREV+51gJEY4Hwg2hmL3ApuY8Ni+fTvb5MDWCLdcuXKp/vjjD9XDhw/DtNoKi7Bev3z5clXRokXZdga2PbARGjp0KFvNKMD2qlSpUvyaNGnS8POHDx8OZavl6+urat26NdvA4DlNuyRYBFWrVo0tj1xcXFQjR45UHT16VKc1l75lhdXL9OnT+Xl8DuxssOzjx49XeXl56f3+z549Y0uqrFmzsgVMsmTJVJUrV2b7nYisf20rKGPWJdizZw9bM+F1iRIlUpUoUUK1efPmcNejLusngO9RtmxZ9efVq1ePrW0MsdbSZ5tmjDWXPkspHx8f1YgRI9iuCDZRyZMn5+89a9Ys3pYKsBVr164dLztslfBYsVPT/q6w/smSJQt/HmzJsB9GZnvoW35dNmBYzt69e6vSpk3L80+XLh3PW7GH0rd9sO/DJi1VqlQqe3t7fn/dunVV27ZtU79m0qRJvB9gm2N5sd/BDk5zPRljzQWuXbumqlmzJlsjwUYP+/z58+dDvMaYY5PC7t27VXny5GHLOs3vi30Ov3HMD9u6W7dubBOnvU6wzvDb0oWfnx//3vAbxefAtgm/PXzGtGnTQrzWzc2NX5s+fXper1i/sELDdjdkeXVh6PpQrLn02f1VqlSJ92fY8RkD9s0BAwaocuTIwccqbDfsw9gXNI9xYR0nw9on8By2S4YMGXidYTvVr18/lOVhWOj7zWB7dOrUiT8Tvw/83nSta21rLnDq1Cn+nngfft+wXNRlpaULQ/c7seaKGmLhj7ECWBAEISaCKC2iZ6tXr+ZojxBzQXS9cOHCbDmldAoTBME8SM6sIAiCIISBrhakGKZGfrtmAaogCOZBcmYFQRAEIQyQz4ucy8qVK3OeL6zycENOZkQdGMwtzsMr5kSOdHTYcQlCdCBiVhAEQRDCAAVIKFyDEwXsydDQAoWMo0aNssr1hkLO8Do1opANxX+CYA2YNWcWlkioesYVLyxiUDWJau2wgL8oqqnR/QlXxPDmlNw1QRAEQTAMnG9xDg0LuBaE5wsuCJaCWSOzsMSBdQwsZeCnGR6wI4KFB2yQ0EUHpuaw8oAPnqH9kgVBEAQhJoNzJm6CYCtYjJsBvPrCi8yiLdz+/ftDGFK3bNmSjafhBycIgiAIgiDELKwqZxaG3tptAhGR7d+/v973wIxbs1sN2trBuBpmzaZuKSgIgiAIgiCED2KtPj4+lCZNmhDtiK1ezKIriIuLS4hp+B9ddlCdqat3M7rtoJOHIAiCIAiCYF28fv2a0qVLZztiNiKgDSgKxhRgR4JKVKyciPYBFwRBEARBEKIPBCpR6B9W22GrFLOpUqXi/uGa4H+IUl1RWeDg4MA3bfAeEbOCIAiCIAiWiyEpoVbVAax06dLsYKAJvP8wXRAEQRAEQYh5mFXMwnwa/a1xU6y38PjVq1fqFIH27durXw9LrmfPntHQoUPpwYMHtHjxYtq6dSsNGDDAbN9BEARBEARBiKFi9urVq1S4cGG+AeS24vGYMWPUxs6KsAWZM2dmay5EY+FPO3v2bFq5cqV4zAqCIAiCIMRQLMZn1pQJxYkTJ+ZCMH05s1gl379/px8/fph8+QTbxM7Ojnu6ix2cIAiCIESNXrPKAjBT8O3bN44I+/v7m3tRBBsjfvz43HUnbty45l4UQRAEQbAZRMxqgIYKyNtFFA0mvRAdEkkTIgsi/bhIcnd35/0re/bs4RpAC4IgCIJgGCJmNYDggKCFrxmiaIIQVcA6zt7enl6+fMn7maOjo6xcQRAEQYgCJDyka6VI1EyIBmS/EgRBEISoR8SsIAiCIAiCYLWImBUEQRAEQRDCrP346uVFvu/ekSUiObNChHnx4gV7/16/fp0KFSpkkjVZqVIlnte8efNMMj9BEARBsFWCAgLI78MH8v/wgfzc3Pix+n+t24+vXylViRLU9tIlsjREzArMyZMnqXLlyvTlyxdKkiSJrBVBEARBsEJ+fv9O/h8/hhKj/hpiVbl98/YO8d5Ydnbk5OJC8VOmJMcUKShRpkyUomBBipsoEdk7OVGiDBnIEhExK9gUcAoQH1dBEATBllD9/EmBX76EEKI+b9+Sz+vX5PfuHfnBH9/dnfw9POibp2eo98eJF4/ixI9PcRwdyS5uXIodJw45pUrFN3z2z6Ag+vHtG33392chrC+dwKVYMcrfuTNZGiJmbQQMv+fLl48fr1+/nm2gevbsSRMmTGCvXEybP38+PXz4kJycnKhKlSo8VJ8yZUpOF0BUFiRNmpTvO3ToQGvWrGGrslmzZtHy5cvp9evX5OLiQj169KBRo0ap5/3s2TMaMGAAXbp0iT1Uly5dSqVLlzZouc+dO8efdfnyZXJwcKASJUrQli1beDn8/Pz4O+zYsYMSJkxIgwcPDvX+TJkyUZcuXejx48e0a9cuaty4MS93eKkRmzdvpgULFtC1a9coW7Zs9Ndff1HFihXVrzt16hQNGTKEbt68ScmSJeP1MWnSJO7iBbZt20bjx4+nJ0+esI0b2jDv3r2b160gCIIggJ8/flCQn9+vm6/v/x/7+dE3X18K8PBQR03xOODzZ/r65Qt99famIB8fCvL3p++BgfTz27cIrdDYceJwRDXELUECg6bF1THNIXFii9ywImYNADvT5wcPyNQky5WL7I3wu127di0LOwjDq1evUvfu3SlDhgzUrVs3CgoKookTJ1LOnDnp48ePNHDgQOrYsSMdOHCAfXW3b99OTZo0YbGLtnHwRQUjRoygFStW0Ny5c6lcuXLcHe2B1rqAGIXghZDF41atWrHIU4SfPm7cuEFVq1alzp07s9DG60+cOKFuIwwxCVEJkQjRPXLkSBaf2vm5mPeYMWNo7NixBq8rfDbEfJ48eWjOnDlUr149bmjg7OxMb9++pTp16vD6WbduHX9frEN4w44bN47XAb7jjBkzqFGjRuTj40NnzpzhBHlBEATBukBkUlNkKkJTe5q2GNX7Oh+fX9P9/SMkQmPb25OdgwNHUx2TJaO4CROyiHRImpTiOTtzCkB8FxeKlyxZ2ALVyYmjsDGh+VMsVQw7A4fV6zcwMJAFDSJ3mqb2bteu0fqiRU2+rO1cXcmlSBGDI7MQqXfv3lXvuMOHD6c9e/bQvXv3Qr0eYrd48eIsxBIkSKAzZxbPpUiRghYtWkRdu3bVG+VcuXIli2iAeeXNm5fu379PuXLlCnOZW7duTa9evaKzZ8+Ges7X15eF5YYNG6hZs2Y87fPnz5QuXToW6UoBGCKziIru3LnToPWkLPO0adNo2LBhPO379+88rU+fPjR06FAW5BD3+A7Kuly8eDG/HvsNRHjRokX5szJmzEiGom//EgRBEAwQnAEBOgWlwSJT1zQ/P/oeEBD+6o8Vi4NLdhrD9JjGy/bjx/+H6QMCuFBK+70Qo44QoilSsBBNkCYNJUyblhKmT08JcAse8ndIkiRGiM/I6jVtJDJrYIQUwtIc8zWGUqVKhfgRYKh/9uzZHOmEAENUEcPmEKxIHwAQk4hO6gJi7uvXrxw9DYsCBQqoH6dOnZrvIazDE7NYJkWoavP06VPOfy1ZsqR6Gob7EVnWplixYmQsmmkQiAjjM/B9Ae7xvOa6LFu2LAvsN2/eUMGCBXmd5M+fn2rWrEk1atSgpk2bqlM0BEEQYiKIjUHMaQrK75EQmZqvRS6nIeiKTipRS6fUqUMMoSOHNFbs2FwwBQHKy+7vz8sDG6pAT08K/PSJc1ED3N3Vy6LgmDQpxQ8WoXxD4ZTm/8G3eMmTU2w7u2hc84KIWQPA1ZihEVJLBBFBiC7cNm7cyNFWiFj8D8GoDyXVIDyQn6ugCEBFLIeFoZ8fHqbOU7Wzs6OjR4/S+fPn6ciRI7Rw4UKO5iJnGFFXQRAEixacgYGGCUpDI57KayE4DRjsxfC5vqFxDKGHJUjDnBYvHovTb35+Oiv31XZTwc/hf0RTtZcNolcRoiny5VM/RkRV83EcB4do3FKCMYiYtSEgpjS5ePEi57Ei5/PTp088tI78WCXNQBPFAUDJVwV4LwTnsWPHdKYZRBZEdPHZKKTSJmvWrCyS8Z2Q9wsQUX706FGIQq2IgnVToUIFdZqBq6sr9e7dm//PnTs3pxngoK+IcxSqoQgNaQ4A0xGtxQ35ukg3QKoDcpEFQRAiA449EFlRMYSuazqG7MMDVe8QiHF0FAMhbxMWTcYUDqlfFxwNNRasD7XdlJsbeb94EUqsKjd8Z02Uyn1FjKbIn58yVa8eOorq4sLLKcP81oeIWRsC0VaIKbgNoFAKEUOkGUAMQqzi/99//53u3LnDxWCaQIzhB7xv3z4ufoKIRS4t8kSRR4r3Q7i5u7tzXq6SIxsZUFyGofpevXrxcmEeKABD6kHy5Ml5HijUQu4sCsAQ/YwdgYOgLuBeALEO4YriNghlFKIBLA9ycpFDC4GLojgUl2HdYv4Q2BDhSC/AcuF/rBd8liAIMQe14DRWZBowrI48zPBA7qa+wh/kXiZIm9Zwkal1M8WwOER1wKdP4fqhIoKK14UgViwevleEaOLMmSl1qVKhhvhxQzpARAS0YD2ImLUh2rdvTwEBAWxvhaHwfv36cbEURCrsquAGADuqIkWKsANA/fr11e9NmzYtR0hRNNapUyf+LLxn9OjRnFOK6OO7d+84JxbCMyrIkSMHD9NjubDMENDIkYVTAJg5cybnqcJpAFHRQYMGcSJ4VIAoNW7I24U1FwrlIKCVdQGXBwhp5MciVxfC+s8//+TnkYh++vRpFrxIUMeFAC4aateuHSXLJghC1PEjKMjgiGWYQ+g6piHX0pDKdF2CkiOeCRNydNBQkan9Oi5CssCoMoz4w+smxYLVzS2UaIc5v6YQTZ4376+oanDkVJ2HmiIF2WmkuAkxG3EzsJFqc2nzarkteG1h/xIEc3lxRkRkav6vnROpC3Q9MjhqaeSwuq0ILjgJaEZMdeWkKsIVObmawGaK81A1c051RFCRBoC8V0EA4mYgCIIgWIwXZ3ivDWVlpAMME4clKJHHqZnjacywekzx4tTZ9tTdPdwiKdyjul/7AgDFWooQdc6dmzJUrhyiSEq5IdoaE9evYDosb4xCsBkw7I5mArpAagFuUc2UKVP4povy5cvTkiVLonyegmCtXpzGCFKDvTjDiFo6KjmcRuRuKu9HdE8EkQH7gEpFgZ8/hxk9VW7oOKXtPgCTfkWEwgfVpWjRUEVSiKri4kHspgRLQdIMNJBh4KgFnbSQw6sL5KHiFtWgsQJuukBOLvJhzYXsX0KkvDgNGII31IsT/poRzdMM67WwNRLBGT1gOxtSKIWIKgz8NcG20mUvFWqYP2VKjlILgiUgaQaCRWAO4RhdIlkQtPn86BG9OHzYePskY704dQhHFL+gettQkRliWrAXp2B+vn/9qrab0lskpdhNaZj1K4VlmkLUpXDh/+ehavmh4oJEEGwZSTMQBEEwkk8PHtDmsmVZnKJvuq48zRBenMYWDkXQi1OwjGI2DN8bUigV+OVLyDfHivUrDzVYjCbOmpXSlC2rs1CK7aYkD1UQGBGzgiAIRuD77h1tq1mTq7NbnTnDokKw/dQQFEDptJrSKpRCpFW7KQE8XzXFaIoCBXQO83PbUwu02xIES0d+NYIgCAaCXu3batVCv2ZqcvCgCFkrBykfEKO6hvi1I6vajgvc9lRDiKYuXTpEkZSmNyq6aQmCEH2ImBUEQTAAeGfuatiQfN+8oZZnz1Ki4NbQguU1SVC3PdVXJBV8++bjE+K9iIoqBVK4T54vHzlVq6ZzmB/pJTLMLwiWgYhZQRAEfUPLnp4senzevKGzo0bRx+vXKXvTpnRpyhTye/+efTqRG4vhYcfge/5fa5pjkiSSAxvZtqeK3VQ4Ff1sN6WFZtvTRBkzUqqSJXUa+MdLlky2kyBYISJmhUiDtrf9+/cnT09Pq/hcIWbDRvEfP5Lv+/csSFkEadzzdD2djDC0/NHV9Vc3o1SpuKIcPeN9btxgEYXHaOWpDYq5kFurLXrDEsAQVracP8ltT318wi2SUvJQtVvHIjKqKUaT5c4dKnqqtpuykS5cgiDoxnaPlIIgxEwfTh3ClKcpItXdPaQ1FirIU6T4JVBTp6ZkuXJxJyMWRalT04ujR+n2ihVUZcECKtKnT7jLgfapMK2HsFUEbqDGY+X+84MH/38eVe067LocEicON+qrPS2OgwOZE1wAhMpD1SqSUm7ajRi47amGGHUpViz0EH9wHiocHwRBEICIWUEQLHt4+dOn0MJUS6DiOdhk6eoHnyA4ipq2XDl1RFW5x3OI3OmLgN5etYqFbJnx4w0SsjzfuHHVwssYOycIWl2iV3Oa1/Pn9OHq1V/TPn0i1Y8foT4L1l76RC8ex9cxja3AwrB5Yrsprban+ob6kZqhHZVW2p5CiCbNmZPSVawYskgq+AbxLnmogiAYi4hZG+LQoUM0adIkunPnDtnZ2VHp0qVp/vz5lDVrVvr27RsNHDiQtm/fTl++fCEXFxf6/fffacSIEfzeOXPm0OrVq+nZs2fcdKBevXo0Y8YMSmCE2fbhw4c5LeD169dUrlw5/rzUqVPT6dOnqWrVqjw9lcYJHq91dXVVt7xFWsGYMWPIw8ODatasyZ8h2K5ZvK4oKiJ3msP/EEnaw8sYrlfEaMIMGX7lPwYLU02xGllh9HTfPjrSvTsV/P13Kj16NEUnaAsKkYkb5cxpsND/6u3NQlcRt5pCWJmGdelx5456GiLHugQ4RLCdoyMLe6w3CGW8FhX/bNivFTl2wHZQhGjq1JSycGGdhVJsN2VnF2XrShAEQRsRswaAgzmGBE0NhjuNGUrz8/NjwVqgQAHy9fVlYdioUSO6ceMGLViwgPbs2UNbt26lDBkysLDETSF27Nj8msyZM7Og7dWrFw0dOpQWL15s0Lz9/f1p1qxZtH79ev6stm3b0uDBg2njxo1UoUIFypIlCz83ZMgQfn1QUBA/B8EMLl26RF26dKGpU6dSw4YNWZiPHTvW6HUmWIAXp1bEVDuKintts3h1FXmwGHUpUoQjdtoCFfemGEZ/d+EC7W3enLLVr09VFy2yyGgh5+EmScI3ypZNPf2bn5/eblLYHvDJxTZApFW5UIBo/fH5M8WKE4dtpFh8xorFz7MllY4UiCAfHwqMG5eXg4Xv168cHce2RSoH5qOdGyyFcIIgRAexVDgDxSDC6vUbGBhIz58/Z0HnqOEL6HbtGq0vWtTky9rO1ZVP6hEFEc4UKVLQ7du3afny5XT37l3677//DDoxb9u2jSO3+IzwQES1U6dO9OTJE44CA4jgCRMm0IcPH/h/iFa87t69e/z/jh07qEOHDvy8k5MTtW7dmrfJ/v371Z/bsmVLFrW2UgCmb/+yqoIpHcJUEa26CqYQ7VOG+UOIUo1hfjyG4LGUjlef7t+nzeXKUfK8eanpkSMW4REKsalpN6WzUCp4qF873YLbnrq4hBjO1y6SUm762p4GBQSEGf3VNS3ChXDa02y8EE4QBOP1mjZyhDAwQgphaY75GsPjx485GosoJ0Toz+AuNK9evaKOHTtS9erVKWfOnFSrVi2qW7cu1ahRQ/1eiFxERR88eMA70Pfv31l8IeIa34DoMF6jCFmA9IKPHz+q/8f8//zzT7p48SKVKlWKhW3z5s1ZyIL79+9zFFkTpElAzArRAyJ4+oSp5jS9BVPBwlTJgeT8U61oqrX1hPd5+5a7eyVIk4Ya7t4drUIWaQL+Hh7/j6Jq5J1qR1ZRUBYCjW0AQZo4SxZKU6ZM6EKpVKmipO2pfbx4ZJ8uHSVMl87g9yiFcP5aohePNafh4kHJCw7V3lWjg1a4oldrmrkL4QRBMB0iZg0AQ/2RiZCaCuS5ZsyYkVasWEFp0qRhMZsvXz7Oly1SpAhHBQ8ePMjCFUKyWrVqHIF98eIFi9uePXvS5MmTOWf27NmzPOyP9xoiZu21rG84505DAKVMmZKXD3m0iExiOU6ePBkt6yEmo1kwpUuYauan6iyYChaoEKQQR7qG+W3V6gjdvbajuxdRhLt7sd2Ut3e4RVLqtqdaBVzI89UUosnz59cZVYWQtfRoZWQK4dQRXiXiqxn19fBQF8LxtM+fwy6EMyT6G3wvDgmCYJ1Y9tFQMJhPnz7Rw4cPWciWL1+ep0GQaoIwfYsWLfjWtGlTjtB+/vyZi7AgfGfPns35rgC5tVFN165dqVWrVpQuXTqO4pYtW1b9XO7cuTmirAmiuIL+gild9lP6CqaUiCkia6mKFw81zM+V5DD2t8DcUJN192rQgHzfvqVW586FG4GE4Hq0fTu5Xb0aSrCG8qZ1dAwhRlMHF6yF8kOF3VS8eBSTCVEIZyBcCOflpXZ+UEd9NdwgMI0L4W7fVk/TVQiHbaUtcPn/MKZJJzBBMD8iZm2EpEmTkrOzM+fGYogfqQXDhw9XPw+3AkwvXLgwC9Z///2XnQWSJElC2bJl44KshQsXcvT03LlztHTp0ihfRjgUQFDDcQH5tJr07duXxS2KyBo0aMDOCDE1xQDdps6NGUPer16p0wC0h19j2dn9sjYKFqIpCxUip9q1Q1f1o2DKAnI+LRlEA/e3aUMfrlyhZv/9R865c+u9oHi2fz/d37iRnu3bxxcNKQoU4HXtnCcPZahSJZTVFKdaSNvTaEXJw+VIukYhXHgRdIxMhOcFjGlfHj1ST9P2xVVyktVRXgMjwVIIJwhRi4hZGwECdcuWLSwKkVqA3Fi4E1SqVImfT5gwIRdhIa8Wtl3FixenAwcO8PsKFizIYnf69Ols1QX3AeTPtm/fPsqXEbmzU6ZMCfXZyKNFVBkOBsj7RQoEcmwnTpxIMQmcZA916kQfb96k9JUqcRGSdtEU7hG5spSCKWtf38f69KEnu3ZRw127KG2ZMiGf//mT3pw9S/c3bKCH//7LHqouRYtS+WnTKFfLlnzhIFgfGIHARQZuiTNlMvh96kK4MLyAcY8LUWUaupzpFODJkukUvXojwVIIJwh6ETcDG6g2tyaQh+vu7s42YTENQ/avO2vWsJhtcugQZa5Z0+TLGNO4MGkSnRs9mmqsWEEFunZVT/e4e5fubdhA9zdtIp9XryhRpkyUp00byt2mjd7IrSDoAukMSt6vIUIY/4dXCGdI+oMUwglRdcGP0YnXJ0/S61OnuKV3rb//JlMgbgaCxQFrDViEbdq0KUYKWUNANfvJgQMpT7t2ImRNwK2VK1nIlp04kYUsfFHvb97MUdiPN27wsHXOFi0oT9u2XAwXU/OJhcgXwiGCb0wUHyksXAgXjgUaF8JduaIWxRhJCK8QzhAhLIVwMVu8frp/n96cOsXiFfeoB0BqG0alstatS5aIpBkI4VK7dm11ly5tRo4cybfwQB7s5cuX2bsWFmFCaI737csHjEpz5sjqiWae7NlDR3v0oPxdu1KCtGlpa7Vq9Or4cRYeWevVozLjxlHm2rX5f0EwNdxEJEUKvkWkEC4sL2DYz7nfuqWe9jMoKNRnIc9eW+BKIZxtovr5kzzu3fslXk+epDenT7PTCvZBl2LFKG/HjpS+YkVKW7Ysp+VYKpJmoIGkGejm7du3FKCj8AHAxgs3IXzC2r8grlBN/9umTZS7VStZndEIog3/1qjBFmPogoVhYOQnIwKbo0kTtscShJiAUggXnhewtlWaMYVwYQlhKYQzk3i9c0edNgDxiu2K7Ze6RAn2DMfxME3p0mb3CZc0AyFKSZs2razRaATRlP969aLMdepwUZEQPSdttKi9vnAhPfjnH24CgRNpkT59KFerVpQofXpZ7UKMLoSjzJmNavEeKt9Xh+hFIZwyLbxCOF2R4Pi6osNSCGe0W4v7rVv/Txs4fZq9mTHqBJvAgj17cuQV4tWa00skzUAQzMzpESNY0FZfskTyMqOYzw8f0r2NG9lOy+vZM07jwEmx4Y4dlLZcuaienSDECCB6cDPmIhDWdhBRukSv5rRP9+6phbLBhXBKxFfPtJjUEQ7iFTn/6rSBM2fYhQVNcSBYC/fpw+I1dalSNuVrLWJWEMwIDjQ3lyyhKgsXUqIMGWRbRFEh3YMtW1jAojgmbqJElK1+fR5ew631+fOUUEYbBMGkQExGuBAuHC9gr6dP6cPly//vCKevEC4c0WuNhXBYR27Xr/8Sroi8njnDXQiR94zC1aIDBnDaAFIIbNlzXMSsIJgJdIo60q3br6vlXr1kO0SCb35+7BULO62XR4/y8GWWOnWo3r//UsaqVTkfGQd47u4lQlYQbL8QLhwLNHUhXPA0owrhwhDF0d0k5UdQELm5uqqdBt6ePcspHHHix2ef7BJDh3LeKzo9xpRoNBAxKwhm4uKkSWytU3/HDmmAEMGIxMv//mMB+3jnTvru78+pA9X++otyNGvGuXUYctvbrBl9uHqVmh87Rs65ckX9hhQEwSI7wiXNnt3gnHoIQkO8gJG6pPyv3bo6VCGcgZHgsArhUKCK45eSNvD23DkK8vMjeycndhgoOWLEL/FarFiMdl8RMSsIZgARgcvTp1Op0aMpeZ48sg0MBCcdHNiRQvBg82a2kEmWKxeVGjWKcrduHaKbE3f3+uMPdopAdy9EwAVBELRBJNUhUSK+RaQQLiwvYC6Ee/lSPQ3uEWF2hIM7UOzY7BiB98P/GlFjO0dHblteoEcPylitGqcO2FLOa2QRay4NxJorJGiFW6hQIZo3b57eHShTpkzUv39/vvEOFSsW7dy5kxo2bEgvXrxgG6rr16/z58R0lP0rY4YMtKNyZT4Qtr92LUZfTRuK57NnLGARhUU3GrT1hQsB7LRSFi6sc1jv/IQJdH7sWKr599+Uv3Nnsyy3IAiCzkK4YNELsfrx2jUu2sKxDf+rfvzgYlUUbSFt4oeOCLC6EE6j21s8DeszXdFhayuEE2suwWRcuXKFnJycdD6XPn16ev/+PSVPnpz/P3nyJFWuXJm+fPlCSZIkibFb6d769RxdRCGSCFn9wOfy4dat3JELtloo4MjeuDFVXbSIMlSpQrHt7PS+9+by5Sxky02aJEJWEASLAeL084MHnPOKtIH3Fy/Sj69fWZimq1CBivbvz2kDiMIqxzikVAV8/hwi3SGEF7DHr2lcCHfp0q/no6IQLniaNRTCSZqBEClShJGYb2dnR6lSpZI1rAEOSq7z57O/aZpSpWTdaBEUEEBP9+zhKOzzgwc5VSBzrVrcTCJr/foUV8+FkyZPdu+m/3r2pEJ//EElDehOJwiCEF1gBA4X44rbwPtLlzgPFukEEK8Vpk3jlIHk+fPrvUBHIZxTypR8MxTVz58U6OkZbg6wz5s39PHmTfU0nKPCKoRDYVnNFSvI0hAxa0MpAfnz52cBuXbtWoobNy5NmjSJWrduTb1796Zt27aRi4sLLVy4kNvTglOnTtGQIUPo5s2b3MWrQ4cO/J44cf6/W3z//p3fv379erK3t6eePXvShAkT1MO62mkGmmimGSASi6gsSJo0Kd9jflWqVKEBAwbQu3fvyEFj+ANpCgkTJuT52goQZjh4oDCh3OTJ5l4ciwFFWjjQcyHX9u1ciAEz70pz51LO5s2NOoCjOGJfy5Ycwa0yf7749gqCYHJnlXfnz/9fvF6+zDmvEIMQrxVnzWKf1+T58kVr4W+s2LG5CBY3owvhdDlABD92cnEhS0TErA0BETt06FC6fPky/fPPPyw8kb/aqFEjGjlyJM2dO5fatWtHr1694qH+OnXqUMeOHWndunX04MED6tatG7dZHTduXIjP7NKlC3/m1atXqXv37pQhQwZ+rTEg5WD79u3UpEkTevjwISVKlIjixYvHortv3760Z88eatasGb/248ePtH//fjpy5AjZEjCuRu5T2fHjzd4m0NzgoOl+8yYLWBRyIU8sSbZsVGzQIC7kMvTgq4nH3bu0o25dSlWyJNVZvz7MNARBEISoAOIPF9FK2oDb1asc3YyXIgVHXCvPnctpAyj0jU7xGtWFcEmyZCFrQsSsgcMEyHExNajSNiZXpWDBgvTnn3/y4xEjRtC0adM4X1URnmPGjKElS5bQrVu3aO/evSwwFy1axDtwrly5ODo6bNgwfl3s4B8dXgMRjNfkzJmTbt++zf8bK2YRMUb0F6RMmTJEziyix6tXr1aL2Q0bNrBgRrTZVoA3oN/792ynkq54cYqpeL18SQ82beKuXJ/u3uUDfq4WLbiQK1WJEhGOpHq/fk3ba9XixhONdu+2aXNwQRDMx1dvb/Z2hXCFgIXnKwq2UJQK0Zq3fXsWsTh/R6ffrBASEbMGACG7vmhRMjXtXF3JpUgRg19foECBEOLR2dmZUw8UkGagRD7v379PpUuXDvFjK1u2LPn6+tKbN29YTIJSpUqFeA3eM3v2bPrx4wfPIyqAMC5evDi9ffuW0qZNS2vWrOGIsS0dCHxevcJlLzkEp1jEJNDB59G2bRyFRV/wOPHiUbaGDanijBmUsXp1srO3j/TnQ8ii+rfJwYPkkDhxlC27IAgxG+Sdvj1z5lfk9dQpdh5APmqCNGlYvObv0oXTBpLmyGFT5yxrQ8SsAeAKC8LSHPM1BuS0aoIfluY05Yf2U0eFozkpXLgwR5WR7lCjRg26e/cupxnYCpyE/+ULOaVNS96enhRT7Gee7d/PTgS4x7AbvBFrr1tH2Rs25C45UVUwtrN+ffJ3c+PuXjjBCIIgRBS4BqjF68mTbJlFKhUlTJeOI64Fe/Rg8Yq0KBGvloOIWQPAUL8xEVJrIHfu3JzDitxF5Qd5Dq0+EyakdOnSqV936dKlEO+7ePEiZc+ePUJRWeTHAkR1tenatSv72SI6Ww2G0OnTk60UNyEqi2ghrFfIhsUsohXoCw4ngof//ss5wi5Fi1L5adMoV8uWRvVkNwQI5P2tWvEwX/PjxylZzpxR+vmCINg+KGzCiJGSNoCGNixeM2Rg8Vq4d2++T5w5s4hXC0bEbAylV69eLB779OnDbgUoyho7diwNHDhQnS8LUCyGaT169KBr166xGwLSDCJCxowZ+WCwb98+Lj5DAViC4EIo5M0OHjyYVqxYwRFaW8H3zRsWXcjlDFKpyBZB4RVSCCBifV6/pkSZMlHhP/6g3G3akHPu3NEyT1yE/ffHH/R03z5quHu32JwJgmAQ/u7uLFq5PeypU+Rx+zZPh1hF2kDRAQM48qrZTVCwfETMxlCQm3rgwAG25sIQP4qz4FqgFJAptG/fngICAqhEiRIcje3Xrx87GkR0nuPHj6fhw4dTp06d+LORHwsSJ07MTgdIL4Atl61UueLAmTB9eu7kEqSni4s14vP2LbsQQMBiGA52YzmDC7nSlCkT7RGM8+PH063ly6nmqlWU9bffonVegiBYL35ubv8XrydP0qd793h6kqxZOeJafMgQFq8IOAjWi7Sz1UDa2ZqXqlWrUt68eWnBggVkC0PuOGiiKEmparX2/QtVvI+2b2cB++r4ce5elrVePRawmWvXNlk3s5vLltHR33+n8lOmUMkRI0wyT0EQrAPf9+/VwhUiVnEiQoEWRCuir7hHDqxg2Ug7W8GqgOctWt3itnjxYrKVAyqKoJzhLWjFFa7oVPPi8GFOI0BnLnwnRDNqrlxJOZo0MblzwONdu+i/Xr04j63E8OEmnbcgCJY5SqQpXr88esTTEUSAaC0zdiw3K5Di0IgHZryeP+cuYfAGh+2hJQYRJM1AsAg3Awja6dOns5etLfgS+334wAVP9vHikbWBfFS0X4SAffjPP9zjO0WBAlRm/HjK1aoVJTJTcd6bs2d/dfdq0oQqz5tn1RcJgiBQhD2lle5auPd8+pSnI3AAx5SyEydS+goV2PdVML57GXKIIVoV8YqCuCBfX34evuAYhbNERMwKZgdtb20FCEHvly8pjoOD1R1MPz98yM0MkEbg9ewZJUiblvJ37Up52rRhMWtO3O/coZ316lGa0qWlu5cgxCC8XrxQ22RBwCJKCNAOFsIKaQOIvBrT9jqmo1KpuFg3hGi9eZO+PHnCTg6cHpczJ6UoWJCy1q9PKQsW5Mc4p1lqEEHErCBEIf4fP1KQn9+vPFkLb12oFEc82LKFo7Bowxg3USLK2awZ5V65kofoLOE7qLt7ZcxIDXft4gsFQRBsU2RBrGqKVwQH0HAGF9TI0UeaU9ry5Sl+8uTmXlyr4HtgIDvOKIIV4tXj1i32PgewjIRQxYVBiWDRmjxvXqvroihiVhCiCOST+r59S/FTpqS4wZZjlsg3X196smsXR2FfHj3KgjXLb79RiWHDKGvduhZ1EIOB+baaNSl2nDjS3UsQbFC8Ik1AM23A580bFq8pCxWi7I0b80U1xGu84Hbogv516ffhQ6hoK0bc0G4X6zRptmwsVosOHKiOtsJtx1KjrcYgYlYQojC9AKILw/OWBrxuXxw9yikEj3fupO/+/pS2XDmq9tdflKNZM4s8UXB3r3r1KODjx1/dvaK46YIgCKY/TqJASzPy6vvuHV9QpyxShO39FPHqiCYzgk5+BAXR5/v3Q4jWjzdvUoC7Oz9vnyABR7KRglGkb99f0dZ8+Sw6yBJZRMwKQhQQ+OkTffP2pqTZs1PsCHRHi64Tx4erV7mlLFIJkAKB9IdSo0ZR7tatLdoUHOIbxV7wsG0h3b0EwSrBMQjWWJriFdFD5GSiOyAaq3DaQNmyJndGsRb8PTxCCFbcw/bxZ1AQP48mNSkLFqRCPXuyaMVj7lZmASlipkTErCBEwVUyhsYckyWziAMyhu24kGvDBvry+DEn7eOkAT/YlIULW/yQEk6AR3v2pGf791OjvXspdcmS5l4kQRAM/O1CaCk2WRCvuIjGiJVLsWKUt2PHX5HXsmUpbsKEsk61Wp8jaq2dJoDINUD6V/L8+SlV8eJcmMtpAgUKWMQ5xxIQMSsIkQRVoQC5R+a8en+4dSsLWNhqYZgJ+WZV//qLMlSpYjHRYkM4P24c3V65kmqtWUNZLNQGRhCEXx6kHnfu/D/yevo0BXh4UGx7e7XognhFV0BbHuI2lq9eXqFSBD7ducPFWgCpaoiy5u3Qge9xs6RRP0tExGwMBC1k+/fvT56envz/uHHjaNeuXXTjxo0omwcaIFSuXJn9Y5PYcO5ToKcn+7BiWMfO3t7kfrZP9+5lJ4IXhw5xVCRzrVr026ZNbKcS18mJrI0bS5fShQkTqPzUqZSvQwdzL44gCFriFb6jmuIVxz90/8MISsHff+e0AVjo2cePH+PXHdaX57NnoaKt7NBAxOsN/rgQq0j9QrQ1eYEC4tQQAUTMCjR48GDq06ePrIkIDAv5vHrFdlZIMTDVPF+fOMEC9vGOHfTNx4dPIpXmzqWczZtbtdfiox07uLsXChbgrCAIgnnB8QbiS502cPo0ffX0JDsHB0pdqhQV7tOHI694bI0NYqLaJQYNBzRFq/vt2+qGA3C5gWhFwa3iJIAaBlMHQWwVEbMCJUiQgG+CccCGC4VKSTNmjNY8VERcUQgFJ4L7mzaR3/v3lCRbNio2aBBfzWP4ydp5ffo07W/dmj1uK8+da/F5vYJgi+B45nb9+i+brFOn6O2ZMzwkjnxNpAoUHTDgl3gtWdKiLPxM7lzz6lWooizuRKY0HMiViwVrtoYN1UVZ1tZEx9oQMWsjHbQyZ84canrFihV5uB9pBWPGjCEPDw+qWbMmlStXLsTrtNMMOnbsyCkIaDO7aNEi+vr1K7Vu3ZoWLFhAcePG5ddg2pAhQ2jLli3k7e1NxYoVo7lz51Lx4sX1LufZs2dpxIgRdPXqVUqePDk1atSIpk6dSk5WOByOq3AUNiBPNrpM/L1evqQHmzZxFBZFFWglmKtFCy7kSlWihM0IPkQvdtWvz0Uhtdeti3FVuIJgzuLVj9euqdMG3p49y6M9ceLF499jscGDOW0A+a8xsVmJuuHAjRsh2rsiOg0ckyZlsQqfbkW0Im0gpgp9cyJi1sDcRNiLmBpc3RmSd5Q+fXp6//69+v8PHz5QtWrVqEKFCnTp0iXq0qULi8aGDRvSoUOHaOzYseF+5rFjx8jR0ZHFMMRyp06dyNnZmSZPnszPDx06lLZv305r166ljBkz0owZM1goP3nyhJLpGHJ/+vQp1apViyZNmkSrVq0id3d36t27N99Wr15N1pYH5f3iBdk7OfHQUVSDq/4D7dtzdAQnFVzdV5w5kzJWr25zQ1L4rttr12Z7mQY7d8bIE6YgmFK8otOfkjYA8YqOhTiWQbyWHDGCvUlTFSvG+ZwxBYMaDmTPzoK1+ODB6qKshOnS2UxQwdqJpcJWjEEgipg4cWLy8vKiRIkShXguMDCQnj9/zlFOCDkFt2vXaH3RoiZf1nauruRSpIhR78F3qFSpEqVIkYJ2795Nbdu25e+6f/9+9WtatmzJolZfARgis3v37qXXr19T/GAxvXTpUo7E4rMCAgIoadKkHPFFxBYEBQVRpkyZuLAMr9MuAOvatSvZ2dnRsmXLQkRqET328/MLsb4tHZ+3b/nAhytwY/LE9O1f2kDIojNXhenTKXujRjZrYRPw6RNtLleOox+tz5+XpgiCEA1dCT9cufL/tIFz57hhCtxO0pUvz8IVaQPwfLW1C2V9/Pj2jT7dv88RVl0NB3C8heWVIlg52oqGA1Y4gmjLek0bicwaGCGFsDTHfI2lc+fO5OPjQ0ePHqXYsWPT/fv3eThfk9KlS7OYDYuCBQuqhazyHl9fXxa42LEgXsuWLat+3t7enkqUKMHz08XNmzfp1q1btHHjRvU0XEf9/PmTBV7u3LnJWqL0ELIJUqWKloKHL0+ecF4s8kbztm9PtgrWI3f38vCQ7l6CEIXi9f2lS+rWsLDp+x4QwEWqEK9lxo3jtAGXwoXZ+zXGNRy4cYOFrNJwAC40EKyFevVSF2WhmYykOlkftr83RwEY6jc2QmoOMIR/+PBhunz5MiW0sGgehHCPHj2ob9++oZ7LkCEDWVPLWgyFO0VTa9VLU6dS/BQp2J/RlotM9rZowSeXFidOULIcOcy9SIJglWBU493Fi+ruWhCvP75+JYckSVi8lps0iaOvKQsVsmmPUhxT0CBGb8OBePG44QAK1wp07/4r6po/vzQcsCFEzNoIyF+dMGECHTx4kLJmzaqejogn8mY1uXjxYrifh0gq0gniBUcf8R44HiA/F8VbKAQ7d+4c58sCRGqvXLnCaQa6KFKkCN27d4+yZctG1goKvpBfhoh5dFy5e714QffWreP0Alu1ueHuXr//zr643N2rRAlzL5IgWNWIBgSr0l3r/cWLPGyOQiSI1grTpvE9hsltVbzC21s7RUCz4QDyWLnhQMeO6jQBuL/Y6voQfiFi1ga4c+cOtW/fnoYNG0Z58+blAjAAwYlIKNIBZs2aRQ0aNODIbXgpBuDbt29cOPbnn39yARiKxlCshdQFuA/07NmTc2NR7IXIKgrA/P39+T26wLKVKlWKPwP5s/gMiFukQ8AxwRqG72DFhYKv6Opkc3n6dI6oFOjRg2yVc2PG0O2//6baa9dygwdBEPTzzc+P3p0/r04beH/5Mg+Rx3N2ZtGKwlCkDSTPl8/mhsYNajiQNy8L1jxt2vyKthYowOtGiHmImLUBYHUFIYk0A9y0rblWrFjBYhT2XHA5gECdOHFimJ9ZtWpVyp49OzsiwIarVatWXCimMG3aNM53bdeuHefowpoLQhmFYbooUKAAnTp1ikaNGkXly5fnCB0iyC1atCBrSS9AjhnaDEZXUdmdVauozPjxNltocH3xYro4aRJHnm05H1gQImP5hyItJW0AxVsYQoctHwq1kEsPEZs8Tx6bEq/hNhxwceEIKxrDKIVZyXLmjDFFa0L4iJtBBKrNbR3FZxYOB8Kvqnuv5895qMoxEq15w9q/jvfrR/fWr6fuL1/apHvBo+3baU+zZlS0Xz+qNGeO2NkIAvy6vb3ZHkvxeXVzdWUrKIg3RFwhYCFenXPntonfjCENB/BdNZ0EcO/k4mLuRRfMgFW5Gfz11180c+ZMHhpHBf3ChQu5Kl4f8+bNoyVLltCrV684d7Np06bsoRqTxacQvb6MPq9fc7vayAjZsIA7wq3ly6nEiBE2KWRxokZ3LzR8qDR7tk2clAUhovmemuIVDQswnI6CUojX/J07833SHDms/ncSFBBAn9BwQDNNQLPhQLJkLFSz1q2rFq/ccEC8poUIYFYx+88//9DAgQPZw7RkyZIsVGG8//DhQ0qpw4x+06ZNNHz4cDbdL1OmDD169IijiPjRz5kzxyzfQbBtIGQBOn1FF1dmz6bYceNSER1ODzbR3atBA0pbvjzVWrPGpoZGBSE8Ar98oTdnzqjTBtCWGuIVRUqIuBbs0YOjrxj1sVbxyg0H3r8PkSKAx1/QcODnT3XDATgqZKpZUx1xRcqWtX5nwfIwa5oBBCzanyoFQMjBRLV8nz59WLRqg+Ih+JiiO5XCoEGDuFofBvzR1TRBiLlRFM8nT9iLMCqKCnTtX/7u7rQ8UyYqNmAA2+jYEmjHu7lMGR4ybXHyJDmEM0wkCLaQkvTm9Gm12wBEHYbPE2bIoE4bwD2OKdYo5NQNB7SKsuAXDaThgBDj0gxQLe/q6kojRoxQT0OlPAqULly4oPM9iMZu2LCBfVSRivDs2TM6cOAAFyHpA8VLuGmuHEEIj58/fpDPq1dsNo7hsOjCde5cPqkVHTDA5k7q22vWJDsHB2py4IAIWcEmwcWoIl4RfUURE0B7ZojWIv36/RKvmTKRNX43bdEaouFAlizsHlDojz+k4YBgdswmZj08POjHjx/kopXYjf8fPHig8z1onYr3lStXjoc2vn//Tr///juNHDlS73yQTzt+/PgoX37BtoENF6qIk2bMGG0RlIDPn+n6okV8MrAlOxl4Ye6oW5e/X+tz58gpVSpzL5IgRAl+bm6/xOvJkyxgkRMKkmTNymkDxYcM4ehrIitpBANwnPv86FGooiykDuhqOIB0AfwvIy2CJWH2AjBjgM3UlClTaPHixZyi8OTJE+rXrx/bTI0ePVrnexD5RV6uZmQWqQyCEJZNDBokIE82OosRri1YwCeSYoMG2Vx3L0Somp84wblygmCt+L5//8vjNfj2ObhdN/ZrRFxLjhjB4hU5sFbTcEBLtEKQazccyNepkzQcEKwKs4lZOBHY2dmRm5tbiOn4P5WeSA4EK1IKYLoP8ufPT35+ftS9e3f2L0WagjYODg58EwRDQMGC94sXZO/kxA0SotOS59r8+VwA4hSN8zElGC050qPHr+5e+/ZR6uLFzb1IgmC037NavJ48SV8ePeLp6PoH0Vp69Gi+T5AmjeU3HHj6NFRRFlKnQjUcaNtW7SYQLxpTqgTBJsUsulMVLVqUi7kaNmyoLgDD/yj00gUaA2gLVghiYMY6NsGGwNAaun3BIiY6CzSQXvA9IICHJW2Fc6NHc+OHOuvXU+aaNc29OIIQLt6vX6u7a0HAouAT4PefoWpVKjtxIqWvUMGiU2W++fiwa4imaMXICFpvazYcgDWeNBwQbBWzphlg+L9Dhw7cPQoFXbDmQqS1U6dO/DxatKZNm5bzXkG9evXYgqtw4cLqNANEazFdEbWCEBlfRN8PH/jEZR8vXrS2qHSdM4fyd+li8REeQ7m2aBFdnDyZ22si0iMIluqwodhkQbx6PXvG09EOFu2VkfeaDuLVAkdLlE6E2kVZ3HAABdRx4nAEGYI1e+PG0nBAiFGYVcyilam7uzu3WUXThEKFCtGhQ4fURWFojKAZiUUbVkTLcP/27VtKkSIFC9nJkyeb8VsI+njx4gXbUF2/fp23rblZs2YN9e/fn7ub6TxRvHjBObIJUqeO1uV4+M8/nGZQYtgwsgUebttGx/v2ZUcGW8r/Fawb/Ka9Xrz4v3g9eZLFIFDM+hXxGj95crK0C2uPO3f+39pVaTjg5RWy4UC9etJwQBDMLWYBUgr0pRWg4EuTOHHi0NixY/kmCFEJCr4wLIfIRnQa+yOX7fbff1PeDh2squJZH69OnqQDbdpQrpYtqdKsWVbpnSnYjnhFlFIzbYCbnsSKxRX42Rs14qItNPCwlNxQLLPvu3ehirKQq4tjBY5FKDaDcM1Uq5Y0HBAESxWzQswFB3LYs+EixZwgRxZWXCj4ipsgQbTOK8jXl9s5ogra2kGkCN29ENmqLd29BDMcP748fhwibQC/YwjAlIULU87mzblYK225cuSYNKllNBy4dy9EigA3HPj0iZ+HpzV8W5GrW2zgQBauSH+wjx/f3IsuCBaP9Ja0keF8RMS0b5UqVVIPr2fIkIHix49PjRo1otmzZ1OSJEnU70dLYKUITwHD8cr7AdI/4O+L9zk7O1PdunXpaXCulgKaWSCfGd2tkAeN9ALtSDuW6+DBg1z8B5cJdG4zZP54rETx0REEbhjIl9Ys/Pvy5QvnWSdNmpS/a+3atenx48dhrrtdu3ZR0SJFKGPp0lSoUiX2JIZ/cXSASAvSC7LWr09JsmQhawbDt9tq1aKk2bJRgx07uDpaEKIT/NY/PXhAN5YupX2tWtHSNGloVc6c9F+vXixqc7duzS4avT9/pnZXr/JIAYbhzSFk/T5+pBdHj9KVWbPoQLt2tKZAAZrv5ETrChemQx070pPdu8khcWIq3KcPNdi5k7o+e0Z9PD2p1ZkzVG3RIirQrRulLlFChKwgGIhEZg00gf+sp5FDdIIhb0OuyuGb+z7Y4Bog/xid1CpUqMCtfrt06cJFdBCMEKURSdNAYR4K9goUKEC+vr6c5wxhfOPGDc5rxjQI3OrVq3OXNrRthQewLtCqeNasWZQlSxYWnoaydu1a/i4QzVevXmVLNoj0bt268fMQxRCve/bs4dZ3w4YNozp16tC9e/fI3t4+1OedOXOGOrRvTxMHDqTqDRvSG3d3/kwQHaks6NOu+vGDjcetGX8PD9peqxabqTc+cIBbWApCtIjXe/fUNlloVuDv5saFTi7FinGqDqcNlC1rtn2QGw48fBiqKMvvwwd+Pk78+JQif35KU7o0Ffz9dy7KkoYDghD1iJg1AAjZ9UWLkqlp5+pKLkWKhPs6ODko3ryBgYEsWkuXLk3jxo2jtm3bUq1atWjo0KH8fI4cOej8+fMsao2hSZMmIf5ftWoVF+BBKObLl482bdrE1mp///03R2bz5s1Lb968oZ49e4b6rAkTJrDoNRaI9rnB7V9z5sxJt2/f5v8hZhURe+7cOW57DDZu3MjvQfS1WbNmoT4P66d3hw4czUWkNDcRN+DAuopqMYuoLPqXw782SebMZK3AiWGn0t3r/Hly0urgJwiR+Y143L2rzneFeA1wd6fY9vaUqnhxdv9A2kCaMmWiPR1I38WodooAlvdHcLt0NFlBagCWU7HAQmew2OK0IwjRjohZAyOkEJbmmK+xdO7cmXx8fOjo0aMcMb1//z5HUDWB0DVWzEIsIhqLSC9aCkO4Ko4TELOYD6K2ELKa89EFUhAiQqlSpUIUGOHzkTKBvFvMH7m3sGxTQDoERC+e08XNGzfo/LlzNH/1avU0fBYuCOBpjFSFqAJ5cT+Cgihu4sRkrWD59zZvzlXWLU6e5BQDQYiMeIU/qpLzyuL10ydOWUHrVDQUgXhNXbo0xXVyMulyfXnyJFRRFheTIXjg4EDJlYYD7dv/Eq4FClhMUZkgxEREzBoAhvoNiZCam0mTJtHhw4d5GD6hEcNuEL3aTSeCgoJC/A8LtIwZM9KKFSsoTZo0LGYhYr99+2b0cjppnZgMmX9UA4sbpE78OWwYtWjXLtTzmqI8suC7YdgRvcztfvwgq+3u1b07vTxyhBrv30+pInhBYisV826urnyDC0YcR0eyc3TktAv1Y+UWL16I/zVfF+K1wdMwhG6r/Pzxg0Whkjbw9swZjnZCHKYuVYoK/fEHpw3gcXT6PIdqOHDrVsiI6+3b9N3fn5+H5zTEaq5WrdS+rcly5rTp7SQI1oj8Im2E7du38/A9iquyZs2qnp47d26Opmpy8eLFEP8jXeDOnTshpiEXVskz/fTpEz18+JCFbPny5XkaCrc0wXzWr1/PUU1FCGrPRx/hzV9B1/fInj07p1lg/ijcwmuUNANlufPkyRPqpAq/yQJ58tDT168pWzRHGAMRlf36lZzQvz04l87aODtqFN1ds4bqbNhAmWrUoBjjU/r8OX24evWXeMX9tWvsRgESZcxICdKm5W2L3vY/AgO5qxse8y0gAB9i1Dxj2dnpFMK4t9f6P04UCGjN12E4Pyqt1ZBP+vHGDXXaAMQrLiIxL0Rbi/Tv/yvyWrIkTzOF56xmigAErNI0gRsO5M7NgjVH06bqNAFLbJ4gCEJoRMzaABCCyPtEwRNyVVEAprQM7tu3L5UtW5YLrho0aMCRW+0UgypVqtDMmTNp3bp1PHSPAi58JpwJAIq0MGS/fPlySp06NacWoIhLk9atW9OoUaM4f3XEiBHssIB5GkJ481fAfFGE1qNHD7p27RotXLiQ0wwARC2+H+a/bNkyjkxjGdFBDtM1gX0PTrRjJ0ygBo0accS5adOmHCG+efMmzxtR7ijzkURUNnFik0WbopprCxfSpalTqeKsWZSnTRuyRRSxoxatwZFXRA5BwgwZKFXRotx+2KVoUb6FZ7SPz8R+pgjcHxoiV/1YhwjWfF2I/zXeC0HtH87rUGxoDLC0MiaKHEJYQxjb23NeuPerVxy9RmtYLAcPy+fLRzlbtOCoK9YdRimUz4IPLNZVVAlpFOwqDQfUEddbt+ibtzc/H8/ZmYVqtgYN1L6tELJomCIIgnUiYtYGQGU/cjwhwDRFWMWKFdkOCxFVFDQh5xUuB+ighkInhZo1a7LNFQqfEFlF3i3EMQqsAETeli1bWBgjtQB5qAsWLAhhnZUgQQLau3cv/f777yxCEQ2dPn16qMIxXYQ3fwVMCwgI4NbHiMbCLUFxHwCrV6/maXBVQPoD3BwOHDgQKsKLoWEUa9QpUoT27dvHEW0sK16XK1cu6tq1K0UVEEMQGYkzZ6ZfWcbWxYOtW+l4v37c2au4jXT3UtqCKoJVibwGfv7MzydMl46r5YsOHMjpFCxcU6Qwej4QZxB4uEG8mRoW0pEU0Lpeh6F5bjLi709fv3zhaOs3X99fhVA6ItGYrqzrW8uX611eo9M1HB35O2L+yLVFsZjf+/fk7+7+azlixeLIeZJs2Sh3q1aULE8edhZARD3EPBwcorVRiiAI0U8slXayoo3j7e3NPqVeXl5s36QJhBQspdCCNSpzJi2NsNq6WioQzmiJO2/evEgVdsDqB0O53OkrmrtVKdZCGL5NliOH1e1fr06cYAuuHM2aUZ1166zyhI9tgMKdEKkCrq5qo3qIHYhVRbTiJg4N+k3/P1y5os55fXf+PHfNs0+QgBsTIN8VaQNYh9hXQonicKLNYQltzAciFZFfXCAiyopp6ugzvLWxf6pU/Ds3FkSPwxLQ0Zbm4eAgbgeCEAG9po1EZoUYA4qw0O3LOXduk7RdxVAwTsrJMmYkawPDs7saNuTe9bVWrbIKIcvC9c0btWj9EHwPAQScUqdm0QqjekRekTaAAh9BN/itfLh8WZ3zCvGK/RmdqtKVL0+lx479JV6LFNFZEMUOBBFwIfBzcwvl2wp7RERhAeyuUlerpk4RwD2ircpvGmIWyx5WtDlIQ0AbI7QRBQ4V0dZ6n7HgYlev6DUwzSOiQlsK2QRbQcSsECPAycv3/XsWL6ZoD8m5su/fs5m7OTwxIwNyRxGRRU/4Btu3W2R3L6WnvaZoVdwFALYzIoSokIdoxeMEadKYe7EtGgixdxcv/moNe/Ikvb94kac5JEnC4rXsxIkcfU1ZqFCURBNh9aY0HNAsykJjBABPZjQYQFOEQr16/SrKyp8/3AYJuPCCuDNHjjq36P72LUryorVf983DI9z3GVtwCDEbkWJBQ4V2WMIb8zZFUEGIGUiagQbWNgwsGH6CQWQHQ5LOefKYJMoY6OnJBTBJc+Ykh+CTrzXsXxjK3VyuHK+rVufOWcyQOwtXjfxW3CuiJ37KlL8irRqpAhCucqIMG+S8QrC+CvZ5fX/pEue3ov1rugoVWLgiMg8P1ciKVzTZ0PZtRQqOuuFAhgzqKKsScUUE1hpGBCwFLjgMCgozahypAsSw8qlRcGhkekeIgkMj0zXCep0hwhsX6HJ8sHwkzUAQNOBiFT8/9oc0xcmRfWXfv+dcQmuKyqK71466dTk9wpzdvRDR1hSuuGF9gngpUrBoRe96Rbwi71VOTIZt3/cXLqjTBiBeIX5Q3Q/RWnHGjF/iNX/+CP9OYHsHJ4MQwvXGDU7/AIqzQcrChSlfx47qhgMQ0ELk4ILDuHH5ZtaCw0gKaO33IT8ax/Cw3of92ChixQoVVdaZrmFI9NlY4Y2CQ4lIRzmSZiDYNMidgxUXqtFN1b9dKU7BML21HLS4u1ezZhwta3nqFEfFTAHyI7WLsxCFBfGSJ2exmr9z518R12LF2GnAWtapuYHDwNtz59RpAyjeguDABQFyXSvNmcPR1+QRHK0It+FA6tQsVnO3aaOOuKIQUvI0bRNs17hmuoBnIa2RJx2ZvGjN/3Ech094WO9DWkmkCg4NzJOOUJqHY+j32upoh4hZwWbhgqBXr/ggmwANC0w0T0QWke+HQhmr6e7VrRu9/O8/7u4VXd3u/D5+DCFaIWJxoQEckyXjSGveDh1YtEK8JsqQQYSrEXz19g4pXq9e5XSR+C4uLF7ztGvHkVdjCyANaTiA9B2IVThfKOkCEbEzE4QIC2kUIZqw7bFCiIJDA+3utIW2PuGNdLXw8qmNxQ7R+0hEm3FcxqiKpSFiVrBZ4BuK6mP4TEZFwYqh0aogX1+ep7VEEM+MHEl3166l3zZtokzVq0dZ7q22j6vS2x5DyhCrEFeKLZZmNbpgGNi335w9y8IVAhbrGCdWREQRcc3XqROLV06vMXDdhttwIHnyXw0HGjZUi1aIY0ssEhQEUxCi4NDE6TJccKjZgTDQiLSOcIQ3juG6XuecN6+IWUEw5bA5xBOEk2OSJCabL+fKxo/PHb+sgWsLFtDladN4yBnG8hHB38NDLVwVdwFExAEq4SFY0dteyXFFAwkRrsYDf9U3Z85wvuubkye5VSzEK3KGIV6RR4x7Qy6keATh7duQKQI3b9KXx4/5M3GCRvEiBGuW335TF2VBKMu2EwTLAL9FJXIa05HIrGCT+AZHAVElbcocRURmuQrbCqKMD/75h47370/FBg+mYgMGGFyVru3jim5aAAKehWuLFmof18RZsljFurBEsK7fnD6tjrxCeMJ6Cfs00gZgO4b78NYxhkCRC63tJqB0PMN2g1jNWKMGt+vlaGvevFbbflkQhJiHiFnBJOBku3PnTmrYsGG0z4vbW37+TIkzZeJWoqYChUvIKUI00tJ5dfw4HWzfnvK0aUMVp0/XGwnkNAGNPFev58/5OeQDI7cWOZLs41qsGCWBqLLR4gJTgAi3pnjF8D5IlCkTR1yL9OvH99ivI9xwIFs2FqtF+/dXF2VJbrIgCNaOiFkbp2PHjty2dteuXRQTgDUQIoUQW47Ozia1PUJeoTVEIjE8je5eEEY1//6bBSgKDdSpAsF5rkqBDyzGEHHN1qiROlUgKYayRbhGuiCOi7WCC7Y+3b3L0xHZR65rsUGD+D6xjg5yhjQcgOUV2swigosUATQgsCarOEEQBEMRMSswQUFBZG/CKGZ0gTxARKGSmrigyA9RWUdHi/fL9Hz+nLbVqkVOadJQ2vLl6UD79hx1hTeoWrgWLkzZGjRQF2exxZgI1yhpp/xaQ7x+vn+fp2P9QrSWHDGC0wZgPxZuw4G7d9WWQCieQ4S1QPfu6qIsiZILghCTEDFrI2zbto3Gjx9PT548ofjx41PhwoX5tnbtWn5eEXYnTpygTJkycReqLVu20OLFi+nSpUu0dOlSqlevHvXu3ZtOnz5NX758oaxZs9LIkSOplUZhUCUUmsDk3NGRVq5cSXHjxqXff/+dxo0bp37N48ePqUuXLnT58mXKkiULzZ8/32Q5qzDXTpg+PcVxcCBTgQpwpDZYYmET7Jrcrl3jaOvbs2fp2f79bDCOCN6lqVM5VSBL3br/j7jCB9REzg+2DtJOFOGKCCwiqQDuAoiKlx49msWr0maXGw48eUIPtm4NEXFVGg7gYsk5Xz7eZnAqUDccsIK0FkEQhOhExKyBYgV5Z6YmWa5cXBkfHu/fv2fBOWPGDGrUqBH5+PjQmTNnqH379vTq1StuCbd69epfn5ksGb0LNqUfPnw4zZ49m0UvxCnarRYtWpSGDRtGiRIlov3791O7du1Y1JYoUUI9PwjkgQMHsgi+cOECpzKULVuWqlevTj9//qTGjRuTi4sLP+/l5UX9+/en6AYV2EgvwPAq2puaEkRlYYINr1RzguIzt+vXQ/i4fnn0iJ+zixePRWpse3sqP3UqZa5dm0WVCNeow/v16xBpAxCmAB6s6atUoTLjx7N4dUqVii8ykBP7eOdOdcQVllhKwwEIXG440LatOtqKCK40HBAEQQiNiFkDgJBdX7QomZp2rq4GGdhDzH7//p1FZMbg/Lr8+fPzfbx48ejr16+UKlWqUO+DyMR7NBk8eLD6cZ8+fejw4cO0devWEGIWkdmxY8fy4+zZs9OiRYvo2LFjLGb/++8/evDgAb8vTXDEacqUKVS7dm2K7iFc+OAZawgfWWB2jXxTFOmYcr6IQn+8fj1Ey1eO/KlUXISWslAhylSzJpUcOZLF0Klhw7iVacuzZzmNQIg82O5P9+xRi1clxxjtWrHu00+dSunKleOLYUWwPtiyhR8rhXS4uFAaDsAFQom2SsMBQRAEwxExa2CEFMLSHPM1hIIFC1LVqlVZwNasWZNq1KhBTZs2paTh5G8WK1YsxP8/fvxg4Qnx+vbtW/r27RsLYaQtaAIxq0nq1Knp48eP/Pj+/fuUPn16tZAFpUuXpugWlOi6hYiXIZHsqPaVhWF8vGiMyqK4DMJV0xKLRwogXB0dKUWhQpShalUqMWwYpwpA0CsRPPiJHuzQgV6fOEFNDhwQIRtF4MLpn0qVWJhCfGZFqkbJkhTP2ZlHCDD92rx5dLhzZ46YA7SRxYVF9saN1b6t+I1LwwFBEITIIWLWACCQoqvFZ1RgZ2dHR48epfPnz9ORI0do4cKFNGrUKB7mDwsnrdZ/M2fO5PzWefPmsTDG84jeQtRqol0ohogk0gvMAcSa94sXnCObIHVqkwsaeHWytVEUFkih4Of+pk304coVFq8QrkijQCoDRFCGypWp+ODBnOeaDN2XwijcOz18ON1bv57qbt5MGatVi7JljOmcHDSIC7gK9erFnXKeHzpE1xYu5AuMWHZ2nMKBbZWlXj11mgAutiwtp1oQBMEWEDFrI+AkibxV3MaMGcPpBvB1RYEWIq6GcO7cOWrQoAG1bduW/4dAffToEeXJk8fg5cidOze9fv2aUx8QsQUXL16k6CLIz49vKFwydcU9orIYJkaLz6gA5vY3/vqLLkycyLmTEEDpKlSgYgMH/oq45s1rlG+u67x5dGXGDKo8dy7latkySpZRIHq0fTvdWLyY7BMmpHsbNlDKwoUpc61aHBnnhgN58kjDAUEQBBMiYtYGQAQWOatIL0iZMiX/7+7uzsISRV3IX3348CE5OztT4jDarCL/Fa4IiPAiRWHOnDnk5uZmlJitVq0a5ciRgzp06MCRXhSfIUocXWAIFyI2bsKEZOqobMCnT+ycEFkRjejy4x076NTQoRxlhsUSioWcIlHIhtzMEwMGUPGhQ9kgX4gavF68oENdunBjDNiYtbt6lZxcXGT1CoIgmBERszYAnAdgp4X0AIhHRGXhUoCiK+TFnjx5ku99fX3V1ly6+PPPP+nZs2ecd4s82e7du3PHLjgSGErs2LE5IgxrLhSNYV4LFiygWrVqUXQQ5OvLosLUw7coOOOobIoUkfqc95cv85A1bLPgMNBozx5KnjdvpD7z5bFj7B+bp107qjB1aqQ+SwjZqGBfq1ZsbYYLkBYnToiQFQRBsABiqXBUjkFA7CE6CYEGEagJopjPnz9nD1ZYVQmWDXZddLNCZEzx6jQFSAeAjVLCtGk5D9JQNPevr25udHbkSM6NRWemSrNnU6bq1SO9bLDm+qdiRUpTtiwLY1O287V1kH98ZeZMzl9usGMHZW/UyNyLJAiCECP1mjYSmRWslu8BAaT68YNzF02JP6KydnYRispCCF2ZM4euTpjA3cJqrlxJeTt2jBK/V89nz2g7/GNz5aL6//4rQjYKeX74MF2ePp0fl5s0SYSsIAiCBSFiVrBakGJAsWKZ1I4LLUQDPDy4HawxAhRRZOTYot3uvXXrOJe1xNChFDdBgihZLr+PH2lbzZrkkCgRNd6/P8o+VyC2fUN6AXKjczRrxt69giAIguUgYlawWlD8BSFryi5WyJWFqDG0yxhE7Ddvb/J5/ZoCAgO5oUHTQ4fIWU/eckQbKOz47TcW963OnxfD/SgELWb3Nm9O37y8OB2k1urVYq8lCIJgYYiYFawSFom+vmxSb8oCoAB3d3JKndogAY3OTz5v3rCYhdtCkjRpyNfNzag823CX6ds32tOkCX15+JBanDpFSTJnjrLPFoguTJjAxXmOzs7cdMI+XjxZLYIgCBaGiFnBKoGIQ1U5nAxMhb+bG6c1hBeVxbL5vnvH6Qh2jo6UJFs2ckicmLupRSXIvz3cpQu9OnGCo73SpjZqeX36NHv+ogkC1q8piwwFQRAEwxExK1hvviyRyXJDEZX1//iR4ru4qFvF6hqShuBVUhHgQRs/RYpoa+bA3b02buTuXhmqVImWecRUkN+8s3597uhVe9067rYmCIIgWCYiZgWrzZdF/qk+YRnVQMgCXVFZpDwEfvpEPm/fkur7d34NpyJE47JdnTuXbaKqzJ9PuVq0iLb5xESwPbfVqsV5soX79aM8rVube5EEQRCEMBAxK1htZNZUXb9+fv/OEVdEWbV9W7+iuOvNG24/C6utBOnSURwHh2hdnvubN9PJgQO5fWqRvn2jdV4xkdPDhpHb1auUunRpqjJnjrkXRxAEQQgHEbOC1YEhf7STRfTTZFFZlYriaxRuYf5wKPjq5UX2Tk7s7WqKlIcXR4/SwQ4dKG+HDlReuntFOc+PHOGId7zkyanZ0aPRliIiCIIgRB0iZgWrw5T5ssiD9XNz4wYJiMpCSPu9f0/+7u78f+IsWTgia4p2uh9cXWl348aUsVo1qrFihVhERTF+7u60q0EDTg9pfeECxXVyiupZCIIgCNGAhB1shI4dO7K40b7VqlWLbFHM2sWNS3bRPJyvjsr+/MmFXyjsQhtbFAehlW3yfPkoXrJkJhGVnk+f0o46dcg5Tx6qJ929opyfP3/SplKl6EdgIP22aRMlzZYt6mciCIIgRAsSmbUhIFxXr14dYpqDCQSfqYG/rCksuRR3ArTL/fLoEf34+pXzZtH9Szt3NjpBZJi7eyVJ8qu7l0QMo5z9rVqR17NnVKhXL8rZrFnUz0AQBEGINkTM2hAQrqmi0JDfEoHARDMCUzRLQOtZFH+h6QF8YhGtg4OCqV0buLuXn9+v7l7Jk5t0/jGBG0uX0sOtWylFgQJU7a+/zL04giAIgpGImDUAiKfPDx6QqUFREdq1Chrbws+Pi7EQLY0uvn/9Sr5v3lDgly+cP4m8WIdEiUy+GdB8YTe6ez1+TC1Pn5buXtGUh3zsjz94f2p59mx0zEIQBEGIZkTMGgCE7PqiRcnUtHN1JZciRQx+/b59+yiB1vD7yJEj+WZL+bJoJRvH0THKPxtRWOTFcqev4Cp2XFBEx7wM6e51qHNnenPqFDU5dIhSFixo8mWwdZD7vLVyZfaVhXOBg4ms3gRBEISoRcSsAUDQQFiaY77GULlyZVqyZEnIz0iWjGwxXzYqi64gHNF6Fi1o8RgWXPjfMUkSswhZcGroULq/aRPV3bKFMlSubJZlsGXgSrGlQgVO4yg3dSqlKVnS3IskCIIgRBARswaAoX5jIqTmwsnJibLZcBU2ImiIzCZIkybKPg8+sUgpgG8svEXx2V89PelnUBA5mSn/+NnBg3R19myqsmAB5Wre3CzLYOsc7NiRPt27x22ASw4bZu7FEQRBECKBiFnBakCXLUROo8LJAHnQaHqAyBw6iTlnycIXLfh8pBo4Jktm8mIvhSe7dlGynDmpSJ8+Zpm/reO6YAE92LSJvYMb7Nwpfr2CIAhWjohZG+Lr16/04cOHENPixIlDyW2kAh4pBkgviExRHIqq4FKAfEmkECTJlo2dCpS0hYDPn/k1SUzUXUxXtPj5oUOUvWFDs8zf1nn53390on9/7uzV5MABsxT2CYIgCFGLiFkb4tChQ5RaS4TlzJmTHpjBiSE6CPLx4daxEWkxqnjGIuqK9yfKkIHTCjQ/C0IS3b2QK2tvpqgsig19Xr2iTDbY7MLcwBViJy4SVCqqOHMmpSpWzNyLJAiCIEQB0gHMRlizZg2LMe2brQhZfBcu/jKy4hzv8/fw4M5dEKrxU6bkzl241xbFgYjKfv3KTRHMxYvDh7mzWfqKFc22DLZIoKcnba9Vizt84UKh6MCB5l4kQRAEIYqQyKxgFUBkwjorrhH5sl+9vTkv9ntAAOfAJkibluLo6YimRGWRcmBOb1+kGEDIir9w1IH9Zm/z5uT16hV3cPttwwbJkxUEQbAhJDIrWAUo1AKGFH9BvGJIGS1oEX2FxVmSLFn0ClmABglwNDBnVDYoIIB9ZTPVrGm2ZbBFTg0ZwrmyKO6rt3WrSbrHCYIgCKZDIrOCVQBLrjjx43PDhLC8Q/3evSN/d3ceqoeAdUiaNNwonBKVjZsoEcV1ciJzASELQS35slHHrZUryXXePKJYsajs+PGUrnz5KPx0QRAEwRIQMStYBciXRQqALthOK7i4CyRMl05nTqw+4CuLaG6yDBnInCBfNmH69OScO7dZl8NWeH36NB3t2ZMvgtKUKkUlR4ww9yIJgiAI0YCIWcHigVUWcmZ15csiGgsHALwG+ZBOqVOTnb29wZ+NqKwvorIJE/LNnCBfNnOtWpLPGQV4Pn9Ouxs1YuutWHZ2VGfDhjCj+oIgCIL1IjmzglWkGOjLl4XdFrp1Jc+Th+22jBGyAB3A0IwBIticeL14waJcUgwiDwr/dtarp3aoqLNuHSUw8/YVBEEQog+JzApWkWKAHFi7uHFDe8e6u3Mnp4h061JyZSGSzR2VRYoBIogZq1Y163JYO9gn9rdpQ17Pn3O0vvjQoRztFgRBEGwXicwKViFmdaUYBHh4cL6sk4tLxD7X25uC/Pw4ahdekZgpxGya0qX15gULhnF21Ch6tn8/X5ygKUK5SZNk1QmCIEQB379+Jc+nT8kSETErWLxHKNIAtFMMIGKRYhAvadJQEVtjcmXRUQwuBuYEeb+wjpIIYuS4u349XZ4+nZLnz8851nU3bzY67UQQBEEISZC/P7nOn08rs2alXY0a8fnT0pA0A8GiQeQUaKcBwBeWi75SpYpwtBe5uEmyZTN7VPbdhQvsoyv5spFbh0e6duXoNh7X376dEmfKFIVbSRAEIebVH9xYvJiuzpnD9Qe527ShksOHm/2cqQuJzNoIHTt2pIboO6/FyZMnecfz9PQM8dhagOiMHScO58yGyHX98IEjqhHtlAU/Wlg2WcKw/otDhzjv16VwYXMvilXi/eoV7WrYkJzz5iW3a9eoUK9elKNxY3MvliAIglUS8OkTnR0zhpZnzEjnx46lHE2aUJfHj6nO2rUWax0pkVnBogny8eF8Wc0rQUQx4QubNH36CAtkfEaSrFkt4goT+bKZatQw2BdX+D/f/PxoV4MGfLGD7Ypub5Vmz5ZVJAiCYCRIvbs6ezbdXLqUg0YFe/SgYoMGUcK0acnSMfrsuXr1avL394+epREErbxYpBnYa6UYICqLqGpEHQh8EZWNF48ckiQx+/pGswdEEyVfNmL7x8EOHbh1ccrChTnaXu+ffyiOo2M0bClBEATbxOvFCzraqxetyJyZbq1YQUX796fuL19S5TlzrELIRigyO3z4cOrXrx81a9aMunTpQmXKlKGYkPwMD1BTgyhTRIfRbWW94+pQ08kA0+BCkDhz5ghFVRHJ4/dnyWIZUdkjR/g+Y40a5l4Uq+P8+PH0eMcOKtqvH7esrbVmDSXLmdPciyUIgmAVfH74kC5Nm0b3N2zg4E7pMWOo8B9/WET6XbSL2bdv39LevXtpzZo1VKlSJcqSJQt16tSJOnToQKkiWIxj6UDIri9a1OTzbefqSi5Fihj8+n379lECrar/Hz9+kLWCVAAMvSMKqxmVhXuBY7JkEc+VdXQkx6RJyRJAviy2sVPKlOZeFKviwT//0IUJE6jowIF0a9kyytOuHeXr0MHciyUIgmDxfLx5ky5NmUIP//2XrSkrzpxJ+bt1o7hOTmStGC1m48SJQ40aNeKbm5sbbdiwgdauXUujR4+mWrVqcbS2Xr16FNuG8v8QIYWwNMd8jaFy5cq0ZMmSENMuXbpEbdu2JWsEbgOw5FIiqPC4Q0VlwvTpIxRVRVQXHb9Q5W4JUVkMkyMyW6B7d3MvilXx4epVOtSxI+Vs0YJeHT9OCdKmpWqLF5t7sQRBECyadxcv0sXJk+nZvn08ull96VLK26EDxdEosLZWIlUA5uLiQuXKlaNHjx7x7fbt2xyhTZo0KefWInJrC2Co35gIqblwcnKibNmyhZj25s0bskaQXgAxG1+jIYL/x48U286O4iVPHqHPRLcvFAo5OjuTJYBcWTR+kHxZ4/KdUfCVvEABjq5/vn+f2ly8qLOphiAIQkxHpVLR6xMnWMTi4j9Z7txUe906yt2qFTsF2QoRCp8iIjtr1izKmzcvC1Zvb28e4n7+/DmnITRv3pxFrSBElO+BgdyaVGmWgOYJAWhdmzIlC1pjCQoIYG9ap1SpLCIqC54fOsT2YqlLlTL3olgF2Iaw4KJYsbjKFhW3cC5IWaiQuRdNEATB4kTs0/37aVOZMrS1alU+/9Xfto063blDedu1sykhC4z+NkghOHz4MOXIkYO6detG7du3p2Qa+YuIDg4aNIhmzpwZ1csqxDBLLogWdOgC/u7u+HVS/AjmlnJUNm5cimchUVklXzZj1arSpcrAA/PhLl3I484dqrt1Kx1s146yN2rEnrKCIAjCLxAEerR9O+fEut+8SWnLlqXGBw7wCKClBHIsQsymTJmSTp06RaVLl9b7mhQpUnCUVhAiCjxDkd6BKCy3rv34kdMDItKeFFFe5NomypDBYrxcAz09OX9Jcj0N49LUqfRg82b6bdMmujxlClfb1vz7b5s+OAuCIBjTFv0+jo9Tp7JLQcbq1anFyZOUrkKFGHGcNFrM/v333+G+BisuY8aMEV0mIQLAXUIXSANR+ihrPrZ0kC+rOA6gG8nPoCBOEYhoVDa2vX2Ec22jg1fHjpHqxw/KVLOmuRfF4nm8cyedHTWKSo8dSx63b9P7y5ep1ZkzFuNIIQiCYC4QrLmzejVdnjGDvF+8oKz163NObOoSJWLURjFazPbt25eLjHCvyaJFi+jJkyc0b968qFw+IQYC14If375xswSIb383N/bAi4gZPj4LYpgdECwkKqvkyyIRP7Fc9IVrIXOgXTvK0bQppSldmrbXrk3lp07lx4IgCDF59PLmsmXcscvfzY1yNm9OjfbsoRT581NMxOiz+/bt26ls2bKhpqN5wrZt26JquYQYDKKyAPmysNLClWekorJx4lhUVBYCHfmymSUqG253tJ316nEjhArTp9PB9u0pU/XqVGLIEFNtKkEQBIsCKWoXJk6kFZky0Znhwylz7drU+cEDqrt5c4wVshGKzH769IkS6+gOkShRIvLw8Iiq5RJiuJhFFBb5sZ4fPrCojYj10g8lKps2bYQcEKILzydPyOfNG8pUq5a5F8ViQUR9d+PGnF7SYOdOLv5CZB3DZ5YUYRcEQTAFKIJ2nTuXrv/1F/389o3yd+1KxYcM4VoQIQJiFikGhw4dot69e4eYfvDgQe4GJghRUvyVIAHfQ9gmyZo1Qp+DbmHsS5sihUVtlLdnz7JYR2K+oDtyffT338nN1ZVanjpF9zZsoJfHjlGzo0fJScN3WBAEwdZB4OPKrFl0a/lyimVnR4V69qRiAwdGeLTSVjFazA4cOJCFrLu7O1WpUoWnHTt2jGbPni35skKkgZ/s94AA/qH6o3WtgwPnyxoLcm7RkMApTRqLisqCN2fPUrpKlcg+XjxzL4pFcnXOHLq7Zg3VWb+e94dzY8ZQqZEj2cZMEAQhJuD59Cldnj6d7qxZwyOTxYcOpSJ9+1K8CLZyt3WMFrOdO3emr1+/0uTJk2nixIk8LVOmTNxGFZ6zghAZEI0FcB9AblCijBkjZCuCfEuKHZviW1hUFjZjH65coeLij6qTZwcO0KkhQ6gEcsHq1KF1hQpxsVeZceNMvakEQRBMjse9e+wRCytC1HqUmzSJo7FxEyaUrREGEWoB0bNnT74hOhsvXjxKIK0khSgCaQUsZL984cKtiLSehd9ewMePHN21tC4nyONFvpPky4bG4+5d2teyJWWtV48P4MiZDfLzY29ZS9uOgiAIUckHV1cWsY937GD3ncrz51P+Ll1kBM9AInWGQHMEQYhKvvn4cMFXIFIEUqem2BEo9oFNCbqHxbfA/EpOoUibliv0hf/j7+FBO+vXp0SZMtFvGzbQjb/+oqd79lDD3bspUfr0sqoEQbBJkHZ2cfJkdrhJki0bN4PJ07Ytd6wUDMdopeDm5kbt2rWjNGnSUJw4ccjOzi7ETRAi04YvyN+f29ayGI1A61pEZdEtDO+1xGgexGy6cuViREcWY/Kb9zRtSt+8vdkn8cvjx5xqUKRfP8pWv765F08QBCHq7RmPHKEtFSvSlvLlyffNG7bWgsVW/s6dRciaQsx27NiRrl27RqNHj2Zf2R07doS4Gctff/3FObeOjo5UsmRJunz5cpiv9/T0pD/++INSp05NDg4OlCNHDjpw4IDR8xX08+LFCxZbN27cMOlqUoQs8maRKxQRMQohCywyKvvtGxc0pS1f3tyLYlEH9WN9+tC78+epwY4dFM/Zmfa2aEHJ8+Vjb1lBEARbATUTj3ftog0lStC2mjU5uNFw1y7qcPMm5WrZ0uKKla0Jo9XC2bNn6cyZM1SoUKFIz/yff/5hd4SlS5eykEX3sJo1a9LDhw8ppY6o3Ldv36h69er8HIR02rRp6eXLl5QkAtXuguUR5OPDHqJo82qoGD158iRVrlyZvnz5QokSJPgVlU2Rgj1qLfH7gTSlSpl7USwGeCbCcqbmypWUtlw5OtC2LVuqNTl4kOI4OJh78QRBEKJk1PHh1q2cE+tx5w6lq1iRmh45QhmrVZNROnOJ2fTp03M0JSqYM2cOdevWjTp16sT/Q9Tu37+fVq1aRcOHDw/1ekz//PkznT9/nuyDxQqiuoJtORk4Jk0aISHDUdmfPym+hfrv4fvBaiwiDSBskRdHj9KJ/v2p6IABXOhwe/Vqur9pE/22cSMlzZbN3IsnCIIQ6RSqe+vX06Vp07hZDrp1VV+6lNLq6KIqmDjNANFTCE0MRUcGRFldXV2pWrVq/1+Y2LH5/wsXLuh8z549e6h06dKcZuDi4kL58uWjKVOm0I8fP/TOBzZi3t7eIW62CCLV+fPnZ3cJZ2dnXo9+fn783MqVKyl37tycypErVy5avHhxiPcitaNw4cL8fLFixej69etGzfvu3btUt25d7gKXMGFCKl++PD19+pSf+/nzJ02YMIHSpUvHaSGI6KPphnZKA9ok12vdmjKVKUMVGjYMsQ8g+l6vXj1KmjQpOTk5Ud68eTm1BO9FVBbgOXT6GjhtmkVGZTG8xJ3NxFuW+fzoEe1t3pwyVq9OFWfOpE/379Ox3r0pX+fOlLt1a3NvLkEQhAgTFBBA1xYupJXZstHhbt0oRcGC1M7VlZocOCBC1lIisy1atCB/f3/KmjUrxY8fXx0hVUDk1BDQ+hYiFKJUE/z/4MEDne959uwZHT9+nNq0acNi5smTJ9SrVy8KCgqisWPH6nzP1KlTafz48RTZXM7PepYpOkmWKxfZx48f7uvev39PrVq1ohkzZlCjRo3Ix8eHU0EQQd+4cSONGTOGFi1axIIVQhXRcIjCDh06kK+vLwtRpG9s2LCBnj9/Tv369TN4Gd++fUsVKlSgSpUq8baBoD137hx9//6dn58/fz431Fi2bBnPH9H1+vXrswDOnj27+nNGjRxJf/bsSdlz5KBZq1fz98H2RZEhLl5w8XP69Gle7nv37rEdHEYJIIKbNGlC186coTh+fpS2SBGyRL75+fH2EDFLbLu2s149tk6rt2ULRy8gbOEpXGXBAnNvKkEQhAjx1dubbixZQq5z5nAr9dytWlGJESMoeZ48skYtTcwiMmsuEOVDvuzy5cvZOaFo0aIspmbOnKlXzI4YMYLzchUQmYUIMgYI2fVFi5KpwZWciwHiDGIW4rFx48aUMWNGnoYoLcB6gZjEcyBz5swsBiEuIWY3bdrE6/Xvv//myCyinm/evGEfYUML+BInTkxbtmxRX9igKE9h1qxZNGzYMGrZsiX/P336dDpx4gTvR3ivQu8uXahauXJsTTI+UyZeDohZRJJfvXrFglX5Tpptk5MFd0NJoFKRS65clMhC7eK+eXlxcr8lRo1NCQrgUOAV4O5ObS5fJofEibl1LYbg2ly5QnGdnMy9iIIgCEYB4XptwQK+fff3p7wdO1KJYcMoica5SrAwMQsBFBUkT56cBSmsvjTB/6n05DzCwQCCSdMCDMPnHz584MhdXB2+bBjaxi2yEVIIS1OD+RpCwYIFqWrVqiz2UEBXo0YNatq0Ka8PDPd36dKFo7EKEL4QoOD+/ftUoEABFrIKSOUwFDgeIK1AO0KvXDi8e/eOymrlB+H/mzdvhpiWPW1aLv6CuEkdnJP98eNHFrN9+/ZlcX3kyBFOn4CwxTJrJ9hbaq6scsXOHVyCgigmc3LQIHp1/Dg1O3KE82If/vsv3Vy2jKovW0Yp8uUz9+IJgiAYDIpVr8yeTTeXLOFUsoI9elCxwYM55U0wLREy4oRAWr16Nd9jGBnR0oMHD1KGDBk4omYIEFqIrB47dowaNmzI0xAhxP+9e/fW+R6IICWSqJjpP3r0iEWuLiEbVWCo35AIqbmAuD969CgXxkHwLVy4kEaNGkV79+7l51esWMFuEdrviQqQoxsVYGkg9pA/q3iwYjuDrl27skhHcSC+H1JHEG3u06cPH0CAY7JkFlv9jmF0XK2jsI08PSmmcnP5co5cVFu8mDJUqUKez57R4a5dKWfz5lRA42JLEATBkvF+9Youz5hBt1eu5KJeeGIX7d/f4tqnxySMLgA7deoURwAvXbrEvrLIuQSItOkb6tcHhv8htNauXcsRQkTfULSkuBu0b9+e0wQU8DxycpHTCRELcYMCMORUxnQgACH2kR+MvFiIe+SuorkFco2zZcsW4oZ0AyWyfevWLQoMDFR/1sWLFw2eLyKkyM9F3rI2yJ/F/LEcmuD/PDpyiOKFcSBAasjvv//O+9ygQYN4v2G+fVOLWUsFzQCAfQx2MXh96hQd++MPKtSrF/cZh8BH61r4CddYvlzsaQRBsIrC1UOdO9PKrFnp4ZYtVOrPP6n7y5dUfvJkEbLWFpmFk8GkSZNYiKJyXaFKlSpcZGRsMZm7uzsXKCFVQKl0V4rCkCup2c4Ugubw4cM0YMAAFlHwmYWwRU5mTAYXFohoI70AUXL8j/UKoQpxi2F6pBXUqlWL3R2uXr3KvqzYhq1bt+YoLtIQcOEAhwDkuRoKouiIBCMnFu/HfCCGS5QoQTlz5qQhQ4bwRQ4KBrF9EdFHagIK0wBEjYI+y6r+/ftT7dq1ORcXy42cW3w34BIczT107BjVqVOHI8UoDrO0FANE92NqviwisHuaNGFvxcrBOfdnRo6kjzduUKtz5zi1RBAEwVJxv3WLLk6ZQo/+/Zc90NHQpUD37mKzaEmojMTJyUn17NkzfpwgQQLV06dP+fHz589VDg4OKkvHy8sLCZl8r01AQIDq3r17fG9NYJlr1qypSpEiBW+DHDlyqBYuXKh+fuPGjapChQqp4saNq0qaNKmqQoUKqh07dqifv3DhgqpgwYL8PF63fft2XkfXr183aP43b95U1ahRQxU/fnxVwoQJVeXLl1fvFz9+/FCNGzdOlTZtWpW9vT3P5+DBg+r33j5/nud1fNs29bQvX77wtBMnTvD/vXv3VmXNmpW/G75ju3btVB4eHvzZH1xdVX8OGaJKlSqVKlasWKoOHTqoLImfP3+q3K5fV3m/eWO1+1dkCPTyUq3Kk0e1Ils2lf+nTzztyb59qplEqiuzZ5t78QRBEPTy7uJF1Y569fh4tSxTJtX1JUtUQTHo+G3Jek2bWPhjjPiFX+jWrVupTJkyHJlFegGqy3fu3EmDBw9W+4taKihKQvTQy8uLh8E1wVA7rKkwBK9ZECVEDyjawhUvQBvTRBkyGG3x5Pn0Kbc+jWOh2wuWXJ/v3+divp9x4sSo/Qvbd1eDBvT27FlqffEiOefKRT5v39K6QoUodcmS1GjvXkkvEATBooAkQlrUpcmT6eV///Gxu+SIEZSrVasYO7pmiXot0jmzGE7GsD7SAjC8iyId5EBCyCLHVRAMBfZMKOBC+9qI5JNCzMK31VKFrGLJFcvOjuxjoOXUmREj6PnBg1R3yxYWshC3aFdrFzcu1VqzRoSsIAgWJWKfHThAm8uVo62VK1OAhwfV27qVOt65Q3nbtxcha+EYLWZRcAW7JOSvovgLhTwwzUek9s8//4yepRTMBoqukIOq64bnIgpErJ+bmzrnyNgWr3j/V0/PXw4BFsxXLy9ySJQoxgm3O2vX0pWZM6nS7NmUuVYtnnZx0iR6c/o0/bZpE8VPntzciygIgsDnkofbtrGX/I7ffoOqpcb791O7a9coZ7Nm7A8u2GABGKrkUUk+evRounPnDgtadHbS7OYk2A5oRYuouy7CC/uHReDnz/QzKIhiJ0zI1iaI1hlbVIWDkCWLWTQICPLz44r9mMTb8+fpaPfulL9rV7asARi2uzBhApUeM4bSV6xo7kUUBCGG8yMoiB5s3kyXpk7lxkgZqlal5sePU/pKlWJc8CHG+swCeMriJtg2cEfALaqHcxCVRRX7j8DACFWEfkWKgaOjRbeHVSy5YlK1vtfLl7S7USPOia321198UvB3d6f9rVtTugoV2MpGEATBXHz/+pXurllDl6ZNI+8XLyhrvXpUa/VqSlOqlGyUmCRmO3fuHObzq1atiszyCDEAiLzvAQGUIF068nz8OEx/WV0gIhvo6UlOwRZulgqixxDbxkadrZVvvr5c8BUnfnyqv307f29sq4MdO7IF228bN8qQnSAI5jk++fnRreXL6eqsWeT7/j03a2m0ezel0OomKcQQMQufT01glo90A09PT/aaFQRDWgDCd1UZyDE2MsspBj9+kIMFpxgg+ox8WUtu5hCVsGht357dJVqfP682EL86dy49P3CAGh84QAnSpDH3YgqCEMNA4OPGX3+R67x5XGeRp107KjFsGCXLmdPciyaYU8zCgksbOBqgOxeM8QUhLJBD+s3HhxJnycKRvNhx4pCdkW4E6hQDC3YxQOQZOcExJcXg3Nix9HjXLmq4axelyJ+fp72/fJnODB/Ovcqz1K5t7kUUBCEGgfQmCNjrixbRj69fKX+XLlR86FBKnDGjuRdNsKScWU3QpQvdpCpVqkRDhw6Nio8UbBTkyqLgC4VbX9zd2ZLLmGR7JcUgfsqUFp2kj1SKWLFjx4gOMfc3b2angvLTplG2+vV5GqLSaFebskgRbvUoCIJgCuBljVSCm8Ftsgv27EnFBg6kBKlTywawYaJEzAI0S/j+/XtUfZxgo4n3cDFIiMJBlYqjtMYOPSOqixQDS3YxUMRcXLTa1WjHbIsg+nq4c+dfQ3fBF7JIsTjcrRtv62bHjsWYnGFBEMyH5/PndGX6dLqzejXn7RcfPJiK9O3LDXkE28doMYsIrCY4cb1//572799PHTp0iMplE4wAUfFChQrRvHnzzPKZmTJlov79+/NNH/aOjrR6zhxq37cvBfn7c5TVPmFCoxslILJryS4GaA4Q5OvLBW62HgHZ1bAhpShUiGoER0EAiizQwxyG40kyZzb3YgqCYMN8un+f7bXub9rEwrXMhAlUqGdP9vcWYg5Gi9nr16+HSjFIkSIFzZ49O1ynA8F2uXLlCjmF0eUKnqsABxiYUEPsIWppb4QoVRolwP3AolMMED1WqWw6XxYXIxCy2JYNd+5U5y+7375NJ/r3p4I9erDhuCAIQnTgdv06XZw8mR7v2EEJ06alynPmsLc1iouF6A3WWGIjCaPF7IkTJ6JnSQSrBhc0YeH/8SPfKwIPxV9o8WrMMDxEIkSxpacYIF+WG0E4OJAtAqF+qHNn+nTvHrU6e5acUqVSW9/sbdGCkmTPTpXmzjX3YgqCYIO8PXeORSxaZSfJmpVHhbjdrKQzRStI47gwfjyn0CGAYWnYdkJfDAOuEijAS5YsGaVKlYrGjRvH0xExr1u3bihLNTRD+Pvvv/l/Pz8/at++PbepTZ06NUfajQFpBprpCI8fP+Y2x46Ojtzy+OCePTwd7gUQQxs3b6YMRYrw6xR69erFrZL9/f2tNsUgJrSwxYnk4T//UJ1168ilcGH19ON9+5L3y5dU759/jIq4C4IghAXOGS+OHqUtlSrR5nLlyPvVK/at7vzgARXo2lWEbDSnkx3t2ZNW5chBLw4f5k5p2B5WH5lF61pDT9LXrl0jWxlSRbs7U5MsVy6jhkzWrl3LOc2XLl2iCxcuUMeOHals2bLUtWtXFpbIbYZQBfv27WPR2KJFC/5/yJAhdOrUKdq9ezeL3JEjR/L2Q85sRER148aNycXFhZfF7eVLGqThcvE9MJCa1q5NJ69dozZt2tD58+fp8OHDtHLlSl7u+Dq+M/u2IsUgeXKLFon4brCBiWujKQaPduygc6NHU9kJEyhHkybq6chXu7NqFdVctYqcc+c26zIKgmAbILXs6b59fAH94fJlcilWjBrs3MmuKbZeXGsJ1maXpk2jm4sXc0FducmTqXDv3habxmG0mK1VqxYtXryYo22lS5fmaRcvXqS7d++y12w8G4zIQMiuL1rU5PNt5+pKLkWKGPz6AgUK0NixY/lx9uzZadGiRXTs2DGaNm0a5cyZk9avX6+2Tlu9ejU1a9aMI7G+vr4cod2wYQNVrVpVLYzTRbCA6b///qMHDx6wQIV49rCzo7FDh1KzLl34eeTLgmUrVlChwoWpb9++tGPHDo4kF9Wznq0pxYBixWInA1vMUTvQrh3lbNEiRFvaL48f05EePSh3mzaUr2NHsy6jIAi2kZeJItKLU6aQx+3blK58eWpy6BBlqlHDooMZtkCgpyddnT2bPXqxrksMH05F+/fnFMGggAD69OABOefKRVYvZt3d3Vl8TJw4McR0iKjXr1/bZDtbREghLM0xX2OAmNUEQvJjcK4qorPLly9nMevm5kYHDx6k48ePq23Vvn37RiVLlvz/vJMlYwEcEe7fv0/p06enNGnScGrAj8BAqlizpvr5IB8fzpd1Tp6cRXTNmjWpTJkyNHz48DAbJSAnCleIFm/JlSCBRSbIR7ZrG1rVIupaa9Uq9QkFdmvwk4WHY/UlS+REIwhChEHb63sbNtDladP4IjlTzZpU7a+/WMwK0cs3X1+6tmABXZk5k0cXC/fpw3aLcIjA6DS6OV6ZMYNHRzvcumVxx3qjxey///5LV69eDTW9bdu2VKxYMZsUswirGxMhNRf29vYh/sfOhiF/gHxYiEUM42NYP3PmzFTeBAcIbl2bIAHF0WgegB+N0or29OnTZGdnxykQyNtNqCOiiRQDiGL8qCztB6Q9JIYIspONmXMjdWJXo0YcGW+4e3eIYabTQ4eSx5071PriRZuMRguCEP0g4nf7779ZLPm8fk3ZGzWi3zZtolTFisnqN8Hx/ebSpWxvhlS+Aj16UMkRIzhAoYjYy9OnU4CHBxfalRo1yiLPw0YnnSCN4Ny5c6GmYxqKfQTLxNnZmRo2bMjpBWvWrKFOnTqpn0MbYghh5LcqfPnyhR49ehSheeXOnZuj9C+fPOHGCKh2RyoKQItXXH0jeglRPX36dNq7dy+nO/Tu3TvMFAOHZMnIkoFIh6C1JUsuXEggheDj9evcqhYWOApPdu/mK/mKs2aFKAQTBEEwBBzbL8+cSSsyZ6YT/fpRugoVqOOdO9Rgxw4RstHMj6AgurlsGa3Mlo1ODh5MWevVo86PHlHVBQv4HHZ1zhxakSULnRoyhLLUqUNdHj7kUTk4SFgiRkdmYYqP3FgUB5UoUYKnQQQhIjt69OjoWEYhikCqAVwNfvz4EaLBBYRkly5duAgMohcFYKNGjWIP4YhQrVo1ypEjBxegjR0wgGL7+/PngaDAQL4PVKmoXbt2nLJSu3Ztzs8tXrw41atXj5o2baozxcBSE88182Vj29tbvNuCMVyZNYvurVvHlcOpg3/vANXEhzp1omwNGnBRgCAIgqEEfP5M1xcupGvz53MQALn2JYYNs1ihZGv5yPc3baLz48aR1/PnlKtlSyozbhwly5GD7RWvzJ7NEfKAT58ob4cOHIlNkiULWTpGi1kMVWfJkoXmz5/PBUNKJA4Rv+bNm0fHMgpRBEQm8mjz5s3L+ayazJw5kwvBICYx1D9o0CDy8vKK0Hwggv/dsoU6tW9PNVu3ZtuuBQsWcPHgj4AANtgfOHgwN1mYMmUKvyd//vz8uEePHlxYmDY4AsgpBp6e5JgsmUUObdiyJReqiE8PG8YHs9ytW6unI0q+v3VrTh+Be4GtfF9BEKIXPzc3jvjdWLyY25IX6NaNig0eTInSp5dVH82ofv785UYzZgx9vn+fsjVsyKNtKfLn/yViZ82iyzNmcPAIIrbkyJFWIWIVYqks0TAsGvH29qbEiROzUEuk1e4uMDCQnj9/zvmktpgyAbEKkYgLD1hnRSdeL16wuMMPRdNCxePuXS7+Spwpk8HDUJ8fPuRiOKQmWCpInXC/dYsSZ8lC8fSkQ1jT/uV+5w5tKl2aMlarRg22bw+xDc+MGsU5VC1PnaK0ZcuadTkFQbB8MJKDwqLbK1fy6FWhP/6gogMGkFPKlOZeNJtHpVJxg4mzf/7J6WJwhCg7aRKlLl6cRSwuLLBtWMR27PhLxFpIG/Kw9FqkI7PA09OTtm3bRs+ePaPBgwdz5TvSDuArqkTUBMsBRWAeHh7cCCFJkiRUv379aM/FCfz0iZzSpAkhghDR+x4QQE4uLgZ/VqCSYhBGq1xL4CssuYLb9dqCv+DOevX4qrzO+vUhtuHL//7jQoFykyaJkBUEIUzgSACv0nvr13OBKIQS0pIs3WLRVnh18iSdHTWK3p0/T2nLlaMWp05R+goVOLUDUVhEYyFi83XqxNvG0CCTJWK0mL116xYPV0Mtv3jxgvMwIWbhE/rq1Stat25d9CypEGGwXRANRF4qir/ixDFus585c4bzWsOK+IZqXRsrFsXXanGLHxCwN7DqXXExwIHP0oeyv3l5seBGhzNrBhHmPU2bcuFei5MnQ0TDMUS4v21byli1KpUMw0ZNEISYDUZ2Lk2Zwp0C46dMSeWnTqWCPXpY9OiaLfH+0iWOxCL44FK0qNqjF8d1FrGIxHp6Ur7Ondm5wJpFrILRZ150mEJhz4wZM0LYKNWpU4daa+TVCZYDclYjk00Cy7UbN24YnFwe8PEjxUuRIpSwQ7MEDDEZ2kMbr4f7AfJlLRmsWxR/4aBtzeB7/PfHH/T+4kVqfvw4Jc6Y8f/P/fxJB9u3x4tCRWsFQRDA+ytX6NLkyex0kihjRqq6aBFH/VAnIUQ/H2/e5A6NT/fuJee8edkVArmxioi9ikislxfl79yZSkDEahzjY5yYvXLlCi1btizUdKQXfPjwIaqWS7AgYMeWLVs2g14LLzoIWl3CDpFZXJkbGmVFVBbi19JTDHCgwHe29ha2qC5GTlut1atDpRDgQIje6E0PH2arNUEQBOUi+M3p09xy9uXRo5Q0Rw4+hqAjoJ2W97kQPXx++JDOjR3LkXA4QtTZsIFdCr77+3N9A4tYb2+bFLERFrMODg6clKsNPElTaA0rCzHvoObv5saR1DgODqHydiH6HA1skWtVKQaw5LKzs3jRHRYvjhyhEwMGcGWxdkvat+fP85AVUgsyVa9utmUUBMHCCosOHeJI7Ntz5yhFwYJU959/KEeTJjbXAdFSQaH1+fHj2T4xQdq0VGPFCnYiQNfNK8E5sSiizt+lC6cTJMqQgWwVo8UsiocmTJhAW7du5f8hNJCTOWzYMGrSpEl0LKNgJQR+/sw5l0l0RO6++/nxELWhXaI42okUAysoFOAWtlZsyYVe23ubN6dMtWpRhWnTQvlB7mvVilKXLEllJ0ww2zIKgmAZIOXo8c6dnBPrdu0apS5Vihrt3UtZfvvNao+B1obvu3ccCb+1YgWfIyvPnUsFunfn8y/yYa/Onv1LxHbtykEIWxaxERazqIiHqT2M9QMCAqhixYqcXgBv0MmTJ0fPUgpWcZWOAiGIOl3NDZBiEMvOzuCGAuoUAwsvGIBDA4Q3coStEYhVOBfgqr7u5s0hIirYpoe7dKEgH59fz1l5cZsgCJE71j3YsoUuTpnCPqXpK1em5seO8b2IWNPg7+FBl6dNoxt//cXnUgQYCvfpw569ELDw8EWtCURsCYjYGOTfa/TZCS4GR48e5fa1N2/e5Er2IkWKsMOBEHPBVSDyc5Avpe95DMMbctCDiIJdiGOSJBZ/kLRmSy5YqCEii4h628uXQ32H63/9RU927aIGO3fGiCt7QRBC8/3rV7q7di3nXno9e8YR2Fp//01pSpeW1WXC0T905nKdO5f/Lz50KBUbOJBdg67Nm8dCFkGV/N26cSQ2oYHpfDFWzAYFBXExECrby5YtyzdBAH4fPlCc+PF1phFAnOKHZmjhUJC/Pw+XOFhBigEsuXCFbKhDgyVxcuBAenPqFDU9ejRUG0m369fp1KBB7AmZvWFDsy2jIAjmAYb6t1es4LxLDGvnaNqUG6ikLFRINokJtwEKc5H/Co/2Qr17c9tfFNZdW7iQXBGJ9fPjFANMj4kiNkJi1t7enjJkyEA/fvyIviUSLJJKlSpRoUKFaN68eTrFZ8+BA8n/50/ae+BAqOfxI8QwiKEeg18/f+YhbUPza80FR5C9vfV2/LJkbixdStcXLaLqy5ZRhkqVQkXR97VoQc558lDFmTPNtoyCIJgnCohRGUQBke6Vp21bHrJ2zpVLNoeJ+B4YSDeXLeO8ZGwDiNVSI0fy6Oa1BQs4nQDnVbQDjukiVsFos8hRo0bRyJEj6fPnz8a+VYhG4P2LIXnc4saNy1ZaKNT7/v17tK93OBhMGTGC1m3YoPN5iCMslyHV/uG5GLi7u1PPnj35ogrOGqlSpaKaNWty2oupwcEERWrWZsn16sQJOt6nD+daFezePdTz8JpFJAaVyeIPKQgxJx/z7OjRtDxjRrowYQLlaNaMuj55QrXXrBEha8LULxR1/Z09O4+cIaWjy6NHVB7FXitX0vJMmbjwK0+7dtT16VOqunChCNmI5swuWrSInjx5QmnSpKGMGTOSk5ZAQVtbwTzUqlWLVq9eTV+/fqUDBw7QH3/8wdH0ESNGRGtlK8SnS5YslEBPhBIJ6XGQL2uA0f73cFIM4Jjx7ds3Wrt2LWXJkoXc3Nzo2LFj9OnTJ4ouMD9cIISa7u3N38mautp8efKEO3ylr1SJKs+ZE+r5O2vXcutJNEZIpif/WRAE2wEXrsjHvLl0Kf9fqGdPKjZoECVIndrcixZjgE85iuvOjx1Lnk+fUs4WLajs+PEU38WFrs2fT67z5nHwBF3UEIlNkCaNuRfZ+iOzDRs2pMGDB7NAQsevBg0ahLgJ5kOJVOIiA9FLFOXt2bOHn5szZw7lz5+fLz7Sp09PvXr1CtWGFtFNpBPEjx+fkiZNyhHPL1++6JzX/v37uRhw3apVLGh7DRnC+4YCPqdv3740ZMgQylykCOWpUIHGjRsX4jMePHhA5cqVI0dHR8qTJw/9999/LAwPnTmjM8XA09OTW+tOnz6dKleuzN+zRIkSvC/CMk7zdT169CAXFxf+7Hz58tG+ffvUz2/fvp3y5s3L6wvd0eDQoQmmTZw4kdq3b0+JEiWi7sHRy7Nnz1L58uU5bxzrcMCQIRRkZ2c13bAwfLizfn2K5+xM9bZuDeVOAIuu/3r1orwdO/LQoiAItu1RerRnT1qROTPd+ftvLijq/vIlVZo1S4SsicBI5KMdO2htwYJ0oG1b7trV4eZNqr50Kd3fvJlWZMrE7gXwju327BlVmT9fhGxkIrMLFizgEzqEQadOnShdunQU20pO4FEBckI/P3hg8vkmy5VLp82VoUB0KRFLbC9sx8yZM9OzZ89YzA4dOpQWL17Mz6Oor2rVqtS5c2eaP38+xYkTh06cOKEzP3rTpk30+++/833FwoUpwN1dp20Toqf9+/al/atX0/2PH6lbr15cNFi9enX+XIhfpAtcunSJfHx8aNCgQfw+fa4HCRIk4NuuXbuoVKlSLEa1QXOG2rVr8+dt2LCBsmbNSvfu3SO7YMspV1dXat68OQvrFi1a0Pnz53ldODs7c6qGwqxZs2jMmDE0duxY/v/p06cc+Z40aRKtWrWK3D58oJ7dutGIadNo/ebNZA1X/vCL9Xv/ntpcvBjKvzcoIIDzZOFagBaUgiDYJrhovTR1Kt3fuJEb3JQZN44K9epFDlaWLmXtIvbF4cPcjMbN1ZUyVqvGDhFJc+bkKCwcCn58/UoFf/+dnQskSm4AKgOws7NTubm58ePYsWOrH1sjXl5eKnxt3GsTEBCgunfvHt9r8sHVVTWTyOQ3zNdQOnTooGrQoAE//vnzp+ro0aMqBwcH1eDBg3W+/t9//1U5Ozur/2/VqpWqbNmyej+/YsWKqn79+qkWLVqkSpw4serkyZM83eP+fdWXJ09CzF95fbly5VT+7u6q91euqH4EBamKFy+uGjZsGD9/8OBBVZw4cVTv379Xv+fg3r28bbZu2KB3ObZt26ZKmjSpytHRUVWmTBnViBEjVDdv3lQ/f/jwYd5HHz58qPP9rVu3VlWvXj3EtCFDhqjy5Mmj/j9jxoyqhg0bhnhNly5dVN27d1f/H/Dli2rXihU8L+39RR/69i9TcGLQINUsOzvV8yNHdD5/pGdP1RwHB9VHjXUpCILt4Hb9ump306aqmbFiqZakTau6Om+e6pufn7kXK8bx6tQp1aZy5fgcv7FMGdXLEydUAZ8/q86OGaOanyiRaq6jo+r4gAEqn3fvVDEdrzD0mjYGRWaRH4uh2Tp16vzqw/zmDQUGBup8LSJttgYipO1cXc0yX2PAUDoil7BQQ4QSaSDK0D6G8KdOncpD+2hHjMIwbEN/f39OK0BktlmzZmF+/rZt2+jjx4+cjlC8eHGO9iEfNp6ebV6gQAFulgDrKkRuU6dOze8HDx8+5KF6pEUo5A+2hwqrsQJyZn/77TdON7h48SIdPHiQZsyYQStXruTIKr4HRg5y6Mn3vH//fqh0GESL4dKAaLESwS1WrFiI18BT+datW7Rx48ZfE1QqTq/Aen7+/Dnlzp2bLJXbq1ezD2GVBQt0tqN9tH073VyyhKotWUIpChQwyzIKghA9vLtwgYuGniE1LEsWqrFsGeVp3z5Uy3Ehenl/5QqdHTWKXh49Si5FilDjAwcoVYkSnBO7q0EDLiZGJLbE0KEG21hGNd98fMj3/XvOo8Yonp/GY+Ue+1ATHa5F5sYgMfvnn39Snz59qHfv3jz8CyGjDUQunrNF2y4M9WPns3SQR7pkyRIuVsIFCFIFwIsXL6hu3bqcR4subcmSJeP8zy5dunBxE8QsUhLCo3Dhwlzgh2F2iD3s+ABdv3SB4jOIXSX/FfsHxJ9emytPz1+vCyeFBekuSFXAbfTo0dS1a1dOB4CYNeR7GIJ2YSPyi5GHizxgLOvnR4/4eyVMk8aiL+DQM/1ojx5s7QLPWG08nz/nLl/wkERxgSAI1g+OUa+OH2cR+/rECbbZq7NhA+Vq0UI6+ZkY99u36dzo0fRk927eDvW3baN0lSpxKgFSu9BZrWDPnlRiyJBoEbEqlYqLldWiVIdAVR7Ds1YTpPyh2MwpdWq+pSxcmL+DJWKQmEW+bKtWrejly5ccbUOUDzmGgmUBAQZLLm2QJwoRiUInJdd569atIV6D7QpXgPHjx+v9fOSf4jNQ3IUI5hSYN8eNS3Z6rvARuYRfHn4E2uTMmZNev37NbgQo1EKlpuv16xH41sTFY8ijVb4HRg4ePXqkMzqLCKq2jRf+x2uVqKwu0OUOubdYv/hOCb28KEm2bNylzJILPHY1akRpypRhCxftPGTYwOxv1YqdI2qsWGHx3dYEQQhfuDzbt49F7PtLlzgIU3/7dm58Yi2FqrYCAh5wJ3jwzz+UOHNmdojJWLMmXZ8/nw516sQiFrnKxSFiXVyM/nzFxlJTjPrisXKvIVZxftUEASjk4eLcDI/aVMWLhxCteIznLd3rPULWXAkTJuSqcFg/YVhWV/GNYJlAgCH1YOHChVSvXj0Wb0uDbVgU4AgAtwMUQ6G4C9FdFIAh9SB58uTq10H0YToEbZCXF82YOFGvCILFFtD1g0BUFeK4Q4cOnCbg9uwZTQ9eJn2fh2I2LA+K1CBasU9evXqV36+kDlSsWJEqVKjA6QhwcMB3R2oFPhMFXCgyw8gC3ApQAHbhwgW2m1MK4fQxbNgwLjrD6ESbRo1I5e1Nbq9f8wUA3m9pIL0DzgVwh0AkQFeHMgx5ofig1dmzFi3KBUEIG6R8Pdq2jU323W/dorTlylGTgwcpU82acpFqYrxevmSfXrQAhiCEM0HW+vW5kxfcYljE/vEHFR88WKeIhUgN+PRJZ+RUW6yiSEwThyRJ1GI0caZMHMhQRKumWI1rgOe7zfvMQnwI1kXBggVZ2MHSCqIVYg/5s7Ce0hSpR44c4YYYsLvCcH3JkiU5Iq8rqnr08GFOa3BMmJDm6xGCyAHiyK0OIYUoKKKpSBGAuMyYNi1NHDmSWnbrxmkEukA+MJZp7ty57C4AgY68227duvFyKyC/G/ZxWHY/Pz8WtNOmTVNHWBGVhlMBBC3yeNFcQtPJQBcQz6dOneKmITUaNOADTtZs2VgQWxqIiMPmxfvFC2p94QLF17gYUXh28CBdmTmTKsyYQalLljTLcgqCEDkwunJvwwa2b/ry6BFlqlGDqixcSOkrVJBVa2IgMHExgc5dEJWwOEP61o3Fi7kJAo7L+Tp1ouyNG7MIRQ6z9nC/IlJx7tQErhOKGE2SPTulq1jxl0gNjqA6Bd/soyjNzhqJhSowikGg+An+qF5eXuwhqgkKolDMA/sqfYJK+AWuHL2eP6cUBQtyn2hdfLp3jztIIWE8LGAL9enuXbrn4UFVa9fmphyI2loiOCB9vHHj14HFyPwmU+1fZ0aNYuudRnv3Utbffgv1PA6c8DXE0FLjfftk+FEQrAykOt1etYquzJhB3i9fUrYGDajkqFGUWkc9ixC9+H38SOfHjaM7q1ZRrDhx+IIiUaZM9ObECc6XRbFwnPjx1W3dNYmXIkWoyKn6Plis4jwTU4v1vMPQa5GOzAoCQPEXXAf0CVl2OvD35x+rPnbu3MnR1jSJEtG969dp3MKFnMJiqUJWGb6HoNVX9GZu7m/axNGBijNn6hSy2C7727al2Pb2VHvtWhGygmBF4PiDTl1wJ/H/+JE7ReGiNUX+/OZeNJsD6QB+bm6hI6fBw/w+r19zty4UOav5+pWe7NyJXDlO74CoTVOqFCXOmjX0cL+Li85RSyFiiJgVIlwdiaEUfShVkfZhtHpFYwPkor56+ZKckyWj6jVrhurGZWl88/JiIRiWfZi5eH/5Mh3q3Jm7xaAdpS4gdF+fPEnNjx2j+GFcaAiCYDmg0OfawoVs44RAQt727anE8OGUVEfBrxB+aobfhw86C6U0RSsuFhBVVUABHdrLIlKKyLjXs2cseNHwIFujRvTh0iV6uG0bi1g4x+AYLMdY0yFiVjAa5PuguCus6CSuVuEtizQDfSBnt1WzZpxiYOnOAApfIeITJ7a4ogqfN2/YqxDVy9WXLdO5fK9Pn+bhsNKjR1OGypXNspyCIBg3hO06Zw7nXSKPMn+3blz9nih9elmNWnz/+vX/xVJheKUGeHiEeB/OUxCoSt5p6lKlQg3347F9okTc9hdOEYGfPvG2gC8sOqmdHjqUo7FF+vb9JWJ11CkIFiZm4SO7Zs0aruKGAb62b+jx48ejcvkEC0TtLxuGbQdeg6hseKLv65cvfMXrYKHD9ppAwCPvSZfVmDlBOgeELCLGDXbu1Jlf5e/hQftbt+YqZ4hZQRAsF1ycokDzFizz7Oyo8B9/UNEBAyJk4WTtoKYilCjVEU0N/Pw5xPtwPNQUozj2adtP4R7CMyzbMkRf4UxwfsIE8n3zhhtOwFLr0b//0qbSpfm9ELFFBw4UEWtNYrZfv34sZtGFCVZdlhahEqIfpBjATDm2Hl9W5JQizQAHC0OGz5CuYA0eiF+9vPjekoQ3Uj4OduzI/dZbnzun1+oFvoY/AgPpt02bxDRdECyUL0+e0OXp01k8wVYPqQRF+vQhx6RJydb45uen034qhA3V+/fqZjoK8DXXFKMZcuXSaT8Vz9k5UvoE57EHW7bQubFjyfPJE8rZvDkV7tuXnuzaRf9UqsTnrKL9+1OxgQN5XoKVidktW7awtRFa2woxNF/WxyfMwi5cSeNAEFa+LEDeESKdhoheixLxwZ3VLIELEydyhKDBjh2UslAhna9xnTePjdQb7dtHCdOmNfkyCoIQNh5373I+O8QTjq3lJk+mQvD7tiLT+hAtUXXko2qLVWWETwF1CJpiNHn+/CEM/JXHHPyIxiAaznHo1oWuXR537lCWunU5dev5wYO0rUYNDuIUGzCAI+UiYi0Ho8/KMNPX1WVKiBlAfGLYJcx8WR8fvmpFG+DworJ4XdzEicnS4Xa73t4WNcyHYgN0mCk3aRJlb9RI52s+XL1Kp4cN4wOvLncDQRDMB36fyMFEtC9hhgxUZcECyte5s8X5hfLxz8srtIG/juH+sFqi4h4tUbXtp7jbVKJEZh3pxXd8ceQInf3zT3K7epUyVK1KjaZPp9fHj9POunU5iIEoLIvYZMnMtpxCFIlZdFCaP38+dz2SFIOYB6KTLEDD6CAC+xgcwMJLHUCOE4qplBa7lgwO0PAItBRLLrfr1+lg+/aUq2VLKqnRMEITnHz2tmjBXsAVgptGCIJgft6cOcMi9sXhw5Q0e3aquWoV5WnTxuRWTZotUXXZT2lW/OttiZomza+WqCVKhPZMtZKWqNge6IiI+zSlS1O9bdvo3fnztLdp018idtAgEbG2JmbPnj3L7UwPHjxIefPmJXstn9EdO3ZE5fIJFgaik1zYpUeA4uAIJ4Ow0hCsMcUAwhAHNYh0c4OTy6769ck5b14+Ceq6qMR2ONKjBwW4u1OzI0fEz1AQzIwS+bs0eTKLphQFClDdLVu4S5S++oPIzItbooZjP6WvJaoiRtHwJk3Zsjq7TdlCS1RExhGJxUUF0rRqr19PH11d6SC8uOPGpWKDB3NerERibVDMJkmShBrpGdIUbBsu7PL1DSFAM2XKRP379+cbQJERpyGEky+rTjHQE+lEe1lPT09ueWspEWlEGMw9GoGLgN2NGvG2aLR7t97hyNsrV9LDf/7hk2USC25CIQi2Dn6ryMFEJNbN1ZUjmI327OFcTGOPJ/gsf3f30BFUbbH64UOolqjI71SEaNIcOX61RNXRbcrSUhyiA/c7d+j8mDH0eOdOSpY7N1VfvpwtIo9268YitvjQoSxibbHwzlYxWsyuXr06epZEiBQQf2vXrg01/fHjx1GW48xD7eh+FZYlV3A3lPCKv2DJxSkGURyRiC6TbXx3cxtgc7S1Wzdyv3mTWp45ozeqjQP18b59qUC3bpSrRQuTL6cgCL8snR788w+3loZQSl+pEjU7epRzMbVFLDrzwaRf33C/Ms3fzY0/V2dL1DRpyDlPHjbx17afisktUbXdIlBncH/zZkqcKRNVnj+fu3id6NuXXRKKo76gXz8RsVZIhMuy3d3d6eHDh/w4Z86clEK6CZmdWrVqhbrYiMrtgugkxCf6TOsDkVsUfoUlUmFuDW/U+KlSkTWA7w3MnS97ecYMurdhA0dbUxUrpvM1WK/7WrTg9omV580z+TIKQkwHx7d769axxRaEUvoqVTjfEhfD+B8pBqG6Tbm5caBATaxYFD9lSrUYTVmwIDnVrq32TFXEqrRENQzvV6/Y+eXO6tUs7FFDgHa0Z4YNYxHLFmgQsVbQuEeIIjHr5+dHffr0oXXr1qkbJtjZ2XE3p4ULF1L8cCrYhejDwcGBUmkJxOXLl9O4cePozZs3IQqtGjRoQM7OzrRq1apwP3fv3r00YcIEun3rFjk5OVGFihVpJ/pPB+Pv70+dO3emf//9lxInSEBD+vWjfnny8HMvXrygzJkz0z///MP7x9WrVylPzpy0cOxYsvv+nf7o3ZsePHhA5cuX533KEi+KIGZhG2POPtpP9uyhMyNGUKnRo8OMth7v14+8nj+ntlevhusmIQhCxBuocEtUDQN/n1ev6PWpU/Txxg1Ot4JIgihFNTxuAKlVmt2mXIoVoyw67KcgZC3JAtBawTa6OGUK3Vq2jF1zSv35J9cRnBszho/pJUaM4IYHImKtH6N/LQMHDqRTp06xwClbtqy6KKxv377sdLBkyRKyNRDt+vzggcnnmyxXrkgLkmbNmvHFB4r2qlatytM+f/5Mhw4dogMHDoT7/v3793OO9MgRI2j2sGEU19mZTly8GOI1s2fPpokTJ9KwwYNp3eLFNHDUKKrVqBFH7BXGjh1L8+bNowwZMlD7Vq3ojzFjKEny5OyMgQug5s2b05gxYyxu/1EsuczpJ+h++zbtb9OG7bfKjhun93XwqESubM2VKyl58MWEIAgRbIkaRvGUdktUpSAW0VVU9qNoKnnevCGG+yFWkRJgDalV1k7A5890ZcYMurZwIdnZ21OR/v05KHF52jQWsaVGjWIRi1Q3IYaK2e3bt9O2bduoUqVK6mlooBAvXjwWJJYmRqICCNn1RYuafL7tXF3JpUgRg1+/b98+SqCRq1q7dm2OluJ+06ZNajGL7Zc8eXKqXLlyuJ85efJkatmyJY0cNIi7oCTPl49Kab0P279Xr158AOndoQOt/PdfFs+aYnbw4MFUs2ZNPll0ad6ceo4axS2RlQuiLl26cGc5i/TVDQoyW4oBij121q/PRVy1163T6yKBXLAj3btTrlat2KdSEITQLVG1Dfy1xarelqjBYjRdhQrqCCrqAl7+9x8XWuI4kb9zZy4cSpIli6x6M4HAA5rEXJ09m60UC3TpQkGBgXRt/nwRsTaO0WIWQ8ouOozjU6ZMyc/ZIoiQQliaY77GAHGqeTGBlADQpk0b6tatGy1evJhTETZu3MgC1RB/1xs3bvB70a0Fw+w8dKZFgQIF1PmycRwdOdXh48ePOl+Dwq8UwVHO/Pnzq5/HPqX9Hkux5GLXhXAK2qJrKHN348Z8omx56pReKxxcIOxr2ZKHJqsvXWp2xwVBMGlL1DC6TSlFVEoragUcxzRzT9UtUbWG+x2TJQv1e8JnQizdXLqUR24K9ujBPqTSXc+8o6fX//qLrkyfzkXIedq14yj5zWXL2E4R6QVoCyyRWNvFaDFbunRpHjJGfqOjoyNPCwgIoPHjx/NztgiG+o2JkJoLiFddzgX16tXjgy5SBooXL05nzpyhuXPnGvSZiLiHZ02leA1D8CqvUfKptV8DSy5FGGp6FOt6jyXA3xudaUzc2AHb62jPnvTh8mVqcfIkJcqQQe9rzwwfTu63blHr8+fJwUKaOghCZFtmh2U/ZUhLVNyjJaqublMRaYnq9eIFF2HeWbWKxTCsm1A0ZG6Xk5gMLuSRWgXbM+TC5mzRgmLZ2XEBHkRs6TFjqDBErBwXbR6jxSxyHDFcnC5dOipYsCBPu3nzJgvbw4cPR8cyCpEE26Zx48YckX3y5AkP/xcxUJwjovrf0aNUG32yw3AfgF0MIojxw2j3CnNuWFyZI8oZEWCXg6v8ROnTm3zeGBbDSbP22rXckUYfT/fu5WG1ynPn6nU4EARLa4mqs9tUWC1REyQIIUZTFimiu9tUNLRE/fzwIV2aNo3ub9jAIpgF0h9/SJTPjOB8c3fdOrowYQK7EmRr1IgvZB5t3cr7SumxY6lw794iYmMQRovZfPnysXcphBGq0EGrVq14KFuJ4gmWB7ZP3bp16e7du9S2bVuD34coPHJtUzk5UafevUn17h0Xjg0bNizE65STT1hCNdDTk0804XnQWpQll0rFVbCm5P2lS3Ry0CDOv8vbvr3e13m/fk0HO3akrPXqcYRIEMyB0hJVO2qqqzUqmn6EaokaLEYTpk+vbomqmQJgrpaoH2/epEtTptDDf//lZagwYwYV6N7dJjpfWStIHXi4dSudGzuWvjx6RJnr1KHUpUrRk507+bxSZtw4FrHW0EJXiFoi5P2B6nPkUQrWQ5UqVShZsmTsDdy6dWuD34dCvzV//UUz5s+nRevWUaJEiahChQqhXofhPhRL6MqpVeAUg0SJKLbW0KAli1l8H1ObjSP3CwVf5adMCTMysb91a06BqbV6teTJCtEiHLglqob9lJ+eblPaLVHROUkRo+qWqBoRVOWxJdrHvbt4kYetn+3bR4kzZ6bqS5ZQ3o4dpemAmS+YMAp1bvRoTqlKX7kytwNGZzWkEJQZP56j5SJiYy6xVNhLwmHPnj1cEY8cRzwOi/r165Ml4+3tTYkTJyYvLy8WZpoEBgbS8+fP2RdVyQcWiA8eGF4LK2/z04MHbIGir3UqipnwOei6Ei95cotfrfhZeNy+He73NgZD9i9U4y5JlYoLFkqNHKn3s86OHs1RI+TTpitfPkqWT4gZhGiJqhFB1bafCqslqmZeqq5uU9bWEhW/99cnT9LFSZPo1fHj3OK05IgRlLtVK/F7NfN2gWPE2T//5PqB1KVLk1PKlPTswAEWscUGDxYRa+JumD5v3lCSzJnNrtciFJlt2LAhffjwgR0L8FgfGEL+8eOH8UssWHSCPYRoWNZUODl+9/Mjx3TpwozKwkAc4tAa+BH8vU1d/YohNMw7rPSCl8eOceSo7IQJImSFUC1R9Q33a4pU2BaFaokaLEZhv5epevVQYtUWW6JCLEEYXZo8md5duEApCxem+tu2saezqYs+hZC8PXeOzowaRW9OnaIUhQpRlt9+oxdHjvAxuezEib9ErJWkrNlEjvL69XRx4kSOfre/ccPiRgMNErOaVeaWWHEuRJy8efPSy5cvdT63bNkyalSjBj8O66CBfFmcFMJ6DSy5cCVtLV1t2JLLDPm9aLeYsXp1Nl7Xhd/Hj3SgbVvKULkyR46EmBENQbtTfRX9yj2ErHZLVLQ7VcRoykKFfrVE1e425eLCoyoxTfg/3rGDRzfQsStt2bLU+MABylyrlsWdpGMaH1xdOZ3g+cGDHCHPVKMGvTpxgnzfvKFykyZRoV69RMSaUMTe37yZC+3gM5+9SRMqM3asRf5GjFYWsORq0aIF+5Vq8u3bN9qyZQu3tRWsBxRzBWkNJWp6v377+JEtTsISoaj4RxQjjp78N0Q48RqkGFgLyJe1T5jQpN16UDX97vx5qrtli87nIVQOtm/PJ+I6GzZIJyFbaokahv0UUgJQiKgA6yFFpEKMoiVqVh32U9ISVcc6Dwqi+5s20eWpU/n3lrFatV+pOhUqWOQJOibhcfcut5nFRQbyrDNUrcpRWVhulZs8mQr17Cki1kR8//aN7c1wsYf26Ph9lBg6lC98cWFNGh7xVitmO3XqRLVq1eKUA018fHz4ORGz1kXGjBn1Podoq/vTpzwEGRZoloAIpr6TwVdPT6tKMcDoAwraIBRMyZ01a3gdZWvQQOfzV2bNoheHD1OTQ4dYrAiWCSr2IVLDs5/SbomKC0YM5StiFFXa2rmp0hI14tsEox7wifV+8YKy1q/PHfVSlygRJdtciDieT5/S+XHj6N7GjbyfQzjhoh7H4PJTp1JBiFhxkAg3gvrNx+fXzdeXgjQeK9ODDHiMG0YltQs635w+zTfgUrQotbt61frFLASOLtHy5s0bTtQVbAdu5fr9e5gVotgf8GMIy1+WXQwQ5bSSFAMcCBAFNaUlF6KtuBLO3bo1d1HTVWF9dtQoKjFsGGWuWdNkyyWEndOHCmttsardEhWd8zSLpNQtUbWG+1FcJXmaUd8h7NayZXwhiIhSzubNqdHu3VwJL5gXWAsiB/P2qlXcaQ1+2ijyQtFh+WnTqODvv9usiEUtil5BGfyYBamBAvSHlvjUBqM5OAcjFRAjjvw4+P94GTNyMArHr/cXLvBnOefNy63RXQoX5uc0X2+u1u7hYbC6KFy4MItY3OA7GkdDmKDoC1XaiNgKtgOG2rG9w8qFxY4PIYZUBJ3PBwXxjy1RGBFgSwOOArAZ0yUqowsUNiBil69TJ50XA2hXi+FkFD4I5gX7O3LILkycyCIU+zbukd+nq9uUrpaoQvQCT+vrixbRtXnzONKUp317Kjl8OCXNnl1WvZnxc3OjS1OncjtgpKYh0ufm6so5mZYoYhGwQWTf4OimAWJU2yVEG5x/1AIyYcIQghKBoxDiEs8n/P9j7dfjMc5luo5BbHm2Zw9HxpE7jrQb2JylLVOGrA2DxaziYnDjxg3uAJZAQ+DEjRuXMmXKRE2aNImepRTMAn50+JGEFS1CT2ygL18WhV+K76S18M3LiytmTSlAMASKKnIc2LUPNoe7duUTMnL7YlqhjqWBC479bdrwkBvcJFCEZ8q8aiFskF/sOncuezX//PaN8nftSsWHDIkyez0h4uCi/MrMmeQ6fz6fU5zz5GG7Ru+XL6nijBksYqPCd5hHC/39Iz7UrilGg//Xdv/QBmJRl6DEeQTFvNriMjwxitEcU7h4nB87li8k4Nvb8vRpq3bHiWNMJygA0dqyZctQBWCCbYFhdvyQEWUKCzgZ4IenT2SpGyVYSYoBIs24CjdlvmzA58/0dPduzg/TFtA3lizhgoj627dbVQGdLfL80CE60K4d7+/Njx+n9BUrmnuRhGDgfYlUglvLl/OQKoqFig0cGGYLbsE04DyClttXZ8/m4XVExz/du8cXhhVnzqQC3brx+Qa1FWhNG+m8T1/fEAWTukDwRZeghAc6GmXoim5qvt5e83GCBFYTZFCpVFx3gQ5qSOmAeMWxDO441o7RCiNPnjwcnS1ZsmSI6ZcuXSI7OzsqJv3hbQK22/r5M9ze1vCXtbUUA2DKvCBUV2Nd59ZqM4xhn5MDB7IVTY7GjU22PELo/RhWQZenT6fMtWtT7bVrKX44RZGC6YqHsF1QPAlhgRbQRfr2pXjJkskmiM5iIyV6GYagRO448sohmuDcgajrj8BA+nz/vnqkDr8rHOPCJDjVTZe4RLAF4lhTXOobalc/hjtPDBtNUalU9OrYMXaLgJ8y8pObHT3KjhG2kgJltJj9448/aOjQoaHE7Nu3b2n69OksagXrBwckRDj0pQ8A5ElnyZ2bzh89SqV1dP5iFwOiKHUxQHvdQoUK0bx58yi6Ugxw4DNlJPnu6tVsCI7ONurl8PWlvS1aULJcuajS7NkmWxYhJN6vXtG+Vq3o/aVLVGHGDCo+aJAUaVkAHvfusW3Qg82bOZrG/qOoeg+jWDWmogQVIjzUrvUaFAaHBVII0AYco1y4SOcW5yoVi2CkUaExBc4JhuZ9QgRLYWTEeXXyJJ0fM4benDlDqUqUoCYHD1KmmjVtRsQqGH3GvnfvHhUpUkRngRieE6yTkydPUuXKlenLly+UJEkSjlA6IF82jB0eQ0bATk/rSsXFwGqGYDDUhdSKMJwZohrkjLldu0alx4wJMf2/P/4g37dvqZ2rq0kL0YT/82TPHjrUsSOfZFudOcPRDMG84LeC7ndIvUmYPj1Vnj+f8nfpYnXtc8OKoEEERsVQu/JeREXDAhfuajGpJSgxAhFepFN5fZx48djd4+LUqeTz8iV7xcIGDQWQKL7L362bzWwna+DNmTOcTvD6xAlyKVKEGu3bR1nq1LE5ERthMYtcWTc3N8qSJUuI6e/fvw/hcCBYd7U20gzipU8f5ut+KMVfOsQWRwO8vU1eeIHmHShIjHBqxY8fJrXkQuEXzO0z16mjnvZoxw626cJwdrKcOU22LMIvcPI/PWwY5/nB87fmqlUybG1m3pw9yyL2xaFDlCRbNqq5ciXlCc5fNnule0BAuILSGDGKCGZYINKpL48TDhqGDLVr/h/ZFsUIAjzcto2jf2hEkTBDBo6kYr1UnjePi/BExJqOdxcucDrBy//+oxQFC1LDXbvYV9lWRayC0eqzRo0aNGLECNq9e7faV9bT05NGjhxJ1atXj45lFAwcfs+XLx8/Xr9+Pdnb21PPnj1pwoQJvBNj2vz58+nhw4fk5OREVapU4aF6NL948eIFR2VB0uBcpua//UYbt23jBgKzZs2i5cuX0+vXr7krWI8ePWjUqFFqJ4MXL1/SoMGDOcUke/bstHTpUiqYLRs/5xCOi8G5c+f4sy5fvswXSiVKlOBOclgOPz8//g47EIVJmJAGDx4c6v0oSOzSpQs9fvyYdu3aRY0bN6Y1a9bonR++a+bMmWn79u20cOHCEMucL0MGjlJgWOvs2bO8n1+9epWSJ09OjRo1oqlTp/K6Uy7eunbtSsePH6dUqVLR5MmT+TfQv39/vhkqmu5t2MC2QUr0GsVnpwYPZnGbV7rpmRzPZ884vcP95k2qMn8+Fe7Tx+ZPAv9j7zzAo6i+KH7pXXrvvUsvIlUQEREEqSqiKHZUEAVFRRRBAUUFVEBBEQQEBJHem4D03qT33nvb//e75OU/GXaT3WST7CZzv2/FbCa7s7Mzb84779xzArUAivvnzFEQi3sEbh+P/f67FG3RItIyIIAX45Y3y+7egtEwEcJuCsbSHaCEsaSfwF1TUXgANFBWurQjfupUWfrRR3q9AKQBsa5btxTE0tjlrCrFXB1duVKZWCZ8XCs0DRd+4gm/SjS4DmjSy1i8uARa+TwiAGxq1qypyVFICygawgA5AKa4WAx+Z7Zvj/H3RS/pi1XJr7/+qsAOYAgIe+mllyRPnjzSoUMHjaz97LPPpGjRonLixAnp3LmzPPfccxpnmzt3bgV3WKsBdhNcvCgJr11TBqBbt24ybNgwGTBggFSvXl1B3PaQYwHwogCjnBeAQv6/TZs2snL69AglBpw3eBa3b99egTbM/oIFC9S3mHr33Xdl0aJFOnECdAMW165dq5pZa/HeH3/8cajjhjflbp//nTJFG9727Nmjnsm9evWS4cOHy8mTJ+WNN97Qx4gRI/TvSbo7deqUyjOYOHA8Oa6+1J5p0zQFyuotu/a771Sn2WzaNJ9ey6moF+zSrBdeUA3mU8uWSTanmTVWCnCoy9Wffy7HVq1SjeUjP/+siWisngBsvTKTdwNG+fuIOt0VQLprNsqaVdIVLOiTxZLq7+Ngs9H+efNk6YcfytEVK3RlCcDEpA/Zx/0vvuiA2BisY2vWqMUW9xO8rhuNGydFmzf3G4jF7o7r8b9Jk3RyyWphuw0bJNAqgYvplY8FYzZ69GjZsGGDpEiRQu6//34FA9zUA70uXLigjPL58+flPlvH+rVr17SpCeYuuWXpHJ3Wbzb/z5go9JJoXbxlZgFTW7ZsCWWSAKJTpkxxq2UG7FaqVEljiPEMtmpmbx0+rCA6YaZMkjlzZhk0aJCykPYbzupp06Ry48by008/KYimeK+SJUvK4gkTpEKNGjrQeaqnnnpKDhw4oCyovS5duiQZM2aUUaNGSYsWLfS5M2fOSK5cuRSkmwYwmFkmVZMmTfLqOBlm1u0+jx8vFWvXlo7duqkzx5AhQ0L/jn2sVauWnvu8RvHixWXVqlWh7h27du1SYAzo98TM2s+vSY0ba+pK21Wr9PeXT5yQnwsVkpLt2kndgQO9+jxORb2YlC3o3Fk2/PCDJkTVHzpU/SGdimKspoemIo8A9MIFtdjimsAjVlm+CFhP7XT3YJkUYVe7jfXUv0+Vymk2CqcOL1umIBYdZvKMGbUvgmAQ/JbRLjtMbMwVbjeEHez66y9JX6SIVPvkEx2//DF5Or9vn+yaPFkB7OGlS5WFz1W9uhR64gl9pLPJTGMDr9krUms1LLUCKOJLwZACLGPjfX2pqlWrhlkSfeCBB+Srr75SphMW9JNPPtEJCIAV+QAFmMRuzap1ReuEP+Ombdvk+vXryp7aSztaQ+ZBTGZMZQ/xpT11+nSELgbskwGq9tq9e7fqX62uGRkyZFBm2V6RsYNzu89nzqhelmO0ceNGnbCZ4mLmmAFGd+7cqSyytRGyUKFCoRINb+rysWNqWv3Qd9+FPofmDAcJBiWnYqbO7Nwpf7dsqSsvD//4o9z/0kvxSlZAE6c/ltp9jtW0AEoAJM4nZ3ft0vfC5zP3Qw9J5lKlwtV6mqaj+PR9xVYdX7dOQeze6dPvjusJEihwZdJdun17B8TGYJ3cvFlB7H8TJ+pKwaPEoLdpEyUHHu5vpzZtUvAKiAUoo0fP+/DD8vCQIaq5tbrtBGJF6tMjJ4C1Yjl2+fLlKjmAkaIprEmTJhLXCpbSW4Y0EAtGkNQ2HgA02FZALD8DGK3FDYtbAzcKWHdPpct1ITcRKyNvbiyJkiePsDkjvNf3pYyO1Zdyt88JQ8IfYIXRBb/55pv3/B2yDcBsVAutLIMPgxB1ctMm2ThsmNTq319SZMwY5dd3yovvYPRomfPyy5rQ8/S//0qWMmUC+rCFidX0Nrc9AjAaUawm17AnRpMJr0czeQ9L70iXzPV28+pV2fTTT5oKhQ6vcLNmUuWDDyRbLKyCOeW+Tm/bps1EOydM0O+RMZ/vvEbv3lIKEOuEJ8Xod7GsZ0/Z8ccfqrWmMbVk27aRBrF3bt/WZjEDYM/v2aP+6thEch3mb9AgqKzufD4KP/zwg+oTWUpFU2j0jbBSLP1GBswOHjxY+vXrJ8eOHZMyZcpoYw6NQBEVjULIG3hPmn/ie9k9flesWKFL32hcT58+LV988YXqY43MwFrGAYBM8zQhQJS/BXDOmzfvHpkBOmIAq71MJy4DnjfsKK/ds2fPe35XsGBBBZx8JgAkBaMMkGS5359llDYm/AHGFekBbKu7gh2+deuWrFu3TiqE3HiRGbB/3r4fLgYs12Aezs8L33lHZ9nlXn/db5/LKffFuTuvY0fZPHy4dsTX+/57BVv+rntiNb3MbQ8PjHodq2kDk7BpWFl52+Fu/j463AKw/SPZbs3XX8vV06d1Qlf5/fclk2WFyKnYb4QEOG397TdlvwGxydOl09hZNP4OiI25wiFi+aefyrYxY/QaRgaFFC0yjYC3rl1TvTPgdfeUKXLlxAmdlOLaUqhpU00Ci22HkBgDswBNGoKeeOIJBUfWpV533eYR1bhx47R5hm5ylpQBxDCGNCLR9OOp0C3yfjWCOEvY3wXbyrGEVaRRiu8KmQFgELDKz6+88ops3rxZm8GsBbsOYzJ12jR57LHHJPmlS6ql7dq1q4Zk8PcPPvigNkOhy21SterdQc5W18+f13+9mdHhFlC6dGl57bXXdL94DxrAkB7gIICmlSYwtLOcCzRqJfRjZ6apWyGuDAbM8pmRbNDwBYiH+QXczpkzR/XDxYoVk3r16qnUhskdoPudd95R4O/NkifLRMQ51v76a/0ZuQHCeixUgnUgCZY6tWWLygrO792rzEap556L1DI14HLTzz9rB7FHMOpFrCbnnDt2M0XmzP+P1bRpQD0C0hgO+4hMbDMNjmu//VavuZLPPSeVu3aNMf2dUxEXmuUVvXrJxp9+koQhYIk0tSrduzsgNoYL2c3yzz6TbaNGabw6k24kHb7eI66fP6/3GBjYvTNm6PhEahrXH24H2atUiRM6cZ9HPjSDxsXAWtgq0Rzja3399dfabf98SEc3oHbatGnaRU4Dk7uCDX766aeV0VuyZIlagzl1t8P+6tWrymrTwPTWW28p4OJmjV0VbgDfffedMo908jdu3Dj0sOXMmVN6fPSR9PrmG3nr44/1tfibjz76SPWhsPFHjhxRfenLL72kmll33oEm9cubWWORIkVk9uzZul/sM2CQCQ1sOwVbz5L/448/rtZcAEaE4P4ughIo07wAY4yLAuCZyRIMG0xxq1atQv9m5MiRCrZx9sCaC9suQL61cdBTYfieOmdOyVuvnmqUF73zjuSuU0d1SU5FTxk2fN4bb6iZ+zNYrkWCCbx4+LACso1DhqjUhiAFdNYaq1mkiNumIk9d7vElVhN9+Oqvv1Y2Fma5zMsvS8UuXSRNzpyxvWtOhRTNpyu/+ELWDRqk9wsa7whMqNq9u4Ieh4mNWVacCcWWkSO1gToyDhGXjh5V5hUAe2D+fJUTkb5GeAUrghlLlIh7WnOXj1W8eHHX5MmT9f9Tp07t2r17t/7/d9995ypXrpxPr3X9+nVXokSJXJMmTQrz/LPPPutq3Lixx7/7+OOPXU888YT+f7t27VxNmjTxuO21a9dc58+fD30cPHgQqkT/315Xr151bd26Vf8NtqpVq5brrbfeitJrXD5xwnV01SrX7Zs3w93u+sWLut2Ny5fDPM/fHVu92nXp2DFXMNXpbdtcZ/77L0qvYc6ruXPnetyG82rLli2uYaVLuxa//74+t+a771z9EiRwHV+3Lkrv75Tnun7hgmvq00+7+om4Zr744j3nrTd1YtMm1/R27VxfJUni+va++1wL333XdeHgQeewh1Pn9+93zXn9ddfXyZLpMeOcv3T8uHPMAqiunjnjWtK9u2tAihSurxIn1rHox9y5XeuHDHHdun49tncvXtW5fftcszp00O9hcNasrtXffOO6ceWK139/ZudO1799+7pGP/CAfo/9EyVyja1TR+8xXIvBWOA0T3jNXj4zsyxjv/7669pUBNuBp+mYMWOUmcLuyJfCpxOWFY9aa/Gz8TK1FxZJP//8s3bCe1PslztNplP3FtY4yhZFsFQJI8Wszj5TZDmDcwIdaFBZCV26pIJ6X4qwBFhjZBJ47yLFwCYMpja8YnmV4wzbga0NXaksHWWxeec65Z+iK5cQhEtHjshjo0dL8aee8vpvOZdhNVb1769G5DSK1ejTR1kSx7orfIcIWD70lhynqh9+KOXeeEM1l04FRjHmIff498svdUyCMUeP+cBHH93VYzpyp5iVdvTurc2QaNtrfPGFlH311Qg95hmfsA3dNWmS/Dd5spzeskWlf/keeUQajBghBRs1ilfNxD6DWTSELAd/+OGHcuXKFfUKzZEjh5ret27dWqKz8ERt27atanbRVHpT6DIB4FbfMtME5VTYCwOdH4bxERVgNnHKlPfobABngGEzED766KMqA3FXSAt4+Lt69+6tD3eFZGDGjBlhnuMzU3Rx+lKEULD/OHoggahWrZo6RUTktYxeKUv58pKhSBFZ0KmTpoBV79XLp/d2yrvzecOPP+oxJq0Gaz2OuTeF9GPn+PEKYk+sW6eRkA1/+02KtmoVMOlLgVgnN27UmzLHLmXWrFLzyy/V6iw6muucilzhIMF1gRZTJWEu110Q+/HHmjjogNiYKybY//bpIxuHDlXZ0YOffaYNwOFdL5Avh5YsCXUgwAUE8qjA44/rfSRf/fo+BS3FpYpUtwB6VR6AWdip8Bq1wisAKdrO48ePh3men9EhuvMepfELDaUp45eKrpOmMbSNdi0vj7hehB5EpdDAcqF4A+ro0CYpy27zceP8edWCmoKpR8PrrvCMjY6ikaxly5ZeW4HRWQ3D7KsmzFid+VIAV7pJizRrpuwV+rRqPXtqN6lT/itWCGa9+KLaCZV9/XWp3b+/V3ozJjY0vqz55hu5eOCA3hiaz56t2uY4py/zYx39919N6yIl6L58+aTu4MHaWOcY6AdOMfZsGj5c406vhiQVstKAp7U1TtupmNGQr/zyS51UwKQ+0KOHlO/Y0WPTNPfbfbNn33Ug+PtvuXbmjH53aF8LN20qOWvUcL6/yIJZUylTptRHZIvudayNsGfCHcGAU36mk9xedJFv2rQpzHMwxDC2MMMO4xr54kbODTsiFgXAe/vaNUliA2DM8mHDklkkBjSVxXQBkr0FyspGnz8fYbiDvwrbMyxu8j36qMxr316zzCt06hQj7x1f6uiqVTK1VSsd8BtPmCBFnnzSK4aEpi5uLqw6FGvTRiq+807A+87GZnHtHFy0SP79/HPZP3euBrw8+uuveuwcYBQ4BcmwbfRoWfL++3qeUw6Ijb0mu1V9+8r6779XBhw7ugpvveVWsoTzx56pU5WB3TdrlpJNNG0hPwDE0szlTLAjAWZxL/D2wGEJ5UshAWjXrp1ae9HRjjUXrgjG3YCuekAR2lc6xUuVKhXm79OFABH7805FQi+bOnWEFh3MEq02Vqauh0gMgqnrFVAOYxET+kdu/gB+loBIWqHTtNGYMW4dIZyK3PFFA7jovfdUf9xi7twILZ+wSFv91Vd6s4dFvP/ll/Xmws3eKc/HGXsfmNgjy5apBOPxP/7QwIP44MwQLIUbwc6JE/V6uLBvnz6XOlcuebBnT/VWdiYcMVdXTp2S1f37y9qBA/UaqfTuu0pi2DXkFw4e1GhaNLBMFNExZ69aVdlzAKy3Mqn4Wl6BWcOaRkdhd4R3KdZPhCaULVtWZs6cGdoUhndqdHiLOhV24IOZxV4ootLmr4QJwwQmMPu/bpMYBEMhMWCS5k3AQ1QLrSzAmff6t1s3tXRCg+lU1AsWY+bzz+sEoULnzlKzTx+P2j97UxfnLGlG93fo4DR1RQSO/vxT/u3dW3XEnL9Np06VAg0bOgxRABXnN56ihLCc3bFDn+McR49Z4plnHBAbw+MSwSBrvv1WtckV3n5bV3zw7TXfFaleyAdgYI+vXq3N13keekjqDhqkQQapvbgnO+UDmO3Ro4dEZyEpcCcr8EYLiheqU1Er2FZuVt7oZel8hYG1MvXGxcAqMQiGYr/x/4wJRomkIwDWnWvX9CbTdNw4BwT4oQ4vWyZTW7fWSVbTKVOkoEVP71VTV8uWTtNLBLIikodoVDmzbZvkqVtXWs6fL7lr13bO3wCrAwsWyIK339ZGPANiaQoq/vTTDoiNwUJOhu5+zYABev3g5FGpSxf17eU+e2TFitAGrrM7d+r9NH/DhlKxUyf913H9iEHNLCEFEyZM0IYsEprQKCIvgE2NDZ2kU1GXGCRIlMirLkhAg916SyUGKVMGlcQAbTYxoSy9Rft73b6tGs5kGTPK9WPHpECjRpq64lTki5vCyn79ZGn37pKjalV5bMwYuc+NS4nT1BW5unX9umz55RdtVCEtjUlCg+HD9Vg7FVgFOJr/1ltybOVK/ZkVNlYbYGIDOREurhUrfUidCAhBwlbmtdek8nvv6f3y4MKFdwHsX3/J5aNHNeGvUOPGmgKZt25dp1nSD+Xzmb5x40aN8kybNq06C5DeBZj9888/VRJAMpJTwQdmk6VJEyHTArvFUnlii15WtaAXLkgqm1dwoBdAVtlkHy25IlOAfcAXGijes6LFKs6pyDVSzHj2WW2MqPL+++oIYdcAOk1dkasbly+rVRAaP1KEirZoIU0mTXKa4QLUQ3nem2/K4RD7QwWxffpIiaefdkBsDBYTZpxpWPWB7CnzyivKxrICtLBzZ9kzbZquAuL0Uax1a3UgyFGtmqMx93NFKjThueeek759+6q/pqmGDRuq56xTwVVqqXX5sltWy53EwN78dfv6dQVp9oawQC8GF5b9rdrf6Kqrp06pVvbq2bMq5SBn26nIFY0RU9u00eW7J2fOlPw2ezSnqSvyS6PrBw/W5VEaFYs/84xGX2YoWtQ5VQOsTm/fLvM7dlQXCQprP4z2HRAbs8V9k2tmVb9+SghxzeBpDQv7S6lSem9EzkSzFw1cme+/35HmBBKYXbVqlQwZMuSe55EX0MDlVHAVjUmI0z153IXZ9vJlnfFbm2uMuwEhCsFUDD4Ay+i2N8FXlrQd1RknShQjTHBcnXTRQb+8Z0/JVbOmpnmZSYHaRC1YoLIDp6nLt7py8qQCWJglbr6lX3hBKr33nqT1MRHPqeivc3v3KoiF6aM0mAIQ68gJYrS452HjhwSHoKBslSrp5BpZDmNRrurVlSGngSsiRxWnYhHMEkBAipa9du7cKZkzZ/bXfjkVxbpx44b6+Ea43YULkjBJEq8YytDkLwsAvHX58l2GM0kSr98zEPSAgMyYcF+g8Qv3B45dypw55QJes075VCx3T3/mGW1wqdajh8aj0rSnTV0TJuiSOLGOMB9OU5eXx/TIEV0W3TBkiF7PZV59VeUvTvd0YH5XyAn++/NPJR5SZsmiTGzJtm0dOUEMFvcMrpcVvXrpuI4W9s7Nm3J8zRoNVqk/dKgmcaWKZIiUUzEMZhs3biyffvqp/PHHH/ozAyFa2a5du8qTXhiUOxU9Vbt2bfXaJQlt1KhRUrp0aVmwYIHH7bdv367RxKtXrZJ8efLIoB9+kIcfflgmTZqkVmwPPfSQlChRQgYNGqTbM+M8evCglG3QQCNh69atK/ny5ZOnmjSRPQcOyPR586RZs2ZB4S4BgKe8YaOjUhwzA2aZLGiXqgNmfap9c+YokOUYtpw3T/LUqXNPU1fehx92krp8YPdWffmlbB4xQiemdFmXf/PNeJXhHkys+fy335YdY8eq5p6ocSKCS7Zr5+gtY7BuXLki/3TvLhuHDVNSgkI2lr9BA5UP8G9030ucigYw+9VXX0nz5s01wpao0lq1aqm84IEHHpDPP/9c4uqywpnt22P8fUnV8SVn+ddff5VXX31V/vnnn3C3u337tgJWEtOmjRghct998kH37mG2Aehil8b3DRvPDHT81KmSI3t2BbqmBv38s3R75x35vH9/CSpLrtSpo53VAHTduXFD/z9dwYJyx4lE9bpYtiN6E0uofA8/LI/+9pu4bt2Sxd26OUldkSj8LDmW237/XZJnyKBNc2Vfe82RvQSofpnGoS0jR2o/QvKMGVVOUOr55x0QG4MsLOEgq776So4uX66TCaJnaeDie8CazpOXtVOxUz7fzXExmDNnjgKmDRs2yKVLl6R8+fLqcBBXCyD7W4UKMf6+bdeskazly3u9feHChbUxL6Li+8NWbcakSZLi8mVdnv08eXJlZk3BsgJm//rrL2nZsqXOSP+YOlXT2kJlBi6XPFipkrzzzjtBc1PUgAjcF2LAjPrqyZMaX0vCGDP3a9euRft7xoUiCWfaU0/JkeXL1WIIY/7FXbuGSeqCTfSmaTG+1/F161RrzBJ1mpw5pc7XX0vpF1/0aZLsVMwU2noSuzYNG6aTOSYdaC/RMTvpajFDcqBHJjmNKFmce6gMxYvLAx9/LMVatowwIdOp2KtIU1MPPvigPuJDwZACLGPjfX2pCl4C7h07digrmyFlSrl5+/bdnOjKlcNsQ3Rw27ZtZfjw4QpmV61YIdt375b2L7wQZhm9TPHiQXVjBJQDaKMbfHMzgmEB8DvxqN7X7mnT1HYLFgQPRhq6yJV3krp8q8P//KMgFnaJVQH0fCWffdZhkwKUBWTFYf0PP+hKDlrM6p9/Lve/9JIDYmNAj28iZPfPn6+rP4mSJVMgm69BA6nVr59kLlUqunfDqZgEs8uXL5fTp09Lo0aNQp/DU5Z0sMuXL+uy9cCBA3VJOq4VYM0XhjS2KpWP9ljqL5s2rcffIzUgXvjQoUMycvRoqVG1quS1djm7XJI6Bpbr/T37Zn+j230BvRvHB3Ns2ESnwi9uHks++EBWf/WVZClXTpdXF7z1lq4aPDpypBRr1coBYhGURvXOm6cgFnugjCVLqusDKWfBdI3Gl6KBcemHH6rRPk4SydKlkwf791f5h8PERl+d2bkzNEL26IoVIgkTSsZixXQSwWpagcce00ZTxh6ngqe8HuFo+qLJyIDZTZs2yQsvvKCes8WLF5d+/fpJjhw55JNPPonO/XXKD1W0aFE5ePCgHDtyRAqHJGBhuWYvmsgqVqwoQ4cOlYlTp8pXvXuH+T0MZ7Dphgh4SBYDllxXjh9XiQFLu05F3JQ0pUULOblunUYiYzbuNHX5BmJ3//23glhSoLJWrKhBByQMOcuigWkzt6xnT3XhuHX1qloE4k5QvmNHB8RG0/WB44CJkD29dauu/OStX19dPPbPmaPPFWzcWKp98olkLVcuOnbDqUABs+vXr5fPPvss9OexY8dKlSpVZNiwYfozy9awtA6YDfxCG1sgXz5585NPZMDgwXJ561b58MMP9Xd2kGcawVImTy7NLG4VDBA8ggnMwoQQ/BDdaWVE1yIzoPvYYcTCL1wJ5r3xhjKzAK+CjRpJxXfecRKnvARFO8ePlxW9e8upTZskV40aGiSRr359x5w9AIvx8t/evbURD7kTOnqWsbFEcyYd/h/rSUYzAPbioUOqQSaW+cHPPtP7AN/D7r/+kvwNG0qjMWMkW8WKft4LpwISzJ49e1ayWkDAokWL5NFHHw39uVKlSsr2ORX4lShRIvnt++/lzW7dpMoDD0iBAgWUWX/88cdVK2utNm3ayNtvvy1P1K8vaSz2Pei8qIRBBGZDLbmiUS/LDYuBk0rjNCh5rGNr1qjlFs2VAP5yr7+uZv1OU1fEBfDfOmqUrPziCzn733+S75FHpN7gwQpmnQq8YkxAPrP800/V4YQAleq9e0uVrl0dEOtn1yEirv+bPFn2/P23BhowBhdq2lQjZHNWr66NXbikMPnjumkwfLhkr1LFn7vhVKCDWYDs3r17lYHFHH/t2rXSs2fP0N9f5CK15aM7FXO1cOFCnwbXfJkzy5y//gptTjJ2XoUKFQqz7alTp7QL/5nmzcOwjIQlrJoyRfWNQWXJlTKlBjxE23ucPatgAy2yo3sLWyapiyXWQ4sX63PcaLihqAevU+HWzatXZfPw4bKyb1/11+UG/djvvzuMUgDX2oED5Z+PPtKxB50+lmgPfPihA2L9VPh47546VRu49s2erbINtOLojhlbTK8LMpzRVaqohClP3brSZulSyRlPGtjjS3kNZhs2bCjdunWTL7/8UiZPniwpU6aUGhYmYOPGjVKwYMHo2k+n/Fhc8FPnzJGshQtLyVu3ZNeuXfLWW2+pO4X5Dm/evKkNf8gPKpIvbVuCYRZMEECwADaAFMwsDVnR9h537qitFBUT6WLBUkgudowfH5rURcMFUZxPTJkiOWwuGk7dW7B563/8Udk9GlSKtWkjVd5/XzKVLOkcrgCtDUOHqgsHkiP0mVW7d1cgGyzjZSDXhQMH1IEACQGTYppFczzwgB7fwk88IekLFw4d83HzgIk9vnq15KpVS1otWiS5a9aM7Y/gVGyCWfSyeI8SkkAHOwb91uhSLJzq168fHfvolI81evRoefnll93+DjeClfPny+UrV6TTe+9pelumTJnUJ5iABFMwtXXq1JEiRYrIkE8/1aUxa6H5CipLritXFFRFpyXXlRMnNFwCkB9MxyY6Qdimn3+W1QMGKJNoAD7OBPWHDHFScyKoq2fOyLqBA7XbHQ9Skp8qd+0q6W2rJ04FTm3+5RdZ9O67cvXUKbV4QjqDV7IDYiNfgFIatIwDAc1cRLDneeghldfQuGWNYWZ7WNplPXrI0X//VQa25fz5mh7oVNwtr8EsgGfx4sVy/vx5BbPoLq01fvx4fd6p2C8ih2nOc1dIQWAon27dWjr26OHxNXCuYFAABDKQWMEsz8PuIqgPlrpx/rwkSJToHlDuz4YDPAuplNHI/gZLljzLqxt+/FFuXrok+R99VKUdlw4flkd++klKtW/vNCiFU5ePH5fVX38t67//Xlmn+zt0kIpdujh64gAuNMwL33lHJ7T0EZR/6y1t7opOSVNcLla5AKKmgQttuEbIPvqoNogSpGK3lVRruvnz5Z+PP5Yjy5ZJ9qpVnZjreFSRSgBzVxmCCNjE9UqTJo0+PA0SJ9av9zoBCzBLWX1ZAbK8TjCxj2rJlSZNtGnVLh85InLnjtpxBRPI92ed2rJFl8K5sWtS10svSaocOVQzeF/evPL0qlWOAXkEy6er+vWTTT/9pMxTuTfekAqdOkmqLFli7kt0yqfaPnasLOjUSS4fO6bfGVZPdQYMkMRx0G89uotegwMLFqj+FRkBxxRZWKEmTaT2gAGSt25dj57dBxctUhCL7CBbpUrSbPp0yd+ggTNpjkflOGnHswKcAkS97ein0YsBxLpM5g7gBnIhL4AhTGENfPBzYw4hCdzMkqVKFa/YGG3qWrhQQRj6NKQEpBcVf+qp0BAEsswfGjhQkkYTKx7sdXbXLnUm2DJypEovqnzwgQJZTNydCszaMXGihnqw2pAgcWKNnH3ou++CaoIfKFKkPTNmKPtKlCyrhmnz55diTz2lDY5oYcOTaBxaulTlBDCyNCM3/ftvDT2Ibh9xpwKvHDAbz4rBQpfbvRx0VRtrAyHuAG4wWHJFl1724sGD6rcLs5A8UyaJD8UEYeeECQpiaeqyJnVhtzW+Xj09LjxXsm3b2N7dgKyTmzer7+iOceMkZZYsUqNPHynz8suS1JFrBWz999df6ot86dAhHUdLtG0rdb//XpI535nXdfnECdk9ZYpKCA7MnavjZpayZdVvFwCbqXTpCMHokeXLtbGLwAPGHg0JadLEAbHxuBwwG88KYAf7483MFQYX1tEO0GBmo0t7Gl0SA8A3DRl+f+3z50NjgWEpw4sHjktNXWu++UYu7N9/N6lr1iz9l9o4bJgyVumLFJFnVq/WmEinwtbRVavk388/16VU5Bew1qXbt3dijwO0uK7xJ53XsaOe87hxFG3VSur98IOkcNhzr+rcnj2hDVyH//lH7z/4vtb88ksp2KSJpMuf3+trByaWVSAsuBpPmKAA2AmdcMoBs/GoAKc3Ll8O9ZaNqACy4nKFYXF5DdJTgkUXaiy5iEmNjteGfaQxgW5zGr/i6vIWzW1rv/sutKmrWOvWUnHyZGVUzIRh9ksvKctY5pVXpPbXX0uSFClie7cDqg4uXiwrevVSNgmw32DECCn+9NPxSpYSdCB2+vS7IHbvXtXD41368JAhkiqeN3l6c+xObtigAQZoYE9u3KhkApNemkBJ4vKlUZbVH5hYJhUZihWTRmPHStEWLRwQ61RoOWA2HhXLOYBTfA+9KeQEDOBWMEvyFwNVsDCz7K+GGESDxADPT14/da5cdzW5loS0uNzURae2NamLNK+prVppJ3ejceOkWMuWsbrPgVTqdTlzpsoJDi9dqkuiHKMiTz4ZNDKd+FZq7TRrlsx94w05v3u3joFEntYfOlTSOP7R4cYrw7oCXgGxF/bt05WqAo0aSdWPPtKGLF8lNCc2bJBln3yirC7+sQ1HjdKJtHPtxE6d379fbRYDMW3QAbPxDcwSZ+vlcrvKCVKk0Nnv9u3b5bnnnpP169dLoTx5ZOO2bWGeK1asmP4bkJZcAHIP7g5R0YxiQQWAvRkSUentJCFomrr695e906eHNnWVeemlMDIKtls3aJAs6tJFdW7IDdI5wSl3j82dO3pDR04Aq4RNkNOcEthl/EnRxJ7btUufy1OvnoJYb5fB41sxmd8/d67KB9DB4q+LU06hJ57QAIPctWtrP0Fk9OTLe/ZUXX7aAgXk0V9/1aZSawqlUzG3Krdz/Hh17kCrzFj/3MaNAXf4nTMjHtXt69f1X2+XNbX5K2Qm3aNHD0mVKpWsnjdPGJqYGZvnduzYEaHH8L59+zR4Y/78+XLs2DHJkSOHPPPMM9K9e/cw4RuzZs3S192yZYskT55catasqWEO+fLlCxPd27lzZ92GeGVSygDV7orlb4BsQj9bcl0+elQBC407p7dtU+1jXGvqYtAyTV32GxK55zPbt1fGBKYW7ZtjR3T3GDLo/9unj/oz565TR1rOm6f/xlUJSlwBsfPffFPO7typz+WsUUNBrKP5vreunTunzgNc+2hXuU8gm8HRAf0q1liR1bAyli7/9FPZPm6cjqmP/PyzNtk5UpyYjwneOXGijmUQG0wi8PglPhuJSCCWA2bjGZiFlfVmoGHJCD9ZwBq1e/dueeyxxyR7+vShDKR5jlSxiAoW986dOzJkyBApVKiQbN68WTp06CCXL1+W/v376zZ79+6VJk2aKFAlxYyAjk6dOmny3FpiUEO24T1feeUV3WbevHny4osvSvbs2eWRRx655zPAmiID8DcbQUcuqTOAZUBKMNso3dPUVa9eaFOXOwB2ZMUKmdq6tTa/0UUMAxPf69b167Ll119l5Zdfyvk9e9QeCG0g1kJOBTCInTNHFrz5ppzZsUOfy1a5smpis4ZowZ26W6xCmQjZgwsW6KQN0IqNHAA2Y/HiUTpUZ3buVBC77ffftafj4R9/lFLPPRcpVtepyBXjOd8xABZdP9cH3r5MKBjjce9As4zkrOwrr0jAlSue1fnz5118bP6119WrV11bt27Vf4Otbt++7fryyy9dBQsWdCVNmtSVO3duV69evfR3GzdudNWpU8eVPFkyV/q0aV0dOnRwXbx4MczfDxs2zFWsWDFXsmTJXEWLFnV9+9VXrqOrVrluXL6sx8v6+KBLl3ue69Gjh8/73LdvX1f+/PlDfx4/frwrceLE+llMTZkyxZUgQQLXjRs39Of33nvPVbJkyTCv06pVK9cjjzxyz+tfO3dOP8NNP3+fZ//7z3ViwwbX7Vu3XCc3bXKd3b3bq78LtPPr4pEjrkXdurm+S5fO9VXixK5pzzzjOr5uncft79y+7VrZr59uO6pqVde5fftc8b24PlYPGOD6IWdOV78ECVx/tWgR7jF0Kvbrzp07rj0zZ7qGlyjh6ieij1/LlnUdXr48tnctoOr09u2uFV984RpVpYoeo/6JErnG1a3rWjtokOv8gQN+eY+zu3a5prdr5+qfMKFeQ+u+/95189o1v7y2U96NX9vGjXNNbtrU9XWyZPo9j6lRw7V28GDXpePHXVfPnnVtHjnS9efjj7u+TppUfz/xscdcgYDX7OUws3Gk3n//fRk2bJgMGDBAqlevLkePHlU2FOYTxvKBBx6QOePGyZnLl+XtDz+UN954Q3755Rf9WxjOjz/+WAYNGiTlypWTdevWSYcXXxR56y3pWKGCvlY9tGN168pzjz4qucqWlY7vvKPPNWjQQLp06RKpKGOYV2tyXIUKFVQOMGLECJUNXLp0SX777Td9H2J4qeXLl+vP1uLzvf32225nmszs/WnJBYvJMhvG3jDXsLRp8uSRuNbUZa8rp07JjHbtVENL3nz1Xr3i/dLf5l9/lUXvvivXzpyREs88I5W7dXOWpYNATkDs7OktW/S5DMWLS93BgyVvnToS34vjc2z16lALrTPbtukqHI1byI1YbUjhJxeb8/v2qbPH5l9+UVeDOt98o7HNnhK+nPLvKtK+WbOUgUXnjEwElr1G795StGVLDUPi+ZnPP68M7Z2bNyVHtWpS44svtHH1vgC93zlg1stGKIzgY7qwIPEm3ODixYvy7bffKhht166dPlewYEEFtQDca9euyciRI+Xyzp2SMls23e7xxx+XL7/8UrJmzaoaVXSpLOdT+fPnl7VLl8qoyZPlzR49JFu2bJI4cWJJkTSpZMmcWdJlyaKgk+cAsfze19q1a5cMHDgwVGJg3nf27NnSsmVLefnll+X27dsKwqdPnx66DXpb9tla/HzhwgW5evWqpLA0YWmEbdq0ftMqhlpxpUql1mQsyQOW8e2NK01dniylpj31lMpUiIks8OijEt9rw5AhMueVV9Ra68HPPnMahIIAxNKoeGrzZn0ubcGC8tC330qBhg3jtZb59s2bGgELeAXEkmjG2FawcWOp2aePSo38mWpGZPOKzz+XzcOH6/vU6tdPrfwcG7/orTu3bmlKGgD2vz//VKKHnghkIvREJE2bVr//WS++KAfmzVOJXq7q1aV2//5SuFkzr+08Y7McMOtFAWR/q1BBYrrarlkjWcuXj3C7bdu2yfXr16Vu3bpuf1emTBlJkSyZXLx9W1nKBx98UPWrpnEL7esLL7ygGlZTt27elPtsdlYMfMzUo9pMdfjwYWV0W7RoEeY9Aar8DCBv06aNgnQY4+bNm8ucOXN8uukw+7x97Zok9aOVzrXTp3ViwySD5i8YuZRZswb0zTC0qat/fzm+Zk24TV33/O3t29rIhEl5zgcflMfGjHGsiQCyQ4cqkC3/5pvKKAXy9x+fy1hsLXrvPTm1aZM+lzp3bqnz9ddSpFmzeOtRitc4x0UjZKdO1WbONLlzK+uGCwG2S/52Dbh46JCOJYSqMHnWtLtXX3UirqOxXHfuqFXatjFj9B6AlWS6QoWk3Jtv6vifInNmPQcYyw4sWKC2nblq1tQxDQBLT0gwlQNmvSjAC8AyNt7Xm7KykV7Zct26Ffo8S/kUDG6VKlVCARBdpelsjV0sN0R1ln7kyBGpU6eOVKtWTYYOHRrmd4MHD5a0adNK3759Q58bNWqUOhb8+++/UrVqVWWBjx8/Hubv+BngbT0OWHLhD5nUT/6yALuLsBbp06tXIt2eDBYpAjS+lhAHbeoaMMCrpi57XT52TKa3bSv7582Tqh9+KNU+/tixxQlJOJvz8stS7o03HCAb4N6+S7p1U7N+ihUpHDdKPP10vPQoZbza/fffysDunz1b5VGZSpWSsq+/rg1cWcqVi5ZJGbZOCmKHDtUVrQc//VSvHSeyOXqlItvHjtUAG5h2Jio00+HPi20a5wBBIIcWLdK/wWml7qBBeh6ksq16BlM5YNaLAsB5w5DGVhUuXFiBnOnst1bx4sVVG3vhzBn9GTbun0WLlF0tWrSoLtFjk7Vnzx55+umnQ5fn77t0STKVKOFXMAsjC5BFG4su1s7wXrly5Z7nEoXceGCSKbvsgIK15Xlr8RmSpkrltxsX4M5161aoMwJ+isgLAs2OipvHuoEDZf0PP7hN6vKmALDTQs6FFrNnKxB2SnRyQMoZAOCh775zGNlABLEzZsiSDz7Q9CkqecaMKqchLji+2TuxpG/0r4eWLNHJN+4a1T79VLvTCSGIrrp8/Lg6e2z44QdJlDy5PPDRR1KuY8doCa+J78V5f2rzZgWwPHBTYcUQ/SvjPxpXzoEFnTrpecCKBC4FOEbAxPuSxBbI5YDZOFD4sXbt2lXee+899WxFRnDy5En1YQWgool94ZVX5O1nn5WtFy5Ix44dpW3btqHa0549e8qbb76prCjL/2cPHZLlixfL7UWL5J133tFtGAipyCZ/AWRr166tNl7oZNk/U0Zzi+UWDWyffvppqMzggw8+0L+hMY3CkgvNL5+1ffv26lv7xx9/yLRp08LG9l64oLNQfxSs9pXjx3WAALwiYaARLK3F+za269TWrbK6f3/ZNnq0su/eNHXZC0Z+2aefamNGnoceksdGjZJUkdBDx8XaNHy4zOrQQZdG6w4c6ADZAIyd/efDD+UEwS2syKRNK9V69JCyr74ab5qKFNRs2aIAlhQuvKITJkkieerWlXrffy+FGjeO9uv5ysmT6lNNmArvTVNkhbffjlCX71Tk7MxgXwGwp7du1VXDIs2bS7FhwzRogvNg8XvvqdSA7wJSArvAQk2axMm0SseaK4Ctk3wp7Kyw4sqbN68rSZIkrjx58rh69+4das1V44EH1JorQ4YMbq25Ro8e7SpbtqzaeqVLm9ZVrWJF159//hn6+9IlS7re6dBB7ZlMlSlTxmtLrhEjRtxj52Ue1hozZoyrXLlyrlSpUrkyZ87saty4sWvbtm1htlmwYEHovhYoUEBf21rXLlwItRXzR2G9hd0SVlzUxcOHXcfWrAn92dvy9/mFxdD+BQtcExo2VMsUrG3+7dtXLcl8rQuHDrnG1KypFjnLe/Xy+bPF5do4fLjabs1+5ZUw579TsVuc/7v+/ltttdRiK2FC1zepUrmW9erlum4b3+JqcT4e+ucf14IuXVzDChXS4/BN6tSuKS1buraNGROpsSAydeXUKbX54/jz/ks+/NB19cyZGHnv+FTYITLGjyxfPvS7nta2rWv3tGmu0zt2uFb276+2ifwOK62JjRq5Nv3yS9B+F75YcyXgPxKPiq53GEhsoewNTnT9Y8pPVz1sZ1ybxbG8kL5QoQi3RWdGp6m1gxErlVtXrkhGm/QgEItmAzRime+/P8oMGs0SWNSQRsNyjLIfmzapFtdXZtZf55e7pq5KXbroklJkTMZhtbDdgtEl4SV3zZqR3re4VlgHkXSG6wPsVnxtGgo4JnbaNPnno4+UicXMHeap4jvv6HWQPF06icvFyhDBBepA8Ndfd1eNsmRRxo1lY5jYmJI/0Ty2+uuvZe233+qKGE2RfA9xkvmLpULitsPEyS5bpisNBRo1kmJt2mhfDU18OydMkGOrVukYjpVakRYtpGCjRkHPiIeH1+zlyAziSWGrlMyLQR7HApbV7dpYvOiCRbSP7QjarKgCWWPFhYODafSisYrjExuDtbumridnzpR89etH6rPyXS/t3l2XBYkqxOUgZYA2tMWWjyxAFv9LB8gGCIidOlX+6dFDTqxbJwkSJ1YQW/aNN6Tq++/HGe2fu6IHAD2wOhBMn64yKpaS8TcGwKKFjcnGNsZYEgMBsvRS0NRV6d134/R3EJMFGYOFlomTZcKW75FHpOGoUdrLQoPjv59/rlISwG3+hg2lYufO6gUcDFaR0VEOmI0nN4E7N254NVsHtFKJLdpYe7Stu+rdu7c+3FWNGjVkxowZEhMF0GRf/aENg3WgiYrccQMWr506pbPfJDEI7K1NXWh1YWCf8LGpy17n9+/XSNrjq1er1yMDocM6/r+2/PabmoaTN//wDz84xyaWxy868Zd98omCWAAs5yrfDY1FafxovxdIRRMV5vUwsHh/MrbhOgDzSec5bgQxbQsHqF773XcauoL1IRryyl27BnUXfKAUxzY0Tnb2bGW66V2oP3SoZCxZUvbPnavEA82NBBsAXNEkQ0QkDRKiKTrLAbPxoJg5c0PwJgnr1uXLasFkXa4GHEbU/EVjFmEHkbUO81fBWFBRteRiILl06JAu05gOXEA9AJfGspi4iWhT11dfybZRoyRh0qTa1FWBpq4oJrD8N3myAjU+W+slSyRH1ap+2+e4UCSjIbugA77+kCEOkI1NEDtlyl0Qu3793fErQQIp/tRT8kCPHnEyqOLcnj135QOTJsnhZct0nMlZo4baisHAxlbTKatCNHUBpiA8yrz8sgKpYPMiDbTCtxymffuYMSqdYQU1Z/XqavvHZAVWdvWAAZpYB4FS8PHH5YGPP1YpgT/DLOJCOWA2HhQXCOWNnpKLC9BqBWsMXvwcXlcwsbTWaNrYnN2y/1G14YEVYRkeVtYUIQnqLRvNEoMzO3bIgs6dQ5O6HuzVS5e6o6oFRGu3uGtX1bdxY2xACk/69H7b77hQW0ePViBb6vnnlRFx2OrYAbEwVMs//VSZWGQ+FKlUD/bsKRmLF5e49FkB6sZCCz0+oB3p0CM//6y6x9hcuqdnYP3338uqvn1VWsA4VOX994MiESpQC4adRDoYWM5zVv+yVqyo4zx9HoeXLpV1gwdrrwakDC4UNT7/XPLWr+8kpYVTDpiNBwWIoSJiZhlYAa72wZPGL5Y1Av3Gzv7DzJJsEpUCxF4+elSPgxXAo2NicIlMk5W3+79l5EiZ9/rryv4++uuvkW7qste53bvl71at9GaJRyoaNye5Kmxt+/13mfHss1KyXTt5ZNiwgD/f41oxUeTmjj3cyfXrQ1eCaGiq/tlnUZLVBFLRwIldkomQRf/OKglNPdiJoY2M7WXjm1evyoYff5SVX3yhk3gkHUSfRnVVKL4W3zksKwB258SJcv3cOWVekWjQwHts5UrZNGyYnN25U88FyIZafftqyE2geZkHajlgNp4ws0ZnFu52N27oRWfVy4Y2fwWBqJz9ZP+j2sFJagpAL3WOHKHPkZjDDJqmi+gotLBzX3tNl7hhBR8aONBvUY/b//hDZr/4ooL8NsuWSbZYiGYO9CLykcSzEs8+q16MDpCNBRDbs6fqAc1Yk71KFaneq5c2NwV7AQ4PzJ2rABb9L6ErjC+AFh65a9cOiFAHxjlS7kjtunLihCZHVenePU5KOmIkTnbZsrsAdvx4PZ7pChbU0BUA7Ml162TLL78o0YB7EOcB8gICDaKLMInL5YDZeAJmvdXL2rWx2vx17ZrGQQZ6wcrS9RnZYAcjs+BGQwSgNZ+c53jt6LD9oSMV1hQLFrpVidz01w10YadOsmHIEE2DYdk82K1aoqO2jxsn0595Roo/84wDZGP4Zo9+ezkgduPGULcVml1YVqX5JZgLfT06SD7jvpkzdbKdoWhRKf3ii5rAla1SpYCZNLF6h1PKv71766pUibZttbkO8OWUb6tr2CWaOFlsIpFkFG/bVjKXLq0rYwTbXNi3Tx1yaOTDKYVI2UCYzARzOWA2noBZb1JwAHLMCK0XFRIDKhjE5lG15Aq14kqePIzUgueRGKTIkMGvNx9el87gRe++qwPdk9On+y1iEt3t3y1b6r8PDxmiWjdHVuCetSa6t/jTT6uGOCbtjeI1iJ00SZlYbu5EzlI0N6EbLNCwYdCeqxcPH1aWmQYulpVZKcpWubJU7d5dCjVtKhmLFZNAKlbj8FIm9Q/gxUS66kcfSQZLr4BTEdfJzZtlR0icLEwrzj+FmzfXcf3sjh2y848/ZM1XX919vlkzTerKXatWGMLEqaiVcyTjQTFgecPIwRzc4y975crd5q8YdCSITHHTYP+NH2xkwTDL/ekKFQoDWmF8cYRI7kcP1iunTsms9u11ybFCp05So08fv2mjsJWa++qrygg8s3KlNhU4dW9hRD7tqaekeJs20mDECAfIxgCI3fnnn8rEkiVvtO1MHLE/K/LkkwHDVPpSp7dvD23gQvsIQEE2wJIxQQaB2CxFX8DW336T5Z99pprdYq1aaZd8XGqui+46+99/uqqjcbJbtujKAkwrMgIALROaDd9/rzaRhZ98UgFsrho1nHEmmsoBs3G8kAkAxLxq/rpy5R5/VgCiNn8FOFOCiwEV2WV0brSwsjR42V8DiQFg3l/s9NFVq2RWmzbq09j077+1Y9lfncfz3nhDdVgsE7J8FduNJIFaOyZMkKlt2miDXYNffnFuMNENYidOVHcCQKwZYzg3a/fvr6x4MDHifJ5jq1eHAtgz27frGIldUvmOHdX/M1BdQpj049jBd3F+zx5Nimo2dapkKlkytnctKOrCgQOy448/FMAiJzB2WZzDF/fvV1Z+84gR6kIDeOWRo1q1oDq/g7UcMBsPWFkqPEF5vnz5pOPrr8vTdercozcF4Bqf1UAu2FMAZ2SF81dOnlQ5BhoxK3Bn8KfzlMHJH4livNbCdu00Vvix0aP9ZvjOMheyAlgWwFmpdu388rpxsQBWBEbARuEY4dxoog/0MWkAOMFccQ1JwoTKvtb74Qf18Q2WRheYzEOLFoVGyNIkikVfgccfVw9Yus6TBPDqFaQGAAxWHEYRBvGJSZOcVRsvbRpZxUFGgAuFRsY2bCj5H3tMz4M9f/+tPrH0WRAxqwC2atWgXGUI5nLAbHzxmI2AmSUhjLKyjwyAsIdJArz5S0Hi+fOqaY1MAVgvHzmiy5529lW9ZV2uUF1fVCYV5/ft0/0s+9prUqVTJ7+AKPaNxo35HTuqPOKZVas07tAp98UyN0C2aIsWDpCNIRCLnRNL74xFtfv109SoQAZ+1pWOfbNm6XLx7qlTdSKaJk8eBSt0nueqXj3gNY/6XYwfr8ETMMiwiI3GjpWs5cvH9q4FdF09c+b/cbILFigwZcJCZC/gdu+0aXpe3JcvnzqgMJ5oQ1+Ar2DG5Urg4m4Yj+oCmdZp08r58+flPhvjeO3aNdm7d6/kz59fknvRMBUotW/fPt1ne9WqVUumjRsn86ZOlX6//CKrV6+WTJkySdOmTaVPnz6SKlUqqV27tixatCjM33FKnD59Wl59+WVZsnixnL90SQoWLCgffPCBtGnTRgKtYI9Pb92qAQeRYZFZOkJKgF2KvaOU1yV9CyY1snXt3DntXr1JY5bLJYWLF/fL+YW+d84rr6g/Kg1eaPSCoVEvtgpWDfYa/dpjpKoFOBAJtmLyu9OA2K1b1cYO5oqGSkBA+TffDHiLP7Ts6NiREBApipMLfqA0b+FAQJxsMAAWo08GxDKhIPK0Ws+ekr1SpdjetYAtxtNdU6YogGUS47p9W3LVqqX3Be4P+2bMUIcKzmvAKxINJgXBcD7ERbxmL2c0jwOVO3duOXr0aOjPx44dk3r16knNmjXlv507pU3HjvJ5794yfPhwOXnypLzxxhv6GDFihPz5559SpkwZeaZpU3nu6aclbd68ocC+bMmS8vKTT0q+ypVl+vTp0rZtWwW1lStXloCz5EqYMFL6UG5WSAzwfLQDWUAyj3SRjGxUHe7hw3Ll+HHV4aIVvHDokPijjq9bp8AMO6/Hfj9rYksAALSFSURBVP9dm5ic8lzYIymQbdbMAbLRAWJh/z79VFOLWCFAQ8p5X/Gdd6RSly4BqyGlzqN1DNG/Hl6yRCfzOatVkwc/+0wZ2KhMZGMrPW1Zjx5qd6ZJYj/95ERWh2NfSNIiAHbP1Kl6P8DXGK9vgCsTGphZXGZYUQDEZi5TxgGwAVgOM+sFMwugYYkmpitDsWI+M218BtjWzJkzy19//SXtWrWSRIkSyS9jx4Zus3TpUmVtL1++rJ8TzewLzZtL5y5dwjSA0ZGJVszYyTRq1EiKFSsm/fv3l0Aq7KcAs5GxtUI/duvqVWVf7BqnCwcPyrXTp1VX5qv+iUGRBgteO3WuXGrJcv369Sgz/9ysiJdc2Lmz+nE+Pm6c3+y84mpxc5/C0nDTptLo998dRtaPIJZmGJhYxkfGK+Q6eJYipancrZukypJFAq24hmhEMwCWyFy0uySNaYhB48b3NMIGevGZAGP/9OihnwePXphYpBBOuYmTnTNHNbBMcgnDgXFnnEcGdmDePGVpMxQvfpeBbd787v3BYWBjvBxm1s/FQP1bLKQmtV2zxmdtU/v27eUiy89z5kjChAll87ZtsvW//2SChbVk4Ltz544Cq+JYsbhcyiJam79u374tXwwYIH/PnStHT5yQGzduKBhLGWDL2NxQGYwAjJFxQGDwSlegwD1gleMBkEUr6yuQxZOWRixS13RC4qckL+QKs158Uf6bOFHjaGv16+eVf3B8LpaMp7RooSCFhjtHWuAnEDtunNo6MTYyqeI6Obdrl8aeVv3ww4Czo2Kfj65YoeAFrSMTdSQPNPIQKcoyfDA0utqLsXzvzJnyz8cfy/HVqyVXzZrSauFC9TB1Kuz3b+JkGT9hXRmbiRC+efGiHFy0SCcBgFZWE5AQOL0HwVWOzMCL4qQHWMbG+/pSvXr1klmzZsnKlSslTZo0OtDBvrZv21be6dbtnu3zhORsG9k0S4Om+n75pQwdNUr69+kjFapVU33t22+/raA20CQG7L+vllwmIAFrlWRulkABuTSG0bHsy4DJa6KvohktTd68fuuUP7pypaaEXT97VhpPnChFmjXzy+vG5aJp568nn5SCjRurFMNJ2PFPR/wKQOyOHcpkwWCijy3xzDNSrUePgEqMgiE+MH++gle0kMgeWCHB+5W4aNjLYM29Z/zaP3euglhAOvZPLefN0yQph0EMOUZ37siR5cvvpnERJ3v8uDZsoYNltfXw0qU6GUM2UKVbN9XSB1qohVPelwNmvSiW+gO9+3PixIny6aefyowZM1TXSgHGShUtKjt27ZJC4ei+ktAIkyhRGOC1dMkSaVCrljz7/PPK/sHk7ty5U0oEWKc8oJP985WhBHAiAWApyd3gD7vK9+6tzIPBEVkBS1gkGUUlvMF+01ozYIAs7tpVspQvLy3nz3dy0r2o3dOmyRSALN3bY8Y4QNaPIJbzEIcCNJkswbKcHSgsFqste2fMUPkAWkgNQSlYUH2XaeDKXrVq0FuxHViwQEEsYCx7lSrSfNYs7bR3QGxInOzatf+Pkz14UFJlzy5ZK1TQ8R7gj7yE+zlxvQR1ODKtuFEOmI0DtXnzZnn22Wela9euUrJkSW0A07pxQ95o104avfCCNny9+OKLyrBu3bpVZQiDBg3SzXJnzy4r1q+Xw4cPS7JkydTxIH+ePDL5r7/k3zVrJEOGDPL111/L8ePHAwrMGt9WX4EjN2fjE5nUjQQAnTCvyw3bm324evKkDpqJkieXjCVK+G3pH0A947nnVAvH0leN3r2DxpczNmvP9OkypVkzNa/HhshhZCNXTIbVm/Szz+Tszp1qPURz14m1a3V5vsmkSQExyccqSSNkJ09WvSMTSjSQOCggL4kreseDixcriMXvNmvFitJs2jSVR8SFzxbVOrVli56rGie7a5fKXrKULSv35c0rx1at0okN5y8TLwAs0jKn4lY5YDYOFJZbV65cUZkBD1M1qlWTP779VhbMny8fffyx1KhRQ8EXzG2rVq1Cl2K6dOgg3fr10+fRxbLNOy+9JHt275YGDRqoTvall16SJ554Qi0yAqVIJ+OGS4ygL3X56FH93Gri7qbQynKDSB6Bby3vjeUWWlaWL9EJ+ssoG3Nu/FBhfP2ZEhbXa8+MGfJX06Z6k3eAbOSK83rbmDHKxNIgCZsJIAQUENNK0ATd/rFZaF5hX3mwlMz1il60Zt++CmCNK0tcKMYCGrsA6gC0plOmqNYzvoPYs7t2KfsKgKWhj/RGJAOQFOhfOV44E0ACICGIS+eEU/eW42YQB3xmPdWlI0fkyokTOgCGZwyOnQ7L7VaWkiVE7HRINQnUunjokMoFfLFKQUd3mkjN7NnVjste6rG7dauyq+Hp/25cuqSyArwI0WF5Yz3k7fmFPyQ2UqTIPDZmjNwXwN9BIBWNMJOfeELyPfKINB4/3mGxIwNif/9dmVjYrZzVq+tkCiaW5ezqn3+uOtPYAFFclwAU08AFeOEazVu/vqZZAe5S+knaEyh1ZMUKtdjaN3u26pOrffKJAvX4DGJxmAmNk129Wvs8MpcurZHt3LNYdcv54IMqf8GGzxk7g7scNwOntFhuiyj569blyyIJEoRJ5OGmxt8m9lMXfnQVUgBYWV8G90uHDkmCxIklZdasbn/PzRttladubG2qO3ZMZQo0j6XLnz/CY+xLndiwQaa3batLYU73vfe1d9asu0C2fn0HyPpYXO9bR4+WFb16KYilQYaVBjSZgKjYYgLZr0NLlyp4BcRePHBAr3dWKVguZtLiTiYU7HVs9WplYlkaR7b0+Pjx2vAZX+NRL584oT7GAFjOSUJsMpUsKZnuv18DIWiOhZWvPWCAHid3JIVTcb8cmUEcLuIjIwJaLNUDZK0DJc9RgZwmhY8rD18suWgG0QSXfPk8NoFcO3VKLbVYsnIbSbt3r76OYXb9eYMnvGFykybaUdtgxAjHRsrLgrniuNEEw43f0RX7AGJHjboLYnfvVp9VHDgOzpunaXrINPDZjEkQhYn9/jlzVD5A5j26ca4zGEkYWIB2XNVAE4RCYtfuKVMkQ9Gi2riIRVSwN6xFphinOQcAsMgFIFxw9wHc40BwcsMGlbyUHThQz4tg8wV2yv/lgNk4DmZhD8MrgKs9YhJ2MkGiRH5lHKODldXULy/jMUOtuFKm1OYAt9vcuaOZ3CkzZ74HpOKaAJBlUI1sbG54BVDG2B9WuMnkyQE9kQikwvxcgWy9etJ4woSgtVqKTRDLUj3gCb0xDTNMpLDaiilPXoALNmo0cCEVuXXligKX+196SUFstooV4zQreXLTJgWx//35pzbYNfztNynWpk28A7FItwDyAFjOA6QDjLUcE7TbgFhkLuXfeksBLOO0U06ZcsBsHC2AmcoMwul+R18Eu5nSNqtFegCYCmRtFk1XsKfeDvjXzpxRkM5N29Pn4jXRwFrdETiOaI+RFuBliz42Opih+W+9pY0srRYscHReXhY+m5MbN5bcDz2k3rsOkA2/cOkwIBa9N01ymcuWld1//SUpMmeWuoMGyf0vvhgjzDYxzyaBi+58AHa2ypXVLgkAGx/8PunAX9azpy6hpy1QQBr88ouUePrpeLUio3GyM2b8P0726lUdY+nVgDzgPM1Tr55Ufu89PS988f12Kn5V/LlqfCgTIhDMBZClwmNXYUAoOwsI6Iuokz+2b8qkfjHoeR1mcOiQNmmFx+TSTAaTbay1aBZjMOV4oKFFZxsVgO/pvFr/44+y4ccfpf6wYdq84FTEtX/ePJn0+ONqEt/EAbIRg9jffrsLYmlAfOwx7fLeOWGCJE2dWmp88YWUffXVaF8NOL19+13966RJ6owAaGOpuM6332qQQRoP7iJxrTgORAAD4LD/e+Snn6TEs8/GWfmEu/MRKQmfnwkNsi2cZWBaLxw4oP0IaN91YtOkiVfNtU5Fb3EPZeyg8RKCJxBDexwwa6kkIYMJNlcpLA1RwSoxiAjMIjFg+S6x5bMy0ACEA3mZ+0aIPZi3qV8kv7hu3QpXX8tnJk2MZVYKuYFG0iZOrEue/mg04byynmcUMYrzO3aUch07KivmVMRFqhNANlft2tLkzz+dSN/wQOzIkbLi88/1RkSABMu02G5xXlft3l0qvP2211IdX4ubHqDVOBAQuED3OYxw+TffVB/g+ARUWCoHxOIYAXh7+IcfpNTzz8cLjTdgCAYeALuTONkzZ3Q1gNU1wCxEAg19D/bqpedpch/tFp3y3zV7fv9+baxj5QDnH/7F8YhVXApnEwfMBnglSpRI0qVLJydOnNCfUwb4Unt4dfXSJbmZIIHcvHMn9CS01+ULF+RO8uTqLWuKgeUmrGTixGolFYh14fRpcaVIITdv39ZHeAVIPXf0qC5P3XK5PB+LEyfkVoIE4kqeXE7u3q06PnSxqXLkkDuJEkXpWMDIAmQ5rzi/OM+o8/v2qU5WO3G/+irSrx+fivSjPxs10mP2xKRJDpD1AGK3/Pqrglh8kFmeJeRg26hR+juAJIECRC77u7jemKDBviJfQKLDtUekcK1+/XTJ2OqcEh/q3J49ancGO54qa1aN0i39wgtxXhajcbIrVtwFsOPH35VqpU8f+rlvXrwouR59VG20cMvwdx+CUxH0kBw6FApaYVz5f2wpTQM4k9yMJUtqMAoJenhN4yJB83MgVvz1mT1yRO5zc/G4EiaUY+fOyblz5+4+ceeO5xcD6FrBrr+2pawND75sy9fpcqn+E/1RavuJZ9mW5RxYWessmDhIAK0u+bl5XV/2ITq2VQ3r4cM6o79n8LMe45DXhWHV42B3HrBty00XFwO0e7C4DLqhbKyb1/VY4WybLnVqyZYxo+4HzQ5jH35Yrl++LM+sXCkp+Cwh0hC3xQ3AaOlu3RKxTEDuKZgew/76si0Tg/BAO9sZFsmXbTl/r16N8rYkIE1u1kyyA2T/+uvuTTGE7XZbHC8DGPgewtuWCYbV+zdkQI/ytpy/VvDmy7bsr6dzjXPMunpy5YquxmCxtapfP7WxAkCmyZdPto8eLVcuXpQyr74qVd5/X1JxroU3plhXIfguItiWc3nfrFmye8IE2UeE7IULqnks8PjjUujxx1XSoDpQ6+ty7oQ3EeWzmeuI85fz2B/bcnzNmML1dvOmf7blfDD6/ZBtYbhW9e0rW377TT1wK3XpIqXat5fEjLdmW17T2+vel21jaYxwJU4sJ0LSuHaMHStXabpNnVrTEXGK4d/8DRpIIYJNGjWSpGZC5acxwufrPo6PEa4UKXQSAVg9s26dnNm6VU5v26YPJhO6qylS6Opj+vvvV8AKgM1UsKCkCc+tx8cxwuvr3rbtBdyHcuTQsCZ3eC1MueJZnT9/nm/edf7/UCPso2FD3e7WrVuuq1evuq4WK+a6mjev+0eLFne3MY+yZT1v+9hjYbetVs3ztnXrht2Wnz1ty+tYt+V9PG3L/oVsd/boUdceT9vx4HNbX/fZZz1vy8O67Usvhb/t6dP/3/btt8Pf9vDh/2/7/vvhb7tr1/+37dkz/G03bgzd9kRE+7By5f9fd9Cg8LddtOj/2/70093n8uRx3UqZ8p5zbXLy5K4TmzbdPTFHjHB/PprHH3/8/yTm/8PbltcyNXVq+NsOGvT/bRcsCH/bvn3/v+3KleFv26PH/7fdvDn8bbt0+f+2e/eGu+1/uXK5bly5cnfbEyfCf9127f7/upcuhb9t8+ZhB4rwtg0ZI0LLzXcb+qhVK+y2mTJ53rZixbDb5s3redsSJUI3u3X9uutq9uwet72SOrXr/IED/39d3sfT67J/1mL/PWx7O2lS15+PP+4akDy5q5+I60CaNOEfN2txvMPblu/LFN9jeNtyHph67bXwt+X8MsV5F962nLemOJ/D25brIaSufvBB+NtynZni+gtvW65fU0EwRvybKZOeCwNSpnSNu+++WBkj9BwwFY/HiHMpU7oGpk+v3wePUwkSeH5dXsdafhoj9HNbi+MS3nGzVvPmitMUr50/74qoHM2sh2IpWJeDDxzwPFujAck6+zp0SOTUKffbYiNi3fbwYZH9+z3PTqzbHj3qeVvKuu3x4563ZcYXsu2xjRsl8f79kjw8tsP6unwub/fhzJnwt2UmbLY/ezb8bZmRm23Ryoa3rWU27LpwQRKEty0zXNiCc+fkwIgRUiGimF6zD5wL4b0uM1SzLbPQcLaFqclcqlT47+tUmGK5HCbBqbtL+pt/+UXlBE8ePerxWmaZP0U0pMjx/mgf0TkWfuIJSffmmyLTp8fbrwaHhn/79JGkP/4oNSV+Fiw9hctMDiKPZ86M7V2Kc8Vqo8oDNm+WomiPPWyXMHFiqdC5c6g8IN0TT4hs3SpxtRyZQZAsIXq9bQjl/0POnFLxnXekUufObml8boBr+/aVV0nECllKu3T0qPxcuLA0HD1aCjdpEqXlgehYQnRdvSo/5csnRVu3lpq9e4e7LLhjzBiZ+dRTuhydt25dt9seXbVK/m7VSi7t3y9FmzaVx377zeslRI9l3dbNsuCuKVNk2lNPSdUPP5QqPXoE1RJibMgMyKWf3LSpZKtUSZO9krDUFM+XEAGRW0aNkuX9+6t3clGij8uWlS0jRsjZnTtVXsD5lalEiXDHiIiuZbinU6tWqffnnilT1A8VKQ4OEjTpFGjYUFIVKBBQY0RsyAwuHTsmK7/5RjYMG6aNs5U7dZKyHTp4bqyLYIwIZJkB8pX/fv9ddowfrzHHfA400LjLcG3mf/xxKdKqlQaYJOZvYliKFJdkBnibG0mAPkIkAhcgrLisEyWSTIUKSabixTVMgkj6jMWLawy7OmP4AUd4rACUGcRfZpaD5k2Hui9d7L5s64tbgC/bpkihzUuX+fLxavSwT0QmZqpUSRJYBtzj6GhEJGv16vf+nfXCjKh82ZaBxMtGCNjk8ydOSIHmzcM91jR5Le7eXXI1bCh5Gze+5/foblf17y9Lu3fXxCMuw+pff+3d98eA6m33MQOKxbkAMDCtQwfJ37y5VP7007Aaatu24RYDsLdelL5sywDs7Tnsy7YM1pHYlijTiWhkq1aVxn//fa/DBsfP29f1ZVsqELa1fV6s4jaPGCH/9u6tzRtFW7WSXDVqyKZhw2THuHGSr0EDqf/775KtQoXwXzccZpuu8yNEyIZ4wGJNByjDeaB89+7qROCxUScAxgiftvXlWnaz7eXjx2Vl376y4fvvVQvKBILmOp8amXy57mNpjCCZEBs3XDAOL1kS6oDDvYLPWuCJJ7SJiwS5e5raonmMiLCCYIyAzT69cmXYRqwtW/Qa191KmFCDI2BXS3TooP9mLFVKMhQp4psTRkrfcMQ9+3njhly8eFGSJUsmYaKYfFkp83WM8OEYx18wG8e7Z6m0+fN73AbLHFJ+wjy3Zo3apdC8EYgFq8mSKQ0l4dXa775Tv8Jm06bd8ztuQDOefVYjUCt366bMX9q8eTXiNjrryqlTmlTFoIQ5erC6ZMRU8b1MfPRRNdJv6g7IxqNSEDt8uC5hc4Mr1rq15Hv4YdkwdKjMGztWI15bL1kiuZiERvL1iQxVB4IpU+TKiRPqqYzHJ0lLMLFxvfPe12uZJrt1gwbpUm6lrl3V4iwu2Ukhv9I42TFj1NMZRs/4bydLl04KN2t2F8DWqRMvrMX8UfiVk2IGYFXbqxAnARxHtBIk0Hs2YLX4M8+EygNozjLHPibLFeLCA4DFzQdLyTRp0qjLUyCWA2bjYMGmUKTKuCvkBDgCsHRrreOrV9+NjgxQoLXrr7/U8D28hBwstpBQYALPkos9MWoaAN7lkuazZimwXPnFFxofGZ2FHdLfLVroDLzlggURetYycGDjxQwYv+PkyZPrQBKo34u/6/CyZTKhQQM9F+MzkAVkbvr5Z1kJiD18WIq3aaMWRpt++klmtm+v12/z2bM1ytfXc4MlTJKXACx7pk/XZWKWJzHvB8DmqFo1TkfIRlaruPqrr3SyTFXs1Ek1idFhcRZrcbJ//60M7L4ZM9TZRX3K79zRVMQiTz6pAJbJU3wJeIjsdQtotdteKckUssyfJk8eBatFW7S46x4AaC1e3C9+5lGp27dvy6VLlxTA3rp1S4Er7k+ZM2eWy5cv6++oCJ0FYqEcMBsHC4N0AgU8GZLDylJWMMssDOkBeeiBWGTIMyA8yPJ8OLWsRw+9CVf75JMwYJLn//3iC73xNxw5UlJlyyZLP/5YLb5gGaKzFnTqJIeXLpWW8+crCxyRddzZs2clR44cOphcvXpVTp48KTdv3lTAArAF4PJInDhxnAO4RPpObNBAvQ2bTp0a64N7bINYLOOKtWmjQILn0FtnKl1anpg8WbWxvnz/WPQwISTEACb2zs2bepwrd+2qXrTcUOPa+eSPQra1esAAWfvNNyrDQEpAPwJ2W8FeSLKY1ABg8QVGj50waVIFsqzSAbYUwNaoEa9idr0p7ito1O3ygLO7dmksOkU4BtcV1yr/qvVViRLRFlQSmcJnHvAKWOX6h33NkiWL3MEG89IlJVZ4PlWqVJIxY0YlWQKxnLMzjjKzLFd4ujEBWlNmyRJGTgBTS1JWhHq7WCoYA1gCYg491cnNm2Xj0KFSq3//0AxvvB6ntWkjR1eulBq9e2vGN2AX3SzG8sVatYpW5m/jsGGyfvBgefjHH/WG4KmYTABaAbC5c+eWhAkTKhtrTaJjcGHgAeAywLgDuNZ0sWAEshMeeUSylC2rEpH4BmQBFgBW5ASXjx6V4k89pUAWx4K/mjWT9IULS6MxY7Thy1vWlBsr7CsJXBjYc75oSEf//gpgiVN1yjN7vebbb2XN118ryCv7+usaNpEqS5bgj5OdO1eTyP7780+NNQeoAmCRl3B+AWCJ1saVIL4XxwUyxS4POLtjh/6O4rgBVvPWr3/XQQBda4kSAZlwd+fOnVD5APeTpEmTKoCFgeXewvM0XKk2NnVqyZAhg96PrPeqQJz0OmA2DhbLGZ4kBoaZzWqTEwBwKZ4PxIJRosGALHl3xQW26J13dKm03Ouv63M7//xTZr3wgrLUbZYsCaO1JRKVzlziJKOraGCa+/rralZf5uWXwx1cDh8+rEs6LOd4GigYUAxotf4tsgQzCAFw2c5IFIIF4AK0QoHs9Okev+e4CmI3/vSTMrGwp8WfflpKtmsnW0aO1NheYpgf+flnKfnssxGyY1wHx9euDW3g4saL3o6o0AbDh6tMIS4witFZhMYgJUBSQOBKmVdeUfaa1ZygjpNdvFgB7I4//tBgC7rhYRBTZssmxVu3VgDLGBlf5SUcI1Y17fIAJANMZihIEpqvcteqJWVfe+0uaC1ZMuCvqVu3bun9AaaVewb3GtIoGS9gZM+cOaP3HcAr9yAArv3+woPXAdw6MgOnYoyZJWHF481u1Sop+8Yb9+hlGaxJygpErdqhJUuk3uDBHrdhqYymLpZfGZTmv/aabPjhByn85JPyyE8/3dOcQVd4hqJFtVM+OooGNNg0vBYf+vZbj9vRIQqQZQBhIPG1AK4MTFZRvnUAQrbAAMR2dolCoNTRf/9VIJu5TJl4BWQVxA4bprptA2JLd+gg23//XaUW6BQf+u47Kf3ii+E2YMEOcX0ogJ08WSdpNOlgn4UsByAb31juyGpG1w0eLKv79VNAe//LL0uVbt0Cckz0phjrj65YoQCWB57AZlWKSFJYf2QE2StXjlcAls/P+GyXB2B7xeSF4voBqHJ/IHrYJGOxohmIrKS77x7WlfEfFhbPfCMf4N5gZAXcE7jvZDTJlDdu6PanTp3S/zcrf0Y7G0j3DXsF7p45FakCyF3Yv1/SeWBmz+/bJ1dPn76n+QsnAztbGyi1d/p0ZRC4OXtaNlv4zjvadZ2ucGH5vWpVObNjh9T74QdlRO2fSTt1//xTHvjkk2j5vDcuX1bnAuQLeKN6apZg0Dh+/LjqY/2pQ4oI4LKEFCgAF/nH+Pr1JXPp0vJkPAGyN69eVTutlV9+eRfEPvOMsjzYa014+GFJkiqVVO/dW1cYPElg6IzeP2fOXQeCv/9WoII+D+kADVxICZwmHS+/jytXZP0PP+j3cf3cOZ08VP3gA0mTK5cEW6lcacMGjTXeOnKkOlOo5ZTLpecH0pUiLVoEdKOvP48F8rkw8gDA69atcjPEy5WoXUBrlnLl7joIhDCt98SfB0HduXNHAaqRDxigygNG9ty5c/o7fs6aNat+Pu4H/M3p06f1eJkVPcAt7GwwHQMHzMaxwroHpsaTLRcMLMVgFoatXb1aytnY2kCy5AJ8e2JINgwZoktBWBaNqlRJ7subV55ZtUoBkrsCNLBsVLJtW7/vK8dy5vPPy9n//pOnli2TlCS/uSmavBhY8uTJczdpLporEAEuoRUT6tdX1uPJGTMCqikiukAsmm5AEyADa7xyHTuqnnV83brKjlV5/32p0KmTW69SVij2TJum2++dNUu1jnRAM2FjJSY+ABS/fx9Dhmhj6LXTp1VyVKV79wibNAOxTm/fLltHjZItv/yiAM4KYDnP8CRGwhMXzw9dKj927B55AP+PnIJKnDKlalgBq4B504xF30gwHxNkZUY+4HK5tEkLBtU8D0hlHGfc53eM9WzLeM/Yzu9gbFkZtOpig7EcMBvPbLnQy3IBp8qaNfQ5llyunjoVkHpZOruREKBZ89Sk8c/HH+vnXfbJJ7okVOfbb8NdVkViwNJrdCwfYmi/c/x4aTxxomS+//57fq+uEceO6QCaO5YHUk8AlwEPkBudABeNNiwkN5i4DmRDQewXX6gBfYm2bdWXFGA6vl49uX39unbI01xkGhetk1OkA0gIDi5cqCsU2atUkQc+/lgjZJHKOBU5jTLXKpMK9MkEHqQLx5c7EOvc3r2ybdQo2TR8+P+9Sumgz5VLJ+pM7nG+CGawZi+uH7s8gJ9ZmaBoEsaSEXaVlTwjD8BHPC5IKbh/mP4I/mUshmlNnz69rvQBVPnXjNdIBdjOMLWM9WzrC4HCe3IfMA8Y20B0NHDAbFwEswkSKDvpCcy685elAtHJgBs4HpgYuLurZZ9+KtfPnlWbITq9GcDDK3RRaDQf/+OPaGGQl374oTzQo4cUcWP3hYffoUOHdOaM+D4QC+DKDJ6Hdb8Ng8tSFT9bm9EYJH0BuEhaxj/8sLKKT86c6VtiUhAyf8rEnjypDVwVu3SRfbNm6ee/cf686jJZ0jbNRdw4WGVAPsCDa5OmLyQ0dQcO1OsgWDWcARM+0bu3Wp6xrPzARx9J+kKFJFgKv+Fto0er1zCrP6YgKPAIxouYCWKwA1hWIQxQNfIA/v/qyZP6e2KVmcgBVnEQMPIAGoDjmgMD462RD8C4Wht7TfNWEosPOWMIfwPgpFHLk0c5xAXglNe0glV+5u+txfhuHoHaUOyA2ThWdGOi9XLXMILw/fiaNVLlgw/uYclYjgrEbl0Sie7Ll08HLbtOdkWvXmqbkzxDBnlm5UodyCIqWFm2x/fPn8VAO+3pp1WvWO3jj+/5PTPjI0eOqFYpUBNUPBWz+PAALpIJfmY7K4PrbvZPpz2MLDei5nEUyKLB3BACYlnxgPmDdT20aJHKKlgSZUkbIIU1Ftclbg7GgQDvSnSzRMfC4BIlG5fSpWK6GCtYfl/eq5dcPHhQdaMc+2BhtZkI0cBF4tuZrVtDn8d4nwkSn8ceEBMsxcoaGla7PABrOgrHhfRFiihYNe4B3AsIvInLmnATHQvTChA1MgFjqcWD5+3ONcmSJQsFqTwAu1agyu9M8fcAUwNSYVx5H55j7A62CZEDZuOiLZeH5TJ0VXTp0r3qLvkr0IoZJmAWRwLrhQUjQZIXwJxqNHasV0AWLfHW337Twd+f8ZywCDR8cdwfHTnynuUso13KlStXwM5qYwLgXvzvP5lYr5426ZHAhmVanAOxP/4oK/v2DQWxRCYfXb5c/nzsMZ1owpwR6MHKCasO6DUxq4cpxL2ASVbtr75SG7okvmSeO+X2et/y22+y4rPPtPEV/9QHZsyQTCVKBPzRokl1+9ix2ph2auPG0OeZ/MDAIlXJUKSIBJNTBKtiVsB6evNmldFQjJmM4bCr6h4QwrQCZONDlLI1OpbxE2DJuAk4NdIB7oGATp4zgTmMscZ26+LFi/pajLlWFhWAan6ObH8G+8fYbnVACLRywGwclBmwfOuujq1cqRKErBY5gTZ/rVmjRs+BVifWrdPBrlAIi8q+oj1c0LmzLrXmeeghdW4g1cubomnGsGL+vGH+3bKldkE3nzMnTDc++wuIZRCg0SvYBfaRBbgMzqd275bdixZJ+UGDJEeVKnLx5k2Vj3hicIOpcK8AxK7q21e1ewbEnli/Xic5Z7ZtU8b+sd9/V2YQbTd6WVgpQC0giwaunNWqOSlLfromSbRa3rOnmt0zGX7ir788NoQG0nlEcyohK8fXrQuNPuUcgYHlvPJm0h7b0hrOd7s8wKrpZdIPu2p1D8hQrFi8m7wZEIp9Fkv7jIOMl/w/4JUy4TkASACufbnf/H8CP7OoRpsLeOVf43TA2G71OQ+kCggwO3jwYOnXr582xpQpU0YGDhwolW3soalhw4bJyJEjZfPmzfpzhQoVpDfJTh62j28F+8OypCcbJAYNKyPG9sQ1BiIzS1ACfn85a9SQy8ePy6wXX5Q9U6dq93alrl1leNGiUvPLL72+kJEY0JSFDYu/CkswGLYWc+aEaSBhOefo0aM6AOXMmTPolmz8VQzQV3btkql162qTHscpSZo0oSbcVgbXqsENBoBrLJ1CQexzz6kbAZpXJjhMxtC6EkULsB1Xq5Y2e3EOln/rLQW4eOvG13MjOmwJAYPLevZUqQb64sYTJmgXfyA3o+2cOFFDGiAVTAwqABYGtnT79tq8FIj6YxKw7PIAJg8GhCODUPeA5s0VvPL/EC1x3fPY3jBl1aUiH+D/eRiwapb+GQcAjHjBonWNDEh1uVyhD17X08/2/+fBviGHM/tmGF7+ZTvze/7fCU1wU+PGjZPOnTvLjz/+KFWqVJFvvvlGHnnkEdmxY4d+qfZauHChtGGprlo1vel9+eWXUr9+fdmyZYuChvhcLOXQnevRyeDff7UTOsxzJvkrAJu/kBgUaNhQ3QwAslzYTadM0S5VlmcR+sNWeFNXTp3S16vVt6/fwANdxNyE6g4eLHnq1Al9nkGLRi+8+rA9ic91YsMG+QMgmz+/tJg9O1T7afwP7QwujARsNoNrIANcEuRmvvCCXDp06K6l0wcf6MRwetu2cmTZMr0GAa3oZJnsEA1KnDIAK9DZtWArNMc7JkxQxhtWkJQzWPBAbGg1Gl4m6msGDFCCwRUSiaoAtm1bub9Dh4CJGWZfkXXZ5QHEJBvgzSpZqHtACNNKE1pc08NbtajWpinz/6YAe4xVPACr/M4KEilzDzKrWSZxy4QdEFduBZu+VIIQLS3/mof1Z7NCyP6Y/TJAGpBqxlpPfxeok+9YZ2a//vpr6dChgzwfsvQLqJ02bZoMHz5cunXrds/2o0ePDvPzTz/9JBMnTpR58+bJs88+K/G5uJlS7jSzLP+c3LhRDcHtellm0J78UGOrzu/fr2xWsgwZdKmWgbL+Tz9pLjo3LxpsirZuLSkyZPDq9UhVgjEgZckfdXjZMpnzyity/0svSdlXXw19HkDGCkP27Nl1UIjPxfmGfyrMEoxseDnlDJ52gMtNAIlGIAFcNOeL3ntPZQW5a9eWlnPnyuUTJ2Rq69bqkpE4ZAkOOUHehx9WH1l0sJy3Tvm3GAdomAPEArbyNWggj/7yyz09AYHCGrOqtHrAAJ3s4L5CMfbiA0tzU5pYJGOQZsCq2uUBMNxmX0m/Mu4BeCEDWgGv4V3X0VlW1jEiJtITM2lYSSbT5mGeM9uY8gQOzc/mOV7DgET+3vp7q80hMgHr30UEQqNSt2/f1nGUB9IB40aDvyz/+vL65jMFWsUqmIW2XrNmjbz//vuhz3GQ69WrJ8uXL/fqNfhyOGnIC3ZXnFQ8TKFPieses+7Sv06uX68DVjbbQA8zG4gSAxhPwybXHzpUQbi5gNC+osEq+8orXr8eEgMAsT9A+4WDB+9G1VatqnZJZr/wZcW6Cv/YQI79i4k6uWmTMrLcrNESR+aGZzwU7QDXzuCyndVFIbq0yfvnzlU2FoP9et9/L8nSp9f0MnPdAWQLNmmi8oECjz4ap71zA6Ex9J8ePTTtikkDY0SOBx6QQNvPfTNnyqr+/eXw0qUa1EJxTdCEykQnTQzbrDEBgPSwywOQxiCBofA6BqiSImccBDTKNVOm0M9lBYXcxyNayvbld1YAGVFFBPzs72nAqvXvzXI6Y4jRofKv+f/wivHING4BEo1kCqaVB+9lGqZgYGOqb+J2CHhlnyAEjKc4zCsr3t6CUWtTLw9+Bms5MgNbkf/LwcGuyFr8vH37dq8OdteuXTUOFADsrvr06SM9e/aU+FAMUtxQU9qOJ8VyFobSViP/UKsuNwx4bC5rLf/sM7XcSpo2rbRdvfoeH8gNP/ygulc7MPdUMLw8yKmPasFw/9W0qR7LxydMkERJk+pAybIQAxeNXoE4a43JOrl5s/zx0EPqfdli7lyv2XNvipsL0g2rfMMAXBPLaACulcGNyk3k+oULsujdd7X5MFetWlLmlVdkxeefa9IS1kE0Ilbs3Fny1KsXLzqvY6u4zmicW9ajh1q8oUduvXix5KpRQwJpH5Gg4GhxaPFiuX3tmj7PtVCsTRtlNFNH0gLRF1DIv0ir8KWl6ZXVA2LMcUkQ2MCkSVW7nqZWLcny5JM6MUty332SLE0aHdusBfQ7SfxrSASst0vZ1t8ZwBjR31kf7j6/p6V+87N1/6zNUv5omDKBMmYyDYg3x9vYWpmQGYArY5SRD0R33QoB1YyBkHccb/YHP3PkA958XuvnA8DaA3N4rUAmaQJ3z7yoL774QsaOHas6Wk9LurC+aHKtzCzMWZy15SpQwO2JyxJo1vLlw3jzsaxE3F+gJH+d2blTpmO5tXatWrUAPu1AlrQybmj1fvjBp8YvAD6+nVEpBq1ZL7ygvohE1bJ0zGQM/1gGL0+rA/ESyObK5XcgGxmAi60Nk+bIAtx9c+aoXhurrdwPPaSOIOhgKRwIGv72W5xvaAkIhnPWLE36I/QF8NpywQLJU7t2jLy3N8vZJzZtkv/+/FPHMHjFRGnTSoH27TWgJmfNmuobzHYXYEYPHw7zOr6UOw3jrZBeiSvHjukE6+KBA3Jx/365efGisq30FsAA35c7t+TE7qpgQfVpBVTbl7ljs2HKnQ6Vh/UYsa9WYGoCW0yjkr8+g9GuGuBqgLKRERiNqfkeDfsKgIwJ9tU4HgBeAdWJQrS33IMA0BEdB2uUOY9gA67uKlb3NlOmTPolHD9+PMzz/Jwtgtlr//79FczOnTtX7ncTG2qKEy4Qo9eio86H4zHLTZjGiEBs/mJAQAO7sHNnBUHVevaUfz78UOM67bVx2DC9MbBM502xtEdiTsnnn4+y7REm+NvHjJFG48ZphzSDyOHDh3XZxmpHFV+L5UqALA0hMQVkowvgYpu14J13ZPPPPytrdevKFb2GOJ8IGHls9GjJXatWrH2+uF4GJNA8B8t5YuNGyValijRbsEBXZPi9yaOP7NK2t+WJRQQ4HlywQM5u3642c3euX5ek992nsq0iTZvq+e+NFtIbAKY+pMeP3yMP4F/OVYpVORqvkATkr1w5VB5AM1lsANXwGqbCS5gy8iLz/zEFDg1wNbJEQKEByHwW63fGfhn2NSa8w7nXGPDKvpr3B0N5SvjyFriSSBlswNVdxeon4GTBWovmrSdCgAsHnp/feOMNj3/Xt29f+fzzz2XWrFlSMUBYxUBhZvM9/PA9z7O8BAvrzskA8BuboIMlMLXcmjZNl29r9e8vszt0UBmBvaMXCQIxjnT8Wv1cw6vdf/+tnz+q3rK7p06VJR98IFW7d5diLVvqoIK0AAeNmFpKCuQ6tXXrXSCbPftdIJsxowRauQO43BgY6K0A9+jcubKqa1e5ef68yghwH0CSc2LtWj2P6nzzTZzr1DYVVb1jRL/ztmDC6ZonTCJrkyZyf8+ekjZvXr0Jm1QkOygMbynb03O+1pF//5UVffrIgXnzFMBSqXLkUPs1HC0iKyGwJ36FNmKFuAfwL/ZvFDIALBZpxirYqFFoIxZjuT2wxd9lolI9LfXb9ahWFjVQEqaMc4p5sM/sE8COsUEDXi5eDNWa8plNw5RhX6Nz33k/jiv3GJPgxf4BXmnYCu9+cycagasJTjCpY4FWsQ7HkQC0a9dOQSlesVhz8QUadwMcCgAMaF8prLg+/vhj+f333yVfvnzaOU7ZG0XiW3GiXdi7160tF3pZyl3yV2xKDLCnUcutRImk6dSpUvCxxxSw7p0+Xcq//bbb7QG/ZSzuAd5IDGByopL6Q3LNtKee0vAGpA9kYXOOoo8NJLuo2CqOD0AWKUeLefNCG0WCoUyjR+pUqeS/yZNlYadOKmVJmjGjlO/TRzJUqCDn9u6VG6dOSeX+/SVv1aqSxM8DuWEJfWmQCc8z0t12vpQvWkiz7BvRtt4uZR9askTlBDCyrBixSoM9X2zq0I+uWiUr+/SRfXPn6tI9RfQ3QQZVunePdBMX/t529wD+H8kAlTBJEo3cBazS5AZ45f9p8I3qKlN4LKo7f1RrRUfCVHSVAWCGdTXgDmDHfrMsD7g14QWGgTUAF0wBwI1O5tJ4uBrwyv4AWAGv9A95Yn7DA67JkyfXJq2ossZmv5hAsl+8LhKEQKxYB7OtWrWSkydPKkAFmJYtW1ZmzpwZ2hR24MCBMMsMP/zwgx7g5s2bh3mdHj16yCeffCLxtQB5GHC7kxmwPApTZgW62vy1dq1mlMd0YW+0oFMn2fTzz+q7WX/YsFCXgcNLluiymUn9sjd+5axeXTKXKuXV+1w6elQ9avGBjWxxw5nUuLF2IBNVe/TYMR2wiaaN741eJiJ5XJ06atvTMsiALAVrz4Rn9Vdf6TUEs4V9W40vvpB/PvpI5rz3nlprPfTjj5IgVSq94XED4QZkgHB0LmVHZAPkra1PoJ+rWN3R2IVjBEESJHbhPhJb+83Y+C8AdvZs7SugOMeRN1X94AOffGBpIERnb5UH8P+Xjx7V3zOZT1+4sAJVJuqhUa6FC4fpcfC1ImqYsi71u2uYAvBFV8JUdDKa1gYtChYR4GqAoUo2QhwIrBJHrhdDivlqV+XrfiJlACSyH3wPJl0LS0d3wJnv0Wh4eRhvWMO43ucH4EqxLwa8cvwMI+xpvwKpAmLvkBR4khXQ3GWtfZZYPKf+X8YeyBMzCztpvThpVGCZLKZtuY4sXy7TnnlG9V+P/PSTlGrfPsx+wb6im7WndJ3ZsUO7hBuOGuX1e2397Td1GyjWunWk9hUrM/xDWd5r8++/cuzsWZ2VslTj1F0g+wdANnPmu0A2wLyKw7uZHF2xQtO7to8bp6b1TO64Rh7/4w91BRlbvbp+748MHy6lnnsu9Bw1ljSmaYWHv5ey41PRmIrFFg1eMI+NJ05UrXx0L5e7q2Nr16ouHjstA2BTZMokpV54QeVF1oQ/T3G0gFYrYOX/8RzWSpBAG1oBqiR7qTygVClJX6SITy4Y1nMvUBqmYqOM/ZTpvgfwwWgC7tKnTx+mi9/KvhogyHFiGwNgowusGXbYgFfTMAbAxonJzmZHBFzp0fDXBMMVAuwBr7yXcWIg8MebRrJAqoAAs075Ry9L2ZlZTla8WsvaJgtIDKgs5cvHnOXWp5/Kv717q3aXNCh7EhL7uouEr8aN77mIaBDjxkI0ojfFa8G40XFuUqd8rUVdu8r+efOk6dy5ciFRIsmWJUvA5lLHdDG5AMgmz5jxrrQgCIAsCXnbfv9d1n//vfqTIotIjAuKyyV1BgyQYk89JUs//FCTmeiYb7VwoccoUc5Pw8w65XsdW7NGmVi08kScMolAdxqTIFYt9dav1wYzVnBuhDRSJc+Q4W408QcfSIbChd3a8+HLam/EMqE1ZhwGrMLkGnkAOtck4YwfwdQwFdPlbkndBKjw2WmEsn5us3QPgOVhHAjYxujmAYfRAdZ4b2MVyL/8bMArINsKXq12WO6AKxrZiBq8IssKX758WX82WmFf/GcDsRwwG0eKgZSbs90miOdZSrXrZWn+YhkrskDPV+ADG0twAxo4fG3dab5ObdqkYQhID+w3jy2//KLBCd4yGDA+3HAeCglf8LU2//qret3WHTVKEubLp7KCQF9miamC1UdawE2/5fz5AZ9uBdiAhd06cqTcvHxZ9YcpMmeWA3PnamoUhvs0HI2qVEnO/fefRh7jB4qlkVP+LcAjiV2swMBIEjtbtGXLGDvWCmDXrZNVX30le6dNC3UCSJYunRR/5hmp8v77ofr6W9eva/iHXR7AKhhMvvGPBawWfvLJ/0e5Fi8e2qBqbZi6fuuWXD53LgxQDYaGqZguA0StcgED8DgenpqY1Fv3yhVlX/nXFH+HNhbQGx2aXgNIDXg172kYTgOyrfpd/rV+rugArqZMMxnsK+ecYaNZZQzvePC5+Fv2k3/N/3P8ndAEp2Lclgu9LJXNXfNXNFtycfECIhZ16aIas6eWLw9X1gArS2oSxvTW2vHHH6pdLfPyy16/N6wsNxoM7X2tIytWyJyXXpIHfvhBMteqpUtBcZHtiEyR0w4jy80/kIEsFlr4fsLC0lSE3pHEJfw1sX0D1CIhIEp0Vb9+CrCwNXpmzRqvNdlOeV+AwmU9e8p/Eyfqigz68+Jt2vi9kcnTOIQGFsYdVxLDwDLWEIldsVMnSZI6tQJWxpp/QsAr57orhBHFbg6gatwDMpYqJWmLFJGEyZPfs9x/9PRpER5eNEwZWUp8Lmuqn9GjA7gAeBEtd/O3MK+kLxovWI43gAu20dvAAF/KgGaTrkWxr8Yqyzgg8Dv2i89mgKv5XN5YakVl/y6HgFdYWGPjZW8mM+ledrBqZCpm9Ynjb9wejF1ZIJZDNcUhMOsuxhaGEh2ttTEHLejxdet0CT66imaame3b6/IdkYi1+vWTJClThvs3sDUEG9jZ1w0//ij56te/R5bgqW5euSLbx46V8m++6TPjQ2LO361aScVBg6Rw48aSOciXXvxZZ3ftUkYWL81WAFk3SXOxXef37dOkLpoL6QpnYtRo7FjJXbu2LHrvPZW55G/YUOoPGaINk+Nq1dJrpHLXrlLtk09UY+2Ufy3blvfsqSCRyXaDESN0AhHdIFblVatWybpBg3SSfMPixZr9gQckU+nS+hy2V2OqV5c7IUAoTb58kqVyZSnUtq2kK1pUUubJI8mR0CROHGap/3aCBHLh2jVJfOtWKDC1xqE6Y4b7si+rc0xNsxlsH+xkeMSBWSYHJAJieT2ONX8P+wpo8zfYchcNa12ap4zGlf2KSeBqlTVcCtG9muPB8eT/AfzsE9aDAFYDVvkcBqwa9wT+DVbixgGzcaSQE9gZTdP8ZZcY0LiDCXx0NX/9N2mSesViLdNs+nTNqfcGRMIWV7BZcrEsSbNOk0mTfHp/Gjho3PGlkDNMf/55KfHpp1K8Th3JFIBgLVaBbO3ayma1WrBArYkCpe7cvq0NRLCwe6ZP133ENgnfYpZ+8RoeWa6cnvMNfvlFfYoBvAvfeUc/B5GoOR98MLY/RpwqpEVo5LeNGaMrJDiWlGzXLkrd+REVN2lWVVgN2jVpUqgPbAI6svPmlcQY3KdLJwkzZZLryZNL2tKlJVvr1hqKwTmDNABNq7v407jQMBXT5S5Fy1hHudOPeioAK0DNsJwU3wfL5CYy1p/fi+noN0wx+2zkDYBXI4E4d+6ceo3HJHC1HlfkFMYyK3EIy2+Aqgl/MLp+jrkJeAhWsBpROWA2DhQME2DQ7mRA0xVG70VbtAjz/PE1a7Sz1u4Y4A/LrflvvaVL/IWbNpWHhw712qppz9SpalFjj5zlxkTiEst73hbvTwOPt0wuxSCwqEcPyd6mjRQoXVoy+WC9E9eLwA2kBdzsVVoQIECWvPnNw4drcyBaa85nGNdibdrovl49c0amt20rW0eNkgKPPSYPDxmiDUaTGjXSFYP7X3pJan/1ldcBHE55N+lREDt6tC7N1/v+e+3cjw7Gm5v4uX37ZN+CBXJ41Sq5fvmyJCXOs2BBKdW79103CbSnNEclSSLJUqaUVFgU5swpqUJAR1xtmIqNcpeiZUCer3pQXgvwysM4hgAosYiCQfTnd8brG/DKfgOwDXjlYXSuJqzDWwmEP2zGzMPsA0DaeOEaTTX7kzREChDdQDqQywGzcaAu7N+vHdl2zSwNVQBdd3pZzLj9mWJ0+J9/FDiQXmO3M/KmkBjkqlkzTBoZ/ozcFCu9+67Xy5Ln9+9XC69Hfv7Zp/1fN2aMSI4ckillSskZQw4PweKSgbQgccqU0nLBAk34is1ikOdcg4XdOWGCgtOirVpJubFjw9jPsbQ85+WX9fxHn8nSNtvPeeUVXTEwIR1O+e88WdGrl2wZOVL1yTRe+tKw6SlhyuhQr5w7J1fOnlX7K1Zdrp07J9fPnJHrJ07I9VOn7j5On5arBw5ItjJlJG+FCpK1bFmdCMfXm3tspWgBAH11CjAWUbCdAEvzeiyV83r+TFnU8ylENgA4NOAVkAwwBNAiYQC8GqsvfwNX01xl1apaXSs4HrwXPxvmlaYtjkcgpm8FQjlgNg7Zctk1s0gMYDvtDOwxPzd/YS6OpVGOBx7QKFN32t2ILJOIh6z55ZdhnodRA4xwU/S2tvz6q2pz7Wy0p2LQ2LF8uRxes0bSJksmJdwkj8VrIFu7ttpXtYplIMvEhvOB4Aw6ymnkqtGnj06arNG5OHewOsAkqECjRsrUopNkosVzWLvV++GHoAt3CNRi8vjv55/ragg2bTDdMN52CyrjjWo37rd6oyqQvX5dbl64oCD10v79cm7HDjmzYYNc3LdPrp88KXdg/NjWuAAkTKgyKtwnCFkIz/rKqehL0YqMTtV4v5KoaHSm0cG+mhQrI3UAGBo20/zeClz5PFEFrnYnAPOvca8wzhWGUUUCYBrLjO6VYwGAjS4LsbhWDpiNI3pZ2CZYCLuTQeb77w8zwCM9wCKrWKtWfnlvmmeWfPCBNtBU//zzSFnsoHek+xx/WesASuMXSWBpbJ/LU3GDw8KrSIsWXi0dM5ju3b5dNn73nSS+dEmq//WXz/seV4sIV2Vkkye/y8hGMrIzqnViwwYFsFtHj1bNK+dI7a+/lrx1697jSUocLczrnRs3pOFvv2mSF5OkGc89p/pJ85xzY4h6XTh4UJvptqKJLVBAag0ZIvkaNRJXwoRymqXh06fDTZi6DTO2b5+c27ZNTm3YIKc3bVIHASYjVKJkyXT1CG9pVwi4vR2ilwTA5njwQXU3IWABvatTMZuiFdmC9Tx79mxodCznglnO9wf7amy9DPNqgDfvY2U7ed40cUUGuPIa7myrPDkBWC3WTBkQzbEwUbHuPHOd8q4cMBtXbLny5bsHSAI0Wbq3Fgk1sJ1Z/dD8xYU7/+23FTBHFsiaJWG8Gq2M7pFly1QmAdPjbR1cvFiBPU0+3gyqhw4ckDVdu8rl3bvl6RUrHF9RiyMAGll0jgBZbycT/irOTyQB6KU5D1Jlzy4VO3eW+zt00HQ4e105dUrmv/mmbB8zRsHuwz/+KMnSplWGdt3AgWrPxjlxX+7cMfo5grXMUr/duJ9/r128qLrYCwcOSNJy5aRW06aSqVgxSZYihTZ32Rumrp87FxoqEPrv5s3qNEEhH0pftKhe/3nr1dP/R0ZwcNEi2TV5spzcuDF0v7JVqqSsb+FmzcLIkZyKmRStyJ5Lhn01NlaGfQW4RXViaZqhDHg1oQMm4ct07PN5AIvefB7r+W8Fq1F1AuA1TdOWiYrlGARDVGwwlHME46jHrOaBb9smFbt0uUcvC6OVpWzZKL8v4AGnAZqCIgtksQmj+avsq6+GeR5WlgYuGDhvC1aWv6H5K7xiMDl58qRs+ugjOfHPP/LMypUKfpy6u2yMtACQ0SqGgSyNZjRz0dQFQwcIbTxhggJUT13wO//8U+a++qqeR4+NHq3NX8hoAONoyR/69lsp98YbsRKPGmjlKWHKPMJLmEp0/bpsHTJENgwcqCCVcaV8x46hrKiON26iXC8dOaK/R+5ESAserbhMhEa5krDlcsn+uXPVTo84WTyATWUuW1ZKv/CCyoYC0QouLqdoRbZ43dOnTytw4/85f9B64tcdVfbVgFfGcBMCYMp8FhNC4Am4WiUvdsBqfS0DViPrBGBsyKxRsRznYIyKDYZywGwc0TaiV73HscDlujf5a80ajY+Magc3Xq6Lu3ZV14I8depE+nUOL1sm186cCSMxgGnDlxK211sQgpPCjvHjNcHH0yDBIAZDwMByYOhQ2T1+vDw5Y8bdG6pToUAW4KGMrBsWNDpstYg0hYXdN3OmhjGggwXwsMzsqWg0nNexo+wYN04KPfGEPPzDD6rZpJN++Wef6WSt7dq1msYUl8tTw1R4CVPGdsp0Q5vn3F03OEas6tNHG+5g6iu8+abkqVtX3SOWffppKHi9eOCAeROdUGKJVur55++C1pIllXG1NoPBvu+fM0elCjCwCmB5f5dLMpQooX+LFMph02M2RSuy78V7AGBN8hZgEkkCIDCqzC6fwTRkGWcDY/HF57ADVyOVMBpZA1atwNdcA1YJQFSdAKxAm/eOS1GxwVAOmA3y4oJhaR0toF1iAGtCHridmfWHv+yq/v11qZAwhKjU7ilTdBnZuk80k3BjIx/d2wLI3rp6Vb0s3RU39aNHj+oN/PzChbLqiy9Ue0kYg1Oiy8awmQy4MLLRDSII1dj400/q93rx4EFdQsYFAwATUbjGjgkTZO5rr/GlSqMxY9TNAF/TSY0ba9JT1e7dpeqHH0arp2l0V3gNU1YGyZ4wxcMfCVNoYv/5+GPZ9vvv+jMyJpqzVnz+uboWUPfly6fsKkleBrQy3nj6/vBxRh/PRBX3EjTQTFbRutPQx7VbrHVrSV+oUKSOWXyuqKRoRaaYQKF9xX2A85FzEPY1W7ZsUWJfGacBrrC6JlTBAFd8ZVnOB3RamVWT/mXVaBtwapbyoyvMgvcFvBp9romKpYnM0b3GbDlgNsgLVhONmd1BgOYvdLHW5X/YkJMbNqhpfFTq4qFDuhxY/u23ffJytRcDLjc1upANA8uNbeOQIbqs6EvHOQAYzZ07EMYgc+jQIR1gLu/YIbNffFFvnPaAhvhaABcYWarVwoUaPRwdxfeNFpKGLqJmaVpEFoDExJsJFmzs3Ndfl53jx6tuEg/TlJkza8rT4vfekzREJi9bds9qRKAUn9+61G8Hq9abMWU37ueGbgWp/igaL5kIGC0ryYBIhxhXTNFYioc1YNXIAzJ6ubrDCg6evgBYwiuYcML8ExPL90W4BZMRJ0I45lK0Ilu8F+yrsc7ifESawHtG5v2saV7GJovnjMk/ml1e14BWIy0wzVXmwfub5qroZj+NxtgaFQt4jWpjnFNRLwfMxhFbLrtmFlsuvDWtRTMNN6/cbpLCfKkl77+vNzIYsKjUme3b5dyuXVLnm29Cn0M7h3YSb1Bviwz1w0uXymMhLJJ9AD527JiK7G+dPSt/PfGELkHTJOQs+/wfyHITiS4giyfo1pEjZf2PP8qZbdtUPlCrf38FMsnTp/eaeVc21uXSeNqiLVvKpcOHZcIjj+g5gy4Wa7eIWN2YbpgytlOmTGe1O4AanTdjXEy41gCs1oasszt3KrCkkqROrWCTVZF8DRpoHHTOatV81pNjtUcSG5OO3VOnym1SlJIk0chYdK/F27ZVBjZr+fLONRhDKVqRDqU4d04fAE3elyXzfPny+ex1al36h3XlXyOBYf95GAsqHvxsmqwMGxtdnzOi/Ta6V/aZfWJ//NEc55R/ywGzcaD5i7Kmf5EGxo0+e5UqYbbdP2+epMicWZmVyBbyBfw+6w8dGuXQBVhZzPitTV40fpGbbtcAh1ebf/lFb7hoJ63FjJ+BODds7a1bMrFpU32eaFwsp+J7wbAjLQDMAGTT5s3r19dnyR8tLEvV2GXx/dQbNEhyh8gZvCk0m/NgYydMkMJPPhnKxvKaPA8Aaz5rVozIRaw6RJPGY28YMcAUtsbfLKq3GmQmg3b3ANhXwCRlxgCuOxwi+D3Ak9+zWlHpvfckVUjmvLdFAxjaZ14HIIskAY0tk+fkGTIoA48cgevaacaLmRStyBQSBfoKWOoHbPLerGihTfXmPDbyGPMZzOew+6sCCAHjxg0gUGJWzTVupAPst2mQ4/g74DVwywGzQV7oZWG3kqdLF0ZiQNmTv2Cw3Plz+mzFVaaMlGrfPop7flcvm/+RR0KBJSAcm666Awd6PWhw8yYogZul8dNlP8nMhlnIE8I0znzxRTmxfr20XrIk1lOsAqE41vjIwti1XrRINZH+KHSRNGUBYjkPaSKr0q2bBl/4ctw1zOKPPxSwwhQ+/scfKj3B5eDvVq0UNPGd1xs82Gt2N7LAlRs8N2SjQzRLoLHJzCDHwULNgFUDXFntQE5EASKRBuSsXv3/DgIlS+pkgIbJtQMHyorPPlMpAL/HK9qX7+j6+fN6vTLRoHkP4Mq1DJBNet99+n3BwOYOccdwKnpTtCJTvKeZ9HOeG+aRcZP9CE/LzfVhHlwfJq3K+Lka4IrW1TRqBSIY5PNY3REA14DXnDlzxgob7FTkyhlh4qAtFxIDTO6ttkos9dL8BRMTZSuuBQui7Ml6+fhxObJihTSg2SukNv30k94M7c1s4RVMLiy0SQljcD58+LAOyOiYqNUDBijgxTQ/e6VKEt9LgWzt2go+lJH1A5BF6oGMYMuIEXLt7FllSmHACzZq5DOQ4dxAUoCuFjlB3UGDFIDtmTFDZr3wgi5bIzXwV/CHAa7GtsgAV+O3yc04toCr+nQePHiPPED9okM6xwGOgFSa6GiaNNrWVNmy3bPPxMGu7NtXVvXtq4AW39bK3bp5bcHGd8uKigLY2bOVzU2SKtVdIJsypbqbAGD5/mFmnYreFK3IyhZo3oJ9BXwCoDnHWcFiH4xGlW3M/xsnAMOwGv238XI10gAAOGOviYYNRPBqkrYAr3wn7DfgFccBf8bmOhWz5YDZOKCZtUoMjBTALjE4uHChsjk0SUWmuAmqFVezZpInpFkoKoW3LANdgYYN9Wd8QjcOG6Y6X2/lCyynLnrvPWWVslWooIAEIMugxGBKccNd1KWLVHr33Xs0xPGx8P1EWgB7BpBNZ5sI+VJ8ZzBzNHTB+sMElnrhBU1mikxHOjdGvEbnd+yoKU+Pjx8vRZs313Nvzquv6sQl3yOPSIPhwyOdSGZNOAok4Mo+8N3Y5QGAVkAnBWgEpGYuXVoBI1IBgCsNWhHtL+wrx4/GTQAp3q1VPvjAK9cK2HDss3CRODB3rq6G4JQCkCWpC30t+8O1HBua5fiWohXZ2FjYVxOVyvmO/tU0WLGkzoMyjVUGpJrlfz6XcQTgNU0jFp/JhAYEIng1Ewmje6XYX9hivotA3GenfC8HzMYBmUHWChVCf+ZGAwPLjcpaxHoCeiPLwq02Vlx9+4o/ChCUo1o1ZdwoOp1hWAGm3hTAfObzz0vKLFl0nxiIkRawNGRm17CFLEkDgGr06SPxvQBLSAto8mm1aNE9Dhi+MLubQmy1eM3sVavKo7/+qjHC1uhkX626AKyAJrrbkZpwbhxZvlymP/usvg96Wc4Pb28+gQhc1ZPzxIl75AH8S1oWlRg7peLFFbgyeTTyAJrzfJUIITkgiGLlF1+oGwT+rTRuRjQOsO1/kyYpA3tg/ny93tClM76wDwSTAGDxh46qdj7YK7pTtHwp3hvwzHhIo5XZH7PkbzxZDWA1elUrc8y/vIZx0wDMwl4aj1fDvAYyi2nVvVqjYrEpCwRtrlP+LwfMBnHBjJFyZAUlNHrA5GR3p5eNJCvrLysuK0uEYfqDn34a+hysEaDI22Qy9H6HliyRFgsWyKUQ2xZ0XmapDj0fvqN0T+NyEFVZRLDXpaNH5Y+HHtKlaWVkfQSygBlADVpYbdwLkYNgqxWVNDllY8eM0QAE5AgkfhV58kldtl7SvbuCMJbPn5w+PdxwCytw5WZsvDZNgk9MaRCtRfhHGKaVfzdvVqaTYhkeX1YY1vwNG4bKA5ANRfV8vXX9uk44CCVAtoFzBN674X3vbIe0AwCrKzmYvhMbG+LGwKQZABuf42RjKkXLU9ljVs2/Vss3IwXg3Gd/mLRZmWDToMUDvSzbG2cNgC6fx3w2A16RQQSy9RTHxYBXJyo2fpYDZoPcVolOdKtmFokBDTN4zFqZNBpDqvXsGan3Wdytmy4rRtWKywqsYQdN6hdZ78gBYPe8qTM7d6o9WIX33pMEBQrooIveywAV2KNpTz8tl48elaf//TdMc1x8LFhPgCyWSQpkfZiQXD1zRvXGSAlgujOWKKFWaiXbto1yBDAAmyhawDHNXA999516CwP6prdtK6c2bdIJD41JVt2tAa5WJsn4U0a316a7Qo9uj3Hl/68cP66/Z99JwAKsEtFr5AF8D/5ujGISsGn4cPn388+VzWbC8cBHH3mcCLDNzhAAe2jxYr2GUmTKdDfM4NYtBdtFW7dWuQca3PhUMZmiZd7PHVi12rsZuyoDLAGixi2A37FPgFczcTPAFf2rYWkNQwtIRWpgXAcAgwBgnif8wJ+fLbp0r4BXPh8AnP0GvAcyY+xU9FXgnq1ORcqWiw5yliitS38wahQ3Ul+LJq1to0dL/WHD/LacCHjhJpmhSBH9meVqOtJZpo6oAKozn3tO8rZuLXk7dFB9LAO3tZZ++KHaAzWbNi3cSNT4AmSRFhCsAZD1RsvKjfPYqlXKwu4YO1aPOWxp/Z9+0uXlqLKbvD7n1Pw335SESZNKkz//1MYh2N/VX38tSz74QIEeE5Es5crd7TYOSQSKbeBqtR1b+913OjFDHkMRBsDxhV1FNxwa5Vq4cLQ3Q+FKwaSDdC7S3LDBeuDjj92e/6y07Jw4UQHs4X/+UeCaMmvWu1Za169Lmty5VWNO8110BWgEQ4oWZeQC/kjRsjsBmOYqa6KbsXgzKwqATbPUb7ruYVOREFAATvbNxMaa6NeTJ0+GYVwBemzH+xoQyHYwsfwOH+5ABq/WqFij7WVC4UTFOmUqcM9ep7zSy3Ijst5wALPuLLlYCvYlUYsCXCwwVlzPP++XbwRghD7WvB6avs3Dh0vJ55/3Sm+5ZvBgydy0qeSvXVvyFyx4z81l25gxujRds29fKfDooxKfi2XjcTCyBsiGs0xP0WjFkj8sLGCNhKaqH32kzULINfxRMIFzXnlFz4HiTz2lbGyKjBnl/P79MqNdOzm5datU7tNHCrRsKddu3ZL9+/fHOnANc+5OmSJrvvlGWcz78ubVND0asmBbYV8T+2gmH+V9unVLfZ+Xf/qpjgcA0GbTp0umEiXCbMfx/S8EwKJDJsQAppVrDtkPqxdIRnCIiOg8iQsVHSlaZsXADlaNEwBldKiAVcCYYVndgWRj2A+rarSflGkiY/9MYxPg1sgdDHA1v+dvSe4yqV38HvY20G2nrKlffHYnKtap8MoBs0HOzMKiGNYHj8+TGzdKaYv9FgMizV8s4/paAENkC/6w4jLF6109eVIKNWmiP8MQoSGEyQqv+ByHt26VK1i+XLwohdxYbB1bs0ZmtW+vrgWVunSR+A5kkRbQVBQRkD29bZtqlmH2ML/P/+ij0vTvv/Vff33vfH9bf/tN5r/1luptn5g8WfI2bKg3692zZ8uJnTslR7t2Uo4l+AIF9KbMjTcQmjXQX2/6+WfVaV/Yt099W9H2cg7Hln8qwJqJx7KePTXZCx0rxzTz/feHcToxDCyTXFhwnA+w8mKCA6Ct0KmTNtwBxuNqV7e/UrQAg+7AqjWG2NpYhYbWBGl4e2wNgIM1NaEJ7KvRshrZAeDVbutl9LyA11OnTunfGvDKNoFwLYVXHEfjqmCNig101tipwCjnDAl2Wy6LXvbEunXK1Fibv2gIYxnUmrIVG1ZcpmC2SCAy1mGwgHnq1g2VHLgrBu8jhw/LzsmT5cDvv0vb1avdLqcTVZuxVCl5eOjQOHtj9jY164+6ddWCqdWCBW6PLcvSOAes//57bfZBJ4lTwP0vvxwluy5PbOysl16SvdOmSYHmzaX0Rx9J4vvukyP798ue8eNl1++/S85KlaTugAFR1uH6s9ByIyXYPGKELr/DWpYfP16yWfTosQFiCZNY3rOnXtvozgmUyFquXOg+A14JlYBdxzoLhh3btGtnzmgSG57MNHLxOeLidRLZFC3jBGAHrNb0KitY5fVMzGpkj6O6W1y5ouDVJE4Z/at5GKmAmeAZ4G3YZVhX/qXszGwgl6eoWIB3oNp8ORW45YDZIGdmiX41BfsC62V9DlYWBiZnjRo+vfaqfv2UQa3Vr59f9xlLLjXST5RITm7apJo9/EQ9Ffow4hVPzZghGz7+WNr88889cgQ6t/9q1kyBPOxUZO2h4kJhqTQeIHv6tDKyds0kTYNolOl0ZwIAy/jY6NEaFeuvJXKr9nDH6NGyrmdPSZQ8udT97Tcp2qyZ3pABtrNefFGlLA8PGSJFmjWTQLnBHlywQKUEu6dOVQkEEa8swUfW29Yv+3XnjrKsyz75RL1nCzz2mDQcNUoBKaB2xeefy47x4+Xkhg1q7XVfvnyqg6UJDXYe8Moj54MPxqk42fBStOzWa2xrwjGsYNU0Vxn/VQNYjQzA38vxvCfg1bCvJnyA9zdL6ew/D+t7W5uejKaXfYwJF4Xoioo1++9ExToV1XLAbBAXGjmzXG+W8LOULy+JLBYq6GXJQ08aEiLgTQF4SAhiCTKyXqTuim74M9u2Sc0Qz1eWtlNlzx7mM1gB0dGjR+921166JJPeflsqdukiOapWvWeAJC3q+Jo16p3qbZJRXAWySAv41wpkAUL75sxRFhytKklNaD0BaOg9o1JWmx9rt/Sdc+dkRZcucmDWLCnx7LNSZ8AAtXPCNm7OSy/psn2BRo3kkWHDAqJLHu32tt9/VxCLiwITwkd++ilMTHJsFN/df5MnK4hlv0xoRJI0aZSBxWsZBwW+U5rmkB2RGIaTB6sqANg8derEiTjZ8FK0jNbVyq4yCbY2V7GtAatWGUB0g0D2yTRusd9W8AqYY7952EGzCTsw4JX9NNvT+BoMzKU9KtY0nDlRsU75u4J/hIunhbbx6qlTYZwMiLEtFGJ3ZZYkYZkqdO7s02tje4Wuzh684A9WFuY4T716ahOFhhLvWiv4trKx2MMkTZxYfm/YUDWfD7qxFqN5jAexuHagG58KT1OkBQpkFyyQjMWK6XMskW8cMkTT0tBT1h08WEo8/bRarfkLuJqlTdghbrCbf/lFFnbqpIlVaG9h4il8gQlA4LzFHYPGsti+IWMPhmsDEyv2i3196JtvJHedOrG6b4AdJh7LevSQE+vXqxTn0ZEjVR874/nndVKYJHVqSV+kiKQtWFDO796tKzVMDAGweevXj/FmtOhM0TKBF4Yp5bwz6VXGWsruBADoM9vFZBkQiq7VgFfOJcO8whi7A69cX4Z55fOaZfdgSqris7L/gFc+g4mKjenUM6fiXzlgNohZWcpoZgEu3MysTgawlTSv+BKWYKy4YKX8neyz+6+/JO/DDytLvGHoULl5+bLcb2lWM2wsg17evHl1MF/+2WdyYsMGeWr5cgXC9sYlzPYBRaWee07ia/HdIy1gSbnl/Pm6rAxoRFuJ4T2WZ3j4krjm7Q2R78JqDs9Nyt4tbb8ZY/k0q0MH2TdzppR87jmp8/XXarmGDOSfjz6SVf376zJ3y3nz/Mr4R6ZoFlz7zTeyfdw4baAs1b69lO/YMdY7+QFse2fMkH8+/liv3ywVKiiLzqrLjGef1Umm2tqVKCFntm5VT1skB6x28G+wxslyvllZSKNTNbpRA1StqVXhOQHEJHBlf43u1Whs2V/DBBs/V64d677ymU3DE2yy8UqN6dQwf+he+QzWqNhg+gxOxY1ywGwc8ZhFL0uZxiqjl4W9IUHJFysubLwAI/4GXOhj0UcyALLkzTKzyYaHxaCRgRk8S2kUjBSWQ1W6dZPsts/AsvDU1q3VHqnOt99KfC2cIMbXq6dNVmVfe03DItBNMskhcAALNBMZ7Ivu0ABXa7e0p+L7hB1f0LmzJE2dWv19CzRsqL9jIkIAAqEdNb/4Qiq+806spbGhqcbjGCnB4aVL9dxhnwCysR2swTEkOAQQy7WcOlcu1eieWLNGWVf8agGqHM8Ta9cq88p1ARMbDHGyVicA4yzAv0azavSqMKpMlABC/ByV5qrotvMyTgbsv2nUMswx4BVG0mrgz/YGvPL/bM/15Q8P29iMig2mpjOnonb+832byWWglQNmg5iZZRnXABUkBjSrWN0N0Mvmrl37nmV8T4VmEAYIvaW/AceeadN00C/4+ON6swaoVu/dW9mJY8eO6cBu2FiTZITvaIbixdXr1F4Lu3TRxheM9X3RA8c1IDumenWNNCb1DcN82LkaffpI/kcecdvoYwWuMEr87AtwtRcG/bNhY2fPVuBcGzY2XTqVuNBECDiDScSBwmobFZNFQhca3XVYa+3fr8EPjSdOVElObGtJuSb2z5snCzt3Vk0s7gMUscMcr9S5cytDe3jZMtW+1h8y5G6cbMaMEkhl1arabav4jKZL3wA/A1oBQYG4/Owuthawyb7zmYzEhgc/A0YNgGUbI5MwHrH8vWkqo9kpmFKqDIMMgOUzGbY5R44cAQlqnPIuac48+H6tP5vnTGOkKc5/vm9kMnz/gVYOmA1yWy4zmzdhCeZnPGdhQmGevLbi6tZNu9pz16rl9/3FkgvWGPN9LL/ots5UrZocPHgwDBtranmvXtq1/TQODTbtH+za+sGD5aGBAyVLmTIS34pl+y0jR6ouFalG8owZpSy2Wi+9FCZAwwBXc1O2AlcevgJXazHQARABYSx9Y9RvQio4N1kSB4BVfu89jVGODf0mDYeh1lo3bmgzV4W33pKs5ctLbBerIOt//FH+7d07NEEsadq0aqt3+9o1nZximYY0BLlGkebNJXX27LG2v8YJwG5bZXcCMH6n5qZodKLmnAtEBtIdcDXeroZtNV6yZt8NIAfAmgRCjsm5c+dCm9NMMEKw6UWNawLgleNi5A/BBsLjeplJYniA9HbIxMteRnfOv+ZhPJHNz8HGsjtgNohlBkZioPGjK1dKuY4dQ39/5J9/1BuTZiufrLj69vX7viIJ2DdrllTt3l2unjkju6dPlwd/+UWuXL0aho216hm5yZMpb/wzrbrMme3b6/Jquddfl/hU5/ftU1st9MZYb2G5RtIZAE0SJdIbMWbpVuBq/Cm9NYb3lo3FVmv/nDmqV6791VfqD6sA96efZEGnTpIySxZpvXix5KpeXWKyNCRk/nyVErAagH8u0gY8dGMTDOq+3bmjE0wANs1dXJ8ww1krVpRk6dJpMhfHlAhfJCKEGaTNmzfGmBorSDX/hucEwPlkJANm0mRN0QIMBtoN0RNwNdcJn8ukagHoDAg1jDKgjm34nHx2E1Bg2Fl+T+NqMJn8G5cII4GgAOHB1HgWzMXxN1HHngCpedjLyFsSWUAp56EdlMaH7zB4rjin7pEZ5G/Q4O7/79mjS87W5i+WLvGZRGvntRVX587R0pgDuIBBLNikiWybNk3u//JLyVOmjGR0Y8kE64i8AMsou5sCS9doQtEOPvLzz/HiAuUz7505UzXGe6ZPVw10svTpJUupUlLzu+8kUfr0cvDIkWgDrtZiwN04bJgs6tJFweuTM2eqnIHCs5bmrz1Tp6opP2xiZBwTIlusRNC4uPbbb9WqiiV6zpHibdrc0zgY098fLg7YaO0YN04dEyjYbOy/cJk4vnq1SjFgsQlmsHsDR7XMjdIOVq0xq+6cAKzNVdYULfTtkU3Rii3garxlzT5b3Q74Hc1baPb5PZ/bMM78zHZcVxwzwB5Nqry2sZkKxoQqe1QsxwOQHgxJYYFc1lWJ8Jbx7Uv4RodqZ0pNSIZ5xMY9zxUyfnD+8zD3mUCr4LoCnQpleACzhpllSZKyNnqhlyX1y5uTf0m3bnetuN5/P1qOMBKDjKVLy7X77pPThw7JjW3bJOPzz7vdFj/Nszt3Sts1a+7R+qIJpXGHeN1A0wxGR4oXTVWbfv1VEqRMKTnq15eH33pLLp04IddPn5b8tWtr7CsDS0zcSM/v3y+zYWPnzlUHCsI0TFrXzj//VO/YBIkSSVNCMR5/XGKqaHwjxUyttc6c0fd+6LvvVCseW5MdGs0OLlqkAPa/P/+UKydOaGgE8gEF+AkTyo3z55VdRx6ClRbANiopUvblf/61MjlmudwsfaN7Cy9m1Rj7+5qiFZsgwsoSG+Bq9tmAc6v36fHjx0PlAIa94lhyXDg+puELm0D+30TDBiJw9zYqls/NueFExfqmK/UESu1L+EZXan1wrE0ccaAu4btCAi2sD6uMiM/AdWKkRIFYDpgNwsIbkyVK0+xF0xaG6SkzZdKfiTGlaQRT/IiKpU0av6LDissA71OHD0uZr76SG3v3yoYPPtBwA3fF54AhfvCzz+4x8z+4eLE6G9AMlrtmTYmLha4TW6ZdCxZIgixZJFnGjHJ/r16SKX9+SZs9u8xq00bObNqk9ltZYqiZSp0nhgyRRe++qzZbzWfNknz16+vvsH3DGg2/4MJNm6pTRUTOCf6qY6tXq5QAthOgWLp9e5XZpC9USGKjiAfG01kB7KRJysASCIIUhLoTsmQPmEU+oHGylSp5BQitTgD25ipTVtsq00XvLZPjS4pWoAJX9s8wRgQKWIG6sY+iGcv40ZrjYwCKaYA0Nls8DHgNRrbSxOQCXvnsRiIRbM4J/tSVhqct9aQrtQJSw5ZanzP+wcFQd0KaNO2A1ZQBqzEZKOLPcsBsHLHlskoMaBzBXzQif1mA5nysuMqV87sVF8VAsWfTJklTsqRkSppU1n/3nWQsUUK7yd0tE8947jlNMGO51VpIKKY//bR6lD7w4YcSl0r1zqtXy9aRI+XE7t2SFa/Q7NklbZo0UrJ5c2Wg6cafUL++GuYrkI2hprdze/cqG4tMhOYyZWNDJjw8x/cFoMXDFi/U6B7UYTxJw8IfFu0pkzn2CRcFwxLH9OQDOQ8AdtfkyXLtzBm9JokIPr5unVzEZSIEwBZ/+mltQENDbHeZ8OQEYG6wHFcrWAV4mZuqr8c8vBStyLhZBBpwtfvWWpfRDRgxx9bcrDkeSCes4R/BdBO3ykCM7pWf+Tw0qAVLWlhE5Q0o9aQrtYNSM5kxP8cFXakrhE22A1Zr86IBq+6kRMFeDpgN5sCEfPmUETq+dq0Ubdky9PcsBacrVChMZ7u7gpEFCMOU+tuKi5vIyZMn5dSiRbJv2DCp+frresPHusndxYOFEyC97bp1YeySuEBnvfCCam4bjh4d61ZK/ip0yttGjZIto0ZJ0ty5JW+bNlKgcmXJV6aMZLWwroDFCY88okC2xbx56gEcU532i997T50SWsyZEzoxYtKx9IMPlBVlKb/BL79Ee5MSKw04J6wdOFAuHjgguWrVkiaTJqmkIDY8a9G5oh3GJQEJAUELsK3sJ7pmznOkBDlr1FDpTu6HHpJbIezqmbNnPToBGLBq7KqiCirtKVq8L2WAYKB12VuBNv+yv1bgGp68wc5EGtcO/ta8nvlbHmapHbDH6wYbeLX61lqjYmHUYNMDaULiCXRF1PDkzhrK3uzEz4GgK42pMte0HbC6Qo6VAeqRWaHx9r1Mgl2gVdxABvGssD5iCZNGKDr/kRzYwxLQy3pjxYXljz+X7RmE0KJRefLkkUU//6zep1t+/VUSJk0qJZ999p6/gWVb/dVXaiOWqUSJML9DD4kV1xOTJ4cGLARrEeG7c+JEZWEPLl0quZs1k9Jffilp06VTIJvYZntjgCwaYlKz7M4O0cXGMnlgyRwHANwtTCMX5xoBCEw6mJTgouDOy9ZfhY+wWmv98ou4bt1SZrM81loxcBzsxaQR7TeSCxwHcB/Axg5P3YPLl8vexYslRY4ckrtVK8n10EOSuXLlUKB97MSJe5wAomMJj2sPQGeNGzZMbqAlMhngasCrAa5G4wo7GhFrZHS9VvN+07zFa/I7jrEJATENW4CfQDkOUYmKBcjxeWJrUmKW8CMCpe50pZ668ANZVxoocgAzjhj9u9F8R6YMYOV8cqeV9ed7RXc5YDZYbblC9LIwq7CVmUMYO6yrAAEP9uoV7mugTcWKC2snf7OxMB3csAFGGMFX/fBD7YCns9y+HHzzyhVdrgaMY6FkLdKOFr7zjpR9/XW14grGopsdYIgvLECWIaJ0t25S/NNPJVv+/Oro4G5wuH7hgkxo0EC/yxZz50a7N6qysT/8oB7A2FnxnmZCxPL+v336qGaZRiWa87xxyYh0iMDcucr87p0+XS2+Kr37rjZKpXLjfhEjdmiwsMOHq2NDztq1pXKfPnInZUpxJUkid1wuyZw2rdw8d05yP/CAFKhXT5KnTBnty3fuLKYMG8m1F0hL5VYnhMgCV3f+pwbM8QDkAV7Na/B65neBBOJ9KQPKDdvMZzDOEf78THZdaXhL+fby1OzEfsY3ayhfyuoOEN1ygDshq0K8hwGtdnBsEve8mWgb28dAKwfMBimYTWdxMsCGKEmIVQYaPtKgSAsKzyc01IrLkhjmLzbWnOgwWeTeo9+9ePCglHHTkLbkgw/k0qFD0mzq1DBLxjDHxNWmL1JEavfvL8FWp7Zs0caoraNGqSl+5goVpOavv8p9JUtK5hw5dIDyNDgR/Tu5cWONgGWJP1uFCtG+bD7zhRfk0KJFGokLQ27Y2DM7d2oAwrFVq9QqDe9f/U6jw1pr1ChZ8+23cnrLFslcpow0GDFCG6Vi2loL8L576lRlYQ+vWCGZH3xQSn/6qSTNnFl1sEwgL2zZIuc2blSAzTEp9d570RYMYTqNrXIBs/xu/EADxRrKX8DVHp3Kg9fm8wJQ+XvDyhoPXPS+/C5YG5zM92zYV0CIr5MTf1lDme51O1gNxuMaG2W3szIPw1Kbc9YfcgB3bO7169dDrfeM5t4bcGwmyWaFx7yO9ZxBmoM/fKBVYIyATvmsmc0TwprhAGBN7DoAi1euXLjWVcgLSBuqavNxjUxxopPiZdhYawFm0QsiMcAY3g7KsC/CF5Qla7u35oK339boUVjA2PQJ9dVOa8fYscrC4iaRPEMGKfHCC5KnTRtJkiFDaHynpwELFhcWcGn37joBaD57tmSrWDFa2dh1gwfr+QADSnOZmQQxcMHUwqinzplT2vzzj+SoWtXv+3Dx8GGVkmwcMkSttWDg6w0eLLlq1ozxGyeTvE2//SZHNm2SlAULSva2bSVn27Zyctky2fTFF3Lt8GGV9ADmCz3xhNT+9FP1evY3uOeassoFKCMXCKRudCtwZT/5fytwjcy+2pfSuekyrnADPX/+vHrBUrwHDKUBAoFwPPwVFctnIiqWMuDTNLJ5GzlqbW6yWkOZ54L1eAVSWRlP68OU1c4KABlVWyt7cxfXhyc2N23IBNf6PZv95VrF2cPo0t25ORi/Zc4bNLKck4G+wuGA2SArGCy8NemaRlMJe2e6/03Oe4lnnvH490SMbh8zRg3lo2pqz4Vx6NAhNQ03kY6maIYBrFb75BNt7sL6y64fJcmLzu/yb74Z5nfbx43TJKn6w4ZJxuLFJZCLdDNYPHSw2GrBiqMRrvzJJ5Ly/vtVVgCrYo/rdWeRNvf11+XEunVSqn17qdGnj6TKkiXa9vvsrl2qjT20eLHKOJSNDZmMADD5HaltsOk4BiT1cxY3KwpMZHb88YckTpFCk8TKvfGGWszFZF2/elX2LV8uJ/fu1fP5VpIkkrZwYbmwaZNs++ILSWAB/rnr1FHXhiLNmvnNPcF4mZoHNydrilagNCcZ4GrVuFpBNqxoZEClYSMN+0pxrfAwIA6nAW6sAFrGGm6qwVL2JXzOMTNRMUu9ZimeB88BNHjYQanVGsrahe9U9JU7dwB3jKeVYY2KX3R4bgRWNtfqd8z73bHZ93HNGMBrzkFrw6lh4s2k0MRNB/P55IDZIKv9s2frv2goYf9g8Iwt1+lt2+Ty0aMeLbm4IRM1ihVXqShacXGhHD58WBkEdzcXgJ0Lo+5jx9TOieVia6HN5Hf4llrlBWoH9dJL6s4AwAnEYlAAfAJgAd7Xz53T76DON99IvmbN5NKtWzpgAGLtIN9el48f12Oh7HWFCvLU8uXRwoCGYWMHDVI2liZCAijy1K4d+vvtY8fK3NdeU+/WJ2fMCE2Z85u11qRJqoc9smyZTshq9e9/11orBrpjTbMDTNi5kyfl3IEDcmb9ejm+eLHcOXdOkiRKpDZpNy9d0gAIuXNHMpQqJaXatdPmszQ5c/qNyQTQBGqKllXW4E/gaoobqwGvHA/GD/PgOeJhOQ7csJEtBUrakDfNTu50pVYDfsNcm1SxuGQNFdflAN6EjUT1/dy5EZhJjhWsIrExXtP87R03zKpJhTQP0yAZV88zB8wGWbH0S7MUoQI05cCumiV6XAxY8oTtdFcsfxsrrqh0oXMDOnLkiOTMmVMvNneFAwHgDOatZLt26rxgCvaYpeWHBg4MY3JPx/i0Nm10eb7+0KEBd9HhIoEGFhCLzjRN7tyqMS3+zDOSPHduXQK96nJpd7Gn42IFdizxw1rTwEfgAOA9Oq2mzv733102dskSDRiA/TWMK0v8815/XcEsE4l633/vt5Q1WHrkE4BotNNYeuFOUaBRo2j9vFYNIg9uIteOHZND06bJjp9+klsXL+p1BBONbhsAywQsZbZsOtnDGzZzqVKRfn+rLVagpmhFN3A178HnB6jyPZjjYFggbsw8eI7jAgMbnQyRufnbQaj9Z2+sodxFjpqoWOOyYKJiAUPBzHwFa/mSbuUPOUBE9lnW9+Nc57wyrL35O84dw+jzd+ZvrTHLxhHCjCnJkyePsvbWU1n3z5zzgVYOmA2iAkyx9EtjjFmqJUXIAAK6wHNUqxYGOFq742Hj8MOMihUXy4xkk+fKlcujHYxJssrXoIGyx1g8WfcDeQGAptxrr4X5O4AdzFibpUtjxQTfXSHl2DF+vAJYQGCS1KnVzgwJBLrOS5cva9zl7cuXFdx704iD/GLeG29okxjHpvpnn0VrPC9a3HUDB2qzHWxsq4ULw+is982eLTOff16dJR77/Xd1nfBHnd6+Xa21YJ3VWuupp9TOK7q8cq3G8QBIBmAd3FlFGDdONnz/vfrU4gSSMkMGOXPixN0oaJdLr5mirVurdRyhHr5O9oIhRSsi4OrPLnkjEbDGpxqbLEAj3xM/Ax6MdCAyEgV/Ro5G1hrKHhVrdL58rkBpzIvrFdPpVu4AslUvy+tbAxp4cG5aAas5L+0yAMr4IVsnTMZxwN+Rsi5LHLY1uMXIKawaWvP+gVjOlRZERXc1/pYAUgqWtUSIb6vmwS9cqDZG7mpFr15y48IF1T9GtrgBHjt2THLnzh3uIA1Yu3HxorKXGNxbda/EopKU9MjChWEAA0B85ZdfSo3evaN1md2b4lgC8GCyMcAnihTpRsNRo7TxB+Bz7tw52X/ggA6MHA9vBhcYQD4/muXsVatK29Wro91yCzeCWe3bq1YabXL1zz8PZWPVa7hrV1k/eLDkffhhaTB8uKTJlStK76e67Tlz7lprzZghKbNmlcpdu0qZl1+WVFmz+ulT/f+9mFwZ8MoNwXiJZsuWTQ7NmycrhwyR3X//rbGyhIwgnzChIzCxyCjQKBdo2NCnRkMAjEmYCsQULXOzNRpXo53j+HBjjA57J97LMJL8bMCr0fMZ31vTuGXGEHfWUO5AaUTWUDEVOWp0zvE9KjYmy5OelPPEfL/+Trcy563dg9Xsj9XhwfxsmFT+xjREUlaGlYd53gBWxg0rWPWXD7Ur5LhZwaoBrFYNrZnMmYmYAePBdC47YDZI6tb16+p1yfInNly6NHrkiGQP0cvCaAJW3ellATSACyyEIhs8AFjAfisiIGskBqly5JATa9dKo7FjQ5/fO2uWbBw6VB7+8ccwlmC4AGDGj6+pPco2pooL++SGDQpgt40erclOGUuWlAc/+0yKP/WU6iUZ3GjMuHDihHaLYk/izYADU83xx6c1SapUmppVkvjX6FxKvX1bG6xwRkidK5e0XrQoTIwwLhgcc3yJ6w4aJGVffTVK+wOriwSD9zy9dauyr8TcMvHyl2WV8d0ELBn2kxuXtRkCHfamQYNU1nBh3z5lomH5mUDRLEkhfwFcw7AnT5/eZwBLcwXFEmEgpGhZk76swNUwrtHFDJtOfNNsYhpRTIOJWco1Ubw8xzHElYCHt5Gj5rnY0pVaZRKMg3ExKja+pVvZGV07YLVqZg1YtYJQs78GpFpXAMx2VkmA1cvVPPwBFq2NXzctDyuraiZ4Zh+iK7QltssBs0FS/02cKFdPnQpdsgeMUCb5C71s0vvuc2vlRNMX9koVu3SJ1HtzwyIMweoh66m4gLHkSpkpky4tF27aVJ+/du6c6jUB2/e/9NL/t79zR2a0a6fg69GRI6MV4LkrJgTE+gJiCXjAogrwCuMNIDN6phMnTuhxADTly5fP60EIhnf+m2+qewDd+g/27BntEgqCFpANHFmxQpf1YWON9ARd8vLPPpN/e/dWVrjp33/fY4vmSwGG0T+zaoA2tvATT0i9H364u1Tvh4HaCl4pA15hwcxgzDmEDpt92P3XX3oOJQOkJkigDZEU+uYyL70kxdu29Sl+1x2ApekxtpaPYwq4WpfwDUuqmmOLm4G9O9r8nWHJjJ2Pu678QAeAVt2rNSo2UJr0grViMt3KlJXRNalzVjsqK0tqtKjWa8h6LVhBrbFGM39nNKvWR1S1t1ZpgvVhvfYMUE0S4vhhViaiqnM3oNjsg/l/3sOJs3UqSo1fWAMZ4IHEAICaOsSPkGV6dKg0E1lr97RpmqTUeOLE0GAFX4oBncYmb5fST6xfr00+MGEsaxsPzoWdOytzjCWY9SKDsdw3c6Z2zqfOnl1iomARkQ8AYFkSZwkaf1MaovLVry+JQpg2LmA+O4Mf4InmFG8HiPP79+tn/u/PP1Vq8fj48dpsFJ3FhGDNgAHyz0cfKXhrvXix5LI0A+J2ARvLd/TAxx+rz7D9fPG2mEzx3e2cMOGutdaLL9611goJ84jU/ockPBnrIgqABnh1ZxoPo795xAjZNGyYSlqQ4ABgYcKvHD+ukzts6u7v0EFDGLz97gIFwPoDuEY2cpQyulGz1GqW+blZsjLBexvfSo4NxwnAF4xgz0QBW6Ni+SyBwLwHW8VkupUV9Fk9j817WhlWw/7z3qYB0Xp9GN2q+dm8Nj+bv7eCbfOILNh2t/xvHApMcR4aoMrxMmA1su95J+Sz2QGq/X2N9MA8zOTC/ByIFZh75VSYOrl5sxxeulQe/+OP0OdoXDESA8AZVkd2PSw39YWdOmnAgmFIfSlu6DQ3AWS9vXhgZQE3Ny9fDmVgAdSADrxm78uTJ3TbY2vWaFMaMbb+tIByV7B3Bxcv1kYuGrqwX8L1AclDkRYtJDlAKKQYCLEH4iIHxKK/9MV3dlW/fuo0wRJ2ozFjdKk9upkomq1gYwGZFTp10qYyw8by2dfSANatm9yXL588vWJFpMIYYHUB54DYoytWqCds7a++kpLPPRcpay0DIAx4NXGd4SUecXMhHhgWFpsv1aqFgA0s0piYFGzcWMp37KiTP2/dEtgXwCvnPMVNg4a+mAJmBrga5pN/DXA1N31uwFYwaprdfI0cNf6S7iJHeU8AHXIao33l5gV45XvhmuAYcY3wd+wXgC/QmVZvomKNXCUQmvWC3c7KGo8aVTmAYUat+m+7HMBoT43uk/PVaLYNaDTMqvl/q57VlNWKy6pfjUxzojugamWhDTg2D2OdFZljdScEpLpjUz2BVAPMGQes72t/LbNKYQA/14jDzDoVqdrw44/aSAN7qCfu7dsaL1r1ww/158P//KPANY9NL0s0KA4ITSZN8vniMLo2X4Cs0cvSSAOQoOGGpefZHTpI/kcf1UYbUzSIEVdLFC9NX9G55E6s7JbffrvbyV6ggFTq0kUZO7tBP4MlIJaBCDDlq78ljUbz335bmWkAJRplE0QQXcW5sPrrr5WNvS9vXnWCyFmtWphUK0DugfnzlSmv8cUXPjP02HahQV2PtdahQ5LnoYek6ZQpkr9hQ5+stQx4BSRxrDmvGEgZGCPSHhLxu+WXXxTEntu1Sxu5aMyjbt2+LVkrVVJJBZM2d24egQRgzbKnkU8YxtUwR9ZlT3MDZB/tkaN2XWlkl/DZByatBhgbVtIENlg9YXme7ypQO5q9CWcwtkcmKtaXFZf4UjGVbmWYT/NeJknONHdZl/Wtmlnek32wakYNaDOsrFX6YoCs/XWscgBvzwH7PluBqnWFwwpUDWD0FRib97EDVPt7JQgBqaZxywQrWBPfrM1g5jVMeIdVY2t/LcMIm9cK1HKY2QAvkrJgE61L9jSywCwaZhaJAY0uVteAS0ePasMRPqiZSpb06T3p1OfmCZD15cK7cPCgJlhRNBRR6EVvXbmiVlbW18KYn2Yd5AX+jgO9evq0hhlw3GAq0ajCjmK7hHWZ/TNxc0NOwIXKjc3XhCH0sMTv7pk2TV0Bmk2bJhmLFZPoLmQDysauXKns9oM0mIUAVQYuGrKwAIM1bTF3rjbY+fr6odZad+6o7yqAkQmIL7GsHF9uUKZr11tdJ5+BhDIALHIGPGBN3b52TVlmzjMmSWi0YxrA2q2hwlvKt3brU9blTiszYm12iq4GDW7AMK/GeJ33AdRht8eNixscv8O5xHhh+jqpDYTi2Bvwao2KjUnGPT6nW5nrw25JxVhgWD6ztG90p+Y9AavmO3IHVu1SAGt5Aqzenr/mte1A1VNTlQGO5hr2pqzHxQ5U7SDVgEoDLA3QtDZE3rGwqUYWZGVT7fttXsMEdwSbc4G7csBsgBc2TtYle0q9MRMk0K5s0/wFW2Y9GZe8/752kdNw5EuZ5UVubL6e3DCT7BdaXpjY/yZPVkBFV7s1PQmtKs83/O23MKEJUSmY6T3TpyuAJV4W8MU+IM0o+Pjj99gumeVUGCkABZ6QvmrjsLZa2aePygow2m/y559q3RXdgwLWYau++kqW9eih7PdT//wjOR54IAyLOeeVV7RpEAaacAqrjCK84rjQtGa0zKmyZZMq778v92OtFUG8ronq5Pwxy9AM8r4a7zMZ4RxBJ37uv/9CwwwoGrvwwa3YubPX0be+AlhPujLzCM8ayvr3plHDaFx5WMMCYqpMvCUPYxcEgIZhBaSYRC4mdBwrfscybbDJB4zmms8Cw8d3YpjXYGOSAz3dyh3LZwV9BqRazf7tvqnmOjDsowGrVvsrA3LNtWW24V87YPWG9bRbVVkBq6emKm+tquzHxD5+WEGl+Uzu2E8rSLW/plnRsY9FCSxsqlVf60821eyL+R4DrRwwG8DFycMNneXcMFrTf/+VjCVKKOPGEvDxtWu1+cYUbCRsGnpQX6yHuJlxs+NGH5mb2M6JE/Xvyr7yisoL5rz8sgJJ8uytNmGwsrgFALSienwIZdj8yy+yY+xYBUF06KMdJn7UHfjib7ipA2IBWoB2Xy9MXgPtKC4RWHhV6tpVqnTr5vXydlTq1NatMvO55/Rzw8ZW69kzjGwAfTKuESzB03RWtHlzr4E5cgystWD+iTzGXYI0ME/WWiYa1jBfDJyR9dvkmKIL53zfOX68yicIM9BKmFAKPPqoVPngA/Ug9uZ17QCWGxLaZwM0eT48NiQiXZmVeTYd0iYowSQ+WW/YMVXW1DNkQsZ1ABANQAWwsE9c5xwDJq98Hm58wWbyb/W25XugOP+CEYgHUrqVHfBZwaoBkwZomuVrO8NqJm3W5W0rEDUrD1bpjHX53LyX2Xe+V2/kAHarKnM8rLpRA6iNHj2ipiqz/4ZRtoNVKzNs2GUzflibpuzH3SohMHp5O7C27q95XX+wqS6Lt7PVrcS+wmRnvdkXxhDGt0Cr4Bm54mGhi2XZvnqvXmGetzZ/0QzDTZ8mLwpGcl7HjmorRYe5t4X1FicxN7TIXCAkex1atEj/n1jW+R07KoNojaXFKxedLA4M9QYPlsgWXezbRo3SprJTmzerxKLUCy8oaPYUP8qFi3yCGzyDurcese6W3pFOIO0AqNcZMMBrhjDKbGy/frLsk09U9/vUsmWhtmxGjoJ7AtpWJj8023njDoE0hNAE/H9JO4NZ5jujOc7uqWgFr5wrRgsWFeaLSQ8sLEwwvrDWYuUBfTN+sJ5cFwz7ZLqZTUMP37fVNB/gBuCxdugar1BvPEx5PdOAYtLFzGuE17AWk+DV+L0aA3cDUAEWPMd+YzHH5zA3cavFWTCUVfdqjYoNts8RW+lW7uye3HWz2/XXVkmA3cbKgFjjMWx+b2Uzre9rZUOtYNsKWL3d9/BYVQPgPTVVWWUQVrbTHBM7oLROcA1IdXes7ZMBxiV3TgXWY2SW/CPrVnAnAmBq/zyUmUgYoG1lin1NwQuEcsBsABcsFU09+R55JAxoOblxY6jsAFCVvkiR0DAEgAEgGFsmb5pzNCzg5En9F+YqsjM90p5YCgZIHVq6VLaPHavRqCxTm6KbHvBJN72vjVF00mMxBoBFm4qXaMEmTaRm376S7+GHPYIdLmSjD2RGGVkQS8Pask8/lbXffKPfSdOpU6XgY49JTLlZoI0lhIKEt2qffBJGNkED4PRnn1U7qoeHDFErqoi+RzxojbUWQQ78Dew+sgWrUbwBr4Yl4YYTVbsiXvvI8uVqI6aOBJYBPk2ePOoHW7ZjR0mQLNldFjWE+TU3G+sNwWqlY5KYDICL7GBstcQCAJqleYCTWYKPTZ9Z6/diwKvZPyQdHAPDdHHeA2DZhn0Ptm59E4trPmtcjIr1V7qVlUG0gz1PuklzjfCzAZpWIOYpNMAKGA34dAdWrdpbzrvwwJp5X645K7Nq3XfrUjrgzzSCWV/PvjRvGE8zfrgDqeZ4mKYp+2u6Y34ZH5hAumNorcDXTHq9dSqwTtA9AVNPEc2JLcDUrChZdfhxueLGaBAHC8aKpXP8QK2gdN3gwXriGisr1cuGuBjAjmJ1Vax16zBpT+Eu0x8/ric5ACUqtemnn0JZWeQFhZs10/2wLn8DnmAyfYlwBcgBYGFiWdLnb2sPGKC6yRQZM3r8Oy54ZBMMONzgfQk6sB8jdMsLu3RR6yeAJMv7vkSfRoWNXdm3ryzv2VPSFSokTy1fHsrIG53wPz16yKq+fTUet/msWeFqkNVaa+LEu9Za//6rr1nnm2+kVLt2kiR1ar0JcswM82iak/wFHK6ePStbf/9dNv/+u7gSJJBkmTJJ/ueekxQ5c0rGMmUkQ4kSoZKJk+fPh2FRTeMDD74TQJrp8GeSwk0ysjouE85gLMKMXMBE08ZmRKlZSrdOKgwLxuc10bCGGWdb8x0adjY2Qx4iq3s1Tg+mOQ3mO5h1r1FNt7ICNL5j07znCaha5THG4N+8pwG7hkm1vocBr0aDapKqTFSrnR3mu/JGe2u1qjId9BFZVRlpjxVQW7XrZlJnwKS17I1OjGXhgVTra1vBryc21bx2eAyteV1rQ5l1Cd/d5Ny6/1ZgasbA2E7DC+QKjhEuHhaaV3SDVjsrAO7KL77QZhwYNGyXzv73n9otUSQ7wSDCVkZUXGR0K3MRcqOISgGSDi5aJMkzZpSto0frc6RAmYuNlC10ngUee0zKv/VWhK/H59w2ZoyC2OOrV0uKTJlUX1vq+ecj7KRnwOBmzr8sPUYlbhIGHDeAQ0uW6FI3nqpW7XJ01slNm+6ysevWSeWuXXVSYwXQ/J4ABKJjkaFUeu89j0w8WmLkB+sGDZJLhw+rJOWJv/+WHHXqyJWrV+XY2bNy5/TpUOYR8OMLMLQ2TLlrmuL7RId75eRJuXn2rKSrUEGunz4tabJlkxItW0r2cuUiZA54HaOB5fuEkYms3plzwwBX/p/3NQ1agNfYbG4w/qfcpNlHA1rNEq+RNcAgGR9NmEss5fgsZqkyWOymDNNs2FcqWKNiI5tuZV+WNoxfREDVdNDbwaqRw7jTPJqlZcCdeR3zmvb9NxO8iLS39v03++6tVRVlHzuMo4a94dLOeDJmRdScZYCjtXnKnZTAG528NYDEam9lBajujrkVmFot9azWWU5FrRwwG4DFxYC3LOxmKgtjuvLLL5WNeyDEX5YIT9wDSP7CT5XmHUCPkRyE9/pHjhwJvXlHtQhKoOEIDeeuP/9UBwHTfAUgB3RhZt9gxAiPFy3bIZkAwJLOBStZoGFDqfrnnwqCI7Lv4oZo5BKAWAaiyBbRuzgFwIKnL1xYms+erVKGmCiYaL5HJjPIR55asUKyV6p0r6/shx9KusKF5ZmVK1Uf7alZjNeisYvz5P5OnaRAq1aSMG1aHZQvXLwYahRvB3BWL0V3QDWihqkkLpey9Wv695cb586FbpuhWDFtmMMmLaJlL38AWONta1K0TDMU5z6TuKimD0W17JG97B/7ZJZ1TUe+lX3lO0D/DQBkG8Nc+mopF1vF/hvvWrMCwGdgLAr0pVBf063sXqiGzUS77w1QNee61deUsY6/N/7EVq2q0bFaNajmNY1vsXXfDVgNT3tr33/DCkdkVWU+u33sMIDSWlaA6m2Tk1VDa2V77Wyn1TnACqTNJNG+hG9YX0/L+XZgamVMg01nGpfKAbMBWAcXLlRwWu/HH0Ofu3j4sAKTil26hOpQD8ydq00yKTJkkOnPPCNpcuXShpkIu8YPHw4FMf6o1QMGhGo38XMt2qJFGAB+YMECaTl3rqTMnPmev4VZxo0ASy0M+XFpgGmEibXqbT0Vgw6aQAYZbugMLJEtmuc2//qrLO7aVW5dvSo1v/gijL9vdBXvu2fGDNXjAuhpkHvws8+kwttvh3ESOLd3r8xs1041yUgdSPm6x3Lszh3ZO2uWrBs4UM4eOybZ6tSRWn/9JWnz5pVUadOGMkLWGxRMdnh6Ml8aptj/+Z06yektW0LdCJJlyCD3v/iihnwkS5PGawDLe/B+3gJYsyRvGCVei7+L7SYtT8vo7CtlNKxG52oALN+VYe74TGi/+ddExwaLXyogwcgkrFGxgah7tdtZWZfk7XIAxlAAq93jk89pXDQod2b27jxJDTNqwKpZ7rY2XlnBKueA3UfVzq6yH96CbcMkM8kIz6qK/Xe37G8kEO4muVYNpzfaUcP0muMfHptq9Wg2TK87D2hr6IP178NjTJ3l/OCpwBpJnNKClYXByl2rVugRIQCBRh0DVrlYYWZLPfec6lFpwMLnNDwtpwGyDII0sUS1eD1kD0TporkEeNUdNCj094eXLZN/Pv5YfUrxwTWFFIJIWVhY7JgINcBKCxlBtkqVvGLKGJwAsQxULEdGlZU6tnq1SgrQkhIOUKtvXwWV0Vk088HAMkkB1GerXFmb5pA0mIhWc5w5VvPfekt1wq0WLAhzblBXzp+X/+bMkTNHjkjSrFkld8eOUjR9emXIaZbjmJp0HauezK5HjQzYQ8bAsaOZ6/b16/ocTHy+Bg2kztdfR+glbAew3jKw9iYtyuh8o9qk5q9yl3pmlkYpwygZP17zPH9ndMEcn2Baejfg21hmmca82NYf+5JuZa4Pzice9sYfHtZtvTXPNw1agFUjczHA0erFaq5LxmnDrhrgb913zimuHU/aW0/MsCewbd6b883ub2qOkbuVGHvalKcyANiaPGWXJBjtrhVMmuPCz1bbKKvfqtXv2fxrtLKRTcdzKnjKAbMBVqRi4WFaq3//0AsPb9ZNP/+sAAvgR53askW713PVrKnpU+ggsVUKr1iaZODxB5BFB/vXk0/K0RUrFGSTSNZw5MjQJCaW6qc99ZQ2LNE0ZdKcAGV00N+8ckXy1qun4I399jZilQEPJhFwwI09KnICEzCwtHt31ZRmKlVKWi1aJLlr1pTorPP79ql+lWV4AC3gFU9XPFStpY1Ox47Jkk8+UflBuR49pHCrVtx9ZP/+/XdvBNeuyY0rV3SCcOXyZUlKN3/+/JK5ePEwNyh/D+LqgTx4sCz//HO5cuxY6PMZihfX8xRpSHjv6SuANdZYRjJgrLGMuwA3/kC4UdlZSBPZC7DgxmoAnmGLreCU7dG+8rc8FyzRse6iYvnMAJzY0u6Gl25FWVcXDGNplpUNQLICVb47b1OeDDtrooqNFMHIAcyyN6/Jec+5axqtTHOfXQrgTntrnB2sn9ewowZsG1bVfFbD6lq74s3ntRrvm/3zBaTyWlYvVisQNmDd2mRmbTwzZZ63Alg7QA1G2yinor8cMBtgBWiF1SrZrl3oc0s//FA9Q4mmNYWLQaJkyeT4unVybs8eaTJpUriDDQMKbADWVFEpBh7YRIIPWIpH14lXKWxm4aZNQ7eZ3aGDdv8/Nnq0srdICc7v2aOerJW7dVPNpC/NVLwmYJwHDA9LxlG5SaI9BcACZLGGeujbbzUa1ZPFV1RLWfF//lEngV2TJumkpMwrr0jZ119XjbM7KyxA4uHFi0XSp5eqn38u6YoVu3uTgNE5f16OL1ggO4YPl+tHjqiLhFprRfH7jaiOrFol8994QxvzkDSYVC4+B1puTwELngCsu5hUT9ZYpknLncY3tspoAM1+WiN7TXOW8b61L60b71eOB783S8fBoh01n43/j+moWLscwKpftbKUVlspq7WU+b11+dydsb27MmDTsO12Y34DCs1yPuerWf2wBm6YfeZ1kJDY5QAGcPO3AEt33qrW8AFzXOzHiW2tKzHWLn9vltHNa9iPt/nM5tiafTf/mtf2BEit/1rBrVNORaYcMBtABcDaMHSoLrmb+FGWv0lEeuTnn8NICACz2SpWVKBY7vXXJVPJkhE2fNGlHpUB4/z+/TL7pZdk/+zZ+jONZ3T6w8LVHzYsdDsap2BfM5UuLWNq1NBkrCItWmgDGJZhvu4DN0yau6ISdmAtPE7nvv66OgXgFlGjT58Io1ojWzTs7fjjDwWxpHZlKFpU6g4erAEPCZIm1RvZoUOHQgEBTEjyy5dl7XffyYmdOyV/y5ZS4IknJGmKFJIoYUI5s2qVrP3ySzm2cqU2p1V66y2d+Pjq2+vrasGS7t3VoowJDAXoz1u/vqbMhQeg+VxMovgOPQFYd9ZYJgI2tpemDXCx+l5al0StS+jsI98nnxWACqi1SwM4HkzIjJYxWKJj+bxmomWNio1OOYc93cqwnMbA35pAZQVPVoDqK1A172uVE1h1m9b3Msv5TFxMVLGVbbSCPxIH7VGy1mV0A+gMSOVasDKU5jUp87PdI9X6/96AVCM/4POZz2i1j3LHphpW2e7JagWmjs7UqdioBC77VC6OF8wQNw+TBBVItXvqVJn0+OPyNAlfIR3s4+vX18ao5zZuDGUN6fQflCGD+oRePHhQXti5M9zYWrSlZtCNTMHAbRgyRBa++y4joAIapAG4DpR87jl5ZNgwSZAokQKs1V99pXpYCuBa8vnntSEsMmCLm6bZd5Yr3d2MjNDfXRa4/Wd8TpE5YCMGo0xqGExxeH/j6WdP25hCOwr4J9Xq9rVrkiJLFk3ugsW8ZVly1ME/QQLt+L98/LiysfgFu27ckGwlSkjhevXk9sWLsmnYMF3WR96BPKP8229rxCt62Ogo5A+bRozQydLlI0dCn09bsKA2xhV58kmPN0t3ABZQZ5qZzNKpWT411lgAO/6NSVbS6AINSLXHgVo9N63Lu6YT2lgIca6axiajVaQM424SyHg9joVppAvU8hQVa+QS/gLe1qYnEwtsjr8VsFobn9yBVV/OGWu4gFmSt2tXDWgz7KpZFbCOQZ60t/ZmLU/jlPUY2pfW3QHUiAC51TbKul9Wv1RrM5nZRysoNpIK63keyJMsp+J2XfABrwXuaBpPG79wJzBAlgav/XPmaGOXdfmbhC80kjCLJD6FB2S5ETGgwQ5Fps7u2iWzXnxRo2qJjb125owUfvJJNd/HWQErsLUDB+qS/Zlt23Q/U2TOLC3nzZPMpUtH6j0ZeGFiGXhJJTOaQQZjc8MzLI07/Zt1qUv//84dXeLHQowiXQqtcXh/4+m5iH7Gm3bNt9/KttGjJVHy5FLmnXckf9OmkiB16lAWD0Bw6/x52TdzpuycOlX2zZolNy5c0IazAo0aScFGjVQDfX7vXln85pt3rbVElM0t9+abHiN7o1r4BbNPyz77TGUExo2A5j7YXxhsT24Exl/SzsAawMf3yfdmrLFMDG50WmNZ/S/t7KrdqN2dJZHV6N4wdVZLJfbbNOlYmVUjLzAgN1iiY+1RsYA3zteo7Le14ceuIbVOGAyAs0aQRgaomvc0GlIDWK2uBDysLK6RAvB5jSuAO+2tYVetzLz1O7c2MJmyAnFrs6UdrHqKRDXglM9g9Ta1g1MrQDbvaY6p0eaaFK5Akeg45ZQ/y2FmA6RoChpWoIDUHzpUbYwYmEZVrqxG+CQ/WW/4y3r21IAEwOIzq1d7NMtnsDtw4IDkyZPH5wEMyQNL3WhKNWkrYUJt8oJt3fXXX/JAjx7KCtKJDxCjiQk2D2umZ1atihTgYmA2DTCGRTZLYMZz0+jHTEd4REAIFpZOexrm0KhiZxVeclikrbVIOPv2Wzl37JjkqF9fcj32mMbepkmbNpTNwq5q999/y56pUzVOFrCIgwHgFRALW3xy/XqdrPB6HEsmEGhhiS82zXV+3XfCM1atktXffKMTlDsG6CVIoKliuBHYG9PCA7DcnPm+rNZYhnHlO/MnmLP6TFrBqrVZxgqS7ADJDnbdNQpZga49vtNaJjqWB69rJAaBHB1r9L7GisnIXDhffVmSN1311kmm1ULJ6vNprl3D/kU2btja8GQAqxWsUlY5gGFXTViAJzmA+SymOcp8BqvfqFWralZXzOtaZQ1mkm1Y5vDiSa3L+vb3MmVnbs15aQXHgXquOeVUZMphZoOwYDaTpkmjellq58SJyo61XLDgngGKdCxtWho40COQpY4ePaqMrK9A9vS2bTKzfXu1qSrWqpUcmD9fHQs0FGHKFMn/6KOy5uuvNSihdIcOaheGtnfKk09q8pe3QNZ6I0RHCAAyNwNuUNyAALWRuenhy7vo3XdV5wkoa7t6tU8xut4UcoAt48fL4Q0bJEW+fJLrhRekZLZskrt8eUmdJo0CQzx2N0ydqhKSiwcOKMuZD63p0KGSvkABbd5DnjGrfXtN9eJ7RRutNl2jR9+16YqGbnYYd5oNkY9cP3s29PmUWbJoSptG9rpp5rICWKtvJd8j36FhXWHUo7qMbphRO1i1d6XbE3usYMVuNm8M361NQta/dxfF6W6/rHGewRIdazxu+e6M7tU4DrhzTLAff9Ps5E63al2S5xiamM/IlB2sutPLmjKg0nTeGyst63do1d4aSyxezxObamVSzblhwLdZkrf6l1r/5XXdJW9ZV2+soNUupbA3aPmq93XKqfhaDjMbAEWT0JDcuaVoy5ZSd+BA1cSOKFlS0ubPL81nzgyz7dFVq2R05coqRwCgeSpjus3yp9f7cfOmrOrXT5b37Cn35csnpV98UZZ98okGGcDC0sAEeE6YNKk6K1Ts3FkTyojV/bVMGfWSbTxhglsgYDKvzcNYwVDcAEwEZ1SBAMeSZivjy0u0b0marfzECHJzPbF3rxzdulUunzoll/bskeSJE0vRhg0lV9WqqmmFVQW8wqzeunJFjyWyhjQ5c6olGcfx+Nq1+jv2K2PJkmphBoDFZxeLMKvPrL+KONntY8dqg97ZHTtCn0+QOLHkb9BAZQTuJiJ8Zs4nQKx9iRbQwiMyDKTd/9LeFU7Ztap2BsrOrJnXsXaGW1ks8zrhTY6sYMpd0hNlXsdofQORETO6V9O4RRmbMGPPZD/+VpBnlQEYwGiYVW9XRrwFq9ble0+pS+b9rcDSvL/dz9cqZbCzm1YvVsNsmnHHHYNq3x+rztTeyGiVB1jf16qDtbO3gXjuOOVUIJTDzAZZATCunDihy+AUNlZnd+6URmPHhtnu8IoVMq5mTW22qv/TTx5fj4EcqxdfbLhOrF+vbOzJDRuk0rvvSqocOWRhp06Ss3p1XaK/dvq0MscwduU6dtTUMQZr0qZgQPkdjgbGa9C65Mh2Ri/GjQiNoQk94GdfI0o91b7Zs2X+m28q61i+Y0f1tzW+vP5Yir144oSc2bRJ9v3xh1zavl2KtWgh1V95Rb87pAMLXn9dQSpL9EwAclSrpo1gp7du1YQzigkKgJUGOgBslvLl1Rs2ugrwjFYYBpZkOWvdlz+/surYellZWNNNjUaQf833x4TDgFdfLIw8OQHYO8+NVtLedGIFPkYDbpUSGFbQWFt507hi9/K0a2nt5vN28BSoZeJGTdiCYfU4JibdyWqybweMht00nz0yn9mdVtkOVu0d+oaVNAl11lQrM1kx1nWcl9ZkLGszlQGZVpDK70xsqXVCYsCq3SbKKiUxkyUr8DcAl/8357D1PSOr9XXKKaciXw4zG8tFB/svJUtK7jp1pPH48eoh+nPhwqpNbTRmTOh2++bOlYmPPqrNTE/OnCn5Hn7Y7esx+KKTZZnXm1SsW9evy4rPP5eVffpo6hggGR9UYmgBXjQhoZcFHKI3BbSiEUU3u6J3bwW6xemsb91akt53XxhfRGMGbr0ZKrN54oTup78M4XENWNi5s4ZN5KpVS9ntyDaf2S2I2POLW7fKloED5eDMmRoKwKQjZdascmDOHNXAAmZp9iKu9xbd0SdP6mulyJRJ2VZlXStV0oe7SF9/F3pnpCG4EYTRwXKzT5ZMCjdrpprnjEWL6nPcnE1ikwFBxnrJeGS6AzRRcQLwtGzvqSvcrluNiBW0N29Zl8et+2Z93WAAIPboVACeddncMI9WvSbfk5VNt35uTxrgyIJVeyOS3ZXA+v2ZfXJnEWVlh63fs9VX1e6xSoXnZ2oeVvmENSbVeu6a17KyqOb/g2FS45RTcaEcZjZIioET31aY1nrff6/PkQxFsteDn30Wut22ceNk+lNP6fYAXk9AlqKBCobLGyB7dOVKZWNZcq7SvbuyrlOaNw/1kQUkJs+QQVotXKjgEPnDtt9/VxB7/sABKf3BB1Lxxx8le8GC+p7hAQFufuwbABEQy/JsVOrqmTMKJAGwuAHQ1AX4L9qqlU83GrXsCgFyJjUHdirp7duyZ+RIWf/99/p94Kl7/yuvKIMNcEbbCjBE1kAhF0ibL99dqUAIeOXnmLrp8TnYty2//SZbf/1VXSesxUSlUteuqoG+nSCBflaija0aP0AG3w3sJvttAAsDitWD0goyPTkB2PfNsKuAZQN8rNpXK1A17FxEUgBr81d4zVuG9Y0McItNoGoFXHYm1SrHMKym8S11B1h9vSY8gVXzeyM9sG5v3sO6L+b3Vnaec8AqY7BOfqxNTkZSYNWNujPbt+63SbMKT7piXREwbLAnVwGnnHIqOCowOxXiSW0ZOVKXgEnvgrEjAhaGlKYqk2ePo8D8t97S/8dsH39PTwVAASyybB9ewf4u69FDPWGzlC0rbdesUXA6NG9ebQZKnjGjeqPSjd9izhxlGDf+9JN6jl45e1bK9OghWWvUkJyFCimAiYghQ/KA5pLUrqhky186elS9bQGwNFbBEOesVk1q9O4t93fooKxxRGV8P41/Jj/DPPI52L9TmzbJ6p491VoLuUAqrMHSptUlerNMrzrXEiVUgmG0rhmLF4+29LCIXDCYYGwaPlzO796t+2wstRKnSCFFW7eWkq+9Jsly59Zz4/Dx43rjNmwooMD4ZxpDfx725ihjL+Xphm+W7U1nvJ2ljcyyvTsfz6g2b8VWWfXBdsBqyrpkbRhHfjZRvgbU8nuj1TWSAF8+d0Rg1aoLtW5vJj1GN21+Z9huu02UAb1WptYKJI3DhQGsEU2GzXEzzgXugL7V7sraFOiwqU45FbfLAbOxVETAou8s8eyzUviJJ/S5VX376jL1Ax99pAP0kvff1+V+qsr770s5S5ytvbiRHDt2TL09w7upkdg164UXtGnrwV69JPP998vMF15Q5wQYYrxMcVIA5D7+xx+a5EVT2I1bt6TcZ59JlsqVJUeBAspeRgRiATawsWhk80WSpTy3d6/KHgCwh5ctUyBJo1ndQYOkUJMmGvPrq38mN0+zhK7m97dvq5crnxN9K+9holov7N+vIBngin0W8g+ODalmsVWw0nwvxAofWbYsDIDl3/SELXToINn/196ZAEdRpm/8DTcJgSQbDg0khghyYwg3KG6BgrIulwgRJF4F6rIc7nIosMparAiKumCB6K6uJSJiCQj+WYvVgCA3KMohhwQ5VonLIsglIP2v512+qW/auULGSWby/Ko6M31MT3d/0/mefr/3uOUWFbQI8LJ9V42gsH0jbd9VX+1krGum0EGgYXtzfUMJtHIHAAUK3gplnyWBO5DNFquBrIFGCLpFJcQaMNcB1xPBkaGmzDL7dV9Xd8oyE/RkWzN9BU3Z52D2b8+b97aLgwkS8xWs5T5WExzqHvK3ranuSH8jUt1BWISQsgl9ZksACKV3uneX/375peR98YWWroXV8ZWsLMkZNUo6Tp6shQoQNASBiaHh2954I6AYxJAxRCM6PH+cLiyUlzMypGZ2tjTOzVUxpBkKYOlJTZU2Y8fKx+PG6ZA6RBtcHqRqVcmG6L3+ehWx6ESCAQsx/GLRmcHaWZShXXRuSA0G8YoJhSGQquqa7t3V1xOCEsFnRcmfiU4P18WUX0RKLYj3Qx9/rMF3x/fuVV9kQ8XERE3j1aBPH2l0112SEAE/12DgIQdZEuBGgGAzuDnAl9kcd/mqVaVu796SOWiQJF13nWco1li0MI/fB4bbA1VSC3XYPlR/S39R676Ct+w8rqXRuuoGwh7FINyBbPawuC/LssGOpjeJ8bGNCcQy4j2QWHWnLXNnIbArTxkrpluM2r6nbsFq1ptldu7WYL637iT/tlh1W1Ntv1TzGi2/A0IihfElNwGN9rxz+f+CPYJip4FzLws2+QNGIMTkRAL6zJZyPpszR9M23fHBBypkAVJJQbQh5RVK2qL6F1JLwfey+9//HvCfOhrcBOwEAiKw7aOPypcLFqhVWFNAVakitVq2VKEIX9DU5s01if7xgwel9axZus3VmZkqTIOBThUiFseKfJu+OmJf4MaBqDYC9r+7d2s+VhQTgEUaeW0DlcM1aXkgXuFCYOfPLOc4WpVr/8aN6iOMnK54iPAiLk6Sr7tOmg4ZIo0HD5Ya6elS0mhWiHPn5ODKlbJ7/nzZv3ixXERuV7gIWEI2qVkzaTZsmDQeOFASkpL0WsAn0eSBRfUmXAsIEGMFNBkBwjFsH2rwlqm0ZDIWxIJIwTB5Wlqa13nj2tu+rLabhjl3YPy0TTvheqekpHhSnJmcpcbH2A6Msjsb+9U9rG+OwfiaGj9kE5DlFrVm30bU+hKs5nO2MMXvCW5EJurflzXVpHGjNZWUdmy3GbdgDCQa7fW+JrefeDDR6At/lSfjrFzFvpbZVTLt12CTm6IebyShZTbCIG0UcrKiPOjNl4O+YBn8e+PGGoRV8H//p2VhYR2E+Mz95BOP4PUFOpTDhw9rGq5gw23wyYVfbFqnTurzueW55ySrVy9JTE+XT194QcpVrCg1mjWTlk88IamNGslVGRkhBZLhpoaFCh0u8tqGInwxtI8Ss3uXLNFMDTi2hLp1Jf3mmyXtxhslBflOL3e8xl/PXVfcYMRAQny8nD5wQK2uRrgi1ZgGaUFYxMfLBeTbxD7i4lTEtxo1Sq7r379E3Qbc/HffPvnk2Wfl60WL5NzRoxJXqZI4l88BArZCQoI0y8uTlsOGqZsIxI5dicv2gY1kzlV7n6U50CpcmPRlbsHnzpVs+2mb4CdjuTWuFnYVKBtblNpC0x11bzoft1XWnZPXfIcvC6v5LbiDqMx8IGuqbY2OhQcVEjnR6Esw+hOQwUSjezkIt2j0Jxh9iUXzau4Ld5Cj/QAayEIaqiXVCXGb4gDLLB7MS5tllmI2gkDALejSRV0K8rZt81gbYak1llmILQz5nzt+XAatXy/VA1gJTRquUAUkOPXttypi4Z/b9J57VPj9Z/t2+VXbtv8TsQ0bSp169UJOmYVjQIeOVwhf+2nW/YrzP4tytd98o8dx6ccftQgDhvFrZGSoRbS8FQltLErmva+nRRQp2DpzpgpXVCFDaV2AQgWVk5I0oA1+r4aqNWuqCGw7fvwvmt81VJAhQq/J0aOa4gsTAs0QHAh3FAdpspDg/vx5qd26tbQYNkwye/eWi+XKqTAy/pV2PlG3QClKzlXbwmpwJ5mPJleAcGN3pvaDljvRvi367c7D7WdqJ+B3p9MyJVXt7Y2gNdYW22fU/pz5TuPGYYQqJvfwv7uilr/k/vRNjU7sYg7u368/C2Mg0ehrWbhFoy/BGGxy7wPYD3/hEI3FJdRjv9Jt4kLYzqyPBuhmUErZPGOGBjENXLXKa9gcrgQoDRuXkCC/atZMvt2wQQauXh1QyIJjx46pa0GoQhZ+l/mjRsnuBQv0O+Ez+6v27eWGhQslrXVrqZ2W9jPXAF+WOXdaJdPhYZ09pKHBVefPy5GVKzXf6f733pMfT5yQpKwsadCvnzTu21ePozjVuUzwlvFxRXBU4datcvLAAa1UZm7a9K5dpe24cZLRrdsvfiOfR6aEy8IUab3waovV099+q8uxzC4la4CFHMeOCmGwwmb06SP1c3OleuPG2hbfHDvm8QOG71Kw1EvGFSCUnKuhBm+VZnx12HbH7K9Td3fe9v5sTGfr/pztk2pbPk0QlO1CgG3tEq0mx6o9xGfyNLuzCtjJ+zHZqbBsX2nbqgpskYr9wv3EzvdKikew35wvsehPNPqzPBZHNJpXf8Iv2Hvz/8BeZzAPYYFEY3EI9Hnzne5jco9gmOMsK0KwrMFsBhECxQU+mThRc7kiuMoGlsOka6/VXKAQZn2WLpXa2dkB9wefOwxzIntBqMAaiipZOlydnCytZ8+W1KwsaXjjjfrPE/vEk1CwtErukqJu4DKw/3IO2ILly+Xi2bM6HJ4zerT65sIPN1z/EFBhC6V9TenYaldfram0yhUWamBbs3vukVYjRkjK5QIBVyqYkbcV4vOsJUzxeurQIbUO6zrk0T1+3KtIgQHHgmA+7aggLlwlMpW4OLUmw72kcq1a0nDgQGlw551qhUVbm3yp7nRo0Zhz1XTYtgtJQKu+D7HpT3Cazs3g67278wvV8mF3hsb/GMeEa4nhN6QvwzYmTZ4pamDKyZp9mPKs+IwRlKYd7TbE54E7OMs+R/P9xsJri9ZY7HiDDUn7EolFEYzhGJJ1Cx9/vzX3OjNvvtdtZTQU9UGTFkES65QKN4MXX3xRpk+frqmlWrZsKTNnzpS2bdv63X7hwoUyadIkOXDggDRo0ECefvppue2228Jutg4XP124IG+2b6/5XYds3aruBG42TpummQRumTtXc6YGAv+Ev/76axWybv+8gJ/76SfJf+YZqZGTI+dPnJDka66R+NRUL8ucu0JPqCBTwldLlsge5ID98EO1NF/Vrp2KV0wmb264OXvsmCzu00erlSELwtFNm9QHOHv4cGnxwANSJTnZ5+fQFsZyeurIEc3X+sPBgx5hegY+wMePqyUZIrkoQLSiGhq+G8Uc4mvV0ty9eF+lZk19XxmCNTlZhXdFBAYlJmoaLQhaO1DLiE/4BLuFjr/gLdt30y2AQu3M3VZMf5Gz/qJkzXcGvE4BxGKgIAXj4mALS38WF/fycIJ8vBgdsYdqzXea1GcmRZXJF2tXujJVu0xAlsE+Vztvqi1SI2FN9TUc7W77QL8Ff78Nfxa7K+mKfF0D+zcfTFT6Wu9ui+IKQbdF80r25+9cCYllThZBr5W4ZXbBggXyyCOPyJw5c6Rdu3by/PPPS/fu3WX37t2aYN/N2rVrJTc3V5566in5zW9+I2+++ab07t1btm7dKs0QNFQKQbnYwm3b1AfWl5D98u23Vci2nzDBS8iajsD2x8OEQBKkvCqKkAWwGv6wb58cef996TZjhlydkxOeNGM9eqiABSgne9OMGZo7NzFI8YZwAP/jU4cPy5HVq9WnFGVaq6WlyQ+HD8vKMWPkDIb0v/tOzx0CHj7JcLfAcZerXFmreJWrUsXrVd+npOjxp8CKWaOGWkwrJSWpAMX7ChCf8fGaEku3h6UT0eIQGn7aJZBgczD8bJX9xE1s3APQ3sAOMnB3usYyayyAwUSlr2W+rEe+RKXtRuJ+tf2cfwkBWZqASEXGBwTcGRcCWGPNhLZDexgxZ19Hk4vVWMjt6+jLIm3yzwZ7iDCuI/4eLIpju/BlQXS/9ycOMdkPIUbgmWW+AmQAhSAhJCossxCwbdq0kVnIaXrZGgCL4+9//3sZP378z7YfMGCAdhDLli3zLGvfvr1cf/31KohLm2X22y1bZF67dipUO02e7HubrVtl80svSYsJE3z6+BjrjD2MeCXlYNUyO2qUWi2LM+zuZu3kyZJYr55k/fa3aumNJLvfeUfyJ0yQmp06SUL9+v8TlpeFhQd0jhBXEAsQYhCclwOjysPaBVEB/0GkDqpaVSfMV7icysifAP0lLX8FBQVeFqZgAiKUNCvuyT5+UnSQRcRUSysOwURiKFZAf5ZsIxSDiUZaBAkhpY2osczC2rBlyxZ59NFHPcvwD7hbt26ybt06n5/BclhybWDJXbx4sc/tzXCeARfFXKSIkJIiTVDpa8QIv99ZNStL2k+Z4mXRCoS7ulBRaDNlStjPv9no0fp6MZLX9TJVsrKkWsOG6tZw8T//kUq1aklirVqSnJkp1erV07RmyJgQzjQykQB+sW5RUhyMNY+ED1MUAfgbGg4F9wNsKfD8IoQQn8CYdlUIlTfDgdETofxPLFExi1KnEAdILWWD+S/die0vA79aX9tjuS/gjjDZh0W0KIFTYeG55yL7fYQQQgghUQ7SUMJCW6p9Zn9pYPW1LbmwTiEvKiojcXg1fE9PeDg4dOhQxILqSOmAbV82YbuXXdj2ZZeTEe7rYZGFkEVF0WCUqJhFEBOG6o4ePeq1HPP+av9ieVG2R2CGu4oVgjZI+MGPm2K2bMK2L5uw3csubPuyS/UI9vXBLLKGEs2KjkjenJwc+fByJLyxnGK+Q4cOPj+D5fb2YMWKFX63J4QQQgghsUuJuxnABSAvL09at26tuWWRmgvZCu69915dP2TIEElLS1PfVzBy5Ejp0qWLPPvss9KzZ0956623ZPPmzTJ37twSPhNCCCGEEFLmxCxSbX333Xfypz/9SYO4kGLrn//8pyfI6+DBg17J+zt27Ki5ZSdOnCiPPfaYFk1AJoPSmmO2LAA3jscff/xn7hwk9mHbl03Y7mUXtn3ZpXIp7utLPM8sIYQQQgghV0qJ+swSQgghhBBSHChmCSGEEEJI1EIxSwghhBBCohaKWUIIIYQQErVQzJKQQGq0Nm3aSGJiotSqVUt69+4tu3fv9trm3Llz8rvf/U6rq1WrVk369ev3swIXJPqZOnWqVs8bNWqUZxnbPnY5cuSIDB48WO/rqlWrSvPmzTUdogExxMhGg3rtWN+tWzfZu3dviR4zKR4oMz9p0iTJzMzUNs3KypInn3xS29rAdo8NPv74Y7n99tu1yhb+ryM7lE0o7YyqqoMGDdJCCihKdf/998upU6cieh4UsyQkVq1apUJ1/fr1WqTiwoULcsstt2hOYMPo0aNl6dKlsnDhQt3+3//+t/Tt25dXOIbYtGmTvPTSS9KiRQuv5Wz72OT48ePSqVMnqVixoixfvlx27typOb6Tk5M920ybNk3++te/ypw5c2TDhg2SkJAg3bt31wccEp08/fTTMnv2bJk1a5bs2rVL59HOM2fO9GzDdo8NTp8+LS1btpQXX3zR5/pQ2hlCdseOHaoNli1bpgJ56NChETyL/6luQopMYWEhHtGdVatW6fz333/vVKxY0Vm4cKFnm127duk269at4xWOAX744QenQYMGzooVK5wuXbo4I0eO1OVs+9hl3LhxTufOnf2uv3TpklOnTh1n+vTpnmX4PVSuXNmZP39+hI6ShJuePXs69913n9eyvn37OoMGDdL3bPfYREScRYsWeeZDaeedO3fq5zZt2uTZZvny5U5cXJxz5MiRiB07LbPkijhx4oS+pqSk6OuWLVvUWoshCEOjRo0kPT1d1q1bx6scA8Ayj6p7dhsDtn3s8t5772l1xv79+6t7UXZ2trz88sue9QUFBVrsxv5NoJZ6u3bteN9HMShOhLLxe/bs0flt27bJmjVr5NZbb9V5tnvZoCCE+xuvcC3A/wkDtkexK1hyy0wFMBJ9XLp0Sf0lMfxoKq/hB1+pUiX9UdugkhvWkegGZaO3bt2qbgZu2Paxy/79+3W4GWXHUXER7T9ixAi911GG3NzbpmKjgfd9dDN+/Hg5efKkGiTKly+vPrRTpkzR4WTAdi8bfBvC/Y1XPOjaVKhQQQ1dkez7KWbJFVnotm/frk/qJPY5dOiQjBw5Uv2hqlSpUtKHQyL84AqLy1/+8hedh2UW9z785yBmSWzy9ttvy7x587R0fNOmTeWzzz5TAwaChNjupDRCNwNSJIYPH64O3vn5+VK3bl3P8jp16sj58+fl+++/99oe2QywjkQvcCMoLCyUVq1a6RM3JgT4ISgA7/GUzraPTRDB3KRJE69ljRs3loMHD+p7c2+7s5bwvo9uxowZo9bZgQMHavaKu+++W4M8kdUGsN3LBnVCuL/xiv7B5uLFi5rhIJJ9P8UsCQn4hkPILlq0SD766CNN2WKTk5OjEc/wszIgdRc6vQ4dOvAqRzFdu3aVL774Qq0zZoK1DkOO5j3bPjaBK5E7BR/8KDMyMvQ9/g+gw7LvewxPw1eO9330cubMGfV5tIG7ASz1gO1eNsgM4f7GK4xYMHoYoBHwW4FvbcSIWKgZiWoeeughp0aNGs7KlSudb775xjOdOXPGs82DDz7opKenOx999JGzefNmp0OHDjqR2MPOZgDY9rHJxo0bnQoVKjhTpkxx9u7d68ybN8+Jj4933njjDc82U6dOdZKSkpwlS5Y4n3/+udOrVy8nMzPTOXv2bIkeO7ly8vLynLS0NGfZsmVOQUGB8+677zqpqanO2LFjPduw3WMnS82nn36qEyThjBkz9P3XX38dcjv36NHDyc7OdjZs2OCsWbNGs97k5uZG9DwoZkloPxQRn9Orr77q2QY/7ocffthJTk7WDq9Pnz4qeEnsi1m2feyydOlSp1mzZpqOp1GjRs7cuXO91iN9z6RJk5zatWvrNl27dnV2795dYsdLis/Jkyf1/oZxokqVKk79+vWdCRMmOD/++KNnG7Z7bJCfn++zb8cDTajtfOzYMRWv1apVc6pXr+7ce++9KpIjSRz+RM4OTAghhBBCSPigzywhhBBCCIlaKGYJIYQQQkjUQjFLCCGEEEKiFopZQgghhBAStVDMEkIIIYSQqIVilhBCCCGERC0Us4QQQgghJGqhmCWEEEIIIVELxSwhhBAP11xzjTz//PMhX5EDBw5IXFycfPbZZ7yKhJASgWKWEEIs7rnnHunduzevCSGERAkUs4QQUspAlfGLFy+W9GEQQkhUQDFLCCEBuOmmm2TEiBEyduxYSUlJkTp16sgTTzzhWX/XXXfJgAEDvD5z4cIFSU1Nlddff13nL126JE899ZRkZmZK1apVpWXLlvLOO+94tl+5cqUO1S9fvlxycnKkcuXKsmbNGtm2bZv8+te/lsTERKlevbqu27x5s+dz2OaGG27QfdarV0+P8/Tp037P5auvvpJevXpJ7dq1pVq1atKmTRv517/+FbD9cVyzZ8+WW2+9Vb+nfv36Xsdu2L9/vx5rfHy8nt+6des8644dOya5ubmSlpam65s3by7z58/n744QEhYoZgkhJAj/+Mc/JCEhQTZs2CDTpk2TP//5z7JixQpdN2jQIFm6dKmcOnXKs/0HH3wgZ86ckT59+ug8hCyE7Zw5c2THjh0yevRoGTx4sKxatcrre8aPHy9Tp06VXbt2SYsWLXTfdevWlU2bNsmWLVt0fcWKFT3CtEePHtKvXz/5/PPPZcGCBSpuhw8f7vc8cIy33XabfPjhh/Lpp5/q52+//XY5ePBgwPOfNGmSfg/ENY5p4MCBeow2EyZMkD/+8Y/qO9uwYUMVr8a6fO7cORXi77//vmzfvl2GDh0qd999t2zcuJG/PUJI8XEIIYR4yMvLc3r16uWZ79Kli9O5c2evK9SmTRtn3Lhx+v7ChQtOamqq8/rrr3vW5+bmOgMGDND3586dc+Lj4521a9d67eP+++/X7UB+fr6Df8eLFy/22iYxMdF57bXXfLYOPj906FCvZatXr3bKlSvnnD17NuQWbdq0qTNz5kzPfEZGhvPcc8955nFcDz74oNdn2rVr5zz00EP6vqCgQLd55ZVXPOt37Nihy3bt2uX3e3v27On84Q9/CPk4CSHEH7TMEkJIEGAltbnqqquksLBQ31eoUEHuvPNOmTdvns5jmH/JkiVqwQT79u1TK+3NN9+sQ/tmgqUW1lWb1q1be80/8sgj8sADD0i3bt3UYmtvDyvpa6+95rXP7t27q0tDQUGBX8ssrKeNGzeWpKQk/QwsrMEssx06dPjZvNsya18jXB9grtFPP/0kTz75pLoXwFUD3wvrdbDvJYSQUKgQ0laEEFKGMUP7th8pRKMBwrVLly4q3uB+AN9SDOED436AIXb4jNrAN9YGrgw28M2FTy4+C3/axx9/XN566y11X8B+hw0bpn6ybtLT032eB4Qsju+ZZ56Ra6+9Vo/zjjvukPPnz0s4rxGuDzDXaPr06fLCCy9oyi8IWpznqFGjwvK9hBBCMUsIIcWkY8eOGoAFv1WIzv79+3vEXZMmTVS0wgoJwVtU4H+KCX628EN99dVXVcy2atVKdu7cqaI0VD755BNNPWZ8eSGIkSc2GOvXr5chQ4Z4zWdnZxfpexF4Bj9hI3L37Nmj14YQQooLxSwhhIQBWFAR4AWRlp+f71mOTASwiEKMQsR17txZTpw4oQIPGQry8vJ87u/s2bMyZswYtZwiC8Lhw4c1EAyBWGDcuHHSvn17DfiCKwKsnRC3sLzOmjXL5z4bNGgg7777rgZ9wXqKwC7bwuyPhQsXqgsEjh3uFAjc+tvf/hbytcH3IgPC2rVrJTk5WWbMmCFHjx6lmCWEhAWKWUIICQNwNZgyZYpkZGRIp06dvNbBX7RmzZqa1QAprOCvCsvqY4895nd/5cuX15RWsIhC+CHVV9++fWXy5MkeH1VkQ0AWAaTnQqxWVlbWz9KE2UBE3nfffWpJxv4giE+ePBn03PCdcG94+OGH1R8WabWKYlWdOHGinjd8epGaC9kMUJgCop4QQopLHKLAir0XQgghMQksuIsWLWJVNEJIqYXZDAghhBBCSNRCMUsIIYQQQqIW+swSQgjxCz3RCCGlHVpmCSGEEEJI1EIxSwghhBBCohaKWUIIIYQQErVQzBJCCCGEkKiFYpYQQgghhEQtFLOEEEIIISRqoZglhBBCCCFRC8UsIYQQQgiRaOX/ASRZZk9XrHt/AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIjCAYAAAAQgZNYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQWYFMfWhs/isri7ewjuJESJkhAlLkRu3N09uZE/N+7uTkKMhOCSQEgguLv7Aouz//MWcyY1RffI7s7uLPT3PL0929PTUl1d9dWpc76TlpWVlSUBAgQIECBAgAABAhRAFMrvCwgQIECAAAECBAgQILsIyGyAAAECBAgQIECAAouAzAYIECBAgAABAgQosAjIbIAAAQIECBAgQIACi4DMBggQIECAAAECBCiwCMhsgAABAgQIECBAgAKLgMwGCBAgQIAAAQIEKLAIyGyAAAECBAgQIECAAouAzAYIECBAgAABAgQosAjIbACDXbt2yW233SZ16tSRQoUKSd++fYOSyQEuuugiqV+/fp6X4YIFCyQtLU3effddyQ988MEH0rx5cylatKiUL18+X64hlZFfz2f27NnSu3dvKVeunDn/gAED8vT8AQLsj8hJexdvH5HbbcYCj+M98MADZltBRkBmUwRULCqTLiVKlJCmTZvKNddcIytXrkz6+d9++2156qmn5PTTT5f33ntPbrzxxqSc5+OPP5b//e9/STn2gYRULMcZM2aYBrpRo0byxhtvyOuvv57flxQghAsvvFAmT54sjz76qOmAO3bsmLSyWbZsmekcJ06cWCDKPyfX+/LLL5v2ukuXLlH3ow2/5ZZbDPEpVaqUlC5dWjp06CCPPPKIbNiwIeZ5duzYIc8995y0a9dOypYta4hTq1at5PLLLzfvnduP/Pnnn/sQlWrVqklmZuY+x4ZQnXjiiRHbNm/eLPfff78cdNBB5lorVaokbdu2leuvv96UVzJA25Genu77PfdAf+jXZ7rLRx99lND5eTf4HfccD4L2LrVQJL8vIEAkHnroIWnQoIFs27ZNRo0aJa+88or8+OOPMmXKFNMIJgtDhgyRWrVqybPPPpt0Esa93HDDDUk9z/4Ov3KsV6+ebN261VgK8hrDhg2TPXv2mE63cePGeX7+goD8eD6cb+zYsXL33XdHkIFkAbLz4IMPGpIEAUp15OR6IUz8bty4cTJnzhzPej9+/Hg5/vjjDUE877zzDIkFEM4nnnhCRowYIb/88kvU85x22mny008/ydlnny2XXXaZ7Ny505Cp77//Xrp3725IciysWrXK9Cc333xz1P049qGHHmqOzyDo2muvNdc+depU0+6ccsopUrNmTclvcI0MzFzQh02aNEmOPPLIuI+1ZMkSeeyxxwxxjxdBe5daCMhsiuG4444LW00uvfRSMyL+v//7P/n2229NQ5YTMCr3I8Q0dAV5WjjavR1IUKt+foA6BGLVo6ysLDNYK1mypBxoyI/ns3r1arPOzfd7y5YtCXX8BfWc0TB//nwZM2aMfP311/Kf//zHEFusmTawukL+ChcuLH///fc+pBNrILMY0QAZhrSy71133RXx3YsvvhiXZRdA1Jl9u+qqq6K+e7igcK3czznnnBPxHe8tVuJUQMOGDc3iDty4vyOOOEKqV68e97Gwmnft2lV2794ta9asydX2LkDeIHAzSHHwUmrDqfjwww/N6J4GqWLFinLWWWfJ4sWLI3532GGHmemSCRMmmBEsRM9tCG3/maFDh5qRt07RMOoEWNqYzmZKi06YqSoa7vXr10ccB7J9wgknmBF78eLFzVTzww8/bBoH+5p++OEHWbhwYfg86jOkU0Zcjw2uw76eWPe2fft206FgIeE68AHGF5jt8fgVYgGhEeRea9eubcp248aNEfvFU/5eiLcsAVaYXr16SZkyZcy0YqdOnYxVJFY5+vlXYXk/5JBDDBmg8T355JNl+vTpEfvodCQWJqb82A8fy4svvthzetIG59eOvEqVKuY4HM+exhw0aJAZqFFur732mvmOjhjrMs+J58Vz++9//2vKygb7cU1cD9eFxYhpYfdeKRuWePzT4n0eev3MlHTu3NnsSyf6/vvv73MerhMXHX7D/VCHLrjggnAH6fd8sILh4kN94viU03fffbePxQwLYpMmTcw+DHR79uwpv/76q+9z4RlgDQa33nprRF0BkBYG0NQxpnixZv3+++8Rx9B3c/jw4YYoVK1a1dyXF3hPqauAeqP1U+935MiRcsYZZ0jdunXD7yflBQlxnxfXM3fuXGPV5D0499xzzXfse91110nlypXN9pNOOkmWLl0aUecUbO/fv795tpyPZ41LVbzXGw2QvQoVKph2j2fnNa1NPecaMEh4WU+5rnvuuSfqeSgD0KNHj32+gyRTD+LBfffdZ9wdsM5m93zUO+pKvND2+7PPPjNtNG0rbRDPLJ42M1EMHDhQNm3aFK4r8QDL+JdffpmQ21a09k7dT6hr1Dn6xKuvvjquQYdXOxfvYGXdunWGlLdu3dq8Ozwn3m2s1AcCAstsikMbFm2wGJ3fe++9cuaZZxrLLVaXF154wZA6OiZ7lLh27VpTmSFbTG/RcLrgRWSqhuMylfT444+b7S1atDBrOncadhp6OhBINdYAzjV69OjwdCn78ALddNNNZg15ovHMyMgw1gDANCfEkCkddWeI5iMVDV73BjmhkYR04EvGPeAnyLlmzZoVNegFa8MxxxxjSC/TajS6dEJYRGhMaFwSLX8XiZQlHTCN4Z133mmOyT4///yzsZQkWo6DBw82ZQUBo8GFDHDNdFZ//fXXPiSPe8PVhbrA92+++aYhMJBMP9ARQO6++eYb01lyPQcffHD4+5kzZ5qZBcqAadJmzZoZggxhp5zZDsHB0sU9L1++PNy5YMmFfPNcr7jiCvNcOQ8NfU4Q7/MAEHwIyyWXXGLOCyGi02FQw3MCvD8MGBgk8Pzat29vSCyklGcF+fICg0ieBW4+d9xxh+nsP//8cxOE+dVXXxnLHuDZ8Uyod5Bq3i2mqnlGRx99tOexTz31VFN/IIyUP8RQ6wrn5Xrp9Bjwcb+QLwYDEFfXDxQiS3vBe42V1As8G1yl2Id3kOMDpsLBF198YZ77lVdeado0puepi5QP37lBqbyTEPann346PPNCuVM+559/vrGmca0QShcQN75XX0uunUEiz5CyYxAV63qjAfJK+RYrVsyULfUeK6qSY8CzZ/BG3ckudDDC+agnRYpkr9vm3jCOPPnkk6b8/ayzej7eZ4h2bgQGqT/q7bffbiyavNtHHXWUGZC61xGvZdQLlBHH47nEA4wttPe8U5DAeBGtveM9ZdDJ/VHOtH1aN9x2xUZO27l58+aZPo7BIu039Z/3mTZ22rRpKeEaklRkBUgJvPPOO1k8jsGDB2etXr06a/HixVmffvppVqVKlbJKliyZtWTJkqwFCxZkFS5cOOvRRx+N+O3kyZOzihQpErG9V69e5nivvvpqXOdn/1atWkVsGzlypDnGRx99FLH9559/3md7ZmbmPsf8z3/+k1WqVKmsbdu2hbedcMIJWfXq1fO9//nz50dsHzp0qNnOOta9ffDBB1mFChUy122D/dh/9OjRvvf/999/m32++OIL330SKf8LL7ww4j7jLcsNGzZklSlTJqtLly5ZW7dujdh3z549McuR8uN4lKeibdu2WVWrVs1au3ZteNukSZNMWV1wwQXhbffff7/5bf/+/SOOecopp5h6GAv6e+qvDa6T7dyrjYcffjirdOnSWbNmzYrYfscdd5hyXrRokfl/wIAB5vdPPvlkeJ9du3ZlHXLIIfvcK3WDxUV2n4d9/SNGjAhvW7VqVVbx4sWzbr755vC2++67z+z39ddf73N+fXZez+fII4/Mat26dcR7wv7du3fPatKkSXhbmzZtzHNPFHrOp556KmJ73759s4oVK5Y1d+7c8LZly5aZ+nfooYfu82727NnTlHssjB8/fp97jNZOPP7441lpaWlZCxcujHheHIO6YGPChAlm+w033BCx/aKLLjLbqYOKSy65JKtGjRpZa9asidj3rLPOyipXrlz4WqJdrx/+/PNP85tff/01/Lxq166ddf3110fsV6FCBfPccgKOrW1etWrVss4+++ysl156KaK83GfFPXm9l8OHDzef/+///i+iftv1inJp1qyZ2Y/vKNu33nora+XKlQlfu7bftWrVysrIyAhv//zzz8325557bp9nHm25+uqrfc9F+0Z9PvPMM+O+vhdffNHUBd5nv34wkfaO43ANvXv3ztq9e3fEedj37bff9m2TEmnnvLBt27aIc+q7Tzv10EMPRWxzj6f3UpARuBmkGBjNYUFg+g2rIyM+RmdYbfDNwvqI5YzRqy5YEZl6xFXABlMcWJ2yCywlWCSx+tjnwxrFddnns0fXTPOwH5YArDB2tG1uweveuF5Gs0zn2derrhpu+dhQyytT4X5T6omWf3bKkiljyg8LnetbmR0LCRZOrB9Ys5jCVmBF4FoILnSBVcAGzxFLONas7AJLAVY2t0w4NlO1dpnwDmAxYfoPcI1Yo7By2NOrWFTyom6Dli1bhq12gHcU6zLWEAVW1DZt2oQtqfE8O6YGmcWgTul7w0J5U164vmC5BlhYsaayLaegfAk6wvpr+x3WqFHDWP+xDrnPG4s65Z4T2O0E1l3uFSsoViks4i7sZw6YnVArsQ23LnA8nkefPn3MZ/sZU67MbGDRzokFkNmgww8/PPx8+/XrJ59++mmEaxVliCtETsCxaZdQPuBd+eSTT8y0NRZUzhnvNDRgBolrxjrrunbYz+iPP/4wbimA2Qus2dQNyjkely0XuNrY5YClmuO57Q9tHm2g1xILuAowwxaviwHvGBZ5Ztp4n3MDzIJxDVj9kbi03x1mQHAP80NO27nixYuHz0kd5P5oy2inclLXCwoCN4MUw0svvWQkuajUNJZURK2gdGI0zBAnL7jTFxBgpsAUNOB2A8Z3NsFxwfn4DVPM0RzgAZ0sU1J0zG4n6Pqc5gbce9PrZYrXr2Gyr9eLbOEigW8bHRXEBZcFXBiU6CZa/tkpS3UriVceJhbwqwXUIxcQfzpJN7CG6X4bdKAAX9JE/OXc8vUqk3/++Sfm8+Ie6PhcVwqve4oXidRtrzLRcrH9a3l2+FwnAtwXqFN0qCx+10J9ZzqcaUjaB+rHsccea6babXeOeIF7DIM2v3rBoA2fRnWh8HuGiWLRokWGQDD97vomu+0EbaDrm0tdoD10r8VVEeD+IHnIw/lJxEVrD6IBogBphRTasQy4ZTzzzDPy22+/GU1fwPvCICUeRGufISq4F7EwQMW1AtUQ3C1od/DjjxdMgzP1/Oqrr/pKMNLmQXhZKHPuCVcP3HD4DmKdCNw2E4LOM3NjJCBvDGazA9ptyguXqnhAf8X+ORkUx9ve8iwZNOr3fr/NSTu3J6Qkg78u9dIeVMXrV12QEZDZFAO+cH4akFRWGgH8vrwsJO5L4PoioRGIhqyCBs0OrPI6H529n16fkhA6DY5Fw02HS/AXI2xGg/hIucE8XvCzXNkvZLR70+vF7wlC6gWs3dFAR4QFk2A2rFb4UeKjSEAMnWqi5Z+dskwF+FnfIF3Zhd/zwjKKv6YXIG2JgufjdZ1uPUr0eSSjTPQ6AIEbruXaJWpY1SDMWj/xZcZnGlKCz1+ykVP1CZ4BzxtrNO0CMygMorA889657YRtaUoUeiwGo34+h9kZBAAG7BBKCC2LC+qUklnukZkRrHXu4NtFvO0zhIdZOwZODDYgtFhP4/WlpR7hFw1RdWdhvIAFGB9wZhwgZNxfomQ22WCQRHAhfs/xyN4xmGWQg++rrZuLWgOBlpBs+rNoxp5Uw2OPPWYGxDwrgq+5dt4frMTx9MEFHQGZLUCAJNJ5YpXITkcPaaBxdy1u0c7HtAlBB9E6MhpcpjSYhqehVNhWi1ikVa/FnTKLNpL1ul7VF8xu0AJkmIVRO8FI3DtkgcY7J+Ufb1myH0BDNppWa7z3p8EcBCG4wP2DoKT8kjviXgmaimWJ4R6wDLGvPWDwuifqkT3171eP4n0eiYBj8twSgU7x0wHHY5Gig8K9hoXy4H3D0pYomYWsE1DlVy/oBGMN/hKtmwRjEogJYWPaWRHPFLJdF+iYaVtsax8Wbvf+mNaGQMcq10TbCsgcAyFm0VzQBuIWRptBvcLNAY1fXB5iSSsm2j5TZyDkEDN1d4oX1BkIraqKxAOuJzt1HLiuMbSjPLPsDihc4HrBMeN1MWAART3CYMHigjaewUWiiWns9tZ232EwQ52NVhcTaef83CwOP/xweeuttyK206f6BZ/uTwh8ZgsQiNDEQkSkpGsR4n8IZTTg98fLpIuKd/sBPz46A0Z5Log0VuKpViv7mnh5me5wAXHycjtQEqd+koBzJ5JFiuulkfLSbWT6zi8CG+AawT3ZgNTSqauPWE7KP96yxKJDJ4xFGCuBe45Y5ehlxUFfEgJhDxTokLDuEd2eX6BM6OhxdXDBterz4Br5bEsKUZZEwXvVI8iYaqsCBjhEEWfneSQCLGWcCzITrwUXUqSkAmufC/s+3PpFh8eAJzs+jNRj6hpWXnuqlwhoJOBQEMiuS4kOjtwy9Gon+MzUaLxQ67Xbtrh1gXPxPCCRXuTLLle/6/UC7QiEFak2/D7dBdUE3ApUVg3LJ+8giQog8l6uDmrl9GufIYJYHl1wvbw/kMxEZ3aw+lLvUChx2xnqsJeiAANCouKz495D5L/tbgHxor7H6xIQC9RZXIGot17gfmgXNB4CNx3eU3fB0s1x+IyfcKLguWGBf/755yPqOQST9tpLdUORSDvnhcKFC+/TzhAboD73+zsCy2wBAh01DR/SRXRABG9AfBjx8fIxxcJ0ZW6BBg/5IogVU2V0flgDaFx5SeiEaMAJ4KBBZTqPUS6WDuS+vDpwGmg0B/FPRcKGDhnrBY0IMjrcG9OQWKCYwnMJZjTgP8iUGx0IATxY3WgMaMTYrjqnflOHdETImmB15bzcg3aKOS3/eMsSAsHUMZY2yodgHMqWDoaGWKch/crRC0ij0Wl069bNNNAqzYXvm6vLmZcgwIROH2KgMlcMOLDg0dlRxlgUuC+eJUFxbKPTh1B4kXmm2HAzgfRwr5AFrGTUL9uXO97nkej9cN3UIa6D+6Euc49cA8FhXsDCRyfM4IlAESw6kEqICpJVqhPJfUNAOC7vB7JcnC+7Wb2oy1hFOTcBVUxTQ6ohx0xBZxe8JwSrcc+8H5BF/EmZcuc73hE6WOo6ZNNLZ9kP3DvvIxYzyL1KcylRtK2sZNeiHeDclCvlx/PA/QmrPJ+jXa+XjzDPElKGP70XuB6IJdZbgrN4d2kbICoMKu0MYFwHFkXey2jg+dMO8A7jy8+zp/xoC5gipyyyE5iHTqoGsNmgTvAd98j90LYw24EcHXUjO20G10w9Y0aBus01MxDjueQUDFbwvad98LOy4+uLEYL6wDtEu0L77UItsV7fxQOePf0D58KnnTLEssrgi3batry7SKSd88KJJ55o3PwoY/pk2lHqoZtYYr9FfsspBPCXVPHDV199ZWRykDViad68uZEsmTlzZnifRCRGYu3/+uuvZ3Xo0MFIhCHbg4zQbbfdZmR8FMhede3a1exTs2ZN8/2gQYP2kdXavHlz1jnnnJNVvnz5sPSLAomgo446ykiJIEFz1113GekbL2kuv2vdsWNH1n//+1/zPcdBGodrf/DBB7M2btzoe//z5s0zklSNGjXKKlGiRFbFihWzDj/8cCOVlp3yd2VXEilL8N133xlpJvYrW7ZsVufOnbM++eSTmOXoJbsCuI8ePXqEj9enT5+sadOmxSWt5Seblog0l5+k1KZNm7LuvPPOrMaNGxtJm8qVK5v7fvrpp82ztGV3zj//fHPtSOnwWeXU3Hv98MMPsxo2bGiOhywZ9TAnz8Pv+r1kwLjOa665xkgRcX7kmji3ykP5PR/qPjJp1atXzypatKj5/Yknnpj15Zdfhvd55JFHTD3gmXO91Dvk4OxySkSaC/z1119ZxxxzTFZ6erqR0aPOjxkzJtttk+Lbb7/NatmypZGss++XOsc7zvl41pdddpmRiXPLhDLj3fLCli1bzPvGO8pxkBjj3eMYTzzxRMS+yEmxb506dUy5Ur5IofHc47leF7w3tA9cgx+QsuJctiQY9enGG2/Matq0qfk9ZU294/lFa5f0Hrgv6hpSY1wj7doRRxwRUT/ikeZyoZJfdv2mLURmjvYcST/OV6VKFbPPkCFDsrIjzUXbxXvO8ai7HMuVFov2zIGfNBfybXz3zz//+P5Wy8DuR7yQU2kuW4qL95N6QF925ZVXZq1fvz5iH682KZF2zkua6+abbzZ1hDKmvR87duw+7dT+Ks2Vxp/8JtQBAgQIkCiwXmA9e+edd4xlN8CBC6zr7dq1M1H9iWR/CpBcEE+B9ZfZjpwkjggQIBYCn9kAAQIECFBg4KWPyvQw/u12AGqAAAEOHAQ+swECBAgQoMAAf94JEyYYix9+vkjlseCznl0FhgCJgQBf9Tn2g+pzBwiQFwjIbIAAAQIEKDAguIUgJZQokDEi+pygJBIKBMgbIFvoFTxmA/ef+vXrB48kQJ4gX31mkWEi0ppRNjIdRH3GiiLEB4cIbjJOMQpHDzTwlwsQIECAAAHyBihQ0G9HAwoiyJIFCLDfW2aR4UGuBhkbNDxjAQkkdNqQXkJyAoFhJIx4Yfyy5wQIECBAgAABcg9IjmU37WyAAMlAyqgZoA8XyzJLCsQffvghQgSbtH6IR//88895dKUBAgQIECBAgAABUgUFymcWEXF3NIhFltzDfkDk2c6QQwo7HNcrVaqU7ZSnAQIECBAgQIAAAZIHbK0kKalZs6ZRK9lvyOyKFSukWrVqEdv4n8w+yLV45Vgnww/ZOAIECBAgQIAAAQIULCxevFhq1669/5DZ7IDUcgSMKUgNR/QrhZPd3OOJYPXkyfKJR77oc0aPlsoHHZS08/757LMy5oEHpGz9+tLwhBNk+scfS6EiRaTBscfKtA8+kIP695fDnnrKbMvas0fWTJ0qW1askKrt2kmpypUlL7F7xw7JXLNGtq5aJVtWrZI927dL8QoVpET58mZdvHx5KVqqVK5a0hnx7czMlJ1btsjOzZvNsmPLFtmxebPs2rJFChUtKoWLF5ciJUqEl0Ks2VaypFkXZluRIgeUhZ+6snPrVtm1daspv92hddbu3eY7lj362V5nZUX+b6+t34nX753v/Y7r9zv7e/H53T7njfK9eBw32n2a7+1t9v96/ACpj7Q0Cb/p9jvvtV23Wf977RtuO7x+53xn9rXOa/82/J1zzLRY26xj6j5e3/PZb7tZYzVzrj3i+NYxdF97H2N1s6+zUKGIfcPnD21nXSi0NqfU7fZ5Pa4loTLzKnvn+F7njFq+1nGjPhO7DsQ4fkT/kxbnM/e5p4g2c/du2b1rl2njd23bZhY+l6hQQbrceafkBTBUEuhPmulYKFBktnr16iavsw3+h5R6WWVB8eLFzeKC3+QFmV08d66U8Nj+dY8ectpPPxlymevnHDFC/n7oITn09tvlkMceMy/64ffcI4Muu0zmffCBHPXoo6Yy2i9BuR49JD9RAQLdvHnennQ/0kGERO3evt0Qy12Q9CjrePbZZ02DxnrbtuTfTKgTK1S48N5Oymed3e/ZbjrDwoVNJ1pYv2cpWpTC/JeU2qR21y7z2ZDTXbtkT1qa2Ybrkln4bscO2bVjhxmQ7dm50/xvCDC3FVoSKYfCRYtKIQZQLKVKmUFdsTJlpFjZsmaQV7xcub0dPtfJbwiBCF2/gfXZrEPXYj6H/jd5LNmu9+3xmcWQ7tA2XXS7/TlM9v0Iv5ah+7/7HWUbOmd+gTpj6lGRInvX/M8ANsZ2/Rzv9pz+3t3uHtNve3buLdp+YVIZYO97tmePMdbQFrDWhXZhd6h9iNgW5766367t2/e2y5mZ/xoXtm83a/oDvqctCv+eNe8VbVno/Qq/y6G2IRZoh45+/PE8fcLx1KkCRWa7desmP/74Y8Q29AbZnqrYtn6973fzf/pJSlSqJDs3bZJCxYpJbQ8LbjRsz8iQDXPnSrV27UzlnvPtt6YCD7/tNql1yCHS85FH9nZ0IlK6enU55bvvZMvy5ZJes2aO7ytA7gAr58o//5QN8+bFRSzVIur1fbydPhZnSJGSI3ddsnLlqN+727BUm87NhzCGiWIUUhnxfQKdIY3yjk2bjEWd9U577Wzjf941e/v2jRsjv9+8OUw+/WBIQbFi4XsGSnbpMFi74N4gn8w2lKhY0ZRxqapVpXSNGubdLFWlitlmL5RvgFDZ2kRXO2H+dwcYiWyPcz/9HGu7+9uo27F6MdDJ7ePu7wMA2gzHYrv3pJbV0wIDMvbRwds+ax108T/lFxrgec2m2M/GXpvFIonmM4R05864CWLsQrWsqvbgNM7nnEY7G2q3GCDTthTmc2i20ayZcSxR4t/2vXTpvQufGUCnp5tBdKryh3wlswhez5kzJ0J6ixzbFStWNK4AuAgsXbpU3n//ffM9klwvvvii3HbbbUbOa8iQIfL5558bhYNURZNTT5WhVoDaxdOmyTstW5rPi4YMkb+efz783TFvvy2tzj9fNi9fbqb8a3TqFPXY4598UsY//bT8Z8kSmf7hhzL0xhvN9rL16smJn3xiKq8NXoZUrYjZBSPP1ZMmyZopU4zbRvWOHcMEIz9AA2NGzEzLhKZndlufNy1ZIiv//lvWTJ4s66ZNk40LFphG0aBQob2NCY1K6dLGAqeNCQ0NDUqpatWiEs2Ya4gnHUI+lY0h4h4kcx8iapHLaPsyeIsG6oIpx/R0U5bcP404biR8R7kULlnSuLOYDgjrNgMG3E84z5YtnvdBw+6ST78Ftx3OH1issgeeU2HeaazmAXI8ALBJr2mr1Iqn7RTWPD5j0QstauEza9tCGJqBiLAchshcmODZn22r4K5dshNCbxNzDzcc+/MBAdulwl1cos/MDSS1SJG9n3GPYylWzMwymZkdFq9BQIj8Z7muCiEjAQN9Fnemp0zt2lL/6KMl1ZCvZPbPP/+MyCKivq0XXnihvPvuuyaRwqJFi8LfN2jQwBDXG2+8UZ577jnjEPzmm2+mtMZs2Tp1pMONN8qEZ581/1dq0SL8HQTMxqD+/WXV33/L3y+8YP6/ec+eqB3g4mHDTGMy+a23ZNIrr0iLc8+V3m+8sbezzifCkkzQSK6dOlVW/PmnrBg/3lg08UmmoVRg7Wpw3HHS4PjjpX7v3sYSFi8gMcv/+EOWjx0r2zZsiCCh2tCbbT5EVf9PtNFVv2UWnTKStWvNd1jzwsSocOG9xKxMmTBJskkTVn78mZL57OnMMleuNBZ+M+hiWblSdmRkxLSC8jmWJcGQdiwAagkIEVEsAqVr1gxvh4SacgtZV5SIhi3XnC8jw8yMbMUfe80a2bxs2b7nT0uTkiFLKQsNtS8xrVTJrMNT+wECJDKt7GyPOq2cg6npRI4bHkjnEKbPwdIXWgypcrbpQDKefXWbIWUal4ChIDQdvsciui5ppoyUhCtJ17Yh7Gq1Zcvez1u2mHKI6x5DVkzcfiLug+sLEcqw9TlEPsM+vtqP0/7wOeTeo64+e+xBR4js7w7971ri9Z65Jy/SL+oelCTQFh/x3HOSakgZndm8Ag7F5IwmECwvfGYBHeqLFSuaz7dkZcnTcU6jXr5woZStWzeCbBHUBWFqf9118naLFmbKWCv2BRMnStU2bWR/AC/uupkzDWGFuEJgV0+caBomGolKrVoZK2y1jh2leqdOUqllSzMQmPfDD2bB8knDUqtnTxMA1/D4480+9uAAkrV0zBhZMny4LBkxQpaPG2fKkpcVUoyVtHDIUmoastBUjP1Z9+EzjQiEKWPhQuP+sWHOHPNcuI6KzZtLtfbtpXrnzlKza1cp16DBv41jiMxCoJV4eS5r10b8v80rN7pDzuJZIGc06hEE1eeze07urXS1alKsXDlDMj2JqLX22s5Cg05ns33DBhMMuM25V11MoGDoe68GO4L8WwTUb0k2+Q+QMwTk0J/wxSKCebEv22iraT+w4u1gyciQ7QxkMzL+HdCGAmtNsK0G3qovvi4hY0CYiFrkOx5EuCrZZNJ8+S+ZNIQn5FoQEZSZBALI9YSto5blNLv/5/S3aaHZWpsA25b7iIEB/v86eNKBwdatZna38223SarxtQOXzC5b5l04dGwlrJAtj2nGMHhZ7MCzKPtOfOMN2bR6tRzy6KMy9pFH5I977/UNBuGB4HV34qefSvN+/URC/pBTP/pIBv/nP+YaKzRpIutnzJBezz4rg2+8UeoeeaScOXiwyNat0f10Spf+93Mi+xL4E20Un8i++AJq48I0ccjHkMZwxB13yIJffjEDAF4imrGKzZoZ0lqjbVup3ratVD74YClmn0/BswhZzDLmzJEFP/wgCwYNkkVDh5pGkpcQEgwBXbdkiaz+5x/zMqdXqSJ1evaUqm3bmhd847x5Zuo5HV9Gljp1JL12bePfWAqrXCgwaP2cOcaSu+L332XZH3/IuunTzXMrUaWK1OreXWp16SI1O3Y0ChEQ4n1AYKK6gtBgR7MQ2PtSXkzv7dq11/K4du1e8qfLhg2yJWSRzFyyRLatXGk+U76Ugw2ektaANHuqJjQ9D9GFEFIOpYkqbdRIKjRuLOXq1ZP0ihWNddi2UqorwdaNG2UrknkhlYrty5eHr0+vVQnrlrVrZZdVX3QyGVcLQ0axOHMNEG8IaPXqYaJaKj3dfGf2qVjRNNhhUF4a/Ekzx3vkh0Te+yS1EfvsG80PmvfH9qmNc19DDkP1IGzFsq12WIQKFw5v2xNy5Qhb80Kdm1l27pSdaWn/WvkyM//9zrECst6hVkv2pR6GjreP5XHnTtke+sz7yVAjmh3cpjp++5oOvVgxyYKEMYDEb7BoUSmiHb5N2EL/8yx03yKQkiJF9pI4JXXWOq106b3qJmwLuUWEyaGSiRAR5LhMAafpu7xrV4T1zrY4mvcz5LpEUE/W1q3/WiBDpCMr9Bx3hSyXatygfVdyopHoJmBo61bZESIqSh7TQuTRyyUAC+EunebftUsKR/HV9G1PYuwLwm+uqhXolDrvMetQWbOtuJYnVtJQgGT4WWDNDT0L9i2igZQ6JW+RPLMvrlds4/lmZe2zj36XRl1IT//3u507I0mjPdXP+cuU+dd44vPem8Bdng9VQS3Ha9dGzvhZhH/ntm2yk+cR+n9PRsbe57p1a1hlxp45RGNfYy14P9k3GudQ8NzMlVOPQyRY4xnSa9WS86dNyxMekbF+vZSrWTMgs1HJLC4AXjscf7yI7YNL4fp1gr16iQwb9u//VaqIrFnjvW/HjiLjx4f/3ZiWJn6x9BzhXRGp3Lq1ND3tNOn66adSaMYMz32z6tWTISedJC3PP3+vjy3Ln396HxjFgNWr//3/sMNEhg/33pfOz34BTzhBxAm+i7wQq3E74wyRL7/035fpZq20F10k8t57vru+VqKElGnXzlhf206dKhV/+83/uPPni9Svv/fzrbeKPP20767vEhTQqpXU7NZNmk6eLA1+/9133w/ROA59xou5l/8VyKL775dyF18s6TVqSOE33hC55hrffXd99ZUsLFZM5v34o5QbPlw62w2Eg7GtW8uSkMZyrRUrpLvjomLj1xIlhG/ppBpmZUm0RNHDS5eWqaHBRc3t26UvPlJ+++KnHfpcXUTOi3LcMaEFVMJXPMq+c5o2lbmHHmqIc9msLGn/f//nu29Gnz6y/oYb9vq7ZmRIzZNP9t13a58+kvHgg3s74c2bpTr13Qebe/SQlXfcEbbQ4Ovuew0HHSTzr7kmHAnc5uabpbDPQGRjvXoy+fzzwwSl6/PPSzGfDmVj5coytk+fsCLAYd98I6V8OsGN6enya/fuYQWFY//8U8r7HDcjLU3eLlEiPK18Xuj5eYGW7mXr/34iUicKiXyNAUSIpB23Zo3UjTJg+PbUU8P7th8xQqovWOC778SnnpK0MmX2Bsa+/bZUGDXKd995778ve1AmSUuTKq++KuWitFOznn5atpcvb8hfjS++kGpDhvjuO/ass2RTmTJm30YTJph2wg8/Nm8uq4sVM/u2WrVKuoTchLzwGS5ioc9tRSRaUtivub/Q51YiclyUfQcWKiSzQqS46Z490icKwfhJRKaGPjcUidpGjKpYUWZWqmRIY80dO6T3rFm++y446ihZ1bu38U8vu2qVNIqi8b7j5ptl95137iWAs2dLUfpIP9xyi8hTT4VOsgCfQ/99r7pK5KWX9n6mv6ta1X/fCy8Ueffdfwkns0Q+yOzVS1beeWeYSLY45xzffVfVrClju3UL73va8OFSxOd5LA7VifDl0/36HHdFWpp8Ubbs3lnBkiXlrCVLpIyP5TqjbFkZdswxYSvsEb/+KmXpe732TUuT160+PFobsaNEicg2LIk8IuPLLw1PiscyW6DUDPYn8LJHtdJAaidPNstBZcp4E28GL2vXGv+VghhcsmriRNkxcqREk0JGQmzJjBlG+aHC7Nmy11nDG5uWLZPFo0YZl4EaX34praPsi4V2zqxZsnbKFEHBLkrTKBWaNpVV8+YZKwXTRtFGlmMffFAWhxrwTqVLRyW+A888U+bu3i3lGzWSDiE3FD9kLF4sKxYvNqPt4jHksZi2L1elimnsKkIufAZCErJ612nSxHyutGqVyNChvvuWqVNHKpUpYyyvJTIyRLzcHEJQtQKapjQa8Shltn7WLJkc6iCp5+2j3NvcgQPlt4EDzWdsmFfH2Pfn0L5Yfa6Psu/S0aNlYJ8+4f9vibIvvu6/Xnll2JrWOmQ99MLmpUtl0quvhqdAO0UJWGPqlWBGjfb2UkVQcG5cO0xwFJYpiJYPmWW/rrfdtlfLs1AhKUPQ6ZIlvnXnCEt2pzy+cVaQrg1ISNurrgpbeEt99ZXIwoW+14xbj1r+TGBJFIx56CHZEbI89t61SypE2fenCy4QvfMjRaRdlH2H3XKLZISmf3k3I1PwRAK3pU1ly5r7jHW9zGKULFvWWNqK84yjkFmCONND1u8imzbtnZ3KBeDCVLhpU9O31OT5huq+F7rdd5906tfP7Ft89GiRc8/13bfnQw9Jz6tDbxrGGyvOxQVxCvUxJACMN1HILC5HUomhLtNZXgKW/4J2b9vy5cbKuHvOHDNA9gMBtnMfesiQyLS1a+WQKPvO+uYbGfrbb2HLpb/pQWTx8OEy0CJtLaJdL5bSTZtMG1wcEsa750NmcUHr89BDe+MFSpWS4qedJrJhg+e++PS3u+gi4+61ff16KfTNN3tn9TyAm8esL77Y+09amhwShSMQAHvMSy9JUdzFypaVipdfLuJjXDFuYSmIwM0gn6YQfzrrLJn12d7xWLmGDaX1JZcYfdiFgwYZAlCybl3ZFAp+C5v8MfDefLPUPvRQGXDyyabTo8M7Y/RoM61tm/ynffyxzPz0U+nzxRdmCiZV3Axo7BeOHm1UGBYOHiylK1eWQllZhpTzwp309dcyb+BAmfbhh3LmkCFSjfsKvYTbVqyQVX/+aRqrlRMmyKq//pJNi/faOJjW2RYiefjG4jZQp1s3qdmjh2kAF/z8s8wfNEiWjBxp/IPKNG0qDU48Uer06iW7Nm2SxXz/yy9mShxrENYuUKZuXanWo4fU7NnTlHHlpk3N9e5zX3v2GH9OpvdJ/ICPKVP8W5YsMUFruC5krl5tzq3gE0cyfqNFishOpwHj+eKPalwdataUUrVqGVeH9KpVJb1Spb2STiFZp4jpdaYy9f+QS4LXc6Cx27x2rWzhuvGLXbpUti5ZIpkrVsjmFSv2BnqtWGH84OxpQTr39GrVpAydMuevWtVM94V91oiODV2D/l+YYEZXjov9+J9r5fehciwUKvuwPqrWUaZQCxUyi/F9273b7KtBISYQzA6G4JpVCJyBCNPl6hunPmKWDirPQ4Mv0piGt6R3NDDDkDF8BJFWChGzQiGXDzuKWwNr3Om7aPH4vlN9NizpMqb4VQOW6dE0n6nfuI5rYWc8+4auYZcllg+hDwvC6z6WQPsu6//wcT0E6lmb0gu5r/C3sFcCgdD/HNfIL7Ev9WxvxxYOsDHyTKH6tMvabva1JZoc2aadliYv73w0z2p9l8PX6yf2jzYx1xry6QzfWyjS3BW3p66bfUksECpjP5i6ruUTqhN+MBrJ2d3Xo6y0THfj6qCSWLzLHlJY+j/uE+Y5h7YXsfYLL7FcEryul8Wql0U8ytVOGLDbeqeK2okE3OCtQoX+3TctTYr6lJm2aXto10IDU67XtIW4TITW5jN1gH1LlNgbPIZLiyX/l+b4wOLqgPVY3WYKu0Q2LfQuha4zK+R6Z3x3CRiz28eQHJl5JpQD1xMq97QdO8zzM0oHzvF3L1smR4YC2g0CN4MDJwDMC3YQ2Mlffy1NTjlFfr7kEpny9tv7jNrWzZhhrC9MG1+/ZYuZqnulRg0zLUuFrNWjhxwfki/j/98feURG33ef+f+MX3+VekdFm8jyxuxvvjFWjKNeflka5IJaBFaIGZ9+akgs1masnbxEBElVbd/eENMjX3xR2l19tRmFkzUNv8rzJ0wwAU1+gCASHGaO2aSJCfhiZIl1VoPBOAdlVufww8PBYFhDXXA9K//6y4zAy9Wvb1wQsiNlRnQ/lmTOjf8vpBHiicICS43OncMBVxpcBQEyRBXd0dDCfScaNR8m1SF5t2jBXFgPbGClca/B/Z/P+KYWxJmAvITprNHA3bx576AAv+VVq0x93cqCL/G6dWELC77PBL8Zv2aPwQedW1heLCSxFpYZswXrrTWW2H22x7OPlx6wh3xPwmWi/py2gLvz2fbbDPvcut/Z+6sPLwOIOAN4VGszvLZ9Wq217T+ra9uXMmI//ZzHwYSa1MNTAssO5gmtw6L5iaxDn40Pc5TZAi+Y+uP4k4Y/R1lH+KD6/TbkLxtea4BTqO6awZAGgoXqctRtod/Y23RA5Znh0NagDQ2YTdYs6if+rCEZM62f4XpKGepAx9betX23Q0HFui5s6XlHTMXbn9MsxQQ7EYIOIuxtiXx2jleqQgVp07+/5AWCALBcKpxkgYbh/yxLmhLOf95+W3655JKIfansWqGYCrg2NLWLdZIgmBmffGKI6xVLl5ogmD+eeEJG3nmn9HjoIZn02mvSrF8/OfyZZ+JqFInE50X95/XX5Y/HHjPHZ2rwhI8+Mj6rtlatS7KMQDSjdixyTHFs2SIr/vhDlowaJUtHjZLlv/9ujlW7Vy9z/8tGjzbR/R1vuUV+u/pqsx1Srx0m+qsftG8vNbt3N8keYpE6CNq87783/qcLf/3VkEWmZCCPEFgC5DyDxnIBPJ8VEyaEyTMKDDQskFZDnk84wQSX5UTOifKFFMVSG2Afd3oa8ulFSsOEtXp18z9TpdmBSUG8c2f82bdygRjlByjXsKKEj9qCu1DnXdAhJaI2oQkUkl1mxnKpGruhaPPw59CickYRi7PNRK177BdLE1hhpltVsD1E3u3/w0LuzrZ49oP0JLMcTUAPwVUajEM52BH79pKD7+yAn0QSJKhEllmsQZHRtrYX/Y41gyhNkIIuc+g7ZsPMEiKUSsQ0UCscOa/Z5NQiG7Lsumvd1y1Pr88uoj3TsPY35UU9DOlXGx1pFBeQFdywQXaiq8rgMjTA3E7Q7Jo1JsDO44TGaFKsfHnjxqNp173WJXSpWNGsGZSaQaSd4jfKkgxkWc/CXnYRjBZaTOBfaK0L+5QvX95kY80LBGQ2lwonWaCDe94697m//y41unSR6R9/LD+ce66ZJl9r+asc1L+/sdgSUX9FaFpdgaXntdq1pdWFF0q7a6+VDzp0kI433SSHPvGEDLr0UiM91T9KYJECK+yfcZBe9flCyxWSBgmHPA696Sbz4rENFwAsnIxSeaFrdO1qLMxMY8/+6iszdY+qQ9PTT5cvjjrKEFdkxVwL7LyffpKvTzjBZDLretddvteDpNZnhx1mOkusqUogCaBLVmOABQ2rK+QZKywkEkt5/WOOMeeuf+yxUjpa4IEFrHJrpk4NE1Msqi5RhRjZnRbE0PjeeVlRUR6wiGqEm0lu3HtGhiweOtTcPwuW70QRLStYMlLY7vM97gpq0fJKFxkSiFddYY369oJLosISZSo/hiQZyhB0fmXL7u3MPKyp8aTfdb8HtnZmosQzYr84s8hBWOIhkEVikE9DkNxtRPrnooZvgSCXpCguV06KhuqGZluibMKLEklLHlAXYzEOkUlDIjX6nPphWxtDrhh22cT6HA/sNjbez7rYpC4WwaM/McQT+S9mMTZs2PsZ4gkR1dkNXTPzsWGDmf1wVVwU1DklmsUd0hltzXucl1Z4L+Kp5NJr++7Qd5BRdyChx/N7zn6EWp9RhQoVDKFNNb4WBIDlA2j0Ih5CSDbHRDETrd6zZwSZnTNggFl7NfL4Sx71yisy6JJLZNaXX5rp++4hp3sIJwkVNi5caKSU/IAfKUS2bP36xgcVDdt6vXsbIgVBQy6LqdFeTz9tCBr7Y4GcqlGg5uL2+u/988YbxgcYIsloOHPVKuOvykIjwDEIGoFgjb7/fhN402/4cE9XgobHHSfd7r1XRt97r7FyerlLQPS+PeUUY/k8ZeBAY51OBnjx106fLvN//NHcO9ZmiBBZxxhIQGDxqXWzrnkBqzW/X/TbbyYLHMRfO0CsHLbllLTELkHl/5JVquRZY8p94soBcV34yy+y7PffTcdSvnFjqXf00XLIY4+ZTjgiW4+z3hNlezh9ZAK/i/g+JFVjyATkzJao0cQWql9pZS3ygoqf2wLoTHki5xbhQ2d1znotmqhhc5R7ywsY/zjID2THsrDptiIEK+HzHMoKhwydIUwhi6ha5cKflbQqoYIsOb6rXmu/78IDiJB2ZSbWMuSI3MFD6Jnudokjy5YtsiO0VjIZi1zaU7lK/IxfYig1MZ8NuYZQQi5DxLIIknClSkmpUBkaS6RaJC0CqTJS9nR1OOOSsw5nX8oFYhgPQXTXubkkAuOrv2mTGcCri01maL3VcrnhO3fNu+UFyt8lm+Xr15cS7dsbgloyClHVmcTchJJG26IJqXSJpktIbdKpx7GPqal5w+l5nXN6wa0HyNHZ23QfG64l3X1/9XephoDM5jGwpNpEFTC9j+VS/XMOuugiM9VPx0HDrEL1fpah1v37G2sevrLHvftu2BIH+aOBxXLY9oorPH+LNebn/v2NdhyE9fRBg6TekUfKmAcfNAkaTv3hBzlnzBj59JBDZOxDD8nZo0ZJjW7djB+v3ocSOM1XvXnJEmMhhdSS9AFLLOtqHTrsjexEwmroUBn78MPGHaJ2z55Ro25xUfj+7LPlgr//Nq4DCjo9iCwdAy4KuU1k6QzJsqbuAxkLFphOvu4RR8gRzz9vXBiiDRIUECj0aBf+9pssHjLEkEH1kaWs2159tSHruG9gyU6FKfgN8+cb4rrg118N6cbSwcAGd42jXnrJkNjyDRH1yV0YnVr8TO3kEPaUPp2fM5XP916R/1hPzDR9lSr7pJf1TaAQx2Akp/fnEnWjA4oOa0j/U9cm1ScEmAAkGmtIaqFCUhSSTVBdqL1wc6mbqV6POuR2ktpZ7VLLJUQSIqipTTVz0rp1spUZAj4rCbV1Z+3Pek/aGXIiAq1CgS8saklUmS5bP1Snpw3x5HlUqWI+F0Nb1LZmu4L4diCZbgut9ykJN5jM3ubRufsRdC8i6UUogf6vn921H8GINTjIzmDCXWcHRl1AiaYP+YwgqNa+noO6tDSTrbG4RTRpz4mDcEmoS1Cp8371PZp7w1beLwa2Fql0yab9G5dwxrJgxxoEmMBCAvwsksq59dpt9wv3vqLVhzRnkOFVn82MhfMcChJx9cKBq2aQT24G/ytZ0jQECqalEfZvfPLJMufbb8309Gn4fQ4eLF/27h3xW6aUbsjMDFc0/PYglLUP2Ss+wnGxvNj4tFcvQ5BO+fZbX/eCv1980TQaWFNP/PhjmfDcczL0hhvM1Ci+rKcOHCibliwxQVmQXxomk2ygZk3p8fDDJo2upmJdP3u2fHH00YbM4uvqXo8S+vfbtpUKzZoZf2HXwmi/VGb/NWuM/yyE+6zhw00nyD6QcBQbzho50mQDyw1wf9M/+kjmfPedIXF08lisNXCMIDLPBAgW6NCR9cHqyoIlm7Kh4eX3EEIIMbJYdsPi1VC623LyXbTfMH23auxYWTlqlKwcOVI2L1iwN3MZGr+HHCLVDjlEKhx8cNxkrwhBHDxXhPXxRwstZkqQTs1KmuAuXukl6bDi9S+FrJoECkmwumQH+nx3QlghqdZaQVkVY/q+aNHwWq0oXti5fbuRtls9bZr5bAT0bSsP69C+EEtTz0JR9XaQSzgNp0UoXSujuQYlYzbZciPE934RcZ1hdQNN40kHaf2mkIrjsw5Ffhvxek1nGjq/+d6yLtr/56bl0OvZxVoX1O8YRNnT9viM7rAX3cZ7G/Ir1e0EN3kBy7XJBsgS8ifVz1i76YuKOt+rFVzdZuK5fj8yuc89xhkU6EXwvSyg0eqTl0XV63/3eF4DIa8lty3qaT6uBKmEwM0ghWETWaAdLtPOgOn4WV99JQNJPCBiAqCWjdkrP8/UG1P/GmE/7skn5a/nnpNrN2zYO33oQRxxNcBii7UFgkXUPzJgdGZYCCc8+6x0vfdeY3XtcOONMvX99w2RJTCLTE+Dr7rKaJzSuaAzynViaT3i2Wel8SmnRFR+SB6j6VO//16+OvZYGdivn5z05ZcRslGGhF58sSEsJ3z4YQSRpcNftmyZmZLBwbxkiDRCTk764gv55JBDZPittxpdXe4bN4fjP/wwV4gsU18TX3nFuFtAqJjex10DElupRYuYjRguCIa8Yn0dNsxYMrGWIaPW48EHDXmt1Lq1yXRFVhaWJUuWmHvm2Npp+zUw0b5zG7p4fsNgZNWECbJo8GDj87zcch1ofPzxRi+yzmGHGWusgjpkE1DXQuqVfhcS7wKrXPGQZaVYaF2uTh2pFsrkhSWVZ45LCwtSZMWtoIn8gtcgQK0n1FnIqb2wTX9nd1JA70N/z/5b0br06LQV4Yh+K7tWVvXqey1dyCAhVWbJH2kUspGqCh3DXIfWmRCRLKySQKEMV0Ug06FUy7QpxUJuB6wPtNS/qdrJK7ym7bdGsYryTtI2xZq2N++mRTpp+4u1bm38eotVqCBFLIJq/MBD/r4MhPS6/OrxPjMDDM5C/aL9nReZ9EK0ZxOPVTrWM45ngKC/d9tjLxIaz724a9oJP0tsPNtiEfZ4LLl6HcWLFw/3zamEwM0gn7Fp6dK9Hyxz/pZly8KfsZZCZulM6HwGnHKK0V8lMh/SxJQfAVfIc3mBxojgjpcqVTJrUK5BA6nYooWxbDL1X7lVK9PxYdn55fLLpfWll0qvJ580071YbkfcfruxFHP+0376SRoce2zUe0K7Fb1YtHARNIdwaicICWXK/pTvv4+QvcJStXTpUqkKcSleXJYvX24sVFXwDS1UyATIHf7ss/LbNdcYK924//5XOt16q7SMIvYdDwgQ+PuFF2TC//5nOgVcPDrfcUfMKXSC1pS8ssbNg04Ai3T7G26Q6j17SnnIa1aWIa5b9+yRpcuWmXtjSU9Pl0pk1clDchB2Hfjll72uAxs3Gp/Aau3amQEOHRYNF0SUARVqGDEj84sW3UtALcsosmeJRubbU3xuJO36zZtNClavaTdDxByrndtxuMTT/exnSXE7La/f27Cn5lxLi36v/3Pdeu1enxn0rho/XpaOGCFLhg83biq86xAHZmIYJLHw/kZoDAdIWXgNgnRGZvuWLXvJZiiYCaJJoKXxwybyPuQrbHyIQ+4fGrgYlr9S312VeNIgvaZNjX90BQLHNHhMFQhClnhNWcpv7b5Ir9vrsw0mrJkd0NTkfu+EfnatjfZ7rAN7BldepNC9Fi+LqJeFVgedXv6q+hzs39sDUC+Sat9fLAu+3zYXfpbkaFbonOyf5dPWRbvWMmXKSJ06fnkB8w8Bmc1noK9qYFVimzRAPAESW22vvFI+6tLFBIThlgCJBQRRuWSWoKLPjjgiLHgPkTUpQEuVMgFd+LzS0GHxnPjyy4ZYDrnmGpPG82gyFvHSFilifF2R/8I/9Nh33ok7Qp/grRM/+cRkueI8vV9/3ciJDb/tNulw003SiLR2IWzevFlWr14ttWrVMgQW8LLgCrJw4UKpgbZpiRImcAyXjD8ef9xku2l00kkmucKGuXMlY+FCYxnwkp+CbLnBc1gV//rf/+SvF14wHcPBl11myDH36wV0QongXxgiryRBMOkz27WTRv36SeUuXaRcu3Z7Bx1paYawYuUqFSKvyfQ9YhBiOkLHjzRjyRJjjedZE9inVlIj9xbyl0KeBk1eFsqoRIiYql8pgXURfqWhBcsqlhkCYaKRRPv/LVlZsgmfOdxU4vA5s2F3eF6dmu3T5gZV2Pu5v/Ujvvb16fd0rkz9s6aesvDZq3POzqBKiSvPgnebaWDqLqT10P/+16yr4OpxgFlHo8F9vn6Wc9f30csf0ssv0s9P0o4Kjzi3pc0a/qxJN5ztuoac7mHRfa3kG8AEIkLsyNbFO6dBbCFCagL9lKiGgvkgsi7RcuFZV6NY+lxf33inp+OxhtrXqjMauvazGsZ6ti6UKOta32V7u989JXIPif4uGdjjyGy5s0Zu+6bP1G4j7edsD7Qhs6mIgMymoMKBpk6EYFZp08Z8hkgQJFStY0eZ+913RsUAQsKUP2TWBRZViGzba66R7vfdZ1wN8I1lpE9HiWIBwVdMIxPkwwi/Stu24an/DfPmyYcdOxqrAGhzxRVxE1lF09NOk2PffddYZ2l8mc6mMz40lC6TF2fdunWSmZkp9erViyB8plEnwnnmTBnzySeynexUixaZY4AV48aZoDRABqqy9eqFExFA7GzQEagaAL6UWFFN8BpSYscdJwf/5z9SpXVrI3VlkwuIBcQVAksWL1CuaVOpcuih0ur226Vat24mC5ZaW1ly2kAZK83GjXFpmIYXAgSjEEMsMdx/efyi27UzFlhDSCtVMpZ7otvRkjSZzxwy6AWy6+wgHSfT2lu3Rvg1+llT3MbRtU75Scx4bfeCa+H08jdTa6+6ADAbYJMW97rttfoA+60Tfe74jeNLbQYSw4fLqkmTzDOkjjKzgUIG/uqVmjf3VDEx9QS3j23bPC0p0SxCiXznN13sZdWO57N7nFjX5XXficId+EQjGKYuEOiGwgJKCapHyhLyJWWtmqTGB5z12rVmm+f58YO2fUeZqren6XVh1oLpet2nbNnwtL19jfbaJmL2YpM2d3t2B1zJhJIvfUfdz0ps3cGtPcB038uCFLwUC9pGmQDRkL+97c60WxM3OKoH7mwQ5VIaa32onPxmiPx8/llStVwDMpsisH0L8WkCJ376qSFfAPIKGp90kox/6ilD3iBxdHqTXn45opHmM1JK+B4e9cILZht+pi0vuEA+P/JI0yDjSwuRJbBrw+zZZh+SI6gPL+oBkEL8RSFDqCs07tNHtmzZYvxl4q3Qrc4/3xBofG859in//GPWvHgrVqwwL1Xt2rWN5dBIP/36qyHbWFo1Qh3LRHqdOmbaDX/Agy65xARpYanCsqwKCeGyxLeY7FehDFjId62fNSt8bIAFleAugu5Y9p4obe80eNmysmn+fHOuUrVrG5eBltdcY5QHKtarFzUwJ1FAmlF1wFda/Uy9on2pB+l160rp2rWlVI0aUrZ1aylBpHexYmYgtD0kVQQhxacNTWLqjLkfK1mE39S2V8cHvCwfXlYQL+Lph2idsE0c/QIgvMA1ucFV+KCqTzKLBlfRmGuQVSw3D71X1/WBY9uC4i7J0vLVeyHQZu2kSbLi999l6dChspK89Xv2mOBCyCsa0axRAPG6R44PcWXgx0wG57Q7Hj9yGM/UphfZjAbbh87vd17Wb6/juJZxL8t5rOljL1KKtdMNZDIC+aF1OJhJl/XrzZq21y/a3ojjE3FP4FL58ib6vmyNGmHyaQKZ0BW2g5/KlzfWUnvK2ot0Rvsu1YhnLCj58XIZUmLqtg822XJJanYHjKlcLrZblUtKtXy8ZojscmLBgIKltFholkjbnUTKinNxfgbHXj7/QC3ZLJwzFRGQ2TwEpCoeMKUNzLR5yK8UUgJwLyDjFz6eTLMja/X7ww/LupkzjRUHrJkyxVgSXMmr6h06mKl0dFunffSR8X1dMHiw+a5ap05hHdeVEycayyd+tfiGYk1FX3XjokWyescOo7dYM4E0rxpERNDKsJtukmPff1+Wr1ghW6dOlVWjRhk/Tq4fCxSZxhqdfLIJPsP3kgXrMwFqvz/6qPR8+21p0qePSbGLCwNBYFiZNyAdFXJMZ9qNdLQsXD+uCVPeece4WCD1xf4oC+DjtW7hQlm7YIFsWLTIpBtFhmj3pk1SrU0baZAk+Sl1DSARxsi77pL05s2lxZ13mo4PC6nxaWMqkSlEK02mkXHZtUs2LVwo66dPl9V//y0Z8+fL7sxM4x7Bc6raubPxs8bvzY+IqnUyGuwRvVckuWuJ9SOfuQWu20sNgHvR8yhZZaEesM6pT7LeWyLHoZzXL1hgknmsmjJF1s+bJzu2bTODjLING0qzm26SdrVqGZcOVcbg/jYXKSKZy5eHy0+fE52MTdr0ey+y6pIEL2ueSzr9pj1130T8Ar2O437n54PoriGV+I6GI+pDwvi6VnH8sCRUHCL5JkGBRtGHMjilN2oUGXnPguwThFUloHg3eQ/jIJ4FnXS50DbDi5Tq51iDOda4itlW04JYTq58l60l6y7x+Njb7Sjtl7ZbShxzSuKzPJRUbFcDvQ49HwvxHNp2FqRnFJDZPARJDeIBurMAaSxIFxZTfFYBROWIF16QzBUrpNlZZxkSAwnEr5WoeTDjs8/MWn9jo8VZZ8noe+6R2V9/Lbvfekumf/CB2d7zoYfCFRe3ACwRBHsRfPbDOeeYgIG/Xn1VDrrxRvNiQh7jyQJC0NGvV14pzc8+2wRH4TNLxjICBbC8YmFGnqzHI4+YiH+v5Akzv/jCuEkc8sQT0vnCC41rQonOnaXtddfJsJtvlvLdukmJWrWM1WrVqlUmQ8muFStk3BNPyLQPPjCWFJQJDr7iCtlTtKhkbNkiKxcuNMcukZ4utbt0kaaHH55n0ye4hQy57jozVd/t00+lZPXqEZJXdqcI6V33119GLgviv27ixL2yaPXrS41evaT5OedIjZ49TWfrRTb9iGiqdbraYdrTaKxtLURbtgpZvdxo7OO9tljW6YylS40sHfWd2Q70WI17R61aUrd9eymFOkflyuY98gOWV9sqA6K5a3iR2Xj88byIYzzkMtp3fucMR9uHIuohoJtDrjEsYRKq0fhWBicG5PFM25t11apSqWnTvWlE0SF19Er5TNuCSoMbNHigIdqUvq79BnRqEeQ9NEkkCtiUvr63Lun0I6Pub73aTbt9sN9TtZbaFmZdcqu81Kq60yGrdrup18DCgAJLLp/9rkEJMINoL+s6v4fwphoCMpuPslx+IO0rIKUhaHHOOeHveEnaX3NNxP5E32O5RLeUfdFeBTU6ddrn2Fg6NV3u/EGDjN8eHS2EEiwZPdrIdyGKT0IAFqbm//y//5Mpr70m3e+9V4qVKCGLFi0yLwaLubft201QVMaiRbJp0SKzJskAeq1E4kLkIdwmgw5WFxE56rXXpPXFF0ftUNDS/OmiiwwZ7nzbbWZfVAB4mXZfc42Zcl0wdqx07tdP0qtVM5awid98I1np6bK9RAnp8thjUu+002R34cKyauNGM/Jlmrly5cp51gCrVXHtkiWyAP/mMmXk4Ndf3xsgVrq00T2mY9BGkXJEMmsJCRZGjjTToliRqvXoIe0ffthovpa2oklptpj29nMb0I7IJjx53YnbFmGbsNodpx1YFY91QMmcbQXxI5uxvouFiIEB5b16tXlO62fOlHVTpphMd0SXIzFWuWVLqdqmjZkJgVS5xEn9XQlwxG1HfXe5fzoKFuoD/0eDXr/XdH2u++plZu6VYoOEIs8WhYSaNKMhSypW1WjT9pBRnbrHh7tc48YRAvmlVK6NbRBSrNkeahgHKrzcYFzy4YrjU3b29H1Bm9K3p+u9CKj9v9e7bbeJro+oPUBzib3tp+suSg5zezbKK3jLy6paLDTIp3+zB/leLh+0Oe62aIMX17LO8VMRAZnNB2Cd8cvmBfDzVDeDeNDzkUcMAf7x/PMNaSS6n2lmM93sAfxsUTTAOkjELCoJ+hIO6t/fdDTHvf9+eP9Dn3hCFg8fLiv//FNmfvKJHNy/v3EzmDV+vOz45x9Z8NNPRupJpb+wFBv3iLQ0M03Y7OyzpcxBB0n5li3loOOPN+kpvz/nHPn1sstMp4e+rVcjQJDMNyefbNwnjnnzzYh9cCmoUbu2bL/hBhlyzDGy8ssvjY/wnK+/llI1a0rTK66QltddZzIO7SlSRKqHArWSDfXdhFyyYG2j8aHDz8R9hFEtg4cmTaRMyNcXkrCElL+//mpcLnh++AnX7NpVOt18s9F8RUvXL2GBTc7cBp3GSqep/SwOCr/gET//Wvt5aKOpRNUmrPq93YGw8DxoIO3rV7Iby+/WvmY/i7Q9hRdrv2idEDMIKHGo0gADQAgb7h8EZRKoVfu880w6Y2ZTIn67Z0+Er6s+C+6fe2cWAStzdtwhbN9mLeNogXRYi8N6o6pFGtIdtQXxXfF8kl34tVdEzkM8NRtTqQoVpFKDBv9mbfLJb4/rkVdg24EOvyl9m6gW9Cl9t72KRUpd2L6j9qKDX/u9cIPI3Oh+PZ5NSl2imqyys/1l7SWaVRVDjJmxswYwepxtoZkdF3bd0M+0vdn1sU1VBBnA8hAkOUCzFVw4ebK850M2FTcTvBJng0+HO/HVV83UOiQQX8/+06d77osf6RshyS8I57UZGUaUHjJF1jF8Vk8ZMCDiN8tmz5ZPW7UygVPtrrnGaMWunjTJXB+JHUguwBo/VYjsivHjTZKDNshwXXml0Yu1pyaYPh91991GL5bAtN6vvRaR9AH/WjKJ4Ut73vjxUtbRtePlJekAEl4LfvtNvj3hBClVq5a0vfFGQ7ZLlSkTfkEhlWtJebpnj7HqYvXKjZdXg3JYOAfXpJYytRpuX7FCpr/+ulEJaHjuuVK1dm3ZNm+ekWRjQUKN4DdAwgKIq1fCgmTDtnLanYkXQba32Y2v69pgd6axXB/8yGZ+NLLMMlB/VWlg6ZgxJoiRuo+rjNF47dXLaB/bPq90JFofIK9aH4BGEUNc6ZS0jkQLpDMdcSi1rNEZJagplHaWiHuTQpbv7ECnUEanXU7GpmjT9ia3vQ/pdNOIRmxLUm77/Qk5ndK3LYGpNKXvF8zkRUjjkcnyWtxBs22FtkmpXa42vCyodlkmu3y8iKo9uHcDAPU+7fL0G7jkprJKKiORDGABmc1D/PHf/8rIO+6Ie/9bsiFDQ+eHZBXEiNS0YBqSWPXrS5UmTcL7vdumjaz55x+pdNBBcvHkyWbb6/XrG2J19dq1xgfTxoIFC2Txm2/KH48+aqYETXrXE06Q9PbtpXSVKlLR8nVFdeC9Nm2kSIUK0uenn6Ry1aq+LxiBaL9ceqmRIDv5668NOV4/Z47JREZwV7+hQ/fR0OUlx80B6zAjTMjD4vnzpVzFilI5lGTBCzQkKgWGvy8vSbwdg1rYbOKqUzwarMOipGXH8uUy5IorZPuePdL4iitky/TpMu/dd8MJMSAE1dq3l6rt25s1urnldYCRwuC+aViwMnLvlKFaCwoqIIrLxo4N6+3yGUskMyNGDq9TJyNbR1AiEnZkK9oBEaFDx32jSBGjfMHMxPbVq2XrypWyHbeDLVv2aomGiKfXeo+d0StETs2afbCGxtsGhHLbe+Wuj0VQg2n75E/pe5FSXefXu5NIMJMX/KSd3CXmzIdDUN3FJnR2sJQXQc2LstR64Aakqo+/GgZc1yLXFUjvxY+ceslkpQKynIxhyUSQzjZFgXh9LNy4fbs8m4PpcKLgSa3aNJQOl2nEn044wQhx1+zRw/jUtu7fX+r07WvIbKNTTjH7kXwAOSy+d4ksU6M0Hl1uv10mkVChUCGpe/jh0rxfP9OJLl682PjqsPBiD7zkEjN1fv6gQVLJ0m71Ahm88PUd0LevfNCxo5GR2jBnjvkONwn8dYn6Zh+1ZmmmMKaV1q9fbyp8/caNDUklyQLWV/wO3ReOe6hWrVo4gI19IWIQcds/kQbJJq40qDQqWNRU2km/Z9+ikJl16yRj8mSTqYmkFlKqlDS++mrZPHu2THvgAancvLnJsmUIbLt2ewP3CggB5B4pYxbKAQJbt27dXG9osdYricP66H4Ob2M6LbT2+t6ssViyHwvPUH8X+t9kV0JHdOtWQx7x64SQQj5ZANbY5X/+KZs3bZJVS5dK2ebNpWiFCub7LfiHz5wpm2bOlMxFi8zvSTJSWEXsfdZFSaaRnr7Pd4VD6WM1O5PfMbz2C6btc2Zd9LOYelkVlYDYxEOnbPN6St8rmMmPmHpZR20rsNd0vUtIE702dTtyLaiuNJc9za8LbW1uB0vFC23/uXZbrkqJtZJrewZJfUn1ur2m9lONmGZ51B97UOb3DqhrVKohsMzmIZ6O0iAQxEWA1OULFoT3i9cyS5AV05/oihJR/VbTpnL6L79I/aOPlolvvimDL79cOj/+uCwfOlSWDB4sZerVk5bXXitT//c/s332W28Zn1c6x6vXrTM52G2sXLnSuAgwPU/ihfk//2ykukilecTzz0u1zp0NoYXkzfzsM/njuuuMzy0as4nIlkFmsVxClpnCZVp36ahRxmqF0D/T7+U6dTL3VaVevYiUt/YUDdnEaISqxfCT5WXGGR5rLQ0OpBZCDGnjfjXAjYYMSyTEFiKzY8kS2TxzpqyfPNlk2CJITf2FS1SvbkgsfrFVq1WTmh07mkxkBQ2U46ZNm4wVFtB4MUDQ6TmI38b582X15MnGFQTi50VAYxFP+3vVFU4UJhsSHTAZkazPTIFD+phG53qpRyYl6ObNhnyyHa1m3GKwipdt0kSKVqli8s6nkWeeDogBIkSVTphOjWuk0ypdWtLJWY+Fk3Lh3EFmrnyFlx6wTVS9pm29LKV5OaWfiO9oPMFMfpbS3CLZapH0s6La8Aouy2vSbw9Y1LdU4wiUZNvWVK9ALw1Ktf1MU9EPeXcMUupVh+x64iZScO9Vy4//NVNnshG4GeRS4eQmqETPRGkYbeKKOwLBViQEiAUydL1Qrpx0vPlm6fXkkzLj88/l+3795KpVqwy5/fy440ygx7ljxsicqVNl4WuvycJhw2TD1KnGQggRYyqzUqtWhgCXcfRjuW5cDOrXry9/v/SSDLn2WrMdtwDOvXHuXGl53nnS+YEHZFtmpnxzyCFGEgw5sURedvwScY9gSrdM7domFS5W5h1btpipXxIezP3pJ9kwY4akN2kibR59VGTZMqndtq0h8q7vHqNqSDgvJFbcWD5S1AvIMS8q5JgGYNO6deZ8W2bNkoxp02Tt5MlG6cFM/6alScWmTY2bANO1qEBUOPRQI5fVqEMHqVSvnhQ0GK1TnunGjabhgrzyjpDhaO2UKYa4cv+syYimBN5EpRPEFEqxqetwys2QZi5rJZxeawYvWBp1wR9V17rwP4Mt9mWN1JLrV87ASF0GWNBdBugVk5ig9mGHSdXu3Q1xpVOjrqiUDoMXHQAxeGFwQ1mwjcGcZs8JkPy6WBCm9G3rVizf0USCmbxIabKItfp7e/mh+k3ze0XzJ3uaP1YyBl3bUln2oqRMrahKUFn4nCqWUzeA1+uzV10q7EFE3c9KSl2VBHfQ5xWAq3UVow9qQHmBgMzmUuHkJpaMGhVOv5pT/1gqn8pjEFn96aGHSsXmzeXciRNlcP/+JvvXJTNnGn3HF6tUke4PPSRdb7tNxj7zjIy+5RbzO8gDEfNMs3Z/+GHpduednsFmkBs69O0zZsgXRx4pba+6ygS//PW//5lz4wIAuaOxwPcOy1fDE0/0DAwhXawR9m/Txlyv7gMpfr9tW/P9WSNGeFq4eG48s8I7dsi6Zctk8fvvy7xvvzUSSbgmEJSjiSVsFK9bV8p17Spbpk2TLSFSY8MEaWEl3LPHuEnwwkLKM2bNknXTp++dPi5cWCq3amXIv/q5cg9c94i77pLN27ZJ7b59pUa9etKga1cpSOD+IW24XWQSub54sWybP9+QVWN1nTrVlLHWmTJNmki5Zs3MUr55c6nYqpWUqVVrH7UDvyUZnd3GhQvDwVqsmZ0AFZo0kbrHHy81Dj9cyrVoIVKypGmo1WVEFxp7SC1Weuo6jbhGDquWZoD8m9L3I6e5RZ7iCWby6+D1OmP5jea1Nc/26/SyoPoFSyVTE9Xr+qKRUvcaXT9UoM/L1kC2EwAoac2PwCj3Hv1IqRdpjEZKtQzCQaI+g5DdlsVZz2HrULvk1y4vrQf5bX0OyGwuFU5uYtGQISaVrBeann56TCusIU633y6HPvmkLFi6VBo1aiSrJ06UoTfcYKbiwWFffikjzznHJCDofOutYSvtpfPmmWnUzw4/nFZLjvi//5N5338vKyZMkEYXXij1Dz/cVwQZxYCSBJV162YI3Rm//hqWiOL3kNrpn35qpnFJzwlZ9YrC54VCTB7tWYCVjlS5WHghH0zX9xs2zMhRuYBsYWXlpWMUrW4FnJOc9qTBXTxsmMmn7glGk4ceKmVatZJVP/wgW0PXoNMmZPYpYhMW9m/WLExcKx90UDhqHTAt/tdzz8ns4cOl7plnmvrUCgKfwha7iKCFbdtk1bRpsuyvv0wmsU2zZsmm2bNly6JFewOO0tKkTP36UqFFC2Oxr8wA5OCDpVKzZlK0WLF8beC4D+qLWl2RjEPXGJeA2r17S63evaVCmzZSokYNQ77Vj00X6hDlQJ2CvLIGSl4Z0ATkNTbiISLxTOnbRDUnpCle39FkBzMlG17BUjaJce8pLzRRbeu0l/Xcrz64ZMpVLdD22X5mNumyl2RbVV13Bb/PLtwgL5eUermauM/Uy8oM7ICywtbx3bIpyCoHAZnNpcLJTSwaOlQ+P+IIz+9OHzTI+INGw+IRI+SzXr3ktN9+k7H/+58c9sgjMvn552XyW28Z8oU1s1Tt2rJ16VL5z5IlxsXguzPPlNXTp8slkyfLllWr5NUaNeTo116Tgy+9NHxcLFH4RuJf6oIXa+GcOTL6vPOMKPz5f/5pjuuVsWzSa68Zv1b72F7YvnGjsfgh67X6n38MGUF4XoF1lrI45PHHjcWPKWD8cXkRcRfISeYRGgYyhGmjwwvOfSdCXub9+KOMe+klqXbiiVKyRAk5+KSTjLB7fiHaFCGft65YIRtnzJCNs2aZ9QaClmbPNkFPWt6QdQYhBNxVad3aJNXAyp4KYMCyZtq0fzVeR4ww8lRlW7QwFtfKnToZXWEjsF+mjCGjGqhn+1FTzyGvBHYATZ7BOlWmF/ML0axk2Z3ST3Ra3C+YyYuUJhLM5EVMU61Tt1OOellR/YKlkqWJ6lUXvKbybcSKzOd7O1uVKgDYx1JXH5eM5eYzUzIYbfreLXOFX1CXl6XYPpY98+BHSnVt12N9vm5Ci2S6nKQaAjWDFMSy33/fZxskwvjzxfGiohMJlk6cKMsGDpR53bsbIoivYqGSJY2u5Ob586XRaacZwkmADcTr4OuvN78zEfYi0vjkkyOOS2cOwfMChH/ygw8af8mzR4/2JLKAABpNpRsLWG1r9+xpFoTb3z3oIENeSdGLPyY+vP+8/rq53h6PPSZlevc2LzN6sjn1VaQRYNp4zZo1ptFgUBNvI7lu1iwZ9fDDUqJVK6l54onS9JBDpPpBB0myEE1P0bXAUC57GJTMmWMi7PHzXYeP75Qpxl8akHmtfLNmUqNjR2mPFFqIvPo90/wCQWBY2w15HTlS1s6bJ8WqVzduApVOPFFq9e8vJcuXlwo1a0o6wVchNwEbdBy4xyh5peGnnuMDzIAo1chMsq1IXlP78UzpazrOeEmgbWFSi1pOg5mUMOTXdH124aWJar/HftP8umgGuJxqoroW03jdO1xSqj7jrlVRoc9cF1UDsI9tW1V5HzEm5cQinxtBT/Z92oMBv8A8EwTsEFJV2VG4GfnsqXs/Qhwg50jdedH9DH8///w+2/DFNOs4KjNZewAarIBpeZWwan3llTLlqafM54ah1Le4NTDt3uy008z/s7/6ygjxu+TFTt1nN5q8nBNeeEFmf/KJHP/BB2bKPbfx29VXmyj2Y95+21hhCahqetpp0vGmm2TUgw/KnmbNZOnPP0vTzp2lSA41WGlYV6xYYchPw4YNzX1D1pHnwpkdouMFJJz+ePJJydi1S8p2726yjjU98cRc60xpdLkO9dX0k6vRXOhpe/ZIxty5+wRkMdVufle4sFRo2tT4tDbu39+4CtTu2FFqtGqVkm4QKAzg400A3eq5c2X71q1Ssl49Y22tduaZUqd4cSlXrZpUbdHCqAd4NfyUoVpe8X1lH8qKwQqW91QnPtmBTdi9LGWuxVT9BqNFY3sFM2l+di9Smp3MTAXdspQdTVRdIIQaQJgda6NXdjCXnHr5X7rkyR2kxBoc2AkAqG9uAgC9V9uayvuXiDtDbgQ9aZlyTspan4WXZZ+Fum0TUvee7TLU49pl5zcbsb+0N7t9/HGZHc3JDGmykHq9234IArG2rFixz/bw9EIcDbtaZjOXLDHrtZMmhb+redRRUnzXLuPHWSJE+tBnLVahgtRo29ZYQCG3hz/3nOexaWBppGy3i3njx8s/jzwiHW64wagVKMikxX5ufmY0QtMSeJFnfPqpWVAtgMjayCpRQmpfcYUUycyUGe+9JxNuuEEOvuwy43qAGHwioFHimrm/6tWrR0h1kTgBEoulFr1aW8qL6e2pH35oyqFcmzZSdccOaXfRRRG+s9kF+qdLp0wxJBYd4CUDBsiyQYNMo0gQGwuBdUTuY6lENYB0uKQ5xu9Yc92n165t3AKan3WW8W0t1bChFKpe3agDqBJBqvl/7iBBwfjxsmrGDNm8YYPsCSkeZBUtKqUbNZJqJJNo3lxqdOhglAq8QMOq5JVBCvdIHUb/kOe3v3QmLrhXXIIgsdwjHQoDMdu641qrbEup6iLHYx11SalalfbHTtsNTnM78GRootruQX4WUy/XDtdiqj7hftPe2UkAoIt9315ElSXagMgdCLnR8n73psTRLW/XWgrcuqzEU/93Lah2wgJ3gOcS1P2pjvvVddctzW8wZmvoun1/qiAgs3kApIKiIRaZxc9ULbPbQi4BW0hUgDvB1q1SpmFDaXDTTfLnM8/IqpEjpWnbtjLvp59MKsup7723N/Jx925pEkqQ4IJOEa1VJbN0mAt+/NH44RJMpqCyq3g+ovk2Ufr1P/8xbg/Hv/++kcqKWh7Llsngq66SZv36GSKm4IWCeHJ8iAmkpuG4cTLx5Zdl1D33yOxvvpHDnn5aWp5/flyNDFNCWGMhrVyv12/Ub1YttzRwuxcvlokffCDpBx8s6VWqSNujj5ZyOZDaIr0w0mOr5s2T3aVKCc34yiFDZM3w4SaoCr3eiuefbyztJK5YO22aed5KWv2wbe1a2UkGqjp1ZFPx4rJmzBjZvWKFSU1cKkSK3SUvfWHpeDavXy8rpk2TjJUr94qQQ+CXL5etixdLqdKlpXLjxlK7Uyep1q5dOLDQBb9TpQETsBfKskZyDNs3dn+DKk3wPrKmE+G+IbAQBcgp37nw8htVy2AqBTMlG9nRRNXOWt1S4iE1ts+rFyn1Cw7yCoJTYppb/r1qSXbJqn3/dtCQJoVRq6qXpVTl6qJN47vqJUowbc1S9SHVMtTnovvY925H5WvKcPt716c0WcoXqYosq/y86rz9jLRc1BdX3UfyIpAumQjIbB5g/axZntvxa41FZomcf61u3bB7wI4QqUUCC2JS5/DDpQgNUI0aJjXtqhEjZNtllxnfU8jooP79TYYgUsL6iffTgNE5muPv2GEslWtHjTLHLla6dHg/iCY+h4AsXPixKlGe9dVXhnx90rOndLn7bul2771GJ9YFjdhPF19srHFdnnjCkGg6ZcgK32mHrefhHtpfe61RfBh2003y04UXyuS335ajXn5ZKrds6Xk/NHaoH3C8eH1tKYNq5cvLHy+/LHsqVZJCpUtLA6SdYgS0+QUsLRszxiwbli0zpLhM8+ayZelSScvIkMpNmkjTXr2kRsOGxjf0r+efD4v4o/BQ/5hjwsFYrNHdpa5AXsmstgVCSAdaqJDsWLpUNv3zj6wZNUq2rlljFrPf6tV79XAdoM/qRXIjlkqVIv4n41Qs0GAacrVunaxfulS2IfW1apWs/ftv2TRjhuxcvVoqNWoktQ85RA46/XTjL+5V72l0bfLKcbVOoGKRV2Ld+QUzANi82QzoKAfbIqqDSUgpZAtS62Ud25/hBjy6nXe0aX511YkWVORG5muQUiw/TC8S5Vr+kqFx6/qqKmG1LZU20VPCCmxCyu80ONKGTSy9yKUXbBko+3e2xdSO5HeP42WBdtcHSp233VpcK6qf33XREEnNzyxq+YGAzCYZTPF/06ePr/tBLDILOdlBx5aRsfc3GzaYoC/+57t6xxxjKurgq682QT+blyyRacOGye6tW6XlBRdInUMPNd9hzfSDNng0aJDUKmXLmqjxw555JrwPLw6NHVP1gJcJS2aNGjVMggfcINCIRSJrzIMPyoKff5bjP/zQ+MFClAky48Wc9/HHsvCXX+TIjz+W3cWLm6lmGieOC2Hxe+kg4rgkHNS/v/G1fb9NG+l4yy2GNNvWRixVkPFofrBemD1ggPx2zTXmPno+8ogc+vDDvpZC9xkuHzfOEFesr8vHjpW0UqVMkFj1Y4+Vinv2SDoSUYUKyboKFWTRxIky64MPDDmFKDJgOOrCC02qYeTAvAYApvzT0iSzaFHJLFfODFxqlitnGiuDs8/29nPLzAwTXL8F1wX8bvV/ryxcRdPTw8S2TKNGJlNWybp1pXi1alK0fHnjp4tqwprx42X5sGEmxWuJ9HSjR1z/0EONy4imI/a6TlvjlXqm1iHqRE6D/goCeO9wc4HEqmVKyZCqM6jFbn9EdjVRteN208nax3X9TLWu2ZbGaJH5NgnM62hyN/rfVQDQqXObcLokU31D+Z2fn7RXZL1+dt1OvH6rVla7LNWCGkvloCD7T+dGcKBb5133Dle9Ip4BWbLh5WOcCgjS2SYZGxcskDd8gpeYYsdv9Aqsdz5WU+Sr3mvTJvx/kdKlpe5hh8m8H34w/58/c6ZMefdd+fvxx8P7VO3SRVb98YfRhK131FFGo5bEAtEqIJ0paWAhpysGD5ZvTz1VLp07V8o3bLj3OlavNp2G7VcLQeWFmvXyy8bF4eo1awwBhNz9eN55smnpUml/331S76yzDDFBx/T99u2lw333SZ0zzjAdNFPFifrgQATHPfmk/PHYY1K6enWTUrfeccdFZPyKt4HkGslqhgtDwxNOMBbfsnXr+r7EuAEY4jp6tFnzfLDGlq5TR5pccolU7tFDSuBTnJkp6//+2/gqY32F9EIKyUBV98gjpe4RRxjLa7SBDB0QfrV0vjRiuEtoYodkwFhFMzKMVRf3gK2bN8sOLABMC9I54SawerVkLlxokkqsx+83lFiiPFZXiCsZtg49VMrVr+9LXtUSbyco0Oxa+ythU2hENIMuDaahnHRam3LYX/x+c0MT1bbE+WmZRvPF9IrM95KNymtoUJVG/UM4bR9dNwDJ9iG1Cax9PNdv1M/txL5ne5rf9W1NpCyDyPxIf1TXiuo3a2DLbunn/PTV3W1JxNkuKXawHy6AeSVrGkhzpRBIw+qH7g88YKyN0UCAkA2i/8s3bmw+l6lXT0pUrSqTnnlGOtx4o8z59lvZvHSpIbKgeufOZl0sjshDtWKyHvPDDyZDlxJZnfp0U9gx7YsllzSzEDS1ZFbv1ElOGjpURtx6q4y74w5ZM3KkHPTAAzL7iy+k4yuvSJV27SJ8ZN3OS32qoi21LrxQepOJ7L77ZMDJJxux/KNffVUq164t8QACOvHVV2XkHXdIkVKlpM/nnxtXBrsRIdJ+5V9/ha2urLFkAiyNNQ89VNree6+UaNJEdq5bJ5smTpRFr79urNNkzUK0v2b37tL59tsNea3WsaOv5dVVN4DsUBYQWMo9WVOUdKK60KmCNHKR16ljLMqa7tGPZFKOWID96hh1xyavQMkrjeL+Sl7VXYJ710VJAt9BXnl/6BQKEnHNriaq7YuqHbafbBRkP5HIfM3Spm1HXpenq5FrEwGd9rfdE2zSqcTFtq7aElE2efUipS4x9VIFUHcJtyy93CL218j8nECt+14E1WtQZhNUtaLm91R/lodLipe7gqpS6PtKPI1+TvW6sP/P4aWAm0FOUtcSxW4DKxgWPlDv5JNl84oVxmKG7BYECm1ZfCURwy+ewOiJCgu5oNJzjObW1DWpTiFVbmXm/0qlS8vKceOk2XPPhaWCTNrZwoWlw2OPSYsbbtibpWvwYNkwZYq0Oekkqd2qlacOo04Bst1L2mefwIh69aTlsGEy68sv5bdrr5WvDj1U+n73nQkmiobVU6bIr5dfLsvGjpWDL79cDn3iCeNXDHbv3Cl/PP64GYSsGD/elCWqAgwMWuEO0L27VGjfXtYtXy7LRo6UeV9+KStHj96bhQp3iU6djPJCvSOPlBrdusWlfsD9amAd9wXBIWAtNxo/JVU2adXGi3JUsopVNDvBVFiWbSKrCQpYNLuWJijACr8/TikqYdeF8lZSohY41TVmsGgrauwPmqh24gkvjVvKQ+tCPJH50eTD8qIsvCSh7PvRqWBd3Kl6hU1UbZJgE0YvYuqnn6rn9vJt9XKLyInKwYEAL9eWaHXefn46KLMHHvkF12Vhp0VY3cAvO9Avv90VchsBmU0y4pHditcyS8rOrF27whWv8YUXyqZly8KJCyBP0z/5xKgcVO/QIVvnI3AM62OjE04w//MyQE7r16/vuT9T6BDskl27mml+Gk1cFTQt6M6aNc22Oc8+K00OO0xq9+ixT2eWk86d4zQ74wxDMgf07WsC0I577z1pdvrpnu4Jvz/yiIz773+NdRsfXwKSFNzrr1dcIdPef18a9+1rSC6+rCQY2LRmjcz66Sf55/PPZe3NN8vG2bPNb/iu6amnGss0x/JK5RsNNDhYtyGwtWrVyral0svKqg0ZDZeKnqs1NKeNlzulBnmlk9Upc5WN2p/Iq1pobOJKGXCPEAfKGLKqRJ5Ohv9Z8sMCnV1NVCU+3JPtF+nKV+V1ZH52798lhq4/rktGvf7XtVpK7fvk/dLFJqrAj5Ta0lUuvMpS/YIPhMj8ZPhf+8ms2QRVffVTKcgsnml/HTgXtQK/aHMKujpBogjIbJJBNH68mDtwoJmybd6vX3gbkekKiCwwUeo0qOXKyYapU8NkFkksiCWBPETBZwf44hYrU0Zq9exp/sdayIvh92Iv+OUXaX7DDVKldm1DyCAy4evNypJly5ZJw4MPluYffSTJBFq1Zw0fLj/37y8DzzhD1j74oAkO0+smnTDyYfi8dr3nHumMe4FDokfff79MefttOe79942M2YIhQ+Tvd9+VZcOHy4Zp07ghQ4LrHXGE1H3kEWMNLx1SXcgOID0MAGrWrBkXoVcrn01alVSoUDgLVnQa5uw0ZH4SL66cjyvxwrPfn7JraWAapFStrWxTixcDg4oVK5r75TnynjCroB1JsstCr0/dF7w6a6DWPtsy5/qgKgHgHlW31yVU6mqSHx29bTl2SaltSYtmJXXdD7zcEWyiahNUJanAL+2vpgX3Uzmwy852i0gV0lQQ3VuiqVi4VtR4ZdbyCgfCtH9eIyCzSYaSwnjwzUknmbWS2Vlffy0j77prn/02zp9vpLrwUcWKivW3VNWqZiHQC5H9nJDZekcfLYWLFTNuA/i02lZZOnc6bH2R1i5cKI0uvdSz8yZojKnVvJJTQtUAH2Rkn0bfe6+snTpVej39tIyBpL7zjnkWfb/91shfuZj02mvy+8MPS6c775RJb71lSDGDh1I1ahiXga633GL8Xv2CwxIFAXd0fq5erx2BbFtZlaRo9DbPgLKNd5rLK3q2IE6pJQOutZX/uU8tZzcZA9/z7JCVo1whJ8nUvFVXEd49FpXRU4JlR5C7kcZ2xLtXVHleB0B55a63O3Mva6kb2OT6kdpWYJ2md1Pr2mTH1tS0yY3XdTFAUXiVYX6oHOxPSDRtt70osctvf9TsTvunmkpBQUdAZpMMTVmbCCa/846ZvifhgY2GJ54oG9euNQFG6aGsWZBZ/GPDwVedO8vioUMNoUsUaJgu/+MPOebNN81Lt3jx4n066CVLlhhLItMxa+fMkRqnnCLlPUgOlgo6XYJc8hJcR7d77jGE9YdzzzUDAvxWe7/+urS+5BJPtw8C50Y+8IC0e/hhk3GsxrHHylG33CLlGjQwclQKvP62rlyZ42vUDE6UITJiQDtdvQe1smLxVJ/h/X1KLa+Dsqif6p+t8ldYtV05MP0d1lfqNR0nHSnuNLktHabWd5u4sk3rA4s+c67b7tDzkky5eqxe1iU7U1M0UmqTQ1sb0/Un1VkDN1OVBlrZxD1aOei74RJ72y0i1QhSQYPr0uEOVvyCBJXUpergOdFpf53JORCn/fMaAZlNNpxpp/rHHhvzJyQ68EKnW26RpRs2yKi+fU3WKF6YzBUrjIuBolb37rJ05EijRpAo0IYFtXv3NrJbNuGClOoUJJ06DQ6+nrOefVa6jh27zwvP9Llf1q1kY8P8+fLPG2/sDd6iYSRy/OCDPYnswj/+kPmzZkmz6683jVKre+6RpocfLmWSQMIpF8oVgurmtlbnfNWKtBtNiFe8U2racKbSlFoqBWXRWVJGPAOIoV/nQhljlcMCy+91YJHbQWw2ceU8nFf1ZTXoUgMruQf1Rc7NIDK7vqmOqUs+vHxL/aykWg+9Ap6ilbft9633q8FWrlSVqwRgB4l6yUYdyO9CbsH2k/eyotqDZzdhhTtISbVnkZNpf/0/1e7pQENAZpMM14fq1IEDEz9IWpo0OP54E4y0/p9/eKOMviovEZZCm8y2v/56M50eT9YmQANER0rnsblUKen2/vuyrXBh2bVjh0nzSodKcgTcDQAdKZ9xIUByq0ylSvuoJixfvty4HeR10AuC/xOee05G33efyWJ1ysCBRl0AzdxPe/UyFueW5523Vy82I0NWLl4sS//808ibbSbV7JIl0vnGGyOynuUWKGPV8bX9ilVLVmWr/CReUnVKLZWCspQQqli7WlvjzZRFpwV5ZeGzBszllu6ryk7Z16lyVRBlBoycx7yLmzebesH3DE7iDQ7UbE5up2yTUi9yCFz5J5uE2MFN8RJDm/zogMK+Nttyq9dhkyCdPXCJakBMcxe2n7wXSXUj4u3pcduKmqoye8G0/4GBgMwmG65cSzamJbEoksmLdSECEsqXN1mgaEwQsa/WpEl4X3xpG8Sw/mL5UNF2QGdaqkQJGX/FFdLmiiukxnnnyaJFi8IamCQ8IJCLTrhhw4ZGqgvyNeWpp6TTrbdGHJvvNP1oXmLFhAnyy2WXyepJk6T9dddJj4cfDktGnTlkiAn++uXqq2VzVpZU7t4dZmESHmyaNUvmv/eetDz7bDnmtdey9XxiAVJCuWhqXTpw1ZKlA8D3NRlasvsb1JfYtrbaQVkq/5VIp2q/C5Q/xDE33Ac0OYIuXLv6H7tKD+qDywyIkmjqBINJt05oGUB2+Y2tWgG8NEltS6kuiVqSvCS3vKx0SpRtwmyTVCXv3B+DhOwGKgZITipUfUYFJRVqMO0fQBGQ2RRFvXPOkSXffiu7t2wxCgVYYtUhnhSi/E9HsM2xzMZq3CCp/I5Om2hsbaiWjBpldGqR5NLOSEkBnREd65w5cwwpM36HM2eabFH1e/cOH5/tfF+vXj3JS6BU8OUxx0illi3lnN9/lxqdOkV8T7N98KOPSs2LLpLVf/8tWRMnyvKff5aFn34qOzdvlkOeeEI633ZbUhITaBrf2rVrh61tgIEC5DaVO4pUDcqCDFF3sxNwxTPRyHNIpspp2e+CvW802SZbtsrV8dXpSLUuamCSui/wnthpRpVkGjm7nTvN7IebVMA+p5JDOxjTC7ZKQbR781t0X4W6wdiwp/11UbLsXhv3oTrEAbIHfTaueoOfO4ablMHLsu0VcJXfsO/Pa5AE/O7NTWusswEBco68zACWCAIym2zESJAwe/ZsY+10rUllW7WSYiNGyNaQ9bRM7dqmI+BFLVWzpslAVbRwYdm2Zk0EmaXTIkiLCof1w36piaDHbYAl4hL37JFxTzxhCDJZqjiGq0BA54M1iTXE7LcXXjCJBvDdtWW4sGrlpYVx7fTpxo0AmaxTv//eqDDo9UAaiDjXBrFio0ZScts2+Q4NXaaiixSREz7+WFpYCSJyCzwrfIohKDTABNNBmgiey+2goVRBNMLn950GM9lT0BrIYwt825qn6lIQz7l0bU+Z2v6UnI86wuIFN1gJuATTvlZNyev+Tkkl183v1AdX0xNrGdgawbYkFt9jseU3rPVa9H69LKZ2ZL6XZJQ7ZW8HdXn5CbpLKvo+FlTYlm+vgE6vqX7bDclWaEj1Z2JP+7vBVPZ9qmuLO6MQ1LsAXtg/e9UUgtuJuLAjqm0UohOzfCvTa9c2Lz2d+gmffy6VqleXzSRMyMqS0haZxfIH6WRfrLBYSbUzxU/UK/nB2EceMVm/Tv3hB6OLmxkK8LKBJQufPk1pu2rUKKl9xBFhHV0sTXmd3WjLqlXy9QknGKJ/0hdfGCLLfXItLDqlr5a8okWKyIBrrjFEFj/kIqVLh1UhchOUM37DGiHNuVMt61NuWEw1n7yr36lrd9EOWzttnpVGs6vkGFPwtqUl2vGifcd1qfsAx+MZaERxvNApfXUV4Jjqi0udUskyL3Cv6g6gLgzcGwNJ7l/LkGu0A9O4TvXd5Xu2884p6dVjc1zqOOXopWWqkfn67tsBXhpUpdZaJQyUv00cUp0UFQRkV7eZtfqjFpQoeHtw6hXxrwii/QMkAwGZTTaikNloRLd806YmEl8BYdu8ffveYJTQ9Kohs6GECQo6TvW/pAFUJQK/lLRzf/hBxjzwgPR48EFpeNxxZhvWVwK47OukQVJr7bb162XdxInS/Pzzw/vQ+RKkklfYuXWrDDjpJNm1dav0GzZMCpUqZRQUuH8lGFjJuGcdKPx44YUy97vvTIa0vgMGyKi775YvjjpKjn7lFSPblRNoIBflTIOOBRbyUlAJgaoBqI+qbS3UbFd+OrdaX2w3ATcoS304c6t8OCeEU90HNHDKy33A7/c2cVX1AyWuvA+x/Ey5R1VA4Fi2NA//a2IFdZXAyqp1VdNAs/gFnnEMZle4Puq2BozZwV46wPCyqrpalgGyDy/d5lj+qHaGpoIWAe+Scpuk+lnxNXC1oN1rgIKJgMwmGdEIK52bHwpjJQmlRi2BVbFUKdmdmWk6OG08tjhklg7YJgiQDaa3IRNeKWnXz5kjP557rjTq00e63n13eDuNlG3B4vc0wIpFQ4YY14RyId9UvZ7c6CB1GjnGTjLs1ltl67ZtcuyPP8o6/KiWLAkHvkAEXCL565VXmjS1DArOHTdO0mvUkNN/+UWGXHedDLr0Ulk9ebIc9vTTCQWA2YFcak2EpEBkC4IlJZr2qmYUU2thNP9UW0nAtvbxW55DokFZ8YLr1EAo6qxm+omVfUvv2dZytf1x41U/AKo/qwoI9jSvduyUA8TTrhN67fwWQgA59ZLc4jutY3b0uPqdKklVF4cgO1DOLYt+VlRXt9kmqAVZtzneaX9X5L+g3m+AnL0bOoOQaki9K9rfEIXMKgnE0jnxgw8ivkuDDFSqZD4zFf77Y49J3QsukPSyZU0nCDaT/Yv0iCFNVDo9CGz4GCElgvnz54etOIpd27fLt6ecYrKGHf/++2ENVq2sNuhIIQl2Clt8dtPr1AlPidrf5wQETHHMaORn4dChUqJNG+l66aWSVa6clAj5FWLpskm3TWQnvfqqlGvYUC6cNCmsclC4aFFjlSVbGqR23fTpcuJnn0kJx6fYBi8092sHcmGRRr6Mc0PcUrFhtyWs7DSoiWivuuWglkR+o+ldk5UFS6HuA7wD3BNkmbrtl2VOrcRu9izVck30mjkW1ndVEgBKMlkoR7/j2dJflB/XTmCl6/rANbMPVlh+ox2HJgxQy21gXY0POUmFWpB1m4Np/wCJ6Aa7izvDoIGdOiOXaki9KzrAfGbB748+KpOef34fMls45GZQvHx5MyXep3dvqVSlSphIZSxcaIguRFT96NSnVUHHStS8S/Lm//ijrJkyRc6fMEGKWwQYa4/rL8s2zeTFeRYMGiSNTz7ZNPJ0uliXsEbmFBoNTrIFv2nkOWPHyqZVq6Ri5crSqm3bmBa4ny++2GRSK9+4sVw8dWo4QMxGu6uukopNm8p3Z5whH3ftKn2/+878bx9Hp4HpBO1ALsgF1m/Kx02EkF/Q6Hq1tqqFRa2Efpmu4gHHg2RxfBo1nlUyrdBqqaeO8fy55mi6q7GSEMSrGatuBxxDraDq96ephCH/sXxwVXaLBfhlDtP3FxUD21KsAV+cs6BY+/MKOlDx00jdn3Wbg2n/APGkB97lSOjZswuubnBBSG4RDQGZTTYsMot0lA2tKIj9u4CgYj1VMlu2ZcuwyLpWyI3z5kn5Ro3MZ80s5VX5XHIKZnz2mVRp00aqtW8fsZ1O21Y7UEutHnfDnDmGRNfr3duQChQM1JcyGnQKWrUlvfwssW7S0XtN5bNsX75cRvXvL8379pV2110X9Xy7d+6UgWecYVLVQmQvmjLFk8gq6h11lJw3bpx806ePfNSli3FBqNC6tbHCqY+iOw0MwaXcIbb5EeClQTy2iwCwXQQSmTKPdh7ImAbVYc20Ez/kNtT3FAILOVHrmOs+EE8SgniIih2QZfsH67Vwz1jc1UIXC1wz1w455fxe5FvJslr5+Y1aPXgHkm3hTmW4KZrjTYWqOr6pmgo1XgTT/gEUbtCsF1F1pcqKOO+EBoMWxNmFRBCQ2SSDaXyFVzpVkN66tVmXqF7dJEXIXLSIIZMJAIPE1j36aKl12WWy27EibJg3T6q2aWMsZYAONx7szMyUud9/Lz1ffDHsH6nQ1J3RXAwKFS0qdXr1ClsmmfKMBo5JdD8dNR28WgrpsNVPkX0g3eEgs23bjFwSx4dcl8rIkO+OOUbqHnGEHPZ//xf1fNszMuTrE080aX3L1qsnF/z1V1wZ0So0aSJnjx0rn/fuLV+dcIIc99NPUrNlS0/xeq6Ne8EymezpXjugSq2FOqBR0qoi9LlpZaLsqVsMcCCHSLIl615pmJUAcr/u4IFGG4IbTxKCeMpRXQ5USUTrnSosqP+tLYMVj+8s1891uTrCStDVysv+Sr65dp7f/trJ+E1p2iTV9Ud1p/oLqrXIRjDtHwDY+tFeFlR3et+2nmpbpb7z0VJEH2gIyGySgW9pGD6NcLmePc26fJs2UrRsWSldv77xhUWaq+aJJ0rJ2rVlPcFi1apF/A7LbJNTTjGWnUQSFcz98Udpee+9UrlLF1m4cGHYsqgdud1Z0Dnb1lJcDGr16BH2OwXRCA6EASKr2a+8iAUkANJEp6VEhRcWCyDbNi1ZIt+ccIIpS3RhVQ7MC5uWLpUvjz1W1k2bZnRzz/39dykWpz8v17QuM1OOeO89+fHYY2XM5ZdLvxEjIsqDa8OCzD1zT7ndsdKYuS4C2rnbvqnJIpU63c3zoJFkoBIroCq759EIf8gd96MWTKCyVbYPtclUF+f9qxqDbW0F6h/MuSCcEEwWrgVSzP36+d9Gu36eD8dT9QSeI+XId5xfJcjUR5OBJwS2oPu9ZjcVqi09lcqpUONFMO1/4MIOjnKn9b3eA20L/N6F/dl6mkwEZDYP4Vpm3QpbGL+4EiWk5d13y56dOw2ZLV61quygMyYYZOJEkc6dzb4L582TNCxyjRp5Ztrxg5m2L1RIMqdPl/q33246H8T9sX7qFK07glQSSqAaSgaqfKBWLciAm4gBQCBwQ8Ci507PauARi1o4scaphUZHmzs2bTJWVsrulIEDpViUNLkoEnx13HEmkxkEtt/w4YbQxlsuJJvgPsrVqiWnfPedfNyjh/x80UXS57PP9rp97Npl9oGw5FYGFNXFhbipoL/6tap0U140bNwbBJZnAalLRnIHV7pKU9CyQPhUO5Vnrzqu8QQ6uTJgqiqgVmuII/VMfZ9VRcArE148/rsMHhl06TNSXWeIKwM3rodr1qAwnh/fqapBQdAcdn3vXJK6P6RCjRfBtP+Bh+wGR+3P70GqIyCzeQiblMweMED+eO01afvUUxGJEtIbNJCSNWvKzrVrTQBYiSpVZDfTcKHOZNuGDfJ9587S5fHHpcZxx0npRo2kRAL+iwvnz5cpDz8srUNZr3jpsOqi0bp69eoIVwU6YIiGHagGWl10kVlDCujMlYjZ96ckGUtbtCAZtcTqeSLki3btkoH9+hkL9NmjRxs5LT9AsgeccsreayhUSE4fNCgiiCsauFZIKu4E6l9ctW1bOeGjj4ziw5gHH5T2d9wR9un1UkxIFNwz5BFSBYHOj9S2PDOesWZJgziqRnFuQQOgqCt0AJrVRy2b6hMLcY0VJWsHZanLhfpr+1ltVf2A+q3uC14arrHKiOfEOdX9gHpP3aXs9L44v/rpqlyXSsUlw7qdHUSb6o/mj2pPbRZkf1QbwbT/gQWv4CjbkuoGR9mzBvuTu0siUBlDO103bV+QzjZAGLO/+mof2S4ss+XbtTMarshGqWV29+rVsgtf08KFZf5PP8nWVavkz/vvl6Z33imFK1eOIJzRwEu7dcUKWT9xojT75pt9JLw0kGbBggWmA8aKBTlQ/9y/X3hBut5zT5hU0mFDADUQR4mgWjCx7kWbsuVFgWRgufX67rfrrjM+uqf9+KNUCfkVe2HaRx8Z1QKssLgkYFWt0aVLXGWi/rxeQVxN+vaVQx57TGYPHy7l//5bmnXunGNrJQ0mBAiiQxmj/ZvXjSL1AAsoz49nxjOMZ2o9HtjT7xrBryRddYDpFLj3aKTIDsqibqmMmFpb/ZQJlHxq8oRY6gd+96DWW9WvVX9kvSa1KmtSDv0N9ZlnDDHPqwGKa0Vyg6dc6Sk/69H+1EEH0/77P9x672VJteEXHKV1v6C7uuQEmu3QXrTd0NgWlQRMRVkukJpXdQCAaHsXWGaLM2WZkSFp27ebADBSru5Yu9aQ2V1Fi5oMVmDzkiWSxYhpz564I8upoGsmTJDqnTtLOSeBglpWIXVKdmgMlOCNuOMOkzmrwfHHm2vHp5fv1VdQMxfpdD3kONZ0KpZJvwjxCc8+K5NeeUV6v/GG1O/d2/P3XPO4//5XRt55p1Rt315W/fWX2b/RiSfGVR6QDzKkuf689vHrXXyx7K5eXQb37i0Vhw6VGqFEEYmCctGgMQYI+UFi1ZLIc4OE5dY12Jqz6h+qfmAs1E8/RQW/pA2uu0U06776p2riAs4ZT/IE9x6UwLrJR7gmVSVwFRK4ZmY0KFvcM6j3iaTMzS40G5jtj2uT1IKWCjURBNP+B15wVLzSUvvjDEJuk//tFmHVWAI1FKgcYG4HE+cFAjKbl7ADiSCETmXBMksAWOb8+VIEn7+qVWXrsmVm+y78DIsVM5ZZ5LRW/vWXZM6ebSpovJVuy8aNsvTXX6V5v377fKc+gOY6Chc27gbqcrB09GiZ9cUXcuSLL8rH3bpJ9/vvl1bXXRfWVeV3apFCcxUSEYtga/S6V+Da7G++kWG33CKd77hDDr70Us/f79m92yQ6mPjyy1KmTh1DZLs/8IDv/i4gApAfP51UXnrcJCAwnc8+W+a//roMOPlkOW/8eCmTQNpejoN2KNZCSGxuT+PH65NLWdNAeWWZyi6w+uETrSlaaQR1EON1j15BWRrcpkFZ8chpqe8qz0+Dx/z0W2M9G8pFpbE4L4t2iCxe92Jn5WJfBgZeihe5DVsijXumPuXFefMKwbT//h8c5WVF9ZKWsklqEByVeJnvDKW21kWt1JSrklZmlvYnCcCAzOYTILPIb4WRlmYssxDc7WvWoK5uJLA2z5snFdu3l51YjRCr37hRDn3ySfniqKNk5dChcuhjj3kff88emT17tpnCVzeENbNny6Y5c6TJiy96kjs34QLA5WHoTTcZAk1yBa570muvSe0LLpCqIXUFDebCPQEi66Vr6wL/U6+OeNnvv8sP554rzc48Uw4J+ei62Ll1q3xz0kmy6Lffwul+scg2OOaYuF50LGm83F5qBDpNjuuB7UPb95tv5MPOnQ2hPWvECJNeOBo4PlZfSBeDAjcDW7KRzOQGkFAGL1gyOXbz5s0jjm0rVXgFZSWaMtaW5tLUtZoqN9Fy5bdYpyGxqpKg02es/ayqarmFSAIIbLITRrhWWAacyZZISxaCaf/9B/az9JOYihYcpX7ztvZpgOzrjNukdU/Icq3qNyrbeCBYqQMym09gqh7yqmh1332SFRo9bVu5UooULiyTH3lESlSrJtWPPtpYZlf98Yf5HpJriO6CBVLGx1+WTpvOno6bThBCtXXzZknbsWMfFwNN9ehlsSO5wopx4+TMoUPln9dfl5KVK5s0uhkrVkjtOnXC+2EloiGLJwsWpEQj1m0sHDzYBHFV69BBjnv3XU9d3jXTpsnnRxwhmStXmms57JlnpMW550aV67IbYSyJ3Cekm3LRxkB1PwEvPoTBJjb446rCwU8oHHz6qef1UY6QWI5Hmeel5SzZyQ3sKXU6pMaNG5syovzU31p9rdTamhMpMY4FgWShDBmURUtdG836SpnolLz6CXO8aNelWef4Lc/TzvyWbBQkK2ww7b//BkcpOfULjtrftIBTEa5rgCbHUSMS/Vl6errpbwraIDc3EZDZfIDRc4UoIfeEyDq+dr17y6qhQ83321askBLly8vmuXONZZZECpDZbWvXmu/Xz5plLKQsy8aOldqHHLLPOeh8aWDoBCEgWNK2b9okVQ8+eJ99mTL1ktbatW2b8UcldW3tnj3lu1NPlbZXXy2rFyyQVcOHS0vLfzTeCH/uHe1QN2XtjM8/lx/PO0/qHnmknPTll1LEOd6OzZtl1D33yF+htL/trr1Wej355D77uedSogqRUWKgAWuajQxrF+tYDYFROPjwQ/n21FNlTMuW0uOBB/69vh07DInl2Fgd47FO5xY4tw5akmG5YyqfOqTZZiB0OmjBhYLBCedNJF2s3/PS4C1N3sF5EgmkoizsADBNTKDW6XjKhQEJdQUSzWBA9Y7zAqlkhQ2m/Q+c4Ci1ntrT+4G0VN4+L9UY14V2SJ+NugbQxtJXBdbsfRGQ2TyEdvIQj2aPPSYz/+//zDQ+2L19u5QKWTrxky2tEf5UcpQMyIwU2nfln3+Gjznvhx88ySwvgk7jYoVctXKlFCpTxgR/ucBy5ZJLMOG552Tz0qUmtSukGZ1ZgqvKbtokoy+9VNr36ydlLetsPID8uNqhf734ovF/bXnuuXLM228bJQdbnmvyW2/JyLvvNmSe1L5nDB4s1Tt0iDiuZlay/YPUqZ1zQW7wqcS6lhOrAUkqej76qIy6+26Tnrhh375hoofVMJlpXt3GTy13mtwgNy13Gp3P86JjgxRCrhj9cw6+xxUjp8kjVDpLM3/plH88pFh9Z/XZcyyuk+38Hv9dyHA8DT+/U/9Z9qfTyCv/ZteintvP0gvBtH/BtZ76BUjFCo5SP0ndHlhPU0PqSt0y9Bmx0E/lNA35gYaAzOYDtNGpevjhYYK6asgQqdixo2ThG4h4f6tWRjGA/42SQUjmCKwIkdma3bubqf8V48fLof/9r1Tv2DG8Dy9MhHVw/XrZuX69OacNyIDXSG/jggXyx6OPSturrjJ6rVPeftuoGVTr2FG2zp9vFBYgmbZ1Ml6rmRJnXuzR990nvz/yiHS46SY57KmnwlP3fIdyAyoK62bMkLQiRYxlFGJdqkqViOOq2D8kwPUPUuktCFduBT51ufNO2bhihSyaO1cKT58udZo1yzPLHYSN+8UamozkBpQ7hI5zQMypGzS2ttuFKlZQ1l4W/VjHx+qYHeks3ht+o2ltVWNWc5dzvRDueFPQqowX98rvuY68tIQmywobTPsX7OAom7B6BUfZ0/lBcFRqgufnktaCJnVV0BCUYh5CO3L1eUFHFstr5uLFUqZJEylRs6akIYv199+yec4cKYx7ARqbkNnNm8PHWf3PP2bd66mnZNKrrxrSN/OLLyLIrFpmFatmzpSlAwfK7p49pUR6utQN6bZiJVYtWcWWFSvki6OPNuS12333mW1zv/9eGh5/vGzdtk3Sy5aVFuecI5PffFO63XOPFCpSxLy4EBTOqYvrO0XQF9YytmFxHXzVVfLPG2+YgLbOt94a3g8r8PBbbzUqCpVatDCkvuFxx8mJn366T+AVlkMIK0TAJTCxpLdy4jfa8uab5Y/rr5ffXnxRzh03TkokoHCQKDRzFcRHkxvkdkCZncQBUgdJxVLIeWw/aOoufsd2cFw8DbtKZ9FBa+KBWNJZmlVL080y4GLQQL1SX12eK9ZitsdbHvyOe9OkIFxHbuns5qUVVt0hePfsaWMlPfoeqlLE/ijTlerpfV0rajzBUUpQqefB80pd7O9SVwUNAZnNQ1DBka7SCo+vLJbZzCVLpCRWGax7RCTu2GEsn0TpQ2Z3op+ZmRk+Dr6yxcqWlVrdu5uFyH4luOF9Qlqdik0rV8rO1atl/PXXy+7//U92bdgg9Xv0CPvWKnAl+PKYY2RXZqacNWqUlKxUyVhp106daiS5VPWgzX/+Y6zC8378URqfdJLxg6XDVH9UOlq74V45YYLxAV68ZYvU6dVLJvzvf8ZF4th33pGDLrrINAxLRoyQ8U89ZbZXPvhgaXn++TLtgw/MuZAFgzTbgKhyHqyTLhlQOarcijjnniCxlCnkh8ap4quvyoedOsWtcJAoKD+VEKODS4aGKc+LAQ2EEWKFKwb+1ZwP2TS77NiH54wVNVYyDBp2lc7i2UCIIW1+16/Tb7bLAGUN2cQCrJnE+E6DyhLxzzVpnDduNHWCa4Cs52VWrty0whq96DVrzD1RDtxLMG2cPKjl3y9AyrWeutP7QXBUwcaBKnVV0BCQ2TxE2caNw0QWFCtfXnZv22ass+HqH7LamocDOVq3bq9Ul4P0mjXDn6scfLBMeecd01nT8Xth+44dsmH6dOlw/fWy7pdfjFV4644dUrN9+/A+O7Zska9POMFk0YKclW/QwGyHXEIky3XrhmPPXjH79u2NywEyXXWPPda88H7nnjdokPx++eVSrU0bWTVhgox98EGzvUa3bsYXeMLzz8v0Dz807hKVDzpIjn33XVk6cqRxY8A/lWl9u4HgXJAqoJZe+zsluTnx5VRAnjgenRLnskkcCgd9v/tOPunZ02Qgw3KcGw2ZTn3ndnIDP9UFCBHWTci6+ha7ZFUJr0twXekqFo6pfl8c12t/naVQ8srvOadaSukkNIkBC2Q4UY1c9ftlYKNZufJKTsv1w80NX1iti1w/ZZFXri37e3CUlxXVRhAcdWAgkLoq2AjIbB6i+6OPykrIqxZ+erqxgGpaWxNYM2vWPr+bdNttUr5hwwhSm25Na2PFRC5r+bJlpsM2aglpabIzM9NYC3cjO0UqzhUrpOPNN0upqlVl8I03ysZy5aTs1KlSoWdP2bV9u1ErWD15spw5ZIhUbtUqfHzIbKtbbpFdWVnyfadO0vPhh401te0VV8igyy6TZfPnS1WfQDDcCYbfdJNUbNZMer35pvx88smStWCBNDntNFkycqT8du21e8uiZEmTXeygiy82xHzhL7/Ice+9J60uuMAzBS5khylw9zv8Y7G8QciySxp0Wh8XBggWx/KzKFZr106O/+AD+e6000xAGNbrVEtu4LpJQIg4H+dgyp9zLlq0yPwPAXXLAvcQOnQvVw4lWOyn8jBe1w1RUOLKNQCV7tKAQPaBTHM+ri+WNTfaPWp2rLzMyqXAcgP55/y8jzmxwioh53jURXdAFWAvbN9TL6IaKzgqsJ4eOAikrvZPBGQ2D9Dyggtk5mefSZnatWXlnDkR3+0OBbIoDLkNgeAvA1LWVq4sG0J+tJBT1zJriHGo0d6WmSlLhwyRr6+80gRMGfcFEalz+OHh7FW9X3hB3mnRQta1by91evY0mbQWDR0qpw8aFJGyFWvttqwsacxvsb4tWSIj77rLJDVodtZZMhLXgwULpH6zZp73Pun112Xt9Oly2GefyeTPP5eqffpIjdWrZfaXX8r2jAxpesYZJpBt49y5suCXX2TgGWdI0fR0OfWHH/ZJY6tkFbKk2cncjF0qEZXTtKx0bkynx+Nr2/TUU6XnI48Y6TAIbbMzzoj7nFgxIc3JSG4Qy6rHOSGxEFovi6udBQ3C6eU7DCnwIvtYftXflXvk2F5pZjUTHCQW8H2imbz0OAwGOA73Rh1IxI82t62wKueVkwGVBuJhrY63Lu4viBYcpYQ1WnCURobbwvzB9O+Bg0Dq6sDDgdM65iOQ0oJ8znGIrPnut99k+8qVkh6a0v/tmmv2JbMiJhgLVGzRQlZPmhRBZis0biwlyN6VliZbNmyQUQ89JJtXr5ZyjRrJt6ecIg369JEizZtLl9tvD/+Ghr31pZcaiamta9can1uyfNV11A4WjBkj1Y4+WmrXrSsb588327YsXy5/v/iidL7tNmn3wAMy85VX5OAjjoiQ1FL/2zH33SetLrzQkJ/pjz8uVY88Uqr06iUHVawo7a+6Sso6kmAbFy402rGlQ9nFwmWRlWWIFR27S6w0KAmSpNnO4oXKO0EaIF3ZJZRd7rpL1k6bJj9deKGUa9hwH+kwF0yxQ2I5P8Q8Gbq0flY9SILRHd6+3dOlAFAWlLdbpmxXFw+spvzWlsiCvEI0ILfcE/fm+pFBdCF+XBvlHK+agV8wFaSP4/Ps/NwgCoIV1rbQc08MzPL6fvIyOMq1orrBUUpEdR0ERwXwqlOB1FUAEJDZPAAkxw/z33pLdmZkSIP+/ff5rma3bjLn22/NZ7Wo4lPqkln8WSu3bSu7MjLkz2++kS3r1kn7K66Qmq1aycfdusnSv/6SKqVLS73bbos4PiQTKytBVlhGyzdqFPE95CRj2zZZ+NZbcuSNN8qyMWMMYW7dv7+Me+IJaX3ZZVKpSxcZffnlMnfgQGOhtDH24YeNq8POokVlxeDBxi+4YZcu0qRfP9mQmSnFHcIKytWr59nBq9XV9ctV61WsoCQXdJw6ra/JJXLigwiZ6v3mm7J+zhwZcNJJct748RHPyCWXkD3cJJLhShDNqsf9QqI1O5kXvAK9IKC2nq6WFWSOZ4N1l3P5WVXZj3NzbL7nWSaSDCEVsnJFs8LmVF+YcqVeUD+S5SedTOupX4BUrOAoO7VpkDkqgB8CqasAsRCQ2XzGri1bzBr5KRetLrpIGvbpI79cdplUbdcu7FKwZPRok/LVRqWDDpK148fLxiVLpPmFF0r19u1l8dKlcuLAgTL0jjs8I7/Ra23ct6+Rx9q+YYPU7tUrovHAejfxlluMLBa/3ThvniHVPR5+WKZ//LFM/vpraXLqqVKjSxf557XXwmSWDuyfN980igX4A5eoV0+WvvWWnPvHH8Z3FqTv3GlIEFPe0VLg0lmiaUoHDwGyt6svJ9areHVFVeKK33PM3LR8FS1ZUvoOGCAfde4s36BwMHy48VlW9wUIWDKnjG15LdeqB/GjvKgH0e5Z1RM0Wxb1ABILGYXE2hZktYhDSl03A1U04FoYFPG9Jl3ITnlz/ZQfzy+vs3Ip1ILPfeWWLiyDBJWX457yKlFDosFR8UpLBZmjAuS07gVSVwGyg4DM5hPmvv66keVSVwLktibfe2/EPkhzTfvwQ0MWddoda99xw4dL1Ro1IvYt36yZzP3lF6l59NFStkkT0yDQOS6bPFnqnn22VPSxHB182WXyZcg31bbMYiUqQk77WbOk4Ysvmm0b5s41U+jpNWpI++uuk22FCknR7duNdBbR/OtmzTISXOP++19jPSYNL0FcmeXLy4I33wwTWQC5gTBBhujINbOUDRXn5zsvrVO22wQ3nkQDkEmdHk8GKBtVOBh05ZXS5emnjbUtmVPglJOmlcUFw7bqQXDxlcWaiZuBnyVYA+tYQ05ZQ2I5JgSL37rkkmdgJ1NQqykEljVkk+eTXU1c7kvVDCCNDD5yW183XissRJr7zA0rrCuvRT12yzc34eV7ahNWNzgqWlrTwHoaILelrmj/qYdquQ+krgJkBwGZzSfMfuGFiP95kVf/9lvEthIVKsjysWONhdbIdIUILkSCDpaOVfVkK7Vta5INVOvUKZzZaPv06fLrccdJl2eekSaWL66NekceaZQRSFurZJaODhKz4vvvTTBW7UMPNds3zJsXVjlodd11Muqxx+SPv/+WQ594QobecIO836aN7Nq2LWw1Pv7996X+ySfL6BdeMOdxAbHDSkmnDjFiilrJHteAJi/kxfbZjNetwE73StnmJRGq0KqV9P7pJ1kxZYrMHzBAOl16aVLOa1v1IETu/XH/lC31JNq9qxsH5Uw5MZChfnFML0uh+tPyDCB41DWeC9cB0YO4Z1eCSq3nPDfqQG5mxsqJFRaCnxvXAMnnmVA2OZXX0sED9SDR4ChNPhEERwXIC6kr3ic+68CJdgPSSj10szYGSD1kWTM2mrQm1RCQ2RQB6VqLlC4tO6y0tQRCbV62TCo0aRIW5IfMbg9pcGKtpGOEVJSsWlW6PvigITCmk8vIkJ9OP90oAnS/+mop5NMRkz4WlQN0XjXIjGNCZMagKHD00VIkZM3DzaBRnz7m8+adO6Va3boy5p57jNxXj0cekRXjxkm7a6+VQf37S60ePYziwbIFC2TRN99IVx8yTQMG0eK6iaznXjS5BNYqtYLF61Zgi9PntT+lHdRVv2NH2ThihIy4914pV758QgoHObXq0WlgZaXBiWUNVmLKM4AULVy4MKrPpktkeSZ6HYkkMUilrFxevrDcG1bu3LDC2lJvHDc3ZgYoJ/yaNeWwHRwVEIMAqSZ1RVus6hIBUpOk7gwNiu3BsT0oVhKr2QRTDQGZTRFMuf/+fTJIbduwwayxmOIri0tA5datZXlIYkmnZwBkULfRgGyePdu4MPT57LN9Mme5QA0BLBoyRAqXKiVrli2TNd98I8t+/12OefNN8x0yWlvXrDF6t3SknKP91VfLX888I2MeeECOe+cds9/EV1+VNVOmmAAoGrMNy5fLuj//lLpHHBH1GvQFwa0AYKW1g4xiuRVAQiCxuSFOnwiiBXV1vfvuhBQOYoFyhxD5WfUgY3zPftx/LKsf+0FGsYzgUhArep5GToks1wDxpaz9kmUkmpWLY+VlVq5k+sJq3dB6CenMDV9prhESy/VxnQeSXFeA1HANUGsr/wPaC3UNYCBM37C/KHAUVGSFgjNdgqprl6Rq+mvWGMl0UFyQnmPQEiYZW9et22fbjo0b99m2cfp0KeUQNayyACJUrEwZ6f366+GECJAZCB5QEXw6N9XaXD1ypJnu53cxr3HNGilRpYpM/vJLWTJvnqwaOlR2rVolLc87L2xRVFkurgXCpNalrvfcY1wMOt16q/HnHX3vvUYloXrHjnvdFVaskIpNmphsWbEA+cKPlnvRkV88bgXswz3n5XR0PEFdPKdj3nrL6AOT8tYoHDi+zokmcPCz6kGoIaTxBhFx3RyTxop7iWXBpRFkoIGlm86Mc/E5UTUGdf+g7DRrXF5m5fLSFKY8c8sK68prMUjLDRcFOiDKnOdAHUiGCkaAALbUFYM81uoaoNq9ammljQ5cA1KDpO4KfY5GUpm50c8FiaTGi4DMJhnzf/ppn21ZTrpEs233bpMty0bG/PnG1cAmQBBEKikdLxUTYgAhoIGhgrIdcrtwwABpfPLJcV0jgV0NzjxTap1+uhQpX14Ouf56Ke9k9MLFAJSqV082794dJlQHX365/PnMM4bElmvQwEhxHfLYY+Y7rm3Zzz/HtMraUImeeN0KIHGQhtxIXZuohFI8QV1G4eDbb+XDTp0Moe2HwkEcpEmtepyLRsjPqkcDRjnxnSoQxDou1lUIMtePJTnWb5TIYi2HpNFwJhrMpnJadJB0hHmdlSvZvrBe8lq5EfDHe8AxeZeyo6McIIBfXYW0KmHlsxIhdQ2grjE4Dqz/eStz52VNtUkqbYqSUtXzLrofk9R4EZDZJMPO6KVAxcDFUS++KKOspAZqDS3boIHxaw0fb9eucONCg6PR5kz5aiRoyaJFjW6snckrFpltfe65UrFhQ0Nw6Ox3r11rGjIIookqX7dO6p9/vqzfti3CRxN/2u4PPig/X3SRcWfodv/9YX3VdStWyKKvv5bjQq4K8ULdCrzSq3oF00Dikk1kNVMXa6x4iUgoMRg5RRUO+veXEz7+OGowlm3V8yOoNG6qYBCPS4G6FeCLTMPXsGHDuMikElnOgR8uBNBPn9brt2o116xcuWX9TBUrbLLktezBjKtQESBAvHWIttsmrCwA0qOk1TaGBMh9uD6p9mdbScQmqWpJVcIaPJvYCMhskkHqWYA8VhjWKAs0vOwyaX7mmTL8hhvC286fMEH+fuklKe74I6plVj9T0XXUpg73e0KZxqrHQWb34Lc4f74Ur1UrPO0LYYHQzp8/37xEnG97VpYUTkuLkGJS4I4w/sknTfAawWB7bzFLtqxZIzvWrZM6ln5tLEDOmE6NpVZA44xFMtlT1LmVqYvsasd/8IF8d/rpJuVtN0eGLRGrnroUQHLiIfKqMau+tG4GNT/Q2KrGL0TW9mNOJCtXfhExOnHKNCeZ3aKBOkjdoJw0CUVu3KcGd2EZ258ygAVIvmuAWlu9pK7whXSz8QXIPqL5pLok1Z7uZyCNoUKl7gLkDgIym2Qo0Wx51132xoh9KvfoEUF8lfzs2bFDCjuEziazvDQ0Uq6Q+ao//zSyXvi3xgKSXFxN4RIlwkSNxg4LE4vijy+/lCIh1wYXKCWcMXiwcZPQKXRI4MYpU8x9cC2JBLfE47+pGqfJaAySlamr6WmnSY+HHpKxjz0mFdq1k+o9e4ajf2n8Yln1uG9IJfccj0uBZu2ig6OONGjQIO77oG5hxYW8UhbRzqcSUQyAOCeDoeykpy0IVlhXXgsSm1vHD4K7AsSq2zZhDaSukk9SXaIajaTSVgYkNf8QkNlkwyGum2bPlrVjx0Zso1M00/k7dphp+nYhGavdHmSWl0otlpAIXiSXzK4YP16qdewY1wjcJEJo2VKKlSgRddoZn1mykfnBDWxiinT+J59IXQ99WS9wX0pQoxFZtRYSfJQMn0s6CayY0fxUcyJZU+P886VH8+Yye8gQKVm7tlRt1izmFJ+6FEAqsf7FIk+UEWSL87EvjTADhHjvhd8jk6aWftxK/GS6NCsX5QURz6/ApGRbYZMhr6UIgrsCuPXB9WcFgdRVzuDnk+pmtqOcbZ9UTRqi0/2BZTs1ke9k9qWXXpKnnnrKEIg2bdrICy+8IJ07d/bd/3//+5+88sorprOl8zz99NPl8ccfz/PUltkls6uGDZPZzz8fsW0708tLlxpLLFH/pSpXDmcFI4uWn2UW8JLZLyKdLmT2oP79/z3nxIlSoWnTfaS/lMyWb9dOSlao4Et2jCvCggVGliteZKxZIytHjpSetkXaByraHysoSFPbRstklV1QbpopSzVU4wWNoZ3NRh327Sk+W7KmVrVq8tlTT8lPn39uFA4KRVE4gEBhrVbXg2gNqWYCY5qad4NzcW2J+BSzP/7XALcClzinQlauvLTCJkNeyw3uYpDiJgcJcGBlwWJRmUVb6oo6HUhdxZ/hziWqfiTVzmwXkNTE624qEvp8JbOfffaZ3HTTTfLqq69Kly5dDFE95phjZObMmSZy18XHH38sd9xxh7z99tvSvXt3mTVrllx00UWmYP/v//5PCgRC5PaskSPl00MOMZ8n3nijWYBtiTWWWYdUuWSWz9oIAkgxcljqL0tGro+6dpVeTz5pUtB6kdnKXbqY8/gROEO0d+6My20BYEnYuny5CQir1bNnjOLIkuXLl8ckIkpk6fRzm7DQkXANWPT8VBG4TiWtajFRnUVbsoZp51h+aUbhYMAA+bBzZxnQt6/0GzZsH4UDzqVqDrFcCigbyJZm7WLhfmisIaSJENl58+aFUw3rOVMlK1deWWGTJa/lF9wVa5ASoOCCZ+3OzthZsDQIi3cqkLqKTVL1s0tS7el+ypSBYZB+OXdcWnStZU6bFU8a+QOKzEJAL7vsMrn44ovN/5DaH374wZBVSKuLMWPGSI8ePeScc84x/xNYcvbZZ8sff/whqQpbUsPG6n/+8dzukllNY+uqGWjF4jMVTTvzFX/+adZKZtdMnSq7yRg1daonGYbMVmnb1hzXj8ySxhbEa5k1OrfDhknNrl2lWAxrE9ZQbcyjlSEuCFgBc9N6xXHVMobbgk4b01hiobUtJtpgKmnNaQpGFB+Q7GJAM+iSS+SEjz4yx9JrogxjuRSwL4SLRSPeNQ0whDaaEoQL6hBElvtStwI7m1p+ZeXys8LiX5yM2RjKj3um/HNLXssrwDEI7tq/4LoUeUldEYAVSF39a5X2sqZ6kVQlqgFJTU664R0WYVXDGGVPnaXMNXAQ3pDKg+58I7MU3IQJE+TOO+8Mb6PTOOqoo2Ss41OqwBr74Ycfyrhx44wrAp3vjz/+KOeff77veez0egCLSJ7CIbPawP129dWeuxe2ps+9fGapgJQTgUBMJ0M+KEslqGScIuUtZMkEAE2aZLavmzHDdNJMWTdp0iTcQW/bskXSQg2vX6dtNGbT0qRs/fpx3TLkcPa775qMZdHAs+DaIZJ+MG4TK1aYzj83R4OcF+slL6o9DU+ZqgQVfqCQxGTpLJIR7Lj335eBZ5xhFA7a3HSTObfq1/o1HLZlz9a6xWLJPcWjOuA+Lwgw5Jn7VjJNAwahy6tsal7QwLJkWmEBjTguGpwPwpHbCgwa3EVdCjJ3FUzYszO62FmweF947w5UqSstHy+ias8e2iRVLamqlZrqhKmgKl3ssAir1ln1wWbBaEJbX5BTYecbmdXc8q5mJf/PmDHD8zdYZPldz549wy/OFVdcIXdF8cvEn/bBBx+UlIFDbiu1bi1rJ08O/2+TV+Mz62EtpbJx7xA8rHJALXi4BJQJZQKjrDaHGpHCNWoYqxDT9BAhKq7xfaECe+je2sB6yzHRlPWDpsgzMl4EBS1bJvWiBH8pSYmV7AArlqaozQ2oNRMLH6TP9r3lmiAc8SgF5BaanX66rHvySdmwebMs+Ptvadqliy95VpUFnisk3LYaKrmlPOMl3xpYppnDqB+aDCI/snLltRUW0LhTnjTwWLNzO52uBnex5thB5q6CJXXlzs7QLlAXbYtVQe3844X2tX7BUzbs6X7WmtwnIKnJfT47d+6MIKwaNAiUsFJv92d3lnwPAEsEw4YNk8cee0xefvll42M7Z84cuf766+Xhhx+Wex3dTgWWX/xyFXT6dPj55mYQ43874MvLMhv+bvduUzmxJFKRaViVzFbs0MHcZ+PGjWXhp59Kx9dfl+1r1kilUqWkePnyJngOMrtt3Top07y5lI4xHY1lNpq/LPeIZU/VFTbPmmXcI2p06eK5v2atikWYIGcQGztJQ07AebFc0sC6lk+IrF5TXhBZOgENpKpz9tmS8cwz8kvv3lJ59Gip2rbtPvvznCFFmvLX9meFkNKIJUJA1R2B4+oUEuQ+P7P95JUVVs8FiQUEy+W2H3YQ3FVw/ALtxXYNUIsVA+n9kYzZJNWLqNqwp/tVK1W37W/lksrPyiWsWl+LWv7XB8ogy0W+9Vx0IDQQTKva4H8/8gJhxaXg0ksvNf+3bt3aWJMuv/xyufvuuz07PvVxzC+Q7auUTZ5jkFnS1ypcnVkICPeI9Ux9XKmwts/s5pUrpcV//mOirsGMZ5+VhmecIdPffltaH3648WOlPCAxkNTiVapIudq1ZU8UAofPbOVWrSK2cX6morkWXi6NwIWcZVWoIC2uvtrTqqyBXLgWRCONWOUgHNFcEBIBx4Mce03BqxxXbgb5xEooABglK2Gr9uijsmrECPnmpJOMwkHp0IwF14a1mGftRtJzPMg5DRflFE/jRUcFiaMslMDmltU7O6BOUx7UG+pPMq2wNPzUe8g/5ZgMSynn4H4g5UFwV2rAdQ3wkrriXdRB3f6S+cvLiqpTzIqApKYWvAirBgyqSwb1FbeMQOUiRcgsD6JDhw7y22+/Sd++fc02Hhr/XxPSWXVBR+QSVttClapocu214c/udeJK4EdmdztuBlRwKjJkBJJj52PWcijZuLHsCfnmZSxeLNvWr5eGRxwh015/XdbNnGnILIQBK9+mBQtMhq5SdevK9ihECNLbKKQxqx015yPACLcQZLXU0rl92zaZM2iQ1Dv9dJk7d64hYGr14t4hsrFIBASZ88RyQYi3cVDC5xXMo0oGiUzPJwJbCYBrocwgnu65kE0jIOzDTp3k21NPlb4//yzrQlm0GNy5gVeqt8uzjOVLzHsFWaRM1R2ExpDnkF9yUHlpheV+GURA4FXhIRkaxRrc5bqABEgNqSuePfW9oFqtlKT6TffbfQvts6uVqv8XxHvfn8AztAmrrXDBc9sfB1j7vZsB0/8XXnihdOzY0QR0Ic1Fh6DqBhdccIEhQ/i9gj59+hgFhHbt2oXdDLDWsj1lH3hWltQ47rjwv5BHG3bWLwll4vKzzEJgqeQaXc7CZyWzkN+K3btL8VBEqAZ/1ezWTcrUrWuCwADH4OXZsn27cQkohPO9M62k2J6RIVvXrAkrGUDK7Cl6LJqqacr17V6/XmY+/bR06NdPCpcpYzRLOR9BL1jEIHNctzvFZS86ZZ7TRhcCA/GHcHuloeU8mqghN4ks90ZZqHU5XiUA/JL7fPutTPnpJ5n888/Spk8fTyulBnpBcv2mx9UKyfOiw6PctaHkvvND1zQvrbC27y1lAMFMluU9CO7K+whsm7RSr1RDVElrQfINzAlJ5X7VuhoMnlKznupalRo0WDBQuNiPyGy/fv2MJeO+++4zpKht27by888/h4PC8O20X9B77rnHNE6ssQbSIUNkH330UUlVuJbYxZ9/HvF/xZYtJWPBgvD/pIwddOmlsmzsWEN0bR9aXgidEqYc1OKggQnrly6VTKykofS4kFl8ZMvUqSMVmzWT9TNnho/FcTY0by5ZX35pGk4/orVx/nyzLt+oUXibdhCaIEAloIz1a9w4c87q7dqZNLc8I6bJZ8+eHZa2UkUJO6KVBcJpi1hnFzQaqtHqZyGziWxuWelotCBPWJbpUBNRAtCsXburVZM6rVvLT6edJoWeflo63XxzxH6UMYMCv+v2ysrF+XlfII98x7a8JLIQeqyi1BXKJNnBZba8lq32kNsIgrvyR+rKlgxKZakrrtdOjequXZJq+6RybwFJTW3os7VdAlylAHUJ2F/9rlMJ+d4K4FLg51ZAwJcNXu7777/fLAUFpTySP9g4+rXX5A3LpxZprslvvbX3t9WqRVhmeVnc6Xkls3TW69etk8VffCGdzzzTfLdq0iSp0qaN+b5i8+aycPDg8O9oLLHKlihZ0jSsXpbLsCyXiAkAU59dWzJLfXMBBGr+F19IncMOM0QWsD8WRB2gJPtlhkgyQIo2hU45QmQTzfQVLZAL4qQZsZRAxgMGBBAvtZYaf/F69WTdnXfK8FtvNc+t0QknhPVnIYYuGVSLp14DDadm5VKVA6bW8UcnYl+DBfPSCst5k52lz5bXUt3dZNQ3OjHOo+ogQeau5Epd2dnzUpmk6udoJFXF/ANLasFzX1ELq+13rIS1oM0G7I/IdzK7v6Ni06YS6VgQCdLX2kBhQLELF4IQ2eKl0kXF9YHt/8XLBkFNDxFMLLMNjj1273U0by6TXn1V9uzaZTJz8Zt/brtNDrroIvNy+iZMmDtXiqanS8nKlQ1JUDINAcMiq78z0jUkNxg9Wg575pl9jpPsF5zOBbLGOpoiAWWElRIim90EAG4gl2YOS0RJQH1Y/dKw9nzkEaMZ/MPZZ8vZY8bIzpAFiuvW56++xRzPvQbNrAaw4kLe84LIqhWW+pBXEl/JltfyCu7CIpjIoOVARjxSV7Qr2p7kV5kqSfWyoroklTptT/erTmpAUgv2oMomrLZSgJtAIHjvUw8BmU0yYgWmuS8FBFaxIyMjbJmFJEB4IC40mK4Fg858x4wZxrJL0oQdW7bI+tmzpfPtt5v9cDMg2Ay3gQpNmsjOrVuNjFe5Ro32yQrmKhngL6sZoXipOTdkjOnbiAQIS5aYc9SNoi8bC1i7IKWJ+jZSzrGyXnHd2SWy8QZyRfu9Bj3xe1vJwAtphQrJ8R98IJ/17i3Tx42T5r17G5KGJZdr4Fg0rFi83YGIWp4hyVwngWJ8ThaRzQ8rLKAsqPeUbTLktWwEwV3Zk7piWypMubo+qfZnDb7xI6m54foUIDX8kt0Urdo/qwucZhkLnnfBQ0Bm8wFYLoc5vpAKLKc2lMxCFugElHjaUx36QmZMm2aCiOgk1k6ZYoLPcDNQyyxA0QAyO/+nn8z/VVq3FvKj+XUstsYsLz8kDLJp+4KqxWr5jz8aS3OlFi2yXTYQIkhibpMhjf6309YmK5DLPS/kE0suZAvSFa8cVFaxYtL17bdlzKWXyqK33pLu77wjJdLTo/riatAb90mDrEQ2kdS2iT4vptw5R14lWoBYck7eA6b5kym9FwR3xSd1pRkEVQoxryKxo/mkuiTV1UnlneBzygYPB0gYXoTVVgpQwppqrisBco6AzCYbHpZZCGuRMmXk5EmT9iEku63Uu0DdDNQqSkfuNr4QCYjWxKVLwy4G6+fMCVtkAeltcRdA0aDe0UfLiNtuk/rHHivVO3Y0igN+gMw2DMly6fQL57etYJA1ppRHDR4sdY84IkcWF73P3AQdGwkCIHjxHJt75J6yE8hlW3GxwvKZ3yfqvwkpZdBQtGRJOeimm2T42WfL7Keflt6vveZ5HM5DoB33qhZziCznTgaRVbcOkBcyVHklr6WgHClPOscDMXNXNKkrJQUsyZK6skmqS1SjkVTqRkBSD4wZAJuw2koBSlgDaasDCwGZzQc3A1wJkOBS/1cbO7ds8bTMsh+Ll0sARBJsssjszs2b+ZEUDQVBmSCwZs0MmZ340kuyccEC6fvddxFBXS72MH28YEFYlovrhaDhg2nfH8Sverlysuqvv6TtFVdkq5zMNe/cmes6iEpk3dS10RpK9ofAJOoTaSsJ0MkTzJUI4VJLML6uHIvzKxEu9uqrMuiSS6TKwQdLeydgknLDrYDGG9Kter78NpYGbXagShC4EyTj+Da0fiVbXssruIs64BcYuT9LXSlZtKWuaGNy493080llUUICVGrLSyeV9irwWZQDol7ahFUHUzx714c1UAoIEJDZfIAJ7Cpe3JPoepFZe79o/q34wFbv1Cl8nGLp6RGNPmR22e+/y6wvv5SDL79cKrdsaRoKP79PjocPLLJcdvCZfX6m4CE0S0aMMNnO6hxxRDZKJHS+zZtz1YqoKVshlfG6LWD5I7gnXv9SOxiMsrGVBBK5Ts7LcTgeVu8GDRpEHKN1//6yZupUGXrDDeY51j/66Aj1Bs1spkQW8pEMoqnEMicBdPGAcmDghBtDMuW1DpTgLi+pK/VnVSsrdZ4BSnYGC0pSvYiqH0lVS6rtk7o/lXmA+AIDbcLqSluxMKBkYB4kfAgQDQGZTTaiWGZ5gfexzG7ebNQGipQqZQLA0Jmlo9AOho7ByzndRLcvXSplQpbZHZs3h62yCvxmp3/8sRQrW1Z6PPjg3vNFUzKwZLnYj2u1ZYjUUgvR+OuXX6RcgwZSvkGDbBbUXmIGKcttIhtvYBC/gVBiCY0Fnh33ji8tpDGRYDAbJDZguh4CxTNmTcPthV5PPmkUDgaeeaac8/vvsrtCBdMBqHqDElmuJ7eJrKbO5Tx20ozcBuQHYo9llLJIlrzW/hjc5Sd1xXbbNSARf0EvkqqfXZJqT/erC4L6pAYk9cCEuqu4KVoVSlgDaasAOUVAZpOMEpUq0SOYzyNOOMGsd23bZnxhbd8vBRZVSChk16gZFC1qOg+bzKqurI3tRNkT4a5uBqHj2KgQ8p/tes89UqpKlZhkduPcucZVoWy9erI1NP1oWyyxmmFJ3TBnjkx56y3pFFJOyEm0aW4IoCuRZZo4kQh3ppejWeQ0oxQLZYYVNhFfWvd+dTqbc0bLVKZAu7fPp5/KZ0cdJVNHjpRmxx4bIdWFUgMkVt1Ocgvq+sB1JiuQjA6O8mANiU3Uup0d0Lkav+SiRXM9C1xegHeXusjzUakrJZKxpK7UKuZlTfUiqUpUNdo7IKkB7LpE3XEJqy1tZWe8CqStAiQDBav1LoBgKn8FygJY4RYtCgd54WbgTtN2f/DBsEUVslu5Rw9jmVWSh9VQfVxdMrtpyRKzjiCzzlQ5mrM9HnpI2l93XXgbnZfflDqWWdQRihQvbq6Lc6vfqYr4YxX8ql8/Sa9dW7rceWe2y4kOOTeklWyf10T8HWmMsZJCovwktSir3NBOVWUFiALXy3njzUS2u2hR6freezKmf39Z9cUXcuoPPxCRY4gszzE3iaz6qzJoyc1MaX7yWkxx54WPqh3cxQCioAV3UR8h/tQdBlRYWtX6qcSCukrZMtthW1SjkVTVSg0sqQG84EVY1SBDPbLl1wKlgAB5jYDM5gOmvveeWbvkoMU558ik114Lk9Am11wjWaVLm06JTgrVASWerrVl87JlZm0HgLmW2eJly0q3e+/dp4Hys0jZslx0oLaVB2LNtcz4+GNZNGSInD5okIm8zy70eLlBZCGkiZIippltayDlotqpiUpqxbLGci6m1TSJQTwWSP0tz6FRs2ZS4rHH5IvevWXYLbdIs1tvNcfxc0/IDiB6WGPplCDvuW0lhcBDYvNCXmt/CO5SNQcGVbyHWF01+xyDShu2Tyqfqb8BSQ0Q73tvE1Y7IJB3VQlroBQQINUQkNl8hBtogVB+mIQWKiSl6tUzljg6YBoRCBWdF3Atg5mrVkWkz/VyM/BCNDKLZbZyq1bmM4Sa6V/bKluldGkZdtNN0vyss6R+796SE0DSXKtodogsBDHR9KIaeEAjrZqw3GNuBR5xfMqLZ8exGjZsmBB5o4NBPQBSgoUUYokE2pEvvCDLV66UtePGSa1TTpHcAs+CVMXRUgJnB5q1jLKgPidbXmt/CO6i7jD4gYBTd2gz1C+W+gCpCAJjAmRXwULXtrSV7RLA+1LQ3G8CHJgIamkewdWPBW6HashsSIVAihWTIunpksXUTui3EBk6ZBojl2BtXbPGkFe1juIWYI4TAyp27meZbXzSSXuvf/fusOUUQoJVa9Sddxq1g8OffVZyAvUDzgnBgOwlokJgS2ExRc+5sUTye0hWThtwnpGmrKV8IctcH2Q7kftUYun603LtVU46SbZ89ZUMPvNMqTB4sNTp1StH16yDFIgTEli51YnZZBJyTD3OK6F67gWXAiyZqR7cBUnleVMnuW5IBmWndRLyGhCLAIno9NouAa5SQH5mZAsQILcRkNk8wuS77469U1qaCfrCzSCtdOm9jUuo02eqF3JEZ+ZHZktWrhz+f9eWLVLK+j9RbM/IMMfEzQCyyTlpAHW6u9CSJTL5rbfkqFdeMVm/cgLVZc0u6Pwpq3iCk7gXzof1VYPfaMhzK2qea4G00YlgNYPAMp2uZCReqFIEAweXWPIdxJvjdb3ySln67bfy3Wmnybnjx2dbTcK2/nK+3CgLW16LsshLMmkHd+UmMc8NqF8rxJVFSataXlUuj3c+mSl6A+w/iS3UwmoTVlsnmPfPLxgwQID9AanTwh+AcBuWEuXLG3eBCk2byu5QcFhWyGLJwhQ4DZNGLkcjs14BYC68dG41Q9nwW281nysfdJAhfzodzOfixYrJz//5j9To2lXaXH655BQQNiyW2QXTsFgu/UAjD3nl2lVeDJcGyLlmBstJIw8RVP9ajomlg+cEieWcKp2VHX9Vl1gqkeX46vbR54sv5KPOneWbPn3knDFjjG90duTBYqkpJHL96ptKWeSFvFaqBnepagCDHJu4qi8rAzDqPvWT95tnnqxguwAFW27NJqy2UoCbQCAgrAEORARkNp/Q8p579hLUkJZrz0cfleLlysmWlSul1iGHSNgpITQlBFmCvNAh0qi5FhuXzHrpzLqwZblUN7VCqVJGx3TRb7/JMW++KVVatzbT8EpyICnLP/9c1s2cKRf89ZdxjcgpuJ/skg61ytrKEKoQAEHgvvgO0kD52ZZBylLTHyYKW+WAzsZWOdCsY3Qu6uOayP1AViHbrssE58TlgOtVIgtKVqwopwwcKB917So/nHuu9B0wwMh4xXMPEG7OmSjh9qtPHC8v5bVSKbiL8qS+KXFVPU0lrgTo8ezsIEN168iLxBABUhMqS+imaFXCqnJrKovmpTMeIMCBjoDM5jHSELdHXitEvt5s1Misi4WmyLesWGGm7fds3Rq2zNKYqR4phAGi5k7LQ2bL1KkT/j+eADA7+Ivjr5g+XX6+7jrZtHixnPbzz1LvyCPNd5yP5AMmB3Zmpvx+333S8aabTGrVnIJj5iSTFOQJ0qSR3Vh56QTUF8wmDy40c1Yi4DwaJOalcqA+mokka1BwXAYtXpY5JbKUlZcVu1KLFnLip5/KNyeeKKPuvlsOfeKJmPeBW0F2CLcLyBtEkg6Z8shLIplfwV2aH94mrppNS63mflYyW1orr0l/gPyDF2G1lQKUsCaS1CJAgAB7EZDZfEiisHXVKmPRtDswSC7W1F2ZmVKqZk3ZunLl3i9C1p7GjRuH/aBoBL18Zqu1b5+Qm4FtmV08erSMuuQSKVaqlJw9ZozRx7WtBhAziOO0Z5+VUtWqSbf778+V8oB8ZleSi3IBNPwLFiwwxIAkAvFYGNV1Ip7pXI3Ch2zymc7GnTpnO+TYzsiVaHYt9ZN0iQ3HVv/PaO4YDY87Tno9/bRRmKjUqpW0Ov98z/00BW52CLftd8xxdDDCdcWbMji3oPeR7OAuno+SVtaaDY/7ZYFAx/JHdKW18kqOLEDeQgc5NmG1lQKUsAbSVgEC5C4CMpvHwCoLXDK7ZdkymRBSBUhr0kRqt2olGaS9DemQqgWVNY1krAAwL51ZFypHNeG552TYrbdKlXbt5Kj335fKoUxh9lQ8y6a1a2XGG2/ICaTEzSXJJggJBDQ7gFxDJLDMJZL5SoknFslooCOCwELcINyQPy/yi5UTVwxIVaJWNs1WBhn0CmBTIstz515jocMNN8iaKVPkl0svlQpNmkjNrl0jjoXVmOeeCOFWlwqeFVZ66gIzA1xzfhAyO7grN9wj3OdhE1eeLferxDVRKSyOp4kn1AqeV0oOAZIrbWUTVk1IodZ524c1UAoIECD5CMhsHkOnldLLlo0gJ78/+mj4cxb5zMuWlZLFihniYXd+dOCQiwir4J49snXt2jCZ3c301a5dMaW5Mtetk5G33y5zBwyQppdcIsc8/7ysdgTYITCcH6vSpqlTpUiJEtIoJNeVU3Afmjc+UegUHR0HVk0sc/FCpcX8Itz5nmlgrgsrbDSCqtZB3BUStUzybMkE5hd4peST64iHyAKu86iXX5b1s2bJgL595bzx46VsnTrmXLgVQMaiBcvZ5cu9sVDOGqyUn1PidnAXA4ucuKfo8WziynEpa56j+rhmVwVB0/NCdvI6CC5A7gXu2YTVlbbSrGlaT4LnGyBA/iEgs/lkmS0ays7juU+hQsaSQ0PpKhdo52pbZrdv3GiOq2QWdwVzjijW001Ll8qPxxwjO9atk6M//FBqHXOMFOd8q1ZFkGUscTTaWJdmv/GG1OvdO9esshw7u9JDEEhNIgHJineKWYOesOhFC2JCRSAayc6JWwGgg4RcoqTgZ92EuHFfiSaTIP3wSV99ZRQOBpx8spz444+ycevWqOfych3A+hqv20aqB3dpelclrjqIgrhyPFxUcnqfHJM6TVAX7w/HLEhZxg5UaSs3RatCCWsgbRUgQOojILN5DJIgGMRhpYFMqPVSoVqUEVH5a9aYtZJZ/GWjkdkdW7YYGScsuOdPmCA7y5YNd7qQHVUXgESo9XP7li2yOKRwkFuAOMWjDbvP9Yf80OhkCIpKxCqLSwLn9CMuTF9j9YtGbGwrJ+QqUWgihGgSTBBZCFF2s6KVrlpV+n77rXzcvbv8esklcvq330phR6s2lVwHvMA1MohiiTe4SwmKklYlrpQz9YWpX46Tm/61miBDpfP83FEC5J+0lUtYbWkrO+NVIG0VIEDBREBm8xi4BBh4dMr1zjtPFn74oWRZVlgaV9taoNvjIrMebgac/8fzzpP1s2fLYZ9/LhUaN5aFCxeaqVAsjXTGEBwadyxhnAtysGnCBEMkGvXpk2tlAeHIDhlUBQNcH+iAErHKEoDjR34hdRrY44ecuBXo79Uy7EeYIbIgO2WjoM5klisnh7/xhvx63nny+yOPSKe77ko514GcBHfpVLASV9Vwta1p3FuyAsNcaS2VZguQ9/AirOrSpe2oZrwKlAICBNj/EJDZfHIz8EKL2283ZFahci3qq6Vw5ab2IbOWmwGd+3tt2kjRUqWkWb9+snH+fJn73Xdy8oABUrRly7DlFyKnsl8QA4iOJhmgY5iNK0KPHlIqm5ZCr84nO4ERXCO/haxgRcUdIF5AZCEdfsQIEukXFKbfc+7sRs5jFWaJRnogcJwrJ0RWparwja144onS5vbbZeyDD0qh6tWl1TnnpITrgB+oe5QzhMMm/KrhqsRVB3js56XhmuxrVCkyBoGpOBjYH0F524SVtS1tpYQ1UAoIEODAQ0Bm8wKZmbJ99eqoZLaw+o6GSA6NM1NgkC86cBuuv2dmiMyWCAnp224GOzMzZc3kyVKpZUsZeccdxrXg8GeflbrHHBMWuKcDgMQylQtJnDdvniFEbDO54UuVkoW//moSO/hBrX10JMlMYasKBhrEFS8p49q4JwJxvMA0MdfjFfCTaPCUFyA/kKBoqWIhspq5KjvkiN8SUMYasszxuKdD7r9fdixaJH/cdJM06NRJynboIKkGO7gLIq/6sdR9lcKinkJco2m4Jgsqz4YlViXS8lqK7EBSCrAJqy1tZbsE8AxSdVAWIECAvEVAZvMAhefMkfV//RXhZgBpooPs9NZb8td110nJkDxV4RIlpHChQmFCEk+HjWW2ePnyUjjkp6dkFjWDbWvXms+HPfOMST+7dto0qdmtmyGTdAwQVkghljz1leR/SDRT6TNmzJCN48bJbrRuTz45ajAUiHfaH2KQqD+oTiVCaHCNSMQqCwmBBHmVJx0o33u5H+DKAIGOFjwVDWrRBdHS5nKO7BBZVR2AjEP8KH/KlTKyj9P7zTdl/Zw5JiAMhYP0BJNFJAsQVcqHeqh+pvyvxJV7yc+c8q60Flbt7CocBPj3feO52y4BrlKAugRg+Q6krQIECBALQaucB8A66iK9fHmZ9sEHUqlzZ6PvunXjxr0PpEwZKVa8uCEmNOx28JcfvFLZqmVW0+WSrKFE+fJSq3v3iIQJkFpN86qEgU5bXQxY5n79tVQ+6CDjX+sFOnuslhwDUhxN2N8O0klUWkmtslwbRCdeqwyEBFLqZ5XluFyzTcJV35XfZtetgGNg0cWCF61MsNpSHgQOxSJtXqoD+hsSa/gFHhUtWdKkuf2wUycj2dVv2DCzLS/BtaubAOQVMsMAhfqm8mSpQhQpWwY4XKtXkowAEtc7bltYbcJKPdVsabQd+TlgCRAgQMFHavQc+znwVwWHPPaYjLzrLvO5cPHismrECKnSvr0Uwnc01IkXC/l0av5tV1PWC/skTLDcDNQya38P6GDoRCCfEApbIgtSoRqZJXE7+P57aXvVVb5WFsgshI/rJBMXnX80oqmuDYmAa+R6ID1YZWMlPPAiwV7lqJHvtpWYbSRB4D5YsgPKRRMpRDsGhIn7wgrudX1eqgM6xUodQWOXstbyjwassSgcfHrIIfLLZZfJ8R98kDQCwfPiupW8Uh5cJ/VMs8oxiMLylipBU1rW1H1AGTPACOBfXvpe2oTVVgrQBAK8BwFhDRAgQLIQkNk8QJEQUWx92WURZFZBNjAILSga8nvVTEN0DLE6e6/sXxy/UJEi/waHOZZBTcbAsSFJtv+qkmi2y5o1sm39emnct6/nuSHDkDW9RkgjZCBaAJOqECQCjgm5wCqJNSdeC56SKr/rwfrKd0rquG/8TrPrVmBn9aIsot0ngwCuzXU/iCdhAQQRUs+2RMqyeocOcuy778r3/foZa3uXO+6QnEIHBCyqKKDEVeW++N8vuCu/of65Kq3FgCmnCRn2F+jAw03RqoSV91AJK89aB+EBAgQIkJcIyGweYHdoeq2w1UFGkFnLMlulZ0/TYei0twa/RAOEtULTphGWWdWYJTMYpLaYo+eqkcEQDkirm2GKTonvVw4fLum1akk1j6Ah1de0p+8hVhBPSKQf4dRgs0SnpyGdixYtSij9Lb68ftHm6sphW6VV8SC7RDZWVi8F5MlO5Us52q4D6p/pEj6VF2NAgM9wdqblm595pqydOtUMrCq1aOHrCx0PuG6sywy+WCg3l8xQF3C3yK3MXbkFrouypNy59gNZWsuLsNpKAUpYGbgG0lYBAgRINQRkNg+wJ0RmCzHtVrGibF+3Tqq2bSuzv/oqgswSZFW8cuUI1wI6lHgsszVDvrBhMhuy1kFm8Zf1I3MqweV1Djq0OZ9/bsiO1+/VWmp/x2dIp2qx7lMWe/bEZW32Og/XS0caL4HTwBIv1QT1ibXdFWIpHuRGVi8lgCycm/LiOljHSlgA4VAfXIhXTlwEut9/v6yZOlV+OPdcOWfMGKly8MEJH0OJoB8JpDxx8WDwkt3MXcmU1oLMxpuMYX+ADmBtwmorBShhDaStAgQIUNAQkNk8JLOoDZSpW1canHSSURpQYDmF0O6GrJUrZ7bZ094J+8xu3vyvZdb5To9pvtu61RA9L4khYxHOypK1f/8th//3v76BSK5FF0BaVPbLtcKpekK84Dz8BusqU/deBDmWVTZeKS4sjPhwZofYxJPVC0D+mM5WIgupYPFLr+seP5bFN17g2nLce+/Jpz17yjcnnWQUDhLREKZsqSN6H36ZuyDoqaDDaktr8cz3V2ktlbayCSukHai8mVr+WQdKAQECBNgfEJDZPMDU994za0NY8VV1yA4W28rdusnuzEwpUrZsBIGNZcVE6guf1pLWtD2WWSXLBIB5+ctqZi9IkkuONKFBxqBBUrxcOanTq5cnmYlm0cIS55WEAELBNH6iklpcJ9ccb5pQFVS3XQiiSXHFUjzIaVYvAPnHIoh7gPolQ1CjEXT24TcQ+uy6FfihWOnSJiDsw86d5dtTT5Uzf/stwhXG73qwJHP9XkFrmrkL614qKABogCIWdwYv+4u0Fs/BVoVwpa1YeK9xC+B+8/s5BAgQIEAyUfBb9QKAxcOGmTUdClbaQg5hwMWg3rnnyua5c6VIevo+bgbROqLtGRn0bFK8QgVfn1mXzGKtUYsMnaFLpiAkWG5mf/SRNDj++H0IjkruRIv0VqsXHa5tAeP/eBMPcO9cC6Q5UassRNov6AtyqHJk9jYl51htOTdWLC8f0ESzegHKGZJn78d5INt+PqTqawoJi5ZsIScoW7eu9P3mG/nssMPk1yuvlGPefNP3PNRLFBogSa7Pc6oFd1FHNVEFhC678mqpAk3dy4CIhcEX7xV1I1AKCBAgwIGOgMzmMfZ4WWZDfpK7MjOlRCj7UbyWWayyoIRFZnc4bgZl27eP8HPkmJA1SAlWK9dSZdQGdu+WVRMnSmePaPdo0/c2IJNYHnUKXYPC4iVlapWFkCRilcWKqz6ALjRlr+0ewXWpKwMkgfNCgCCbauG1xdwhEawpu1hZvfR6IHpqkQV6Hq9EDQDCwm8YMHhZl3MTJNHo/cYb8tOFF0qV1q2lww037LMPZUBgG1Z127Ku1uVUCe7iOaq0FnUnu9nUUgHUSwZz1AXVZYa8MqjbH6zLAQIECJBbCFrEPMaeXbuMW4GNNVOmCOkI8JnVtLZxW2ZDZJYMYLZlVv1kNQAMQDiYItYgKsihSxBVimfFmDHm/7pHHhnxvfrgxeO3yXk0MQOdMB1zvClsuW+d9ld1gHjhF3xmW2ztMrUVDyCo+M26rhCUi/q3cl1YKNnGPaL1qlZciK7thwjZhexBZG1rpbppuAMVzaZGOeelhbPVBReYgLBhN98sFZs3lwbHHhtTakwttWzLrh5vboDrYODBQK0gS2upHzoL9Yx3lPeF+hrvQC5AgAABDkQEZDaPsRsroxN4Uij0Pz6zaqVVxLLMbt+wIcIyO+Ozz2Tp6NHS4pxz9vGZhVgR+EKnT8eJtcclpRqgNXfsWKnQpImUcgK8ok3fewGSCBnlmJDZeEkp1wippFPXnOzxQNP0enX+WEiBbem0FQ+UFHn5zUJO1SLLfWD1oyztTEccHzKsEeL8hjKnvFTFQbfxG6aHbbANtwJXUzavQFIP0h0P7NdPzv3jD6nUvHlYasy1EGt2M8otv4isWrdVWssdMKQ6qBOaEENnEyhP6j31rKBalAMECBAgrxGQ2TzE7h07ZNvq1VLG0UlVa2zhUqUki8hjqyOLJc21zbHMrpsxwxBmrL+cb8emTWErrfqvQvQgXxABV7MVqyNWyWVjx0qNbt0ivuM3IJEocKxLEFmOi0U3HguTrV8LkYqXPKtV0ys7mAYuufdru0wokfcjETrVDnFSAmcH3NjklLLCasm1Q7o4D/evgTvqxqDR5ZBwtSjnV5Q9iTtO+Ogj+bh7d/mmTx85Y8QIWbdt2z5SY9wD1mjILcQrr0HZagpgzl9QpLX02Ws2N6AJMdzZggABAgQIED8CMpuH2BZKM1vEsYZ2eOEFs6YzUxeEeH1m1TKL6oD9fxaJBjSVrWWZhYhByrAseklnsU/FMmVk9aRJ0vrSS3NklVVANubNmxd3piqsm5A9rk/lhOIBhBky6uVPqFJcNpl2FQ8g936WYwgpRBZrbKz7UAsrpNotX+6N83IM1pBY7pPrSoUgpeJly8op331nFA4GnH669Pv1132ILG4TbEsk8UVOwXkpK54R1teCIK3lF7Sl6Yjz+1kHCBAgwP6CgMzmIXbt2BGW6PIC7gaqdACJw7IXa7oRyyxEVtPhqqUWq+zCadPMZ/WZ1RS2dKp0qK6LgUp2rZwwwfj2EhgUPs+2bQkRy4j7KlTIWD/jcRXQ1KJYZbn/eALN9HdY67z0Wr2kuFxyrlZTr2v0m2r3gu6LNdM9FuWO+4SS1nj9h/MaRapWlS4vvigjzz9fRt12mxz14osR1m2IN2QsP6S1KNdUDn7i+UNcsb5Sp1TTlesuSC4QAQIECFCQkLq9wv6IUHpIkiR4wSW5dOBeQUL7kFnLZ1Etszu3bpV1ixebz7gZqL+mkjYvqxaWTaY8Z4wda9QQKrdqFf6OKfBEgrBcxKMtq9PXTB1DCvg/XvJMWXHtXoTBS4rLVTzQhAnZzeoFKFslsl77Qp4h56lskcOCDXnscOaZUnzTJvnl8stNPWh75ZWmDnDtXokychs8f54J0/GpLK3lF7TFuxIEbQUIEGB/QlZICSkVB+YBmc1DMPWv2ZcS0VmNFmADebVlubaGLLNkAVOlg2Lly5uOFiuRBlR5EQPOhU/p8rFjpXrnzmHSrcQvmRHi9vQ19xuvVZbfYe2EiBMAFI8Ul6t4oFPY7vnizeplR/xzTC8ii2Ubshuvq0V+QMmjSo0dfNllRmnjt2uvlULVqkm1Hj1yNKCJB5Q5gw/qPtbfVPMl5booI+qLHbTFYIn3I5WuNUCAAAFyo82jvcPQQX/qqtqkCgIym4dg6j6aZZaECQq1pMYikftYZtetM+sdJFPARzctTdZmZkqxkL8eHbDX8TTanvMR/GX7y0L8oiVIyC0iy3VBYPAz5Hpi+UTyYmHJxV0C9wIvIuElxcWLacuSGV3d9PSIfeLN6mUTWcrI65r1/tzgs1QB18e9Qra5RrscDnvmGVnxzz8y7JJL5Lxx40SSQGZtaS0GAjyvVJHW8graor4FQVsBAgTYX7EnJI2pCYQYsMfrKphfCMhsHoLUs7Y7wZR33pHDL7kk/H3J6tWNVUw1TAnWihVw5Vpmt4XcDMw6M9MQ3azQ9DFT/ep76AIyY76fP18yV60K+8tqGtlkVWKXyOq1RJvKVr9ayE+06H8vKS4vxQOm1XENsP+nvGJl9bIVDnhOfv60HA+ynIrTzlr+PGPIuDsg2JCRId1fekl+O+UUGXDyyXLu2LHhYMOcQn2I1b0lFaS17KAtCKwOqoKgrQABAuzP2B1K6U7fRztIm0yfkIr9lhcCMpsPbgZqmd2+cWPE9wR/QTQhFFQmKlEsP00ss5VatAj/vyNEZnEx2J2RIUXLlzfHg6xQUemoXSsrlicWRl7Tf/jBbKvRtWvMBATJILKalMGPGPKdJikgSCxa6lWssjZJBRAUW/GA80FY+Z+XmWPzOZ70sRAdLLJcu18SCY4JmfXSrs1vREtPCyCaDAjqtWghpwwcKB916SLfn322+awBh7khrRXtOeZn0BZW6vwm1wECBAiQLOzatcuQV7gBbTAENtWDbP1Q8K54f3AzcDrIrWh2hgij+rPaKW2jAdJaPGSZxfJLKltzzLVrw99xLDpliAmV10tqSaeXl//+ezhZAtOqiaSRzSmR1WArv+l4XjpIUDyqAuzLPva163S6rXigKXN5mfkOn9B4spupRZbfRvMfIvo/1fw+7evHP5kZABcQcAie1ouKTZtKn88/l6+OO05G3H67HPb009mW1qJ+88yTnabXD0HQVoAAAQ5U7Nixw/SPtMe0xbT/zFQW9IF7QGbz0c1AQbIEhfrJxkqWoMCdoETIZ3Y7frIh7Nm+XTLmzjVKBnTekEZILATVjkaEHOJeoKTPTpYAuUuGVdaLyHJdED+vYCuTXnfFCnPN8US1+0lxuYoHGszD8TlmvBHzatGECLpZvGwweFB/o1SCqi74OfJTTpB7noVNwusffbQc/uyzMuS666RSq1bS+uKLY56L++d4kGMGCfkx6g+CtgIECHAgYzt8IERgaX8hsK7CT0FHQGbzEANPPTXCMov8FcjauXOfLFuxkiXoPrZlVmW5FGunTJEGJ58cjqKHuEJgFi1aZAgsJIvKrZbKnZmZ4WQJGhCW21ZZLyILcYJ8egVbMfWLqwPWzXhJoZcUl6oe2ARXs3Jx7HijM5XI0hh4WTTt/ZScpxJiaebS4EE+/dws2l1zjVE4+PU//zHW2lo9eqSctJZf0Jb6oKealTxAgAABktEGZmRkhIO+af8KSrbE7CAgs3mIDbNmhS2zVDbIo+1Lu+nnn2XbpZeGtdxiVbpd27aZ5AglfMjszi1bwpZZiJxKHXF8iAakFpKh51nx55/hZAm8ALk9DexFZLHYqayWTXa4f/YF8SgKKCCnEHQ3gIz7h8Cr1Rt/WkhbgwYN4g5u4/pxg4BUx9LN5XxYbVPJ9yiWZi7PgefhWmRtsP3IF16QdTNnyoBTTpHzxo+XctYAwZbWYkCRF+RRg7Ygrzx7zerGcwoybQUIEOBAQFZWlml/lcASuEo/daAM4FOnpz2AULhoUdkdssAapKXJsKOPlg5XXx22hsbjZqA6sirNRTBYsUqVpOVdd8nib76R9ePGSZmDDzbHgrCpMgIVm07ezeK0TJMlHHSQrF23Llenx/1UCyAhLnlSlwMIabRpfC/wO/xe7ePpVDeBRqodyyiVYydCZPkdJMkruYJLqPV8qYJYmrkQQQY47qDCC4WLFZOTvvxSPiLl7UknyVmjRsn2kOWb8iSQMDuZ4hJBELQVIECAAx0ai5CRkWH6UvonCKzbBx4ICMhsPiCtSBHJXL1aen777d7/CxWSnZs2hd0PIFoQsFhWPU1da1tmqxxyiKz/6y+p3LWr1D/3XKNmgFXTK6GAi3CyhFCwWG6mLMVap2lQdQoe0oRPrv3SqaU2EWusgmvm2K5FWbN74VaAdZKywDLrFcHvBTuNazy/8SLU+YlYmrkMHvT7eF0BCBBE1WBg//4yacgQadCtW1KDCDRoi3uh0ebdwDUkyLQVIECAAzmJAS5UlSpVSroBIdURkNkkA9LqZZldPXGipDdoECazuzMzZfOyZYY4xeszq24FtmW2crduMu+116R4pUoy8+mn5fB33w0Hf8WcQg8lS1A3h9zycVQBZiyVOlUP4XSJIWQUi6ZfAoRY1+8lxQUJ4pjcC4QW6zTbaARiJWVQQIL/n73zgJKq2LrwIUdBEcRnJifJICIGxIQBc0JFEHPEgGLO6G/O+nwGVNBnTs8cMaCiIKCiZEHMCIjCEIaZ+ddX9GlrLre77+3p3LXX6unpdPOt2rVrn3MgaUHKuNoezVwA+67H1O98sr0ctyCKrA1zjTRrJtvfcYe8NXCgfN+jh+w7bpw09Bz/VAdt0Wi7SluVzwPIlYGTg4ND6pGPRQwyDUdm04xVkYpcNsgzqym0gOmOIGNTppjOSR+JyIWtzBr18IcfpGbz5vKvnj1lZcTGUCPgVLpdLAH1MpWjPC3YwDYSfMT/Xs+pZiwIkt811jogp95UXPiCWZ49vQ65S+R5tYksy0lUvELXhyobRAXPBFCkIYKxjimfsb1hVXAGAgxImEFo36ePNHjhBXntmGPk0S5dZOAjj0ir/fZL2u8FeXVBW4lBcIdWbcsEkdV1+D0Hfa+qn6VjfQ4OuQr6RM0Bm49FDDINR2YzlFvWS2ZnPPustOnced0bEXWl+5lnRolskAAwW5k1aiMX/9Sp0mbgQJn/xRfms2oNGgQK5EKV1WIJkIlU+WU1iwBkEmLplw5KMwRwoyYTMMWxUrV3/vz5ZhAAOYMYsWwUYV2uVg/zpu2KZY2ALAQt5Qt5hCRnO+hLq5xxXFCq/a4jyJAOHsIQWc31aweRbbXrrnLstGnyxnHHyQuDBkmPESNk5xtukJpxBkQuaCu586q5ejlnmfAm63r12f4/3nuxnhO95/c6XetLN1JJ6N0AoDhQSEUMMg13hNIMv4YTz+yiGTOkTeT1ivnzzXP7I46IKoFBldkadepIrXr11pWdbdRI/njuORlw6aXyx88/r1tXw4aBprwXf/utbLDFFsYLuXjhwpTll6XzZf2aXstvW5jmhuAmmz0BUoYqqzYGyBYNAg0Anb0qWACCpwFhfIZq7ddQQBhQqL2e3lhg+TRAQUhyOsH+U8WM0XssEs5+8R2IbNBGUrNLcCz80mwZD+3LL8uXd94pH15wgfz44Yey35NPmvRdtqKrGQe0eAeDJldpK/E55XpmUMg9kunOzSmZ4RGUfGdqAJCq9RX7ACDZ9RVKEYOysjLTF+SiOuzIbBaAR5b0XGQ0qFWnjqy1ih0ognhW8djWb948ShTqNGsmKxculLrNmskWAwZIyYwZUrNx45jeUG4itSCU/PabNIj4HblgU9VZQgoJ0oEI+RFZCCDEhu8kA4gZjQCkU6e/lSAxhe6tJkb5WbU8aDAR+ws43qp0saxYqmauBn1xzaBwMzCIlXGB/eUY0VgGPceaCSFRdgn2veeIEbLFzjvLK0ccIf/deWfZ5f77pUnv3i5oK8nzCYGlo6ODC6uiO2QPbgAQHsU0AODepo+h7+FagRxyb/M+QdA8giIdlp5qnvfs/pIZoaA2vUzCkdlsgFK1XLhr1kiFZ5pQbwIIXqKOa+msWVHla9XKlVJKCdfmzc1vN2rb1gTkfPfdd76kmHXMnTtXWrVqZQjtil9/lQbNm5sbLFWjLqay2QcIqx+5goiiotrlZcOAfdDKYOyzViyDkELquOls8B1+E6vYAZ9zs/LMb4MSU8g0381WeVZAo4gfmeMca//YN44LBD/IOeZYMRhh/4KouBq0VfGvf8mur78uf0yZItMff1w2evdd2eXaa6VOnCITDv+A64/7gmPJ+WTGwfk7HQodhTwAsIsYcF/TR9HHILxUZX/TTcjLysoMiWXbEUkQM3I1a4Ijs9kAI58ImVW/rMIeNSZSZpfOni1b7LST+f+3L7+UVb/9JhtsvbW5ACF4ENNYNwoXJxclyg+K4gqUxe7dzY2Wqkh8OmSiz5nS9uZcVZ8rxCrZrAlYBSDi7CeNhBaAgCRr4nwb7Gu8HLGQtbCKNOdJswFkuzytNo5+4BgpkQ0SEMgyVeWOF5QHQeY82EFbmuewZatW0nD1ann7lFPkh9deM7aDTXv1quLeFi50cMe50gInhdixOzgUAzJRxCBdA4DySEl4hCjaoniFdHIFjsymGzGmGkwVMJRCEWncpYv19WD+pAqmI2bPls7Dh5vXP0+YIKsXLZIGW20VtQmoMuoH1DbID2om6yvBBgCpXbEiJflldQqFZ0Z09o3A+iBKVUktolXNIE8QKruSGeTSm31Ap0mCpNcKA8gH5VqzZdBXtTVWeVqb7GKbCHK8acBU5fazqGhRCL6HwksDHavSVsejj5Z/9ekjrwweLE/ssIPsdP310uucc4zVxmEdGAhwHXH9cn0GTRnn4OCQW6Cf0RywDE7twX2uk0EviSV1Zj7NCjkym02bQWmpeUlO2LBk9u8ffzTlbLETlJWWmlK5ENx6W2xhiB4dIuQtFsmiA+Vi5YYz5nM8s5tuWslHWxVwQ7B8Ommvb5XPUIW9WQ3CAMIKGYYUQwB02lxzknqnQjgWXlJdVWhAU7aCvhisoHrHU1shnviE1X6RqCHD+8v15w3y0jQxPHifBjpokYWNWreWoyZMkI8uvlg+GDlSFrzzjuz96KPSIEC6s0IFx5gOQ+8FOjuXM9LBIX+LGDDAp73VfNi5Oh2fyJ+fbyRW4chspsCFESGpD7VqJU379VtnM/ABN0QipQ+LAYDMLnj7banZsKH8PXOmNGnfPmozgNj5dZC2jQFVceH8+YZY1/vXv8x7Vb2IuTFYt6apsvdF84gybZEsWDb7qPthWwfImuCXiYEb1VtQoarIZtCXlvyN52XlGCmRTaT2MahhYEAjrJ5bO1E3xxm/VLJRtpTA7X/zzbLVbrvJ60OHymNdu8o+Y8fK1rvvLsUEDfCg42Nw5YK6HBzyD+oltYsYMBuYbwPScovE5rs/3831ZQibbb99pdcos8vnzhXvZQNpQB1NFKBD8Bf5ahtvs4189eCD0qh9e1mxYIHUbtQoGjzGs9/NBRnUKWmIEFkV6jRvLnU22ywlflluDkgyqpNtWUDJ1Cpdyd4wHB8lkaiSNpmEKLO/3mPH8eQ7qbQC0JBxjLMR9AXBhLSjjCYistgP4hFZDfIikA6iCmFl37AlkBeYawgyzLpo7KoaTd9y771l2FdfSdNtt5Vn9txTPrzoIjOzUOjgfHDOFixYEE1vxsyCy07g4JAfUGsb7SLtI69pG7mXmR3MJyJbHrET0B4hYEFi6bPzlcgCR2bTjYgau8vNN69HZhd99JFUj3x++HvvRb6euJTsn99/L39Mny6NW7Y0y5nzwgtSt3lzEwBWq1GjaKop4NdZQlbsQKHqFDU48ECp3rhx0mSWkd33339vbg46bZQ+1ENNQaJpoyCyVenAaUwgXKhb3HiaIoTjxnr9PLH8xls6tyrQdQWpCpZqaNqWeIoexxoiy/bFI9uaAQHCynFTssVgh9/SwDEYSbUfGDvLoW++afyzk26+WZ7ceWdzTRciGEgx6OI4ay5kBgWpKhXt4OCQPtA2Kumj/wLYuiCw9Cn5VsygIiJe6KBa26N8JrGK/DoTeQj1v1b3qIWQUCkvj76uFyFhSmZjXVylJSUypkMHo6a23G8/KVm0aN37y5ebgDKtBqblXbnZ6EwZdSmxgazYpG81KZ169ZLy2rWTUhq1UAE3OKohXiEaAYgxxBkyy2tu/qr4iLQ6Cmos6izL1+PEenntbVw0XVQqiacGfWVaVWO9+GTjRZYqkUX1izcwQcVGjeV8aKU0zk+mgo8IAOszapRsucsuJjjssW7dZM8HHpD2hx8uhQDuMc4Xx5UBQaoyhDg4OKQXWsRAZ99yuYhBUFRUVESFEASgfLYTxIIjsxkCFw7J42tvtJH8+tZbhsw2JHgrotBodHciMrtm+XJDZLETkJx+6Zw56z6IEOP6TZpESR/EVL2z3KBMFUfJtaUMkcngz5kzZevddkvqAsf/h1rKMrV0LYQq1TcM5AtSCpGFdGkAGccrVr5aSC6NUaq2IxtBX5r+i+d4Fg2OAwog5ClWii71xvLMOWNUznWSrYYN+83QqVPlrZNPNoUW8H8PuOMOqZWH5E8jmbkWsbpkqtysg4ND1RANhF6xwggiED4G9/k+g1LhIbF+1RuDLmfZ/Pny+5dfSvnataZaad6T2TFjxsgRRxzhlIagsDMTkF82ohxCZmtvuOE/H1kXWDybQdmqVeZ5/2eekc3695dZn30m1VB9I2SEsqKl1aoZ/w7LQaVFFYLUcrPy7CU6ZDJY+umnSaWt4iKHwHKTaDJoyHOqMwdoqT+euSkh0Fo1DKIHgfMbOXMTVyXYzI9Q40PNFPnj+KKscz7jnR++p0UTvFkiNJUWDwY1qMq5NDKv07ix7Pff/8o2e+wh7555pvw0YYIMevJJaWalrMtlmIZ+2bJoqjimIfNt+tHBoZjgV8QA0YM2NlfaxVS1SY0aNQpFYsvxBs+eLb9PmWLy10NgeV4dqUq2+Y47FgaZvfDCC2XEiBFy2GGHyfHHHy877LBDerasgLMZmJdcWPZNY5WNW/fS/4YiHReoUbeuISblDRqYLAQbtWhhCig03nJL+X3JEkNYUIgYcUJeeeCT4ab1Fg6g+lftevXiliqNBRoDVWVZnwZmedNxpUKZZNnkP+WZBohjxDNkza/qFY0VpCJV00Oa6ixTU/FBytPaRJZzrudQrSYo0xr8xnPLli1zMlCBbet8/PGy2Q47yCtHHinjtttO+t96q3Q79dSc7Vw0IETV/2RVDwcHh8wXMWBGivu2kIqTVFRUmP3DFxukTSL4dsl33xmyqsT196lTpXTFCvN5o222keY9ekjvkSNlk+7dzaOhT7agvCSzdK7/+9//5JFHHpH+/fubzvG4446ToUOHGsXKoTLsnLH8r55UlFn7BrJtBiCRMluzbl1D4spXrZJmu+wijbfYQo788ENzk1YsXmzWoymydLqEUSekx5u6qiSSYzZZMznT+5Bmfc+vkhbbarY7CcUKAgtRg9BCknXKRPOixqq+pbluUwHWpRkEMgENzmL74w0yON7ckzRckF4aMkbkbC/vcU9y3DRiNdcb7Y07dJCjJ06U8SNHyrunny4/vPOO7Pngg1IvhQF8qbCaqH8539PZODgUMvK9iEEyJHaDDTbwJbEIYYu+/jqqtKK8LvrqK2NbRExr0ratIautDjjAEFj+z6V2NxFCMwvIyEEHHWQeEIlx48bJo48+KpdddpkMHDjQqLWDBg1yCoUH5sapqJAals1ArIvNe2PFVGYjpLFGnTqmU102aZJscdBBUjdCkiGN3Kz8XvOwqjLJRe7X8aLMUqUpLFCkUHzZDtRY/Jx08n4EEiKIikojEqZYAuozv4Ocs194EWmcIOZcf7Gi7SFz/DZVqbPYr1SkpgoCLXTAsYoXOKRElv1HNdZMDwxWeI/jxucoD7E8tLkIBmq73323yUH75vDhJiftvk88ES3dnC3QGTKwYqDBdVdoHaKDQyGAtl9zwOZrEYOwxVcWL15cicQSW4PCalsFyIBUUVZmuMfGHTsawtrxmGNkE4hr165SO4mZ2VxClYxdNOY77rijzJo1yzy+/vpro9DS6eOtRbktetieWf6vVk022XXXdcqsdXBszywdZKxO0lZmV69dK4s++EDaXHSR1I0QRG5gAk+AJnO24UfuVkRK2SajytJIQGTxpXITQWz91gERaNGihfkuZDTo1A6ElesJNZb90hy8KM6x7AVA1dtUQAl1JlRZLU8br9CBTpdpqhgNVlD7gKYOQzmMV1Qh19HmwAOlec+e8trRR8tT/ftL38svl+0vvVSqZzCq2JR6jpSbZSDD9e7KzTo45BYKpYhBMhUEa5Kne/58+X7aNPksQlyXzJq1Tjwj1qJLF/nX9ttLt9NOM2pr086dpVYW8qOnG0n1chCMsWPHGsI6b948OfDAA+WVV16R3Xff3RCVq6++2pBaPJoOEUSIGwSux513yrejR5ME9p/DY1sOqlWLqWwzVdB0hx2kuiqzM2bIkkmTpG2HDtGCCyh0/M8NnkiRowRuye+/h7YZ0HBo9gJIHh29pqzyI7I0KnwfmwDT4FwbKLnxGhsaJogrNyy/47ho5oR49gKdckkV+cxU0Fei8rQcR0g65Ipzy3HwqoNcE2Qr0Gpd+a4cNtpyS5OD+bPRo+XTq6+WH957T/Z9/HHZIIVBffGuIa5vyCuDi0SFTBwcHDIHOy5AKxTqrFShYvmvv8qCCRPkh08/lb9nzJA/p0+Xv+bPN5/VgsB36yZb77mn9B41yiivKLA1iqTdCn3WsRC8+eab0rZtWznxxBPl2GOPrTStDHk677zz5Kabbkr1thaEZzZKar15Zz3kNZ4y2+Gii6Ra7dpSUVpq0mpNOfdc6X/KKYZgoopCaFExIUeJ8luuJBcmpDeEMsvIF9KlkdtqaaBhwcbgBdtlWwtQEtlOSBeqq5+Cqum2uJ7UXgAYLKHIxkvmj2oJAUlFMA4NJcQy3VNUscrT2jkP2Q71CnM8vNkN+B7HLEj52nwCle52uOIK2XLXXeXVo46SR7t2lYFjxkjr/fdPa7lZOkdXbtbBIXfAYJ02WQNbuUfpg/I5B2xM5XXhwn8Cs6ZMkV8nT5aSX34xn5NPHpW17SGHrPO39ughG7Vpk9FZq7wns0j3H3zwgfTt2zfmdyBSVINy+Cc118pFi+TPKVOkfNkyaUkHDRm1KnUFtRmU4gNt1UrWVq++ToldtswQW74PmWHaXVONgESEjrRcIIgyq1kFUEp1ZExpPyUBNCx+2w0B9WY3gJjh72F5EDUImL2tTJOzL/xWbRNalpb1xrIXALZPf1MVsE94JNOdU1bJkyrcmieYBpvXEFjIO/vO8eI9m8iynajHWia1UCPqt9x5Zxk6bZq8efzx8uIBB0j3M86QXW66yVhuUlXph+uN2YVCPo4ODvmEQixi4J0d/XPu3ChpVY8rQhOo27SpNO7USVoefrhs06+fbNqrlyljn++zblknsw899FDC72in6vAPSDgM/po3zzw33203KYnYMN7o3FlOipBCPX5+HSlEpozp/M8+k+YHHCDla9aYGwH/C0STUSu/40HnHGRaFGUXBPHM0tnToLBczm+Q6RyIlh2EZoP9ZJqcZWI7YCofxZbpdFRlfqfKr5I+9jFe2i/2G7KbCiUVIpvOxNlsJwo3x5N9grzSaAMILKqgl+BzTDS/rm1NgNwmk1ot31Bv443lgBdekKn33ivjzztPfvzoI9nvySdl4/btk+4oOc9cV5xrBkGuk3BwyC7oAxjgI8wUUhEDCg4smTmzUv5WCOyav/82n2+w5ZZGae1+1lnSGIvAllvKhltvbdr3QrZPpAKhj85ZZ50lrVu3Ns827r77bpkzZ47cfvvtKdmwgrMZeEZRG3buLM07dpTVIZRZppDLN9xQfrr/fmm5994mLReo1bCh6ZQhcFpwgc45CJlVZTYRmUWx4gGwDAT1D/KbRL5dlse0OLYDvgu5ZV942OvBvwjhjXdTQ3jj5WQNCo4ndoVUKLzxbAXMdGgaLhrsWFNmnHu+p0RWA/A4VqgUxeTn5N7ofvrpJnk3OWnH9uwpu911l2x73HGBiSjnFhIL6ChSlfXCwcEhdUUM8nlwSeahxdOnV8rhumjatGiu+A1btzbEtc/FF0dTYdVv1sz0mbRNHANHYtNIZp977jl5+eWX13uf4gn/93//58hsDPjdjhQ+ECIRA6TmUnVz7cYby5LPP1+nXEZGc7UaNYr6REOT2V9/NWS4dhzCCbFDFUb5Y7QcplIYZCsIuYSgokRC0NgPRua2Asl6OSbxMhRohKefbzcMWE66gr400wD7h60AgsprlO5Y6+KY8H2sGHwH9Rnij2eZZeRrY19VkE7mmEmT5P0RI4z1gFK4e/z736aiWKxjz/XI8cTmwvVVqNHODg65Ds3KQttOf5bPRQzWQEC/+qqSx/WPb76R8tJSI1Q1ad/eENZ2Rxyxjrh267ZeOwWJ18JGropgBsgsCpEfoeAiVKXDIUZqLg/ipeayp1NIwUTHy82+4quvpFpZ2bp8qxHvat2NNjKNwkaRZ0gvBDRIEFCiggmQY4gTmQeYzmbZYaY7IGFBp/zZb6aSuKFte4F6QhMV5VAVuKoNIYRYleFUgnPCseT+UcWXfLIc21jbjBrNOdXvQMYgv2rJKHYwCNvrwQdNTtq3Tj5ZHuve3dgO/rXddtHvcP3QYaLac324jsLBIftFDDQPOB51+qp8IbCrly2T36ZMMYRVrQJLZswwlr/qBOZuu60hrJ1POME8U5a7VpxAbEgs3Ik+nXa+mGbZskpmsRi88cYbcsYZZ1R6//XXXzfVwBxiwOdGrXTzWuQVImt/BpnhxodIrp450xRMgGj9OH261KhXT2o3ahS1GdBQcDOgzAbxUKLMxspkQMMDgSX4SBG24AHbEqaRYuqdxs2+oTXoKV7Ql21DSBaopDQqmp81lYBI8UBdVZIMQWcAEksd5PsaPMe54NiwjS44aX20P/JI2XS77eSVwYPlv/36yY6jR0uPc86RP5ctM4MTBhDuuDk4ZB75XMSgZNGiaFCWWgUI1gI169WTZl27ypb9+0uvc881GQWadupkcrsGAf06wgR9nUv9lwUye+655xoiy0kYMGCAee/dd9+VW265xVkM4iizf/nl3PXkltWSr+uVoVu7Nkpm8dtgT2jUsKF8d//9Uodk+Q0bGrKjkf5hbAYos/VjEECdjtW8riw3TJARJCLM9zVLgp2rllEr6i4j+HikmP0FyYxqaWxZN9uLhSKV01x2kJdtJaBx57NYtgmURLYHPyznnmXESmPmsA4btmwpgz/+WD657jozUJj04ovScrvtXLlZB4cMI9+KGBgL0s8/R5VWJa5///ij+RzByJR63X9/84zi2qRdO5M2MCyUxDLD6Uhs6hD6TAwfPtyQi9GjR8s111xj3sOjeN9995mcsw7++OzaaxPaDGbMmGHIijc3rZJZk6Vg1SqTiuiXd9+Vv+fPl4atWknNBg2io1z1zPK7IJGfKLObt2693vssR/PG6tQQRCxMY+SXkisWaPj4PuTN3gZINN7QREFkkNGwgV/slyqm/Nav1G+qgrzs7ed8qk/WDxx3yCzHQtN2JSow4bAus4NJpXbccbLZvHny5pFHypcVFbL3Y49Ji732cofIwSGNyJciBmzbsu+/Xy+jAMWDNGMKKmuHo482zxBXBsreXPDJtE+0+4hSzCC69jy1SOoqO/XUU82DE4NiFmbqudhgE1MvVkWUWLDGUmXtACuIDwQLMgupK4uQ2W/HjpVNevaU5dSKr1kz6o9VMhsUK2J4ZiFinFf1aaqnKSjZi5eSK1bNe28wE/YCpqMgqhDCWIosKhwNZiLC61fPGutCqqefvUFe9jHgMy1X67dOtkvtCHyPQUq84LBihw60uEY4zniRzcBuq61MTtrXhw6V5wYOlN7nny87Xntt4ClABweH8EUMaE9zqYhBeVmZLJ01q3IO1ylTZPWff5rPG262mSGsXU85JVp8gOqCqWxvlcTS3rug0/ShSkOmdKUtKmTYnWlpWZnUiNgP/oykvaIRsAN7ILOM4CCzjHSNzaBOHVny3Xey5R57yMynn5bqdetGfxOGzHKjU8zBLy0XI2z1ykKuIIthBi1BUnLp/hEUhQppbzdkms8g0X6+W01NRSOqwXFBwHIhyZoJINWNrjfIy7vdkHbOo19wnkbac9xJ1cV+JargVqywy81y7v2m6/CCH/LaazLp1lvlo4sukoXjx8t+//2vbNiqVda228GhEIsYeHNiZwNlpaWy+NtvKyuuU6fK2pIS83njFi0MWWVgq6mwwlS+DAtHYnOczDJtOnLkSOOThRR4lUemGhwseI7PemVrV2umWYnpl4X4QA5pOMpWrzbKLPYA7AVrV6yQTbbcMmoz4PjzCOIdXfnHHyYC06vMck41C4Euj0csdTTZlFwQb0gbUy729qq9ALIJufP6RHX6XoN6goyiaVi4XlkPxDkdU19+QV7e7WY7bCuF/Rmjd8grBC0dRLsQwLXB8aEzDVJulvut98iRssUuu5ictGQ72OP++6XD4MEZ3W4Hh0IpYkAbCoHNZhGDUvJEf/11JeLK67I1a0wsCn5WCGubgw6KEley/mTqWNGWA/rMfAh0KwSE7tGHDRtmSphedtll0byXVcE999wjN910k5kq7tq1q9x1112ynZVWxwvIwiWXXCLPP/+8ITqQGQo17LPPPpIX8Nz8b598ckIyy81AQ2IHgJWuWGEUWUaddTfcsNJ5CFr9C0IMvKNTzfkHIA0ospDpMA1XopRcmimBBtGrqqq9gP1lvWq7gFBDYiE0kJgghBQVQStnpcunFCvIy/sdJejezwkI0HK0bF8+5llMN7imsYXQmSbjb/5X795y7JQp8s6pp8qrRx1lctIOuPNOEzzp4OCQu0UMqI6FwmrncEWBpRw8AVgbd+xoFNdOQ4euS4XVtWtW7mubxEbtTg65S2Y//vhj+eijj6Rbt25VXvlTTz1lsiP8+9//lj59+hhSutdee8nMmTN9VUCIyR577GE+e/bZZ403h5ykdvR7rqEigTKLB9Z8L/LaS9DwJOmUNGRSPbOQWUOMKyqkjidjQJhMBsCbzYAGTNNg6f+pTsmlFU686bYgdhAX3tfl6CAGRc4bTBULGmTFsaBhSVdO1lhBXt5rAOsBtgGvisg+4o3lfYK8XAO4fgcBieU8MsCpCtGv06iR7DNunGy9xx7yzumny8+ffGJy0pLA3MGh2JELRQxWLl68zttq5XBdOnu26eew15GzdfMddpDuZ5xhiCs5XekPswkVTBBZ6GuC5Hd3yAEyiyIWL6gpDG699VY58cQT5bjjjjOvIbWvvvqqPPzww3LhhReu933eR4395JNPoiSnqtWeMg0vmWV0aZ4hlfXrr0fMuUF0X1WZrd24sbEbaGqvWj5kNojXMpYyS4NGA6bpwFBH7WpcVU3JRWPJNqLs+5FcXRffo0FlJoD9CRKoxfFiGZBMGpagQWGpDPLyAhJOA+c9JxBuiiawTy4HamVw/iCxdKKQ2FQNRljetsOGyWZ9+xrbweN9+sguN90k3c8806nhDkVdxIC2TPugTBQxoP+x02DxrCksa5HKq3t3aTFw4Lpyr927S5MOHaRGDhUUcCQ2z8ks6ilE8/77768SkeRCmDx5slx00UXR9+jUd999d/n00099f0MZ3b59+8rpp58uL730kiErRx11lIwaNSommeAG5aHgps0ovMqsN5BJPcbkifUhapAz9o1jYzyzq1ZJ9SZNKi3LO6USuJTtb7+Zknr2yJZjpaoqaigNm1YnSUVKLogyy/Wbbuea0Kl2zf1KowrpTWQPoFGGNEKAIT/pnA5LFORlA4UDcs/+2mD/IOlstyOy/5xDjhXnMd3lZvHUHfXZZ/LhBRfIeyNGyIJ33pG9Hn5Y6oco1ezgkI/IdBEDE6z5ww+Vc7hOmSIrfvnFfI6XFZtA28MOM2qrSYXVurVUz9GYAdp/+kSOXTpn/RzSTGaPOOIIo5q0atXKjOK8JEcT3ycCFwM+Qq/ix2vyrfph3rx58t5778nRRx8tr732msyZM0dOO+00Q96uuOIK399cf/31ctVVV0nOKrPl5eueIfM+pEizE9Cpm8IKq1dLtchNXhb5bW2PCspNFsRPysjYm8kAMqFT/5xnGrowN2u8lFyaRsuPyOo1QaPKNuCbZZ9j5WK1wXWEwsl2pzpXbNggL++xwEtLwJe9TRwfAt/CeH8LGRwHzaeLnYXjlYngt5p16siAO+4wpXDfOO44eaxbN2ND2Kp//7Sv28Ehm0UMuM/SUcSA/mzpnDmV8rfyvCrCC+hvTKnX4cOjOVwb5UnqQfovZuMciS0gZTZb4CbkBvzPf/5jOruePXsavyEBZLHILMovvlwFN3OqS5VWxTNr2wz8bmgtfqCZAYwyG+noddm1Isqsvg5aMAHPrDeTAaoqQVncuJAsGsAwVbwgwH4WBxpTCBy+UD+iQgPBOlEyUW9ZZxCrhOZtTaelIGiQlxcQd4LXvAM+3md0X+weWY4pg1+uMWYAsqVQtxo0SI6dNk1ePfpoeXrAANn+0ktlh8svT6q6j4NDroA2VXPApqOIQTlBmd9990/+VgjslClSuny5+XyDrbYyZLXn2WdHiWtDH2tZroN+CaGFZ9pzly4xNxH6qh46dGhKVsxFAakheMYGr4k694PmkrTJUIcOHaLkwG+UCVnINmGAwKoC681mELUhRMrR+hF49Q0CPLO6jLWREq6qzGpJ26CeZpRZm8zS+EEmeNAAQg5Ry8Kk5OJ3fim5NENBrHMBqYHQ8Iy6SmBfojzGmhEBRTadRDZIkJcXHDe/8r80igwY2LdibRS5V/HD8sy1QluQbWVmg803l8PffVcmXnedfHLllbLw/fdl38cfl0Yee4iDQzEWMWBG8I9vvqlkFfjjq6/W9UcislGbNoaw9t1vP+N15ZHvlh0NIqadKub2Ol+Q1BBt7ty5MmbMGPN8xx13mE7+9ddfN9PHnTp1CrQMiCfKKvlqDzzwwChx4/UZZ5zh+5t+/frJE088UakwwKxZswJ5KrOFLXbcUc4rK5ObI531dqNGrfedvR58MKYyK5H3SQg97d//NqNe/V5pxAusZFaJb1CgzJLWJFrib9myKPmCcOEJZRQfZpl+Kbm0NC6kUFU4rAu6XD5nfSh1NBrq+U20XggR25eubBZhgrxs0Pjh+/RaJDi+6kP25s4tBqC4c844rgxscq1zYMaj72WXyVYDBsgrRx1lbAd7PfSQyVXp4FAsRQzWrFghi6ZNqxSYtXj6dKPEIsyYVFjdu5tczRBYsoGQKaRQAIlFdKDdZ6CdTqHEIYtk9oMPPpC9997bEMsPP/xQRo8ebcjstGnT5KGHHjIps4KC6X+U3l69epncslgYIDWa3eDYY481o0p8r4ASunfffbeMGDFCzjzzTJk9e7Zcd911ctZZZ0m+YJu99pLKWvS6yM1E1oDZzz0n70X2U1XePyZOXPf7CCmADEIAg04j2cosxx31tG3bttEGkin/MBaDWCm5aGhpZFu0aGG+A6FD6aSRgNTRCOPhguzwDF4ql58AAN1eSURBVIFMRPY0+pap+mwHefml4WK77N9oUQT22S5XXCzR0pBYro18yL+4eb9+MnTqVHnzhBPkpYMPlq6nnir9b7lFarlAD4ccgZ0DtipFDFb9+WelMq88LyFmhbiH2rVN6qtNe/eWriefvC4VVufO0f6m0OAlsbFmiB0KhMySyeDaa681RNQmOgMGDDBEM2wwGR385ZdfbqwC5K594403okFhRHvbNyejzTfffFPOOecc6UK+uc03N8SWbAb5AhPB6fEN4Xkti2EzUNS0OtL5b71lnhd99JH5rfpwNfgqSOYBlF5y+mlaLs3ywI2Myg0hjpeVIExKLi34wLkkOwGNhJIczj+/Y326LrtQgh9owLVKVqqnpxkQsL0cjyBBXl5A0pk6t2cKOKb4ellWsTSQqvRznlBgObf5FOhGhPX+zz4r0+6/X8afc4789PHHJidt08hMhoNDvhUxWPH774aw2laBZfPmRfsXFFZmJaiYB3FFgbXLrxcqaPMhsRxfZoyKpY0uNITuXb7++msz1e8F6iwXRFhgKYhlKxg/fvx675Ga67PPPpN8RdQ7a4GGZG0IMlsSyQ+73W23SX1reWHI7EoqlVRUmOhSTZatabhQI7EB6LRVUPiRXxoITStmg31FhdXyx9qggHgWAxTTWJW0koGW7oVQ00mwTAh50CAvGyyD/bBVZc0lC5HzZjUoRLD/EFjNipHPacc4V91OOUU233FHeeWII2Rcr14m+0HnE04o+PPokH3QNtEmQWDDFDHgd8t/+mm9HK68B2o3amTIausDD4yWeiVVXa6mwkoXtM+h70M8cZUXi4zMQngIumHK2MaUKVNCqXjFiM0PPNA3QppUWxq8FQumSALfrVlT6my4oaz64w/Zav/9ZZuWLdcjs0EUsGXff2+eSYsCmYNwMAUOCdEUSWG8QrFScqky5xeUprlh+S2kxxSFWLs29jEoKzMKZ1UDGtSjy76y76jFEFhG5ckSL414tX2ymkuW81oVD1s+gP0neI+OIZlys7mMZttuK8d88YW8f8458tZJJ8n8t9+WPf/zH1NG2sEh3UUMuJ9QYmNlu0Fd9RLXlRFhoF7TptK8Z0/pOGRINIdr4xYtfHOaFwvoR7Q0dlWrCjrkMZk98sgjzbT+M888Yy4AOuwJEybIyJEjjcfVITY6X3ONbNWpk0yfPr3S+zoijkV2Vi1dKu+OGGH+r1i7VmptvLGUEq3qIXScC7tiWDwsmTXLPJOcemnE06qZH77//ntDiDWDQrIpudgWGmSW7UeM+Q2NMY21ktNYRJxlkdor2UT6KLqQV9RmkMpE4eqTxZag55D3UGTZblTkfJpiDwPOr+aMxrNXqB0DPsE977/f5KR968QTTXDYfv/9r6kk5uCQiSIG5aSymzmzUg5XHquXLTOfN9x8c0NWu51+epS48l4h3o+pILHpLKzjkHmE7mEJuKICF0oTF0fHjh3NM5W4Lr300vRsZQHBvnlWL15snutstJGU1atnpjpQtgBqIYFSgAbsr4iSCipWrDBBY15wHoKS2T9nzzZ5AAlqIasBgCTqtD/TWmFIo06D2UDhZcodEulHjPHLQvoSZSPQFFyQ3qAR8Kpw0ElwTNkX1Nd0JOSHzLFsrcmt5Ba1EhU5VzNtpKrcLNdtsdQjb3fYYSYg5tWjjpL/7rST7HjNNSZDSTErXQ6pL2JQtmaN/D51aiXF9fdp02RtSYn5vHHLloascu2ZjALdu0uDECkUiwkcX9oqjrcjsYWL0GSWm+2BBx6Qyy67TL755htzgXTv3l3atGmTni0sYEw45JDoNCZ5VVH1lMzyP2QPkqBTRtVq1ZKK0lJZs2yZsRr43bTmewFGmyiz5AbU4ggoAvwOkkLDCjkNm5LLm4EAMosqqQFgNli+kr1E6+E4aMBDkCThXJN0FhBftgk1N10jcI4X+wJJtreX88h6C6nUoZ2ZIN3lZnMZjbfZRo744AOTj/ajSy6RBe++K/uMHZuXCeEdsl/EgDadnK3fWsSVnK4QWqlWTZq0b2+Ia9tDD12Xw7VbNxOg6BAfWhJdxZRcyGftkD4kPfcJSfHWm3eIAz+/k5aytfykkDCILKQBsgcZUjKrWENBA5+UVGHyzC6dNcsEtmhxBJ1+Z70QT1M6N2BZXOD9LmQOAso2+SmhBHFBhBIprajTLJtGPxa0PCxIdZWbeOBceYPR2F7UFqbcw6Q1y2WY2up//WX8zVyP+ZaZIB2oUauW7DR6tIn+fm3IEHm0a1fZ+9FHpeXee2d70xxyCLThmgOWNoL5i4q5c+WPadNkeoS8kgqLSpDEU5AKC8La6bjjDIFt1qWL1I5UeHQIT2JphwvJv+8QG6F7pOHDh8f9/OGHHw67yOJA5GbSaXzzljU1qTeb5opVD6pRayNkFr+sApuB12Orv00ESPSfc+aY+tg0stzw6s9CYWUZ+IloEMJU/7LXzW8ZCfvZD/CvQnZbtWoVd3kaCIGlJd5+oYSiJvtVHksX1EqAOqlknWOplgOOaSF0CpBzLabBeUi1RSPfsfVuu8nQadPk9WHD5Pl99pGe55wjO11/vdTM8Vy6DukvYrD4hx/kr+++k5I5c+Svb781/tals2eb79SsW1eadukiW+y0k/QcMcJYBSCy7rqpWnvFgFvFBEdiiwuhySwXi3fkid2ATo9csw7xsWjmzOj/ZRFLga2oqjLLMyTQpGchjRawFNyaEaJrAwUzyLTv3z/9JGtXrpTGbdua5XMOIbNKhjU9FdPJdrW1WGC9NslhObzHMmlYvOor/leWH8/bC6mmiEOiFFwQXi03mElwH2AB0X2DtJMrmffCDAByEZw/BiNarS2f02tlAvWbNZOD//c/mXzHHfLhqFHy4wcfmJy02HgcigOLv/9eFnzyifw6ebIhrn9++60sX7jQfEYu8Obdu0uLffaR7fG3ksO1fXvfzDYOVSOxhZZJxSE4Qt9NL7zwgu/FRHWuREpbMUNvLlI11d9iCymjfGvEzG+n5YJIQC5VleW112ageWf9yGyidFomHVYkk0H9li2lTsOGhjhCWlCDIaWsWwkthCaRV9VbwlZLtgIUWFulZN9YT7t27WIuj/1A9UwUrMX3ghDeVAPiyhSW2mzYJ2wOTL17K3/lE9gPBjDsH+fMecyCg1mWXuecI1vsvLO8cuSR8liPHrL7vfdKpyFD0njGHLJiuVmwQH6bPFl++vxz+WXSJFn81VeyOtJG123SxNgDKPUKgYW4btS6tQsQTPPMEf2NI7HFjZQMDSFVVATr37+/XHDBBalYZOEhQnAgsqBi1aroR6p+8gxB09K2KJemoIEPma214YbrkSaIr58yayun8+bNk79nzzaqwNp69WTjhg2NoggZpWFgGUzZAxoISGUYMqv+Ss236vXMQvoYPcdS+jQFF77XeMqtTvNTrSWTU99sH8qyWh84XvmeS9ZOr0WgRDoD5godm/bsKcd++aW8c/rp8vqxx8qCt9+W3e+5R2oXiH+6mIAdC1tApRyupMKKzE7Wa95cmnXrJt0p9dqzpyGujTI8sC5GaH5yR2IdbKRsnmPu3LlxE947VMbaSBEEW5mFTKJaQkghRSikkEQ/MrvxzjtX8t8q0fKSWW54yBcqIp+hlC5buFA2atdOlq9YIeW//BK1F/AZz7oMDfJJFAgGGVJF2Pb6eu0HfA/Vzy4s4IWm80qU6olpcNaT6WwBHEsUS46HFkXg/GnRh3wC5xsSW2zptdINiOs+jz0mW++xh7xz2mnyy2efyb7//a8hug65Ccp7L/nuu3+IKzlcp06VUs1LvcUW0rhTJ2l/0kmy5fbby+bbbScb+AThOqQPtLP0kTzoI5wS61AlMosC65cD9NVXX5WhQ4eGXVzxwDtat/yvqsxChpjaV1KJMsnDj8zWiPhpKy+ycilbzgvL4aaH/KGI8vnq8nJpccIJhgwyLT5//nyTGgx4CQ3qLAQzXgEFPKtKgBkxq2fUG/yF4sr0dTz1kun7RJXkOD54ZVFCMwlNMcY54lhTjYyBAHaIILl9Y8H2GGcyvRbbXKzptTIBLAabbb+9sR080bev7HzDDdLz7LOdcpdlrF21ShZ9/fU6whohr4u++ipaZXGjtm2lSefO0nHECGnUoYNs1quXbLLNNhm5Px3Ev8rZsmWmb4HEOg+/Q0rILGVrbUBMCL655ZZbEmY6KFZAHqp7CYNFRCGDWg5W02TZhG/lokWmjK2dzaB6nTq+ZFYVVJaHB1J9naxDvbELmzSRDXv3NsQSIkUDAVnFf+pNJ4XlAPUxUTUwTeVlq8OQTg2QYp/YnniBWqo0x1M4+Q62iEQZDlINjh+NqarKpOTieGJzqKqiyXHXMrDpysjg0mtlBwSBDf7kE/no4otl/LnnyoJ33pG9H3nEBI05pB9rli+XRdOmVbIKLP72Wyknr3aNGrJxx47G49pu8GDZoH17qc0MS4MGpt2jLXQDvdwgsVjdHIl1SCmZff/998P+pOhBedhGnoAnpaGHvf22meqFBEKKIHzqmQU0upSzJUk2z9ET17hxtEhCdJlWIBnE0lYLo8FcDRtK3c03N3kyabBpLFgvJBjC5s08wHagSKCy+pE2Ox0YjY5dzUsDidgnVEw+S6TKJsrNitoMIc5knlP152pwl1aTYWpe/cXJgmPO8WnRooUhtRwnuyxuVeHSa2UfpFva9ZZbTBqv14cONTlp9x03zuSodUgdaB9RW23iasp2V1RIjdq1TSqsf/XpI11PPdUQ2I06dJCVkUIGWsQA0lTsOZSzDR14M5voSKxDULi7NluIqKqb7bCD/PDLL5G3KqLFC5QgkkYL1G7UqDKZ3XBDQ4L+WVxlldbrV0V9hYTVKSmROk2bSo3q1Q1hUrVWv++ndvI5RNWvcAFkDLKr2w7BUxLFsiGBqI50FIlSVtGpxCuOgFcKgl5VAhkWqLAopqg0bKMqBYnK8AYBOXK1RjhT/iwfywfEuSrTmgwy2E6W59Jr5QZa7rOPyUlLkYWnd99d+lx0kexw5ZVmYOkQDit++61SUBbPyyIlv0lbSJUsPMu9R40yxBUFluNsFzH4PXIfY2vKN797oZNY+gunxDqklcxSujbo9O6XX34ZdvFFAy2YUMNDWJSUqjL31/z55tmUr12wwJDaNX/9JdVr1aqkzNJI22qeN2hLA5b+XLjQqL31Igqo+l2xQnhVWRoVlFUUWVRWW/n1ZjKAaGKRYDn8r0RbCR/kLB7YNh6xVBHWw3LjBY+lA5BBtWJAyiG2+IBTkdeWfWKfbV8xjTjHG4UWAu0tEZwInHcGLZoSzQVJ5BYabraZHPrWW/LFjTfKx5ddJgvff1/2feIJUyLXYX3Q5vy9cOF6iuvyn382n9dp3NhkEWhz8MGGtJpUWG3aSHWLnBqL0LJlhsDSvmgBkHzMPFKw5/jvv027hVDhSGz2UF5ebvo7jePQ/+0HA8BcrG4ZmswOHDhQ7r33XunYsaP07dvXvPfZZ5/J9OnTTa7ZQqpFn04w1Q+hpdFVkmirq9rQLouQ2doRz2qDf/3LkFk8tDaZJYuATQT9MhDwemXjxrJ6+nSp1aWLeU8tDZBVm8zSAaCqqjWAi5cGx5umSwkZ31fLAQqsVvnCQhEkUItlx1JcWT7bgoKSSZ8shJztp3FlfyCYKMOpyiWLKuunVrMO1glxZnCALzdRx8v2sa2cd0gsy3UpgnIT3POoslv27y+vDB4sj3XrJns++KC0O/RQKWaYyoTz5v2juEaeVy5ebD6v16yZSYHVadgwU/IV8tq4RQvf65z2DJWPdpH7iXYrUfCpQ3ZJLPEdTiHPHCktKytbb0aXewmewHnQB68RrPT/XD1HNZPpgM866yy55pprKr1/xRVXyMKFC1052xhofdpp5nnlr79KvU03Nf/j47IJJc9KbLWBRpmt37y5acgbbLONNGnbdp1aGyHBCk3ppeAC9npcuRCp/IUarMFauh71tyroCBiYKMmF1OJXtcmsGvRRD1k3SqKuk/d1mUE8aKwP0uYHSB0BaJkMxlCfLLYHjhPXNucoVYFnHBuWE8tKwGccD44LAXgQaL/9Z8BAZ8D2YvFwg8n8wWZ9+8qxU6fKWyedJP877DBZcNJJsuttt0ktzwxJIYLZoSUzZ1YmrlOnmoE62GDLLQ1h7X7mmVHFFVU71r3H9W8TWO4r2iq18DjkDtSSRrtF3+JIbOzjxCMZUlo9kh3Jj5TaZLWQ7o3QZPaZZ56RSZMmrff+McccI7169XJkNgY27tPHPP8+frxsfeSRlSwGWljAJrOqIFD+doOtt5aK6tXN+5Da42fNkh8ijb6tkNpEhgvcJpG8Zh3VGzaUipISs3yIkJIpb3EDGhs6As1IwLLYNlV8+T5KJcvB60l6L5uYmQwO1asnLLig6+bhl96Kzon1BllOKoHKqdHM7Jvmkk2VskOwVyzyboP9VtsBhJ7XpsRxSYnpDDgXnCeXNig/UXfDDWXQU0/J13vsIe+NGCE/ffyx7PfUU9Js222lkHJqL54+PZq/1aTCmjbNDKzBhq1aGbKKWm2Ia/fugbI96H1AG6FpALk/3KxEfpBYhIFcVflSCUdKc5TM0mBMmDBB2njqjvOeS7qeGHY9bk3XZWcvWE+ZXbBAGjJNT4WwNWtMGdu/Iw0A31F1lWcNHvOzGTBlbkZjjMwqKkxjQoAQ0zu2QqtT1vyWc800kAIFVpVYcsZCrvDVap5cXYapWrZypbSmjGOAkR/E168Mr5ZXzbRPlg6SzhFbA/vJ/tHwpirKWS0hQZVmvscxICUZ50x9tqi1LvI6/8E90uXEE2Wzfv3klSOOkMd795b+t90mXU8+Oe+Uk9KSEpOz1VZc//jmGykvLTW2qibt269LhXX44euIa7duxvcaNk8y7RDtFO0GM0IM5vLtWBUL9JwhENBu5SuJtUlpPJXUKaXZQeje+eyzzzbeWIK7tttuO/PexIkTjSJ72WWXpWMbCwp2vllS9nzzzTdRQqI3i63+Lf/xR2neu7eU/PlnlMxCtMyyItkI+L1W8NKALCWYChr+atyIdADNm5tOQKfvvWm3UDogrCildsYElEpUSrUEsHyIFuTMVoVRHXk/aCEBOiavd9ROh5Upn5tWmGF7aHAhjxy3qmYW8LPqJAqIs8G5ZJv0XPOa8+aIbGGhaceOcvTnn8v4886Td0491ZTC3evBB01avlzE6mXLjDXAJq5LZsww3lcCVJtuu60hrJ2PP948kxqrts+gNRF0oE67A4mg7cJS42Yjch9KYulfKC6TC22WI6WFidBX1oUXXigtW7aUO+64Q8aNG2fe69Chg4wZM0YOP/zwdGxjQYFiB15iqyM5HhrRD5Fq1rSprPzlF6n/r3/Jr5MmSdmqVVKjbt1ooBXfg4ga+0D16oY80uBrpL1aCwCkdPnSpbLql1+kyWabmcZFPZsQOJvM0nGof1ZVX5bPg/dRdSGrrIvfQ2ZVWWV7aMCC2gLUuuBVKSF8LCNTHRZEkWPOfqCC0gCzX5Bsb5aHqoBjyz4FIfp2ei278g3bimLMec50mjKH9KJWvXqyx733yta77y5vHn/8upy0TzwhW+y4Y1YPfcmiRZUzCkyZIn/OmWM+Y4DdrEsX2WKXXaTnOeesS4XVqZMZrCcLrn2uex60P1zn3IuuiEF+kVjaOma40kFi00FK6Qft95zanz9I6gqDtDrimhzsVFze/JLetFx///yzmZ5b/fff8vuECeveW7lSNo5UAjOlaSPZBFQ5pRGB5LCsmTNnmgAmpuEgUWtWr5b5jz0mTa+6ytykGO/VO6vKqFoMdBu4uW0/LsROCTLv85oOB6WEdSohDBqI5Gcx4D22IxXprxKBY0ejCwnnWNFZooLyIOgtlV5djg/rQqEIml6Lc+dNr0UHAbElIA/C7YJcCg9tDz5YNu3VS1496ih5apddZIerrjKeUjvlVNp8jT//XCl/K+SV9FigNvmiu3eXVvvtZ3yuENcm7dpVsk8lC657JbBaxIB7MhfUPIdgoD1CiKAdDUpilZTGI6T6mReOlDookmolUPKeffZZmTdvnowcOdKoddgOCATiAnaIjZo2OYoxfa7BYH/98IN5Xc8qJFARyS+rU/wod9zkkE7IrUb16lQ0pJBoeIhRxe+/y+pFi6KKsKp6qLba6KjFQKE5ZiGnWlpQMy/wO95XawREDfIHGdXiCYnA+uxSuewLNgWIdrpHxTS8WhBBCSGNJu/RkQbdh6Cgk9ZgunjptTiuHJN4gSwcb+41zgfnN13qh0P20GirreSI8ePlk6uvlgmXXy4/vPuu7DNunGyQojbWZCOZPz9KWNUuUPL77+bzelyDPXpIh6OOWkdcu3c3wVqaIzsVsIsYcK27Igb5TWLpg7Qtpd9wpNQhUwjd+3311Vey++67G8KDf/KEE04wZPb55583nepjjz2Wni0tEDTu1Cn6/xrLjwpUYYXEoMwR/AVqW565mhE7AI0FRFMVUBoOyC2vGWyogoe6qMn+/6RxWblSatWubToRJb92wJltMQAsT8vtsg4UQbUeUKYXMoVCS7Q9RBASSucUxODPurWCmEIrVqUzQIAGluPB+r2BXbwPUQySaSAMWBfnlOPjBedCtydsei2ION8ndRjXjV8gnUP+AsVzx6uvNqVvXzv6aHmsa1cZ+MgjRhkNg3IsK7NnVyauU6bI6khbQdorCGuXk082aisP0mOlY0DJPa8ElvscAuuKGOQOwiilPEw8RrVqpv/hNf2Pm753yHkye+6558qwYcPkxhtvrFQFYp999pGjjjoq1dtX0DYDr8KhwVY0CqrM1mzQQMqt79W3VFPIKB1CixYtzMCC30FwIUZASSJkx6iOZC2IRMJDTNWmoN/zWgwAryGYNE52sQD17GoOWtatwUlBiSijea8fle1KRZnYWKAThVT6+U1Zt5b3TXUnjqrN/eI9NprijFmNZHPEcs4hyQTMcUwhxM7rVVjYqn9/OXbaNHlz+HB5YdAg6XHWWbLzjTf6+lLLyALy7beVArNIhVW6YoX5nEIDWAV6jxwZVVwbpHjwZoO2jPvKFTHILNI5fU9fQSYbXjMQCRrs6+CQM2T2iy++kPvvv3+995nmxC/pEAwUT6hmERsN/gJqWF++cKHU3XRTWVNSEv2eRgMrmUSJgxDyfQilyUUbSamlwRLR9F2so6zMkFfUWsiVncnAazHQjAI0bDrlzXdYpwaqQZ5sJRVyHTRFG8tCWbRhk+tUgoECHlP1m/plSGAQwH6kmkxzHFGwvSnGeB8im4piB2w3Xlw6GFRal7ar8FC/aVM58KWXZMpdd8kH558vP374oez96KOydtWqSsFZf3z1lclaItWqmSIrptzrQQcZtbVZt25Sz5p5SRfU7sQgjraGNsEVMUj+WOaKp5Rzig2M5WqMgYNDXpJZyAAkxItZs2ZlJGCnUED6GjobvwAwJbPL5s6V+lttFU0urpHDag+gIbGnrfX3ECP1toKopYD1RUbQmt7LVkJtiwFklYh5JapqB8BygCcWIsxrnSpUqL82aGdnE1e7aESqwPIgeJB7rAOxiLaSf9s/nCpwLhgkeAk0HjMGIqnKSMBxw2urtgPU3lRmYnDIPjjHqLKb77STvHLkkSbbgXm/Rg1p2qmTIa6djj3WKK+bdO1qArYyhVhFDLgO3UxBbpHSRNAS5bbIQDvKdiBA0Faq9czBoSrgWkpF+s3Qvfb+++8vV199tTz99NPmNTcPXtlRo0bJIYccUuUNKiYyWy1GNgMaNENm58yRTXbbTSqsRgUyS6PFd4B9EdCR0HloSi5IJ0SJRsn4mdasMaoMDZM2mKqEqu1Ag7tQDGm0IK00WqgrLIPl8ltILK+9I3ONwE8Evqf2BwVEMpUjffaJ2QKOiXp942UZ4FilmvxpjlgyEtjgPc6hN79uKqAlIjmHqOgMUByZKCxgDRgyebLMe/VVadyypTTr3Dnqp89GVScILPcv116hFzHIJ1KaDOgviIeg7dLUV0C3i37GwSFV4J7AKlnVvj80mb3lllvk0EMPNZ0whGSXXXYxhKFv374yevToKm1MUaGszCQWB6pGqs2AhpCpQ2wGLVu0kIrVq6M/W2uRLb6H6qceSSWzEFQaR5Q/OhVVZknz1XCTTaKlZu38e5xDpqbVWsBy1BPNsjQXLctD/Zs7d64hSd6AIzu3bTx4LQ3AW7whWXAc2XcaZewvifxcKA4o0BBMO7NCKsCy6dztzon7huPpFwyWKnAO8LJB0lHYObf5WHXHITZqN2wo7Y84IuOHqFCKGBQ6KU0GHA/sWBoEq3a2TBWucSgulJeXG77BNVfVDEahySwE5O233zbla6dNm2YatR49epgMBw7BUbF2baUCCpxE22awgkwG5Fps1UqWz5z5zwlr2jTqgYWs4V+iM9FUKEBTZmnZWT5jqo/AkAbNmkXLoUJqIXoEREFe+R9Sq79V0ElBkFVN5Xs01EzN2ypsPCIL6aZRhCBruVu2yQbvVTWvK9cjRBZS6l2+H+istKIZ609lo62J321VlnPDMc5E6jGWj/WH88zsCR43V3I6v8H1ynXKg/vdmwyec64FTpRw2a9jfWZnNAlaxID7KxcCfxwpTR3UJsLgl7bakViHdIM+CkJL21aV9iQUmVWSNHXqVOnXr595OCQHU/LR8mZCONSr+evcubIoUiSBvI5/ffWV+X/PN96Q6vXqRcksJx/SpoFL/J5zxAPVVKPc+ZyLZC22g2bNDDnluxA/nlk334ME8tpOzWUTbTpQVS5ZHq9taKCHH1A9AZ2gKsfezpPOOVnfNccCkkjjy74EVSHZZ2YZ2L4g9ogwYJDA8dL91MwFmVZJGeyg0rJuBgup3k+H9AACaRNXHSzSBqsaapMNu4qg98FveeY+8XvfS4p1eWaWaO3aaOolzWfNa53hiUeQw8CR0uwBYURnsziH2EUckXXIBNReQFuUMTLLiiAKftMuDuFQvnat9Lz7bt9sBh/sv7+s/uMP83+DjTYyuWHN8d94Y+HIa5ECOhk6NkbTmnAcUsZydMpPU2qtWrHCLLN5y5amoaLR0t9BdCC2nFfUu1gXHCRUcwmyfpYDgeT38YK/2E62QwPG1A7hhe5XWLC/yQQ8sb1sG79B4Q6i5AYFx0ircwG1b2RrOpZBig5Y1HbgOqvcgfrS9aHEVXNJM8BMNABSdbUq59UuYsD6mKHRmR8/guwlx/q+XaLb+1Do/7rdtqrM9aoDdPodTf2n7+fb9H2uk1jOm7ZV+GXd8XXIFFJ1rYW2GVxyySVy8cUXy9ixY9dT8ByCY62PiV4bdyWygMyzKyMVeWrUrWvIrKbF0ryoNPZ0HqieTCfzuddMXbJkiZT++afUa9rUdE50WPwWVZLfo9rF83BCwJT88jueNbiMqUempOiE/dJasS4+5wHpBN7AJzrFZLMIQKhpiMMGb0FgsRfQcbMvqWzA6SDsfK+8hpSkKnNBMmBbOO7s74IFCwyhzTefYyFAo8CVuHLtQ+CUuHIPZbKam13EgPVqEQOdkVF1Noyn1OsntX2lNnn1KsmqFOuD5bN9+joWEtkoYn1WrKSNQQttEseXttMuvuPgkI8I3WLefffdMmfOHNMREiHuDQCirK1DYpTMmycb9+wZ/0uUrKWM7KxZpgRtDRqciEpLY0yDpD5TVUu1E/Q20iV//ilrSHLdpIn5Dt+HyEC4NAAqnvKjnRDQbAhaMAFixHXAe36dMJ0kgVgs39gdItOWNtSPGxYQaSXWYX+n2RiwYaSy4hf7xzHSZWrmglxJXcex4twzgOH8pbNIRbFDU9ApceWetav3qVc9k4FOen1iE9CBqQb58Dn+dh75EugUy1phE+JYn/nZK/y8x0FIsh6HXCbIsUisQ/rQv39/6datm9x+++3uMOcSmT3wwAPTsyVFBjILrPeeR3kg1Q5puQjcqmWRNZ2Op2HSkrDaEaF+Qh69WLlsmaxBmbU8r9oJoMp4U0f5bVtUOV69OmploOGGEKtf1Qs7rYs+8/v1tm/lytClWGmQidb3FiNIBE3FpZYZXqeSUNBZKHG1MxfkUifH/nLcIPLYHyDeznaQmkpXSly1zCf3CaSBa0L9plVdj5YRpQ0IopTqOvX7DOLUd6tT99kmpcmCbdbtTxXikWPNwRrrs1iIRY4TqcipuC8577R5PHPOXf5ph6Iks3feeaecdNJJZjR+3HHHmUpDruNLQdGEBMBWsPqvv6TWhhvK2iVLKjWUHH9eo+xoPllIKQ+/3KWrS0qkdOlSqRshszRmKEZKvBJ1Yqrg6P92xweBRsnxG+WjgNqqqabf8iqxvB8mLZZ6UJMhYbYSzf/eFGFVgRIMjq9mLtAp21wD28Tx45pBXUc9dxV9gkEHkTZxBRw/rmuuZa3IlyxZ5frR60mfFVy7LB9yHEsp9StioNXmcvF6zCWkikT6Bed5rRT6XiyCXBX12OQrj8wMcU0ygHF9d/6D66Wq/vhCQ6Ajce6550arfpHclhGeQ/JY/OmnJu1WwpNTu7asWb5c6hH9Xr9+lMzqVBavtbQshJFcbfiY/bzMa1avNsps3Ugku1a7ogENMkWvwV/qn/OqqBAhvyh5yKwGe7EuOl86VO81xD6EUVZQO+mUw06T0QhwLevUuvp5UwUdHNiZCzLpf0wGnB/OH4MDv+p+xQ4lrpACBicQfx5kq+AzrnuUd5RuAii5thIVDdBMBRxv7gXuXfzuLJdn1sNnXEcQVe4ZXQcPBAUGrayb88fgiXXSuTEzw7XHshjo8h1mXhi48D1HZDMPJR60BarU04bS9jCY5hxxjjmnnCfaDc6xfc69DwbJXG/8jmuOdpxrhXXorBUzL2proS3mHtfrzO+hKZJ08MTDzzNtE+1YZDvTYHuuv/56w1E4vl27dpVnn33WfDZ+/HhzHN59913p1auXuQ922GEHmWmlvSTV6K677mrOCfdUz549ZdKkSYHWTapS7ARaNGSvvfaKWnV02y644ALTN3N+r7zyykq/v/XWW6Vz587RzDOnnXZapRnWRx55xJzjl19+WTp27GiuIc4j7ca+++5r9pf9fuKJJ8y9blsa6CtPOOEE0y+xXwMGDDD7WmgI1MtyYz333HOyzz77mAuXaOhYRvF0JoIvFJREgqASgRKVps4XabwixQ9s2BkQaMDatm0bJU5amUeJmqkYhq/WIox8J0gEvzZY3KgoPeqXteFHRLXB022ic+ZmUsVKVdqghRa8ASv2tQbRCJIXkaAvOgwNZEtVKT3bfsE+QSZQQvIlwEpLI9P5QYA0YXoxQr3odi5XTUsF8fBLK+dFLGVVO36uOVVWWR7XrlbgK9YiBg5Vt1coidXg3jDWLU2/OH/+/Kj1RK9Xm7TGeo63nfaz33vxPgsKiOy4cePk3//+t7Rp00Y+/PBDOeaYYyrFKhDATuEn3jvllFNk+PDhhoiCo48+Wrp37y733Xef2XdSkAaxn/G93XbbzSzrjjvuMMfu/fffr2T3efTRR40oOHHiRPn0009l2LBhJrXpHnvsYT7nvmcGHEI6b948Q2Yhv/fee290GfS9N9xwgzz44IOmb+H8HnDAAeZ8jx8/3mwr66CPs3HYYYcZsvv666+b9uv+++832ztr1qyCCuIPRGYvvfRSOfPMM+WMM84wF1jv3r3X+45WsXJpuxKjnIGA5+b1bRA4pg0bmswHENtKy4iMiukgdSRuK4Cad1XJbAUNn7VOPofIBunwtIIYnS7T8iBI8n1Ikd2Y8lpvHhoTVEzUhzCVv9RewABLGztNL8PNHiu1GKCBt1VlRs6pDH5SoqyZC1Kp+GYCNKgcPwYGajvIhaT4mSxCoIMvDc7iOvUjmOqb9BJWm6xqSikeqGbJktVYUJtQrhUxcMg86HchNVzHDGS4FsKSQVWPbfsCKC0pkSUzZiS1XXGJr77n+a7+v1G7dlIrRoYaL+Hl3rvuuuvkjTfeMIorOPbYY+Wjjz4y5O3EE08071GllKql4MILLzSqpvY/KJ3nn3++tG/f3nwOIQ6CG2+80ai9NvHs1KlTpe906dJFrrjiiuhyCaRHJVYye/bZZ0e/i7J67bXXGrJtL5M2htcozmDGjBnyzjvvyBdffGHWDyC69nZ//PHH8vnnn5u+Sfv6m2++WV588UWjWmMfLSoyyw4PHjzYdHCcFA5gqst+FhOWz5snDVq2jPk5xLWCwCRGY7NnS9mKFUTsrBdoAnim81XPHp2zTsGrUmi8UwRsWblduTGCEkj12+lUVVA1E6VIR8WsT31cgBvL9h0GtQvQeTO6tL2dvAfxgmhrmi0/2FkLYlUhSxZaPUxz1+ZK5oJkoOojMzB0jPlGysMUIVDiyjVjFyHgvuGaZQBmE1bb6qPKqgZTpVLlT7QfdE46IHU+5+KFl8TqrFMqAZEdmyjzThowZPJkad6jR6X3/PIU80x5dcSMvffeu9L3uW/JJKCzmu3atYv2ncphSBeJbWPEiBFmOv6xxx4zU/GHHnqotGrVKqF6jDKL+hkP8CYbiAa2ggqnQlmGoOoMC20U+6SzoNzn9nKwSNB+UYFV0bp160p2P63S6uVrXC8cs0JCYDMfHdq2224rY8aMMfK4m8IKjorSUpl1113S7txzzevazZtXuim9yixeWS2UwKi4YvVq8579XY3CV7KqNygXLoojN7EWOqCzJnuCZjIIm9eVC5/zr1NaQUiwqsba0aL2eQslqHeWfQiikLId7I9NFDVogn2EqDK65n+vbcFOxQU0aC5VDT+Emn3g2Oda5oJkwP1NA48niwY1HZ1kNooQqM+aBl/VVc2VjAfWJqtKVHmmQ9EyztkC9xTXF/cS90A2cxY7ZBdcz1yv3Js65Zyu+7NJ+/aGWGYarNcLP0IJtBrlq6++aoQNb1umxE3TEur7QAtzXHXVVcZq8Nprr5kp+auvvloef/xxk8EpFokG9Iea7s5vW/ke7Yax+llQ7zG2jv32288osSiynE8U1eOPP960TUpmkwncXL58uSHO2BC8KLSUjKEjU4YOHZqeLSkiNO3bV/6cOjXm5xDXrQYPlkUffSSlXIz77y+/vPWW+UxvCm4+uyKX2jvolJmmoIoLapFOoXjJrFoHgsAmkDQAQZQ6e0TJzazbZYObU3MeJiLW3PR+mQHsNFgcGxp1vmc3aHYqLgXqdapUWfaVAQWdS65mLkgG7BPHEQLFIIH/czGYza8IgSqnqryqh5VBDA9g2wD4Ds/ZJKuJrjGUHO497qNCucYcwoHrmBkormFIT5BMNFUFU/1ehTTXYAdFqY3ARjwV0i7igcWAB95TZqNRaVFo44Fp/w8++CBKjr3E11skxP6M84lNQIPXdGaHQC7te3mosqwzsCyrZcuWpq2zbQZz5swx7bV6nPEA0x/SDiZKv5nvyL2eqQCBuuotZeuXzQBvbM369Y2CC6Fd+/ffUhfv06abyqJPPjHf0aIDqrpq9S/NM6v1jSGwdPBaUAAyq2m5zDZEFN0giFoVItscRBFiqkSnOyCOTF37Nbp4aPHAJgI3pObE9Au4Umh1Mw02A5p+S4mKfZyqCo4JJIPtyFWyV1VwHiF7TMeFDSpJVxECyB0P9ana1Zz0utaOhPPMNquymk9EkE4Mewz7hL+8EK8vh8SgfWGwrFPGdnVBh3UzxyNHjpRzzjnHHKsdd9zRzGAQ3EU/kCgXOYNg/LIQV4KwsFhBEg855JCEh/eiiy4ymQgI2kJdpW8mAAzrAefJDtZTqC+ZNgnyzH3+n//8RwYNGmS2Ge8rgCDz0Pvevv8h8ARynXrqqcaDy2ejRo1aNxMbsUntvPPO0qdPHxMohl8YPy2zbSjPvKckONkgvVyCaxkzAZLyR3KZLnz2WanrCVKKTkdERl/N99hDFk+cKHWaNjVVv8hAUNNDILh5GZ1rxw2hs3O90pFDOlFEjd9v2TKp54lcDHJB2qopy0JtTaReKeFQXyxkNlZjotsfT51lvbrPNmxV1gaKK/5uTUPkLQpBI5eq3LJ0LjQaWBwK2XrD9YWyrbaDdHemalPhGmd9XE+aDUDtLnQaXBMcd1VZ842sJiIv7D/Xs6vUVJzgOmAwThvIwN+p8rFxzTXXmP4AhZOMAEyj4ye9+OKL4xazALQb3G8EjTF4pH07+OCDjfUgEcgi9NZbb5n1bLfdduZehUCi7AYByi6puchUADGGgLIPbIvCO1BXjB071tgRBgwYYPogfvftt9+avl8tdQTFkcXh5JNPNn0m32MdDI61eBLwe/Z7TzNd5BqqVeRKkrgMAWIDkfHzcKYLX378sfz8v//JNkOGyI8vvmiI7Yrvv5eWw4dXKoCwZtkyqd24sQn++uPTT02g2BYHHSTlq1fL/Mcfl3YjRhhSgSKJkX327NnmpqOzp6EjHRSEAxIHmeNiJf0GN/jEW2+VzTbfXLqffrpZJ58HqZxFI8r6WL7+JpGiyyiX48tNw7NWnfEDDbVOofhN+0Ny1aBvr5dtQhFlWj/WNmAt4KbjPNtqMvvB76oarMOtwzlAuczngK9kfJuQ+Krk0PVWseIZwqqlknU2QGcZUFbpJFJRQSuXoZYcOlauq1gzGg7FRWJpwzJxHXAPYlFDnQwaIOyQO/jxxx9N30ZAGaptPiDeNReGrzllNsMgU4FJzWVByWy0qaKCS716UrNhQ6lO5129utSNnEhvkmo7sIX3dYpBpzUYnS36+WdZvXix1ItEQqotIeiFBjnWNFZBsxhw4SnxiUU4gUbhovh5883ye973q/IVS5VVaBAYy4d0KTT7QyqizhnBs45YRL0QwXVF56q2AwYgfqUx41Wx0mtYr2O9XlFYWbZmBig2Ese1yTWlwXeuuk/xgXuBNlNtWk6JdYiH9957zwgLnTt3Nn0luWm5ZlBeiw2hySwdFNUoyJGmXkHvwXWIDYhpecTErYAM0HgpRTU+vw02kIYtWhgyKwSpeKbY6fggAyiXECoImkbRa2AYYFTz0+LFlUrZagBZUDLLMjjXQQ3kEEi8ldxkiWwJmvEAEoMSYRNU7AlaLce77yCRcsCyOR52sBvLTEUUJ2o4nQ4epGIjXYBzwvXGbADnAeKlFYOUpHLe1aeq7YR+pueVR6JqWYUO2lQGZ2pXcam2ig+OxOYuSPdFvlo/YC3gkS3QZrD+efPmGcsVOXbJwFCM+aZDk1lysUFmSTZMqq5i7oSC4rNjjpHajLKHDJFqFDggmtoaBOiFV6d27SihxYpgiGwksKVWxDMLEYU4QKaUuKr8roE5mpYLmKnZOnVkDWQ24pnVQgthUsAEjZpVIs13IafeNCk27EhPbkTWQ3AD+6flQ/2sEIlUWQCRhiRBXAkw00wGmmaqKuD4aYWvYg7IgaSiujMVyjnTCmyaWUCfub61iISWXHVYd/0zuOLhUm0VJ+x0a7RVTonNPRCMpam/vMh2BS3K5vJwSILMPvnkk/L000+b0rYOwVCyYIE0iKiaEDeUWT+jMlTRJrNa9YvgrRqRqVymniCJ3FwsCzKlOWc1d6qd39Wk5apRQ9ZQSCGkMqvpvlhe0JyWajGANGpqpHjEV4Om2Bf2jYadBoIpE7vKl0LLKMcLtuJYQHghsBAuSD7L1eT2VRmAoaDgS4KQFZO9IEigll09y1uEwME/1RbHyRGY4h7IOBKb24gnyDjkMZmFEFBlwiEcWmh+XlJceVJzRcmV7YVds0aqR6bRVy1aZPyz5oRFyKHmNoU4QCRQCiG45J5D1VTyaab4SQy/ZEmUzEI+/HyOXmgEuZ2fNRHYFkgMfsp4pWWBt/IXdgYSSEOiIcR+062Q1ETKKsTVTsWFgkr+QZBom4KU0oVI69R6MYPrg0EHgxAa/FyMcM3VVFvc8y7VVnGTWNoo5412yCeURQSuXGzrQ/fG5513ntxxxx2Vayw7BDjSkdyXa9eanK/eKXHzmeUrJE1XDcgcaa5++01qRqZwuZggUhosRafI/5BTSB6NpG0zAOVLl5qctbUiBDeoMsvUF98LmnJK7QsaZJVoHVrQQcG+0MDzvp+vlfc5BvG2h2PBdtsl/Vgux4YBQFW8RGRHYN3sn738YoMq3yiLEDLOVS42brkEVGuuH7WnFGpOYof4JJbBOv9DYpmBKvYBsUN+oDxSLTFM8HimEbo1pcwaCYFJutupU6f1yMHzzz+fyu0rCGw1aFBUfWW6H9W1hkXIdOocMktBBYLEqLpiPKUVFbL6t9+kcYsW5jtcTBAq9SLymo5RsxiQdspOIA+WT5ggNa38m0E9s978rEG+j6IaRD01x8JDugEkkYefFYDlJqraBcHy8/dyjPFsQiiSSaPFvun2xtq+YgBEHjWWQUchVTtLJ/AUc91x3UBi3DErHtCGM7hmtkiT9+cqGXBw8EKDzOEW8I1cvnZDk1lUmIMOOig9W1OgoKoX+WMBRBXVtZqfulheLr+PHy/NBwyQaiQzxgtLjfmff5bqEa+nVq7Syka2yqq2A69ZfdWSJdHgL6AVk+KBi5fvhck1iMKsNcITqbmq7Hs79lgdPfvENseL9Nayf37+XsgoKiLKmFcRTgTWTWeEhxe/bKGXBYx1vvBqa35ZF3EfPNUWx0r92w7Fc7/Q5nDPMIh2JNYh31BWVhbNlpQPqRJDk9kxY8akZ0sKGRA3LQkXSc3la9LAZkDOTQgvUf4Ru8GqX3+V6vXqRdNMQcTUt0mDaXeSTF2hBNhYRY5Zq5RtELCMMBWtuPA1g0GQwCg/VTYetHJJPEAc/JRb1qVVo/DMQkiDdi4cb0rpokKyb0wR5/pNnWpw/FBjGSRo+jeHxKm2OG5cj4VcGc6hMhyJdch3lJeXGxJLO58PJFaRtGZMY43lgAf/OySAKpGQWY9nNvqViBpqvscFhBK7YoX8PXu2VI9cVDpSsiV/+2Lj4vNOo69cvDiaYzao11mLJAQF3ydTgHp6EyGMOooyii0iHvlFMeRzP+KAV009rhw3CH+Qa5abGiVXg8bw3HpL6hZD2iCC3hhIFCORT+Z4EWzIvQDxd0S2uEgsnlgGMQyWXTaPwgezdLfffnvKlzts2DA58MADJRuZaUojNsR8q7YYmswSrT58+HDTwVNlggfTjtQHprN3WB92tSPyzJpAL59sBt73UWX/njFD/p41y7yGxNpkNui05UpLmfVW2fID22rnr7WBqkmDjTcVkqk3AGSS3wRNV+XNZBAPEM94y9WAJD8vrKYss7M34Pdkm+Ndr5q5AAIH6cbzyDbk081dFXB8yEjB9UbH7EhZ4usZvzr3F8ermAY9xQwlsZx72j8GMLRDuewtLERA/jRnuf2YM2dOtjct51FhlRZXK18+Xr+ht/jcc8+VDz74QP73v/9FU4y89NJL5j0yHTisD5ukbr7//rL0iy/kj48/jn6uHs/q+E2ti6hs1Sr57d13TQYE9bmiFkJGIZpBCYbxzFppuRJF9EP+WAcNNBe4De2sUZ6wIvAdqo/wOmjKL2+O2aqqskz/x4qoh7D65ZZFacSW4K1gp/sIeYXEQkrYL7Y3aK7dfAfnlUEL/uegxTKKFZB91HuuQTzZTo0rDtAeE9hH+8csEzYk7hXni84eBg4caOxQ9qNFJHDaIX6WAp7pYzVDUj4iNJl97rnn5KGHHjIl3iBUPCig8MADD8izzz6bnq3Mc6yJlF9VkGpr6ZdfRl/HunjIfPDDc8+Z/+0MBVoIIGhqHzyzGgBG55vod3TMEDkabPyiCk3LwXawfgghU/Za+SlRpgGvUh3kpklU7Yv9oVOJZYmIZZfgGEA8ILQ26Jhmz55tCJ1WdwlScawQwLGExHIMGLCECZIrNnD9MuDheGmeXZdqqzjOO7NQkFgG2pBYBn2OxGYfiCP0SfYDrsLMsVe0OOCAA8wMcxAg3PXu3du0h/QZ3gB4BBOWRT+IMv+f//wn+hmzmPRzFJraaaedzGwky5o1a5Z88cUX0qtXLyOSwKcyadessCwFiFv5ZilICZnlxPmRFs3j6eCPZdOmyfzHHlv3wse3qoSrkjIbyUpQe4MNTEepF5tOAQSxDJDqa9Wff0r9yDR9ImVWR2rcdBBWGgim0fx8rnyXErTqpwxKfoLmueV6SpSvFjKqGRT89oVjFEvVpfHRzkmPDdYCTb+lmQ/Y3qCKc76CAQG2Agg893c+TjNl8ljRSXHvQfoL/dpwWAclscxcORKbHzjssMNMH0U6UVuseeONN+Too49O+PtXX33VkFcEuylTpsi7774r2223XaXv3HLLLYaU8vlpp50mp556qsycObPSd6644gq59NJL5csvvzR92lFHHSUXXHCBydn/0UcfGTvE5ZdfLplKtbUmYikopPLiobMZ9O3b15yYxx57LEpeGKFeddVV5jOHGBfQ33/L4smTZZtjjzUpt2xAxCCPWDZqRlJ4gfIImV0bmWpXH5AS2CAq68o//jDkuX4k7yu/iUc66ai5uFkHz5A6GnCIrZfM4ptNZlqV6yUI8UX5ilexSz27scgE6qqf79cGxI2AHQgs5BUyh6UAcs6NDmlh+rhQAdlHfeccuvRB8eFSbRUnIK9aMKUYq7aVlpTIkhkzMr7eJu3bm3zrQfHKK69UsoKhdj7zzDPm+YknnpDddtvNvM8MMv3WrrvumnCZo0ePliOPPNLwG0XXrl0rfQeiC4kFo0aNkttuu82Q53bt2kW/M3LkSNlrr73M/yNGjJDBgwcbYtyvXz/zHjFHjzzyiKQT5eXlRrBRX2y+K7FehL4rGUlwUrip9aROmzbNkJM333wzHduY/0CJtQifVvpSVMpGYJHZGTffHFVXIV2QMyWaQf2vJb//bp6VzCb6Detge7jwddTGFDvEFeJD8JQSSZaVTKALpDiW/5RlQrghqTr94Qc+R5WNVzdbc8vGA8eShu377783U0R2ajHWzSCD6R++FzRgLV+A0qQWimLxAycD9VBDZl2qreIkscVsI4HIju3ZM+PrHTJ5sjTv0SPw9yGn9913X/Q1AgxAgT3xxBPl3nvvNefy8ccfNwQ1iAgzdepU89t46NKlS/R/+k5mKukvY31HZ7Y7d+5c6T3vb1JtKQC5XvigKgh9d2677bbGU8gFMSMyWmOUwQVTaJ19yoA/NPJsnnyCjnQqn2IJCvLLgrobbRQtYMDUu13JKyiZrWcps7EaZT4DEDebqEJ0UI21TG0QIpmIzPplJ2C5mPbZDm64eMuHdLNdsfbfzi0bpMwk1y6/Yb81MI3GhYaJZaDaolInUnrzAQxUNPjNJfMPVr2J6zWoJ9whv0EbyyAP9aqYSaytkEIss7HeMIC8tm7der33Bw0aZO5lLAP4VZnWRz0NgiCcxtsHqRgU6zvaf3vf8wtGTkWWgrKyMnMNF7qvO6m7lGndRKMVh38QdchWVMjizz9fVxzBRwUA1e0LnPRbdevK0RMnGgLIjWX7PyFeiW42rzJrlhtjegFCDWHmcxp0e1105Ph6tBIURDeI79UP3LR+o0OIA+tnvZCtWJ0INycEg2nxWICgJsqTqwFukGIU57lz51ZSntVTBPDIQbQ1/Vi+TtFwXjm27INLHxUbnH+OE9eGs18UB7g3UGJp1wgaSrZ9KzQw1R9GIc010KccfPDBRoCjD2P6v0fA/UFRxQ5w3HHHST6hvMAtBUmT2Zdfftn4Tri5+T8e9t9//1RtW0FWAFsbIa0AsqZT6orq1uipRp060qhzZ9moTZto1DRKmiKoMmvK6UamXCDFEEGIjJcsQmYZqPCwFWAlkBBnzS8bj0jGg+bJ9Xuf7SIJNR5Wpr4hE35VvzTvbKzpEs0tmygDAR0Xx0ALKvC/+nC9FcdYFx0cwQQEieHlzafpGho39olrBmJe7GpTLHAdct1xDaDKOUJT+OCe597gnuC+due88MDM8X777SfTp0+XY445JvDviA/Ca9uqVStjTaB9eO2114w3NhdRUSSWAj8E6tGoRIGCRdR4vKoUkB9Ij4O/zcCbw4AgI+04/zkj/5wSCizUoLRt5AL1EpAg2Qwgs6rKMo2uKbFQGflfyTGKIxc/ZJft8mvwUS0hvKi03pEeRJT3EqmhqjB7wfUFeSQADTWUQCy2EbVW1VLdTvYjXmlbiDiEPN5oFOWWY6oBZnosGcWzXo6FNwsCy4NEcwyI/M+XKUiOOfukmQoc1gf3AgMVfMS0cy5DQXGRWNqTMOW1HfILAwYMMO0fWQbIJBAU/fv3N0Fk11xzjfzf//2fsZlRKCrXUFFklgI/BOqJbS9Hqn0dRYGKCtny2GPlt08/9bwd8dD6KLPGQ4N3tHZt08Gqmd2LRNMHNplFrYSkQTh5QMiUxGk+Vhp33vOqExAiGgNVMb3EEALJqBWiGq8Ygl/lL8ih3oCQWlV9NdMABFOXGUut9W5PvIphHE9IM8Fhevw08wHEmeOCChsLfI/jo9/L1epYmgtV82HmA/HOZiAc1z/XXjFMyRUzaMs436hWjsQWBhJlAuBcM6OWDLAo8PAD2W78gsYUzDR6S8hDkL3vUcGMhyJMZgP667WRGc9isRT4IbQGTUou1DEvUMv4zGF9/D179rp/KiqkUYcOMQOvQLUImeXmo/IXHlqIpibwV3hvhlgoWbQoSmYhnDbx4n/OJcuC8OjN4Fedi/Prp1xAHCEDkDpUTlV8gyqz3IgoYpBPgqxQO3VqRIPAaIQYRKlqG09B4Xscz1gEk/2E4LFc+6Zn2ZBU3kOtTkT82AfIMPureWpzCZxDUqqxH47I+oNrmgEJ549zzkCtWDuCYgBtD+eb9oaBMm2AU2Md8hX0s7Rhmku9ppWLvhgRmsxihEbF8gIykG8m6Uxhxfffr/uH3K2W4qmpOCBYayMFJ6CBJp8s/5eWSo3atc1Fm4zFIKrMRryjNOY2yUPx5D3OHR5a/md61Utc7YpdNlHlOuC3Sgy12IC3qla87ea7eFtRZHn2di4ooLwP0Q1SiQuVN1ZgE/vFeiChtpdIMx+E9RexbZAgBhsExeXSdDn7yQDDEbTY2RwYiGAp0IwVDoUJBnaQWAaxnG9HYh0UnTp1MkGefg8CxnIRduGDYldjbYSed4xVhpQAJdvb6PDP8VK0O+ccqePjRzWI2DeoAKbHF5sBZNYPQYK/lMxuucsuZjvoxG1SDLHFeqDKKuQavyzEzM47alfsYtpfrQSax9W+HrgGWB4Pb+5SLYfrzeCgSnCsXKe8r/keExFOCLZfbln2QZVf78AgSOaDWGB7WB/HDnIEMcpWw0LjxjZwvCDZroGrDO4Brlmub67zWJXjHAoDtCtaIpRznat2IIfsgWAuDZjyIhfjC5ylIAVktnv37tEKVET32YSAA0zS+YEDBwZdXPGgokI2iFQCqRejmpXJaqAvIp2rUWZTRGaxGegozj5vjOhQY1kO76siy7O9bK3YpX5p1o0aSU4/PzIAoVPSaytedgUxlqUVxCCT8YobaGPDdabBXbG+55dblnUx2MIG4VV+g2Y+iAeOAQ0fx0QDwzKp9GmuXIg8++g67diptvCeu1RbxUNiua/d/eAQC8lm5ck01D4HnBJbRTKrWQwwN1MBzFbROLgYnQ855JCgiysaQDTIFQtqxgjiqlmjRjTTgQ4YospsDDUB4pbI71Xy119Suny5IbPqibXJLOthOTT4mvtV120roFqxC9LH7yGVKB2qdHqJG68hd3hdbeXW9stCZFFDUVwTqYiQEJbH/kKSY3lA/RRWjj9EFtLsV0JXtykVCh1T+rqNmZrK5PyhxrIPLnhpfdABcK1xfbtUW4UNBuGQWM41bVqQktkODrkMtRRwTRdbqq20kVnyrQFIK/nW3Gg3IGIFQ9lkcfXqddkLUE8jDXA1fKr4S2MQokSeWUjOgoULTXovJbOswyaBms6DRh81A/LlF7yl6bogBXyPa0CTMUPcIKxelRj1FKsBBFMzILANBFlpKVyWi5IYbz8g0KxLSTCqLyTaS4DZbtZnZzHgPQg11odYFgZ7+1IBlD9IE9sIAU9niieUWKbMOYau464MLe6Bp9ul2ipsOBLrUIhwloJwCE3zO3bsWCn1hGLixIkyadKksIsreMSK7McbWwnVq0vZmjUmmwGjMEreQmarx1BmY1XRUkAUpaxMmu+2myGzmrXAJo6QP0gQnYH6Yv3sC6yL30FCIcO6XogbXluUT7M+D1BHIFya/UJL6RKcxDIgkfFIGNsLgYaMKCC1BHjpNKI35ZdNcPkOg65YXm6Wb1sfUgVIPmSb9fsFS1YVHEfsDGw7aqwjspXBdU3KHK4Fjo/LGVuYoK1isEp7QrYXZmzcveCQ76C/pU/m2WUpSCOZPf30001H6gVKFJ85eBCQzPK6Fuph5PuGkhGwFYNoBSGzNRYtks0POEDqNWvmax/A4wnRg2wq0fRmMtCgLd5nGd5MAZBFOhE6FFROm7zzfcgu0+Ash9cayAU5ThQwqNvntRTQcdGRobrZ37UVVlQ5jlGifLOxFNuqgv2D0KIsQ8iDplJLBPaZ+w+lHOXXTTutn2qLY8Sx5zop1AAv7ieC2RgwcR0XU/5vJbG0K1oVMVFZbweHXIcWR9ICSYhKhdp+5UQ2g2+//da3rjEBYnzmEFCZ9UytR19TQQ3CGVFnazZs6EtYgpDZ1T/9JCvmz5fVtWtL3Zo1K6mn/M/vUa0goXrzeMmsKpd0mOyLH/njt3QoEEgUMQgo3lW1ItDhoN7yPZajilk8QK5RNbE0+IGpdfKoaq5clqnWFzp5AsWY7o8Hlp/OiFUl86TKYrDH/8mST8iLKtougMm/VC/XKuezENU57gcGRjw0mJN7FxLHfuvgjX1nxoTPCi3dGJ08g2GeGaQ6xd2hUOAsBVkgsxAGAnJatmxZ6X1Gya7CUHKeWfPSx8vKb2vG6JT4TjxiZCL/f/lFfnvtNVk0bJghdjaZpVPABgCBVRsA5w9Vy642pgFSWq42VgYFtoUOBjUMkgjRhPjyWsvgQjCVjCUacaq9INb3tKACJNkmx6yDbUUtjrcOLf2XiTrsqKgcV/UXh71PtEIVxyNWJbhiRCGn2oKwKXlVpQbyxn56o5l1gMnx4F7mN9wDkFvaayW3+do+Q+S5/iHxtFmOxDrkAhBuWrRoIVOmTJFu3boltQzuUe5vFX4StV9UD2Ndt99+e5JbXbgI3brtueeectFFF8lLL70UnSZG2bv44otljz32SMc2FoUy6wX+Wc2A4HeBcxPEuvDVGkBarmqlpcYaQKem36dTYLvsID61GXg9s5BZfs/nQToR9cKizOqUOGqRVhZDUU3UqbJO9i8RcWM7taAE62X5DLRQiRMpoFrxK1PgGGoJ3KABW5rcn2f2qdCUtqqAa4Rjo1kc8tluoZV8GIhBRNW/zv3mV0gkFri/ua54QHp1uSxTrT4si+Vyb2ViIFcVcBwYdHNfM1B2AzmHdGH8+PGy6667Rsu6pxsuS0EOkNmbb75Zdt55Z9OBYC0ABIQxvTd27Ng0bGKewyKzv48fv84L6xcA5kWEzNZo0CBmRx2LzNL406Gt/P1345dFDaRTUxLpraTFcrS2s1fxhdyqXzaMv5TvQxYhcQx2IB5BospZP99lSj4R6Oggzmwf/0NQ2dcgpC9WcYV0gnOCYoyaDNmIVakMQGw4DnTi8b5XzKm2uEZynZD5QRVUJa9KMiFrtKOp2ie13vBghkQ9eayTa0sHsKxXyW0uKNtsF9YczaJCBhMHh0KAzrryUGtfKrEmRtn5YkBoOYOp3a+++kpuvPFGk9mgZ8+ecscdd8jXX39tOmqHyvj5k0+so109SmITkdmKyNR/DU/hgSDQIgdaMMFO5UVnpum4FHR2fgEkWu1N/bLJTO9pQv9WrVqZDjURIKVBVCOIAJ0dZBYCwP9ByY1O62RD6VR/MWSaDjuWGsvUOd9zRLZymV6UbWaE/NLB5fK2c0+y/VhNsOCgAHEtoNLjC+faZb/SuU92yWmOH+vl3tHATLaL48u1p9lPMgnaJa59Bnu0AVz/6QrQdCgsMP1+xhlnmAf3ESLAZZddFr2GEdp69epl2lMGR0cddVS0nDx2AVRZoOW/hw0bFm2P4ToUCKKf5JocPXp0pXXPmzfP/J7+sWvXrvLpp5/GzVLANnEf0v9MmDDBbDu/Zd3k8KdtAAw6jz32WHMP0E7ccsst6y2Te/iaa64x30M8Oumkk+IeJ83y8vzzz8fd5o8//lh22mknM/MFrzvrrLOiFTsBMz377ruv+RyrxRNPPGG2JZv2h6RMVDQ0iQ6awzosnTMneiggsGv++CP6vx+49dBG1kbIZc169UJPoULsuLAhs/+KeJtVhaHT8kb4Q2xRNb0WAy0zqwUXkpnKpXNCXQnSSbNtdGiJgrK007NzzYZRWSGS2Sy9rH5fFHKismmo2A/OG40EpD8XSylmC5oRgnNGg5kL6mEQ8sp282wHZjGFmUt2Ee5LtkmnVjXQTAmtBpqx7bZVKZXgfoboM0AtNO+zQ+bw6KOPyvHHHy+ff/65SRMKR6GPOPHEE03fBulr166daUvOPfdcQ1gpZwtZe+6550zRp5kzZ5q+U7NjYKl84IEH5LbbbpMdd9zRtM8zZsyotN5LLrnEzFi3adPG/D948GCZM2dOdCZULQU824UPmNGmmurw4cONIMj333///XXxMiJy/vnnywcffGAsndwTWDm//PLL9fy5rPvyyy+P1gIIgnjbPHfuXFPN9dprr5WHH37Y9FM6UBgzZoz5PeSZ/hp7BvvE8dTBQV6RWUY5999/vxmRwOixHHCyCQo74IADUr+V+Qxb3ahWTb4fN27dv7HqhGv1rwiZrZ4EmdWAEVuZVRsBHZRXYWWUqKNGbyYDLlQ6mWQUEggyN3AQbyo3BtuoSlEsaCEEvpcsKUBpznYZQ/aRBgpiraV/Od6xqpsVI7geGbSomp1LJNAG945NXoGSV8hZPvl5OdYMGnSwpyWkmV2xM6BoJoWqkE4vicX65Ehs7qG0pESWeAhcJtCkfXupFWI2kLYTHsI1BGlltpjXkFkIowKecuedd0rv3r2j6Rl11pA2WQd29F+QzLvvvluGDh1q3mOGEVJrY+TIkUalBFdddZV06tTJEEO2wbYUeNsvFF/U4nvvvTf6Hr8FbNdDDz0k48aNM4RXybqfaDNgwAA577zzAh+neNvcvn17uf766+Xoo4+Ws88+23wO4eV47bLLLnLfffcZdfedd96RL774wmw/ePDBB833sonQvSY7wyiAHYW56ygCiRyJORkye88998hNN91kUg8hed91112y3XbbJfzdk08+aUYUrPPFF1+UXATptRQ0+zrt0cUzVbHgqadk6yOO+IfMRr5HAFiYzlCtAaBk0aJKZJYO1o8QqFfWj8xqiduw090avBGENAYlsoApGPYj2Yhm9imXalvr1LKWFc6V7co2OeSagBjmYqottk/9rpohBGIHeWXWI5/IayLQNnDv6/1Pe895oaPXwiW67zwH2XeWgfJLh+1IbO4DIju2Z8+Mr3fI5MnS3CcNaCxsv/32ldrPvn37mql5rjdU0CuvvFKmTZsWzfQBEBKwS/rhu+++M+KPkslY6NKlS/R/ZtkAXIbp93hZCtimww47zHeZqKP0x3369Im+B+GGIHuhhDIM/LYZZRUyyzHCSvr4449HvwM/4Jh9//33MmvWLEPO7RSt2DBSWUkzI2QWoonsfuCBB8r//d//VTqgsP2weOqpp4xE/e9//9ucOAgxvhHkfrvykxeMDlgfvo5cRiXfGQ195HWdjTeu9L2fXnhBmvbpI/Uj5E9/V6NOnVCdo1oFVi9bJuWlpZU8szrN4YXe2Nw8NknkRmbd6vEJs8+op3iTEm17GCILcdCE+MkChSkT0aph4FINrZ9qi4Y7V8i9qpNKXlWdhOAV25Q45BYlS2dqbFWaexnYuW7t+5/vosQqiYX4F9Oxy1egkEIss7HeVIB7Fk7BA4JGuwKJ5TV9XiwELcTh16dqPxyv/0tVoY9ksnzUsrZZ70HlAdyfJ598svHJekHfC5nNRYQmszBzzWJgAz+VbRAOiltvvdVMAxx33HHmNaT21VdfNV6NCy+8MGbnggyOPP7RRx8ZgpKzsJVZLpoISfUGV9TecENZMmmSNIgUCfjtnXdMJoOy2rVDkVkN9MJiAGxlVsvjecFnrENVy382vXy9YLEggIzoNGSqiCzbgl8pUf7YIF5G50fNPeRSqi31jUJgdUCnftd0+UbzFXpstEO1/cJayEEDTDmWkNh88D07/AOm+sMopNnCxIkTK73+7LPPzNQ3HlcGUYhvGqSOp9aG9ns60wz4Le3Ru+++KyeccEKgLAVKjhMRWVVHWTY8xgvsDCyDfVLxBkUZIsl0fzrRo0cPUwALtdUPqMO0keTXJQEAwKKggWvZQugeA+kcedyLN954Qzp06BBqWZz4yZMny+677/7PBlWvbl7HiggEV199tVFEMHsnAg0oao/9yCTK166N/m/oq5JYD5mttdFGstYqzwqx3bBLF3M8vGTSthJ4of4cL5nVCiN+o0je52bmfOgNyHsgrMUAUqLKS6qILIDIMqKuip8UckKn6zrS3AHXJeeWKWumu7ivM01kUVEYEDObwIyP5mRFHYZY05lwPXMfumsnPjg+mh8Xfx8KLvcdZJZBNh0eU7C0w9rGODikAqitzPIyq/vf//7XzCKPGDHC3L/0b7wmzufll182wWA2tJDPK6+8Ei0Rzf0+atQoueCCC+Sxxx4zU/8QZLysNjTeBISZwSS4DN/paaedZqb1Id3YOOkbuW/gNwSBvffee/LNN9+YgLVMtI2jRo2STz75xAR8wfVmz55tgtB4DbAiwNEIsCPYDlLL/1X10FcVoZkBF8vpp59uSAukip3hwsE0jAk4DGJFr/PaGzFop4zgYvIj1H5gu/xGPplCPStzwN8zZhgPLQUTGnoqqNVu3FgqrFFhdRSgWrWktk8WgXgFEzTQS8kseWbtz/wCuXjfm55Lq4JxjoNOY6h6SicW76IOS2QJktLpzaoAwuLN5OCQHXBdQWw4t5msbGbnWtUCBZprlWsjV3Kt5jNoBzi3EFZ8dATc6DG1c+zahRzUlpAv6dYccg9E2DMrQLwN/QVEFpLFtffII4+YbAAEMqE8Esm///77R39Ldhl4ArPBzBKzLH5Dei/aB+KENPPMKaecUml2Va9h1hOm7Wjbtq289dZbZrvYZsggVkvigABxRJDqQYMGGUGJIC/ay3SjS5cuJosCWQ6wcbKfKMVHENMTAeQesk3NAeyE8Kzp06dnNb4hNJlFbuegX3rppaZBIl8bORKJ+jvyyCMlncAvOWTIEOPZDUpKGP1AwBU0sJnMh9u0c+dKBBXU9FE6UWY1WKwchTQynemnRNJZxBqh6Y1V8ttvhjTXs3K7elNvKejQOadeMqsqb9DRYJA0XGGJLCNeOsaqZh/QsoF21TOH7KbaIstFuqec7SpYdoECiFMqCxQ4rLvHGDDS4UJi/c6tXaVMCzlo9TMt5KDVzyC4xZoA3iE8uG6IuUHd9AKCqCRR4bX6QVx52KDvg9TxsH/HdQrvUfFIgRUpTH5mLAPkmvUD4g2Zo+xiVCi1NphJCoNtttlmve3z22YyPUC0YwFST1ozBbmhadNjWRMygaTmbPGr8qABYuQQL1ArHiCkXAg0YjZ47Vf1BZmfk8dIRaEEDNLF9AIjCBtaASdbaN69u+w4erQwodZwm21kk65d5RcfC8XmgwbJT//7n/l/7YoVUh2vLOk8kiCzqszWJ4AmEsClv/PLZsANScdhp9DivLKOoGqoFlaIl4YrLJHVQDIajaoSHgZCrgBBdsFggnub6ypdKchU+VPPK/cD9z/kKEgpZYeqqex0jGEGKHaVMo2GVnLLdK+mGbTJrVPOHbIFtevRjxbztfjee++ZPr9z585mhgUrBvc9Sm22UCUDBg1MskQWcDFgIMYErYBw8Zq0Gl7g1SB3HBYDfTBVQCUL/s/VCmRbRaqL1KxdW2ptsIFsNWDAet+pt9lm8v3DD5uGu4wiBXXqrKv+5UPEvSVnbei0qZ1jNh75tQmwfWMyXcNINwiZZfl0PPECq1Bs6JiCElkA8aGDS4U6k+1CCcUMrg9G7QxMGMAyOEkVqeRegPgwUNLqWlxrXDOshwYWEsu5d0Q2PSRWqwpxrLWCUlXAuYMUM/XLMhE2aJ8I4tEqZVruNtNVyhyKE+qL1Zkd2pJE1/nee+8dzfzhfVx33XVp2c7rrrsu5jrZnlSBvhx7BPlpDzroIOOR1wIK2UKgHoXsBUEbKCpUhAEWABISk9oL3wjTBKgqmt0A7wqNGp4Mpqa23XbbSr/XNEve93MRVPWqYFTn05GXMa1fUrKOzBJBTbk71AifQKp4ntlKymyEXCrB5WaEVPgNQOzlsQzWoV7aRIDIYi+IldReOz012QdVUtmGVBBQDTRxZCaz4LxzHiEeqUq1Fa9AAUQqVwsrFBK0RDUP7s90Z5/wFnLgfvYr5MA14IL0ihMQqXRALQW0O0EyFNgghkjbKC+ClHZPBqeccoocfvjhaU0FBjTVWS4hEJklp2y6gKkYMoTBmihXSrWRGUFVPtSWQklCvnHv3rLk9ddNiVovSiPGbhrj1b//Llsceqis/P57332Pp7TqZ3hmN4ik9OBmVP8txMKPzEI6ULf4rdZlt32zsUBnwvfiqbIQD2/OyUSjvqAFF4IAn7RTZbOTaovruSpkp5gKFOQ6aBOY4WBgip0oWynUaI9Yv1qaNA8w9znXnGZUUHLrrhGHbFgKEOEyjSZNmqSNKOc6ApHZMDV/k4HW/U1mxEXEYT6hPKKc2iDwqzSSMoxG+O9Zs2T57Nmy2R57hCazgJsOZbZ5pDKIKpOsV8vradUvXZ6SR36LN5lOANU7XnYCfk/noRVEYoF8k4m+Yy9To0ZT1QnRyVWl0IJDcHBtof5zzXEOw1pE/AoUQF6LsUBBriBXSGzQKmU6AMLTZ1cp0zK8ubTtDrkHnZUExeyLzTckZVxjeufZZ581pIfoOkYC2AtQ57IxGsknVJCpwNPBl69ebZTZQ6ZMMSVv8cyS0aBGw4a+DW88z6zCthlo9S/1xWI3oHFH9YZwoKySPodlotBqeVWmbbmpOd9+pep4P1HEMetinUG9NBBPVVRSAdYfdnrIoWpBQNgJggYO6pQx5FULFEA4UNLD+Ksd0luRDaKYayQ2FjRw1a5SxsCIa4yZKfbLJrfOmuJQVUuBQx6SWZL7kjCXzgbjP9W7ILPPP/+8IUfkH3OoDDtIoQwy60PsFjzxhGzRtashsvhqVy9aJNXr1/ftzGNlJbDXsWrpUqkfyQjBDarbQOMNwYMsolz89NNP5j0lpHRcQCsdQUwIuvCSViW5BGjEA8tLVEDBBp1nUBU3CNTX55A+QEZRYyE8iSLZGSQpeeU65DpWv6urrpUbyFcSGws6QNKy0eyfklsGYFqlTCuZOXJbfHBZCvIfSRVNoBLFjTfeWCnV0T777GNyzjrEh8kh6/GgUhzht7fekvIbbpCyVauMFYEGmLRasWwGfj5WrQxWsmiR1GzUSKpHguIgnup9pUFXL6z+Ro3hvG+Cx0pKTCS42bZq1cz/TP3bAVz4mxMpZ6qIBC0fy/dj7VsyYN/osCDkDukBxxeLClYUv/OmOV65pjTNEoSBAY6bwsvdgD1UzXwnsbFAm0Wbp+2enc6Nds4u5MDDBY4WLjT/ONe5a4/yG6FZA+XX7r///vXex14AwXFYH3YxAjIVQF5tKLk1ZG7NGqPMVotTsjaWZ9bOZLBB69ZSUbu2eY+bVWtHMwBBrYRkaCOtz6qi0qHZFZm4yVE3IS0QQ81Bq0pHIlU0TAaDVOaCJZI02yX2ChkQABRZ/MjqwbbJqybA51riunEJ8HMTnDfuaUgs97Sez2KBXciB9s++junT7OvYnsVyyF84S0HhITSZZTqGKSgvZs2a5RSwGKBhXDJ5sjTp2VPqt2ixnjKrKMevA/HEfI6CmyBjQcxStr/9Jg3btJG6tWqZTgoSy/d5psHmWVVYJcDqWVQLg5cAEgxGlQ9NZp4ooEqDRsJkJEi1xUArETmkHlxrqFiQVIIEucY556pouepa+UdiydNdTCQ2SCEHjQz3K+Rgk1s3YM6fa14DvDiHQfLFOhQomaVIwdVXXy1PP/20ec2FgFd21KhRcsghh6RjG/MedPYQWdD2ootk6Ysv+n6v7iabSNmSJYbUytq1MclsrAAwzQ+7orzcKLNNmzUzBJHGlwZXiSvQNEd8RgNNlDJ2ApQ2W5VVcJ4hmgT9aRLzeKDhDxM5nA6LAeQ8m7WiC5kAQWS5BhjgoKajwKvawblHZbfBdzm3+mw/eK8Qp7NzFWq/YaaFmQtHYhOD9lOLOdjebwYCtvebNs95v3MTzlJQ2AjNHG655RY59NBDTZocpnGpLcxUDBW7Ro8enZ6tLDDUbd9+vff+tdtu60aNKLOlpVItDpmNVTQBImoyF2y6qdTfcktp3KSJ/L54cXSaDPA7k4e2pMQshwaaqTVtpDmnsaq6QTwoFxxEvcGy4FeSOFMWAwhX0Ih6h/jg+uH8cEzVf80ggesVhT7RtKuthuhDlS5dnh0kqTmRvYRX/zd+cqemJAXOoZLYWD5nh8SgPfUr5EBAmZ2VwxVyyD5oW/r37y9dunSRO+64I+HA+corr5Qnn3zSVJrTKqVwmz59+kS/Y7c/nGeEoH79+smZZ55pvu+QeYRuybh53377bZkwYYJMmzbNNI49evQwGQ4c4uOPTz6RpjvsIPV8yCydPZ16tdJSo8zWiiRqDmozUE8sBK5k+XKp2aCBueHUr2vffCxXCxnQCNP42mptPDUzSOcHUQFhStulI4tBGDLtUPlaYlDDvU0HrXk8OT+o+DpQYAo2CKnkOyyDR5CKcjbx1ShjrlF9z/agAz+11ybBjvj+E6jH8XckNnOFHLA6kYtb8yVDbp2PPzPQPlGDnYPOALVt21buvvtuk66SdvC2226TPffcU+bMmVPJSjlmzBgZOHCg6TexWf7nP/8xhPfhhx82lUsdMoukh+WMQng4BAfBX+u9t3Kl1KhXTxq1bbvuNdPtq1ZJrYiHLSiZtbMTCJkLGjSIZjeAVOr/QC0HEBJIpJJY/teozqogbDquVFsM1G6RzTrR+QaOGSQVBRbCSIfL9aElaLWYBd/BB51O+4Zeg0GuQ+2wbNWX69l+z7vsWHYHVX0LlcQSpOuU2OwWcuD+sgs5KLkttOsu00B51ZL2Y8eONW0/aUOvuuqq0J5mb1amW2+9VR566CGTlnS33XaLvs9spgompCSE8A4dOtQUgBo0aJCL18gwArOHTz/91PiD9ttvv+h75JSlOhgNJiVv77rrrkDKS7FiQx9FtmThQuOV7XD22es8h3XqyO/jx8uGBx0U8wa0iamXzNJ5r/zhB6m14YbG10WjqtNedvYC9c1pIBjf5XVVp3DDpuNKh8UAUq4KiUN8TzHklPPOOYe8+gVucU3hi+caa9OmTU51vLYlIRHU7uBHfvV/2+4A4tkdcln11WAlOnJHYnOzkAOqH+eJwYamSFRym0uBeKUlJbJkxoyMr7dJ+/ZG1AmKRx99VIYPHy4ff/yxKeJ02mmnGXUVUpssmGVEcWVGumvXrgm/f8455xhexOz14YcfnvR6HdJIZgn6YvSjZPbrr7+W448/3uSc7dChg9x0003GN4LfxMEfdXym0SvKymTJG2/IBsOGmQaO0raotSir8RCLzPK86rffpHHz5lGSouTVS1LUMwu0eIJaBJJF2HRc6bAYsDymUh0qwwQHrlhhBg8aHKd2gVgElWlSOlugVeLyFbbdIajqa5NeHgz6bAuEDR0wxrI7ZOLYKTniXqc9drMTuQmuBc1j6y3kwMwW9yr3p/pus0luIbJjs+ADHTJ5sjTv0SPw95nJvOGGG8w137lzZ/nuu++MRSAZMvvKK6/IkUceae4n+ibIadOmTRP+rn1EsKKglEOOktmpU6fKNddcE32NQRp/yAMPPBC9kFBpHZkNB6MERTo5M50b8QOGGZECO4jG/C0rM0o6jSY3IQ2kN5MBHTqdMqqoplXi5k0WyaTjSrXFQBNg55KykU0wOEF95cH5CVqwgOuJLByqPjI4KLZjqhadIIQwXpCbKsGxgtz8LA9hZ0hQ+VBi+S2dryOxhVfIgVlPJbeZtIugkEIsMw3WG6YP2W677SplkiAonYB176AzCHbddVfDeRgYwnFQWSdOnBgzOFqh93iuztgUMgLfEURp2lPHH3zwgey9997R17179zbRfw4hQQdoZSdAqTUnJgkyG11GJHWXVrKBvKCYKhlRxVY7PBpIneqqik0kbDqudFgMINOamaEYwTlUbx6DFjo9ji9TzUHJKL/leqDh5hly5BLFpyfIzbY8aHaHIEFu+przzTnif/x77jwVTyEHzrWS23QOXhBWwiikmQLHBPEC0OekMssJx7R169bmsf322xt7Fb7Ziy66KO7vUINBixYtUrIdDmkgsxDZ77//3iiw3FR4UjBX2x2gUwOSADdkJA2XUW9UmY2M0Nf/emVP33oBYCwjsjwKBtgjRf1flVmt2sR5U3tBmMCtqqbjSofFAAWyKvuQ76mzuA7o4LB6JCo37AW/paPk2iHlFv9zDala5JA6hAm09AtyU9WXzxyJLb5CDkrkILdkS9AiAGpdoE0vVHXQzlKgAzuAcmrjs88+MyQ0FTNKDC4160883H777SZew2V3ymEyu88++8iFF15oPCkvvvii6TB32mmn6OdE+pGD1CEcDJmMdGqGcEZGmjViqDt+wV+2zaCCTo78eH37mtd21Lnx5EYaAjpTOkSdbuY1N2uyyk4y6bhSbTGApBdDwnL110FgNXUW3lcGBckeSzpF8hSTvYBl8T/H0gXS5VeQm0PxXBOa8UOrHCq5Ram3CznwKJQqZTqoU9+7vU8EqZ577rly8sknG7GNgHRsBmHA8SOnLMWhaE85lvfcc4+JKTnssMMqfZfZTgb89Juk5rr//vsNNyIArJhnB7OFwK0jftmDDz7YFEmgsyNy0CY+5FYjNYVDSGAJiEwXmrywEVJYM0bqIx2NeqEpiNauXCl/z5kjdevVW2/KXQNY7MIJDEpAvcj3k2nwaDi52cMqrKm2GGjwWSqm6YE9pZsrqbN4cA4ZpHDsNHVWsmAwgbLDM2os+8p1wLWSSsXcwcEhvUBIoL3XNl+tK8yYaUYbrVJG+5FP5Na2FMQi5uR2xTuOd5Z2bMSIEXLSSSeFWg+/mzFjhuE3EFlm+bBQfvTRR9KpU6dK3z3uuOPMM8cSG9eOO+4on3/+ucm775DDZJYgog8//NB0dJBZbwf/zDPPuIpLCbD822+lYceO692kGzdtuk5VJYgkQmZrxCGzfp5UDXwy6ZbmzpWGTZrI8qVLowMObn71XGkaGIiREmMaOLUfhAGNB6NTbuawqm4qLQaa6D9MSjAv2H+IHYok17eff1G9xrZ/UV+nOlUT5xLCrx5nOiLIa6p8kXR07C/3tg4qNNE7dqJ86uwcHBzCF3Kg3eeRq4UcNKOI5g2PF4/B50zz33fffet9Nn78+EDrg5g+//zzgbbLoQAqgPkBH49DfKz5/XcRD5lFma1dv/4/PiD1s8awGfAdP6UwqswyGl+wQDZo2lT+XLky2kDxzG8hR5pTFDJpk9mwJIllMepXRS8MUm0xgPBB9pJpkDkuTKurGhnvOGh9b9u7yLq9qZr8SrLaJNhvOzV1FoMMtUxAMuOlzkoGrIfId7Yd0qrngNd0cpzPXOzYHBwc0lvIgbZA7Wi5bClwcPDCmbAyCU+EsgFKXyTXICQpiM3AjzhqVTBK4daMpBPSFFn6mUbEqspnp7CysxsEASSWhhAylAzRimUxYPtIKRYWui1hwPEgSwdKhXpFE4F91UCMePCmaTLFLFau9K1KxTnQDoTzggcuXd5fSDIptyDItorNdYVVJEzWAwcHh8Iq5IBVizZRZ/rsR6bIpLadINUkFruAnYXJC4QEh/yEI7MZhGYqWO8k1K8v5Zp1IBI5HlaZ1ZE0ZLh2ZFpJv0fDBFFl2lq/RyOhhDbUPlRUGPWOBgbik2xDE8tigE+JabGwmTGYKg/zG8gvaiyEmlKEqW6og5ZkVUVeUzulC5rCCUJNzlj7WPHZjz/+6KLiHRyKGGo7UCWUh86gKblMJ7kNYylI1kbQq1cvkz/WofDgyGwGoTlkK71XUSE1SI0VaSxK//wzoTLLjY6yiXqnZIkGwJSlXbxYakeKIDB1RK5QTduC6qk5aGmImE4OC4gs66yKrSSWxUAD1IIopMmC5atfDFKX7QhxtSOkEwxiUGOxCHm9sFwPJGV3KbgcHBxi5U7WtkKLg2j2Gv1OVcltpiwFeIPJHetQeHBkNgtkdtWiRVK3WTPzf/nq1VIt4lOC1PzxxhuBlFmmxgE3vjYwkNtVP/8sdRo1MgSG6XoM7TrS1ZGvllBMpsFgmjpsLtmgFgOmt9LlveYYcDzwpDK9Xgy5Uznf2EGYOqO0qZ9KjFrrUnA5ODgkAv2FZsLRgh3a9yASaEYeW71NBP2tzmQ5X6xDssjfQut5BlJm1YiQx5+efjr6fvmqVYbM2t8DNWOQLSWzmjQaaKPC+wR/1dpggyjphMBBbGl8+D6Nh6bjCgv13lYVWAy8+UtZNqQr1aosx4X1LViwwDSW+IiLgciinJB3EaDA+xFZBkR0JMVWZMLBwaHqsImt2hJ0lgnRhH6Hdsivop2m2lILXCEXeXDIDJwym6kDXa+e1GnadN0LixCWl5bKhi1ayF8RpTUImdVStUpmNaUWDQNpuepttJHxRpJvEJvB/PnzK2WhSJYwsky7CEMqLQYQTrYx1amtNNUWJDaVGQFyFXQSBHFAVPEkxwpUwzPM91zmAgcHh1Qrtwrbc2tXo9Q+wKmxDqlC4ffuOYS1ET9sNSvQZ8s995QGm20WfV26YkVcMksjoLW5lcwyPa8pVVZFPLMQOQKcsBSoLUCngZIlpJDmqqqafhYDJWCpqpqiZVnZf/YdW0ExEFkGMwsXLjTXBuQ9FpHVFFx4hp0a4uDgkC7Yyq0GnWrcBu20pjnMlXRgDvkLp8xmCD/9739SJ6K+1oh4VgHVv2ys1epTcQgnZMRWZlHhaBwgiWv++svYDGgYtFoU08h4J/k/2VysqsxWtcKWXxYDVEIIdlUJp5JiHkFTbRUKuAY4xxzbeIMVl4LLwcEhk9BYDVO63ZOlQD23aoEDmjJSlV4HhyAofLkqR1CNGzhys2599NH/vF+jRqXpl1Ils3EUUP2+7ZnFgwppXfP331KzYUPTIEBqUEJRVFEqNQ1VstCsCKm2GEDCqurbhGjji2X57GOxEFnOCWos5xg1Nh6R1RRcKNWpqiLm4ODgEKu90cIyGuDlFSw0GwIkV7PzqGrL75hhRIThda4pt9j32H6X6is34MhspgBRXbkymmv2z+nT152ASDEDhVYAi0dmdQRrk1mdUkaZrVa3brRON2SWKWVARHuySEXwl5/FQIs4hM0r6yXDpCFj2hxSXCyjeY4nRJZ9TmSl0BRcXBPJBgA6ODg4BIGm76LdgaAGzaEdi9zq8tJFbslTy7qZ1XPITzgymyFAr0oWLZLFn3yy7rVnqkWxVsmsj8Km39PsBTZMgms8SCtWGDJrpzqhAfAbFWc6+MsviwHZFpJVZZWgMfq3y7IWOtQqgI0ENTYIOSUFF9dAVW0iDg4ODrGgVSZpk1ORpSBb5NYh/+DIbKYQsRBQIAE07tChUmSnooy8s+To8yFmOs2vOf6APnOzl2opvkgpVDXeq1e2Kqhq8JefxYAGiMYomeVyLEg9xX6RsaFY1FgILPsNKcUfG2SAgp+Whp8qaQ4ODg7ptBRo4YN0BN36kVteDxgwQE477TQ59dRTTdtIW3fppZdG+8exY8ea6l/MDBIUfNRRR5kAYbUL7LrrruZ/isewjmHDhpnX9Fk33nijKbTA+sj+Mnr06ErbNG/ePPN7RIWuXbvKp59+GmhfHnnkETNT9uKLL0qbNm2MWLTXXnuZ2TYb9913n7Rq1crsa7t27cy+KNi/K6+80mwX28fs61lnnSXFiOKQsnIBamb3kC7esz2zkNnqMabc7VK2St60zCDvr/zrr3X/N2gQNdRTJIDlV3VquarBX34WA7Iw0HgkQ6ypaEWjVAw5YwHnErsIzzRcQaftXAouBweHqgARZsmMGXHbJvohO3ArFWjSvr3UStBvaZAYj3Hjxsnw4cPls88+ky+++MIQW8jdCSecYPqMq666Sjp06GBI7LnnnmsI62uvvWZm9Z577jk55JBDZObMmWb2UPuViy66SB544AG57bbbZMcddzT9zgzPsbjkkkvk5ptvNoSU/wcPHixz5swJNFNI+ww5fuyxxwxZhZAfeeSRMmHCBPP5Cy+8ICNGjJDbb79ddt99d3nllVfkuOOOM5Y6CDTbzbY9+eST0qlTJxMbM23aNClGODKbKVSrJvU33dSorksmTZImvXpFP4p6X0lPQlnaGME5Wu7Pnk7RsoKmXO3ff5v/Sc3Fd7lpiernAq8q6atq8Jc3iwH7AMENG5DGcvDIFpOtgAYPIova4Fc5LRY0BZfLJevg4JAsILJje/bM+AEcMnmyNO/RI/D36RMgfRBbSOu3334rd999t5xyyimGAGr6L4jgrbfeKn379o0W6tHKk8zyaYpI+qc77rjDLGPo0KHmPRRSSK2NkSNHyr777mv+hzBDKiGz7du3T7jNzJqy/D59+pjXjz76qNn2zz//XLbbbjtDkiHdkFwACYes8z5kllk6RJ3dd9/dqNW09fyuGFEcbCAHYOwEqKior5GMBWvID7vhhv+Q0wiprZ6glC3QEbAWTOB/gr9AgyZNzHeZduAGhtBWJXq9qsFf7B/bY5NPVWqDjuJZBkFekGpu2GLIG8txZ59p8MKSd5eCy8HBIVUKKcSyUjotUkMivNSoEXiWKJn1hsH2229fqT+BrN5yyy1me1ErmY7nmRlBtfZBOjt27FgpmFrx3XffGRvcbrvtFne9Xbp0if6vgg1CUhAyS5veu3fv6Gt+A5lm3ZBSnk866aRKv+nXr58h2eCwww4zBL5ly5YycOBA2WeffWTQoEFFI/TYKL49ziIqSksrWQ1+fPFF2eiMM0y6JFCm1b9ikFlbHdXof6b/9QZWZRYyu7q83BBY1LmqpqmqavAXVgevZ5cGhRFyENDwEPCEVYKRczFArRQoBmQqCAOXgsvBwSFVYKpfFVJIn84QptJSkO62FC8qj8cff9yIOyiavAY28aO/1FRisYrOeGFn4tHj4S3fmy4gcmCNeOedd+Ttt982Cu5NN90kH3zwQZUyBOUjCl/eyhWgyEaUWc1kwIUP0dNR4fyXX46blotAHr1ZNEqUG1VHxlFlduONoylRuDGrmlO0qsFfXr8s5Dhouha2n/yxeGurmos2H6AKNCN7yH5YnzK/hwS7FFwODg6pbJe0WA9tNwQw14jsxIkTK71mOh4fKx5Xsub83//9n+y0005G/dTgLwBx1f6N/dK+tUWLFub9N954w8yOpaNKGQODSZMmRV9DTEkPhtUA8Kz+WQWvUZMVbOOgQYPkzjvvNCnGCED7+uuvpdjglNlMgRt/7dpKDUDzfv0qfaVCg7lipOWCVOr0OjcdNwI3mY4sVZmtt9FGUlFSYhod25qQjeAv3W57lEvDwug4ESD6NDqbb755UST5Z0oLIsqxZsSdTGfBsaUxdim4HBwcqgq1iPHwVu/KNaC24ik9+eST5csvv5S77rrL2AywpdF/8Br/7DfffCPXXHNNpd+S4pD2lgArpuohiASCjRo1ygR18RobA/0RXtzjjz8+KkJVBRzTM8880xBR+vEzzjjDrEd9r+eff74cfvjh0r17d+OL/d///ifPP/+8UWI1IwLb0adPHzNzSRAc28r+FBty98osMFRKwaXKrMfXomTWL4JT61dr9gOID++pN1aVWfy2WlVMCWBVR9BVCf5iO7Eo6DboCDfRFA5BXjy0ISpkcK4goQTqEX2r6WHCguA4jrdLweXg4FBVaBUukK5UW6nEsccea4QXiODpp59usgDgN0U4gfQ988wzRtFEoSWAygaCCcFbF154obF1QSrBZZddJuedd57x2+KNHTJkiOmXNNct4Bglm+sWAgphJlUYXlgsgU899VT08wMPPND4Y9leAsvuv/9+GTNmjPTv3998zgwc2Rb69etntg+SC+EthllML5wymylAQiGj/K+puDxfKS8tXXdS6tVbL+iKm8UumKDeJaDEcPWyZVIrksnATllSFVQ1+EsLJej2krwfywGkKxYgdqjJTLPn2lRWqqGBWniKq5J1gEYcH3Kyiq6Dg4ODbSmwC+/kA1A5CYYiL6sXpMviYcNLPCGuPGxwDFBmeXiBhUH7Y82jDjnVGVTadp4THb+DDz7YPGKBFGM8/ADZ5eHgyGzGULtJE6kg92tZmVFODTwXOZ+DGnXqmOlmgp3UxK1klme9ebxkdiVktmHDKJlNhV82meAvto/tJKUUo1jsAii7EFRSodhZGPzA6NRbKawQwbFFjUUJqEoeYM4zyymWLA8ODg6pB30K7bVmnin0GbFUF3JQO5+f4ES7rI98GRzkG5wymyFs1K2b/PbUU1K6apU0ifhhVi1YIHWtPKuqzOKZVbKqZBbCorWjUTYhQjqy1Jto5dKlUqdRo+ioOpPBX9y4bBsEVoMEINmQNFULaShZVjKFEgoNqKio1lXNl+tScDk4OFQViAwEnjJDRHvkBsXJQ2dEyT370Ucf+X4HawGWMofUwZHZDAKbQdN+/aIktDySiktRumyZea5Vt260PKACdRNyiOIJGSSzgULJLDaD2pEpfM1kEFRV1VrX3u8HDf7CPgDx5gbV7YG88lv1+bLNxWhM9x5nVFSOUVWLGXBMsSig7DoVxcHBISy0sIom3Kd/weaVbyCKP9fw4IMPmv7Tr92mD8fvigeX/pp+wFZvHcLDkdkMYpNIlRDjmYXEeDw7SmaxGeg0hRJZFFIufk3PpYTYvvhX//WX1G3c2DRIqLc0VEGn61FUyXdL8mWbGAUJ/mJb+D3VvGxyxmgfY73+z6i/mG9UzsfPP/9scsdW1UahKbgYLFS1VLGDg0PxDaoRICBbVJBSq5ra2RyqDu37gp4PnY2lbbfJbSpiX4oBjsxmEBvvvHOl197Ls/TPP81z9Vq1zIWtZJaRs/qYvHWwNUALotSgQwepHqmSReMECQ6aOBkySqOG0od6qtGaQcgnv4VQ2Tec5uRTlZYp9SDpuAp9Gg/lOmgy7nhAPeF6cCm4HBwcwoC2mPaDiHfaZEeUsg+vIuvIbXg4MptFeJN4rIokcq5Rq1bUZmDn9+Nh521V9ZZpa7BRz55SOn16pdRXQRsqlklKJ8gnih+kK2jwF2qxNxWI1ry2A8KKcSpciyAw2NBBQio6I85XmJG/g4NDcYPpbIQR+oZUtUUOmSG3dtC3HSvjlNt/4K7mLEArgOGh1Yty1sUXy/I5c9adlAiZhahCKAmaUlLqV4SAetCksZr3wAPSqG9fc9GHCSrSG4UbA3sC5JkApSDBX+q19aqNEC6t+sVyqlION1/B+Vu4cKE5vxDPVHQemoKLwYZTVBwcHBKBNhoSywN/PQ9HZPMzY4IGVmvKNM0FvHr16qRz3RYKnDKbAzAXpZWqCjJLY8MoDPLCFD6WAfXK0jhpgBevIZ/8//fMmVIjcpGHKUHrzXrA1BMkjJsjUcAWCqxdqhaoqqzL9JazLQZw/FG4q5p2ywbnAxWeDAiuM3JwcIgH2mFEBQJxmXWjLXIo3HRg5ZbvthjTgTllNouotskm66XlssmskkJVWXXExbPWxtYqJKa07fLlUvHTT+a3kF8CroJACXN0u6pVi5aQTaTwYjHw+jbVQxvrdaGDFGWoIJDOVO03I24C9FBkq5LKy8HBoTgG05R3RbFDkCg2MaFYyW2tWrWiyq3GvRSLcut6xSyiSe/evmQWz6yCi09HXzY0F6AqdGtWrZKylSulVuPGpuGCQAYtacd3vSVQWSdkLB70xvCSK5RYJbjcQCyrGEaGmnaLc1LVtFt+KbgoopGK4DEHB4fCBG3y77//bsQN7GfFGKfgIEWp3Doymys2gwiZpToYyqxCS+L5KbNAP1v5559SvU4dqb711sYmAPkJOhXNyC1o1gOvKuuXYgpVQKe0/GwIhQhIO8c8FWm3vIAgs8ygSruDg0NxQfN446en/dfgWweHeFXKVLm1v5Ov5NbZDDKIv2fNivkZymzXU0+VuhtuWInMKtR24EdmIbwrli6VduedJ7VXrjRTCkH9shr4lczFiwLrJW5asEGXVwx+WQg7FgCUkFQTWVLo0MCQY9jBwcHBzya2YMECo7iR69sR2XUCTTGsM1lUi+SxhUeoLYH/NfMQ/Tj7wzWlVsZchyOzmUQcrwpkFnsBCq2SWTvgy/bH8p6qrppKa1VZmWy2775Sr27d0H7ZoMTXBhe6juJs2OTVm2u2UNNu4ZHFl5ZqCwDHkvNTzPl5HRwc/IGIQREWBrzEOGAVy0dFLRXo37+/nHHGGXL22Web47DXXnvF/f6MGTNkxx13NFl2OnbsKO+88445di+++KL5fMCAAWZ5NmjrIX3vvvuuec3A4ZprrpFjjz3WiBgnnXSS5CuqWeSWfbTjZSC0+UBunc0gg4hnvC5bs2ZdsYQIqQWQQC4gm8xiB9AKIUoUTXqOX36RpfPnS8PddjPeWa8HNp5fNhkyy5SWn1oIkWaqvdADv7QjYf/oSFLdiUBiiULGt1ysHZSDg8P6oN3HTkAbjI8+3faj0pISWTJjRsZPRZP27aVWiP7j0UcflVNPPVUmTJiQsO0+8MADTVzDxIkTjWhw3nnnVfrOCSecYMjsLbfcEhUpxo0bZ9p6iK7i5ptvlssvv1yuuOIKKSRUi1Qd8yvkkKsBZI7MZhAVEeO1F4aoRhTZ6vXqSfWGDaP+FWMhWLEiaidgtKQlB/kOhBLSAxlePneu1N1nH1kbsHKXkiYln4H3o6LCTK17CbNWJtN100hQg7rQkI60WzZcCi4HBwc/IBAQ4MXsl7d8eLoAkR3bs2fGT8iQyZOleY8egb/fpk0bufHGGxN+7+2335a5c+fK+PHjTdVLMHr0aNljjz2i3zn44IMNmX3ppZfk8MMPN+898sgjMmzYsErHHGLrJcLFUsgh1+DIbAahRRLIKVvDU0RAyew2Q4ZIzV69ouVquXEgiZogGQKpFb8YJUGmILOMnqkg1nyzzaQiYOomtTCEtQFoEQRvQ2pbDPyKOxQCsBSgiKCYpiNFlkvB5eDg4AV9AOn+AAVyMpmeD4UUYplpsN4w6BmQcM+cOdO030pkwXbbbVfpO/RvQ4YMkYcfftiQ2S+//FK++eYbefnllyt9r1evXqG20SF9cGQ2C2TWWAk8ZNZ4ZWvUkJKffpJqkRyySmYZjWv5Wn3fLC8i95sCCytXSgXFD0JMOaEAJpPFAELnZzGAzJIHFWhVsEKZItcqOuxPKtNu2XApuBwcHLxtAmIFbSuWgmzYtpjqD6OQZguptltgNejWrZsJ7h0zZoxRYb1FhFyGmdxB7mrGBYjG225rnsvXrJGZN99c6TMILmVubZKrpBUrgJInzdtqj9h5Xb52bWhi6i2WEASquHrL06qXRhWDQspiwDEnATnHitF8ugi6S8Hl4OCgwF42f/58095Aogo1/iDTaNeunalwqUo3+OKLL9b7XufOnY3y+sADD8gTTzwhw4cPz/CWOoSBU2YziOoRoldWUiJtTj01+r6xEKxZs47MEoxFNa/S0mhhBP5XFVbfVwJJIIDxsVSvLnVD5hZE8Q3rl8UrS+oXL6HzZlCwA8HyGewHHjUU53RaJohI5jy6FFwODsUN2niIlhZfKdRsMNkC3thWrVrJ0KFDjccW4eXSSy81n3n7NQ0Eo2876KCDsrTFDkHglNksoNZGG0ktKx8ppLR0xQqpWb++IbPV1qwxDRo3kGYvUDJrytaWlhqShUJK7W0TeVirltQPGWylOWFjgWh98hfaD4idt3ytt4ACvk9vJGS+geP9xx9/mCk+OpR0EllsG6jkTCM6ODgUJ7TNofgK1RsZQDsim3pwTEnBhTDTu3dvQ1gvueQS85l3xnHw4MFGPOLZ+5lDbsEps2nGsgUL1nvPO0ldC6LKFH2EzNZcuVIabLGF+UyJrE1meUCyILoQRkgpNoVGCcrPhimWoMmTvR6hWMtim5QYq3pbCGm3CLZIl61AOy+OczrSezk4OOQHaDPJY0r2F9pc1xaEA5kJwqB9+/by8ccfR19rOq/WrVtX+h7tM6LR8ccfv94ysIA45A4cmU0zSvDleL1OkcwEitK//44a7Q2ZXbMmGkil0OAviA8kFJKFj5P3lixcaILLGgUgnkHzyyZSbW14S9YybaPlbPMNHBem+NKdv5HzSXovBiRUDnOdl4ND8YFAWdob1D9nKcgcXnjhBSO4kM5rzpw5MmLECOnXr5+xHwD6Waxf2A+233576ZEHAXDFDkdm04waAaan1yxbZp5r1au3jsxGPLFEUSo0hZYqppBhE/hVXi4rf/7ZKLthyCw2hXgBWpDZoNMqWAw0zQnbh0qbTJaEbILjiIWCbU93p8K6OLfYMpxH1sGh+EAbgOqHvYiBv5vCTh0ef/xxOfnkk30/Q/WePn26EVxGjRplBCHSXe6+++6mQIKt1O66667Stm1befbZZ1O4dQ7pgiOzaQZBXeu/WXk6uU5Epa2BMlu3rgkUgxRCKNUKAMlCSVXLgSq0kNo6q1fLsqVLQ5FZpk7ieTT5XD2w8aBVQZS8JlseN5tgm8kkQMCanx84leA8QmQpUevSujg4FB8gUhBZ2hvaATcrk1rsv//+0qdPH9/PtJ+iBC2PeOVxc7XSlYM/HJnNBJn13hQeMlsjUtHr5wkTpMbWW5tytupDBUpaeVYyy/QU6iGktrykREqXLZO6AQPAtLZyvEYUIh0k6MmbgiufUnJxHPGpQdzTVQTBe0zx4mIrcEqMg0NxgfsfSwHtKgphPgfI5jLof/KlD3JIHRyZTTcgjF4y63n9cSQtyKLff5e2RE1GMhho7lYta6v1koFWBQMrly2TauXlgUf4kLdE6qkGiAWxGNj+3nyJyqdjwbOKEpsJdURTfOF1zjcLhoODQ/KgLWXQTJuDpaDQqiI6OOQCHJlNM3xJkofMLpo2zTyv/OUX87xhq1ZSWlYWJbQohnbAmJJZLXm7ZuVKqRVCVfTmhE2WyLJNdqEEzYGby9NmbC/Gfo4BJDxokFtVAOHn4QI8HByKB7Q1pE4k8wyptvI1KNbBIR/g5jnSDR9ip2Vt10N5ufz09NNRz6zaAWx7gb6nhRRQ+dbimw0ReR8kk0EQ9YCG2vbV5rrFAGuGZoCAWKabyGrqLbI9YGNwOSMdHIoDtKG0NTxjKQgSf+Dg4JA8nDKbAc/sH59+Kk379jWvyQdbEfHIKjZo127dP0TQr169nq+VhwZaqXcWgkROQjNlXbOm1A9IIpUUx1Ne/crV+gHySn5UBdtkv84VsL9USoN841fNxDSfpt5CqUYBzmW12sHBITWgfcZSgNhAW5OJmR8HBwdHZtMOkwf288+jZLaCqXnPd9qcfrrU22ILWf3HH7I2UmTBVmUVNJAsD4KkKi2fVq9bV+oHLB0bhKiiJiRKGaXBaao22v7eXALHDFKJEp2pZOQu9ZaDQ3GBtg8rEYNmPPj5XDTGwSEf4WwG6YYPefKm64LcbtCmjSG8ZDKwySzkUAktPk+AGkt1KkNoly836bzqbrxxSvyyQW0GXotBkOVmGpSJJQ0WAWmZSoEDyWd6kbQ7Loesg0PhA4GAe14rJjoimzsgxdbZZ59t/t9mm23k9ttvT+nyhw0bJgceeGBKl+mQHJzNIBOwSRTqpYcoNt911+j/NSLTUpBZyJetomrJWJRZVUJLly41nzVo1iywXxZ7QjxotbFEFgMi823iqIUTsg2OE2osx4oGLFNT/C71loNDcVkKyFDCM1Yil6Ukt/HFF1/knOBS6LjyyivlxRdflKlTp6Z9XY7MZgAbWaXwqPAVD006dKhEZtUvq1AySzATpHPVokXm/XoByKz6buNZAbSyWDzYmRT0tQajZRsoxmQrgFhnsniDS73l4FAcoK1j8M4j3WWvHVIHZuccChfOZpABNGzdOvB3t95tt0pkVjMZqLro9aWWRMhs/aZNEy4bP1eiqe8gnlq8YbbFgNfprpyVCJDwn376ySjPTPVlksiy/2QtIENCLhB6BweH9IA82gsWLDDtM7M+jsjmDhAUqOqFzYPgO7s8rZ/NgD71vvvuk7333tv0Fy1btlyvdO3XX38tAwYMMJ+TXu2kk04ygc6xwHVx/fXXS4sWLcxvunbtGrgc7vjx4802vfnmm9K9e3fze9aN+v/6669Lhw4dTL971FFHmX7OnhE866yzzMCKvnvHHXc0KnRVl5toX3S57777rvTq1ctYH3fYYQeZOXOm+fyRRx6Rq666SqZNmxYV5ngvXXDKbLpBTtkQZfGUtHqLJOBh1aAvyKxmJFi5aJFUq1lTaiUIOOB3qJbc0FX1y2IxgLjFep1p4FVTb2ymOxdILMeM/XcZCxwcChPMPlG9C2CvSne1wFxCaUmJLJkxI+PrbdK+vdSqXz/w988//3z54IMP5KWXXjJ9wcUXXyxffvmldOvWLeZvLrvsMvm///s/ueOOO2Ts2LFy5JFHGgILwYMc77XXXtK3b19DDiF/J5xwgpxxxhkxSRnkb9y4cfLvf/9b2rRpIx9++KEcc8wxRhXeZZddAk/N33333YYcHn744eZBn/zEE08YIn3QQQfJXXfdJaNGjTLfv+CCC+S5556TRx991Ag5N954o9nuOXPmmNiNZJcbdF8uueQSM3Dg/VNOOUWGDx8uEyZMkCOOOEK++eYbeeONN+Sdd94x302n6FU8d2Q2EcKzaZNZSCuvIa6MjGhQIW4aFIbloGTxYqm++eYJiRRTYqiyib6HMts0jsqrhRE0KI3vc0NkqzQjxwQii2ctk5V1OCe//vqrORcu9ZaDQ2GC+5yiBwzYIUgQgWIDRHZsz54ZX++QyZOluWXRiwfI2EMPPWTI126R2U3InR3X4YfDDjvMEFRwzTXXyNtvv20I3b333mtIHv3bY489FhVJIIODBg2SG264Yb0iGIga1113nSFuEGCA2vvxxx/L/fffH5jMXnvttdKvXz/z//HHHy8XXXSRzJ071ywLHHroofL+++8b0gnhRl1+5JFHjMIMHnjgAbMfHA8IfjLLDbMvo0ePjr6+8MILZd99941WGUUlhy9kIp7GkdkMNIbJANLIlLXaDHhWYqt+VT5f9eefUssqJxtrG5gKT6TK2uuNBa+lIIh1IZ1EduHChRnLHWur3FgauFETBdM5ODjkJ5hyRY2lvctUWr9cBAopxDIb6w0KSBlxJH369Pnn902aSDvN4R4DStTs1xqs9N1335mpdXu2DzJI+89UupfMooRyzeyxxx6V3me7mN4Pii5dukT/Zx0MoJRw6nuff/55dL/ps/tFSCqg/95uu+3M9ie73DD7Yi+XvhigYmd6ttaR2RyDNpgQNUY2+lrJrP7PaIeLdvXy5VI7AWFGlaVBTtQYK/GO9z1Ggjp1wU3NCC6T/lQ/IhukwEOqlWDUa5eCx8Gh8AA5gMTSzlK5r5gsBX5gqj+oQlrMUC/tq6++ul7xoDBiiy0m0Rd7xSVvUHg6lrs8xL54lwuS2b6qwgWApRsEb4X4um0zwEagaqwdDMYzaigjxjUlJVIjDvlE7kdNDaKeQtTiNdxKdtVSkK3ytRwbiCxTF5kkshB3Xa8jsg4OhQUtP82sC8E+2IeKncjmC1q1amVI1cSJEyvNGs6aNSvu7z777LP1XuOXBTwTvKT53QFeUPo/P8W3Y8eOhuiRc7h169aVHgyK0rXf8IQJEyZUGozh8WV7kkWq9oVto7/OBNydmgHU8UxHBAEjG80YABmFaGpAGA8dHZWuWhUttBAr3yoXXxBPq/pf40Xy2uSR7aLBD0oE2e6qlne0iWwmFWGdcsSD5TIWODgUFlCiKEPLoL+YLQX5CsQFfKB4RBmI4G8mMClRv/fMM8+YSHwyADz++ONmmh2vKTj66KPliiuukKFDh5rgKa6PM888U4YMGbKexQAg7IwcOVLOOecc03+zTPpIiCZ9OctJNRC0Tj31VLPfzJgytU8AGP0VxyNZpGpfsDZ+//33xrpB38ly02UJdGQ2AwjTMNrfhTSpMqsVt1ShVZShpvoQRH7DdDjT8EHVBQhnPKWTG0QDIOzSukFAQ4DfhkYmWVVTiSzLyCSR5dgzyqehyLVyvQ4ODsmDNolBKu2Yu7/zGzfddJMZlBCgBWk677zzDAGLB1JHPfnkk3LaaaeZvvK///1vVNGkryOd1YgRI6R3797m9SGHHCK33nprzOURREZUP5kA5s2bZwZHPXr0MJkV0gWyMZSXlxuSzWwp5Jztrmo8Ryr2heP1/PPPy6677mrsjmPGjDFV09KBahXJRijlKSAm+Ee9uVLThcUzZsgva9cG/j4yPoQS87ZOd8yePds0ulxMqKMoBxDdivJy+e/++8u2xx0nXQ45ZD1iSvGAoMopgPyieMYiqEw54J+B0EFO2c4gNgMuMXIz0lkwhUejwCgyDMnnZoXI4lXNZPotjiGKtctY4OBQOKA94d5mgI7Klkm7Ui6Dtg4ljdyihX5M6H9eeOEFV442h6+5MHzNeWZzDF6Cp7ll9dlWZlcuWSI1GjSQ2j5KJ6Q3rHqJ8hmLyHpz3DICDqqw4jmCwLLdTDWwnp9//jmwSTwbRJZ9xKKhpSrdtKODQ2EA9YrBNZYnBtiFTtocHIoBOUFm77nnHuOtoFEhtYamh/ADOdR22mknI6Hz2H333eN+P+tIQvi2xXIlkXbZWCVWFEyoucEGUtdHHQ1LZhMJ9CjD6nfVZQcleHQeOqriN9gEUHRRetmnIEQWH1SmiCzrRKXmemRbHZF1cMh/0IbR5jC4hsQGyfDi4JAqUFAAAcjvwWcOee6Zfeqpp+Tcc881VSYgspSbo3oFedwgEl5QQm3w4MGmbBpkg+TFe+65p0yfPn29FBL5hGXffCONt902mh7DTnGhZFargkWV2T/+MJW/6vp4Y4JU8vJ+P15wlu2XxT8ar7CClyT7BZZBbllfvGAuJZVYEjKVPYDjgGrM/mUjU4ODg0NqQTuCLYp7G0tBJnNSO+QuMu2wvPrqq01QlR8yYXksdGSdzGKmPvHEE+W4444zryG15DZ7+OGHTTUJL4g4tPHggw+aUm7UB6Yucz7eMGWrV8ungwfLwEgNY81coL9XNZb3bcJZsmiR1GjYUOpbJev0N3Yp3CCgyo1d+s6PzDK4oGMg+Ctoh6CVQPy2hcEImRbw0eIHtosxaAAb6nsmSKVW+sE+waCoqlkXHBwcsgvuaWaF8MZqhLtTYh2yBa4/P4HOoQBsBkz7TJ482VgFohtUvbp5/emnnwZaBiQLchWLiDEax0RsP3INEz0knOOi6isNMcCrCpnVaXkaamwGtTbYYD0yG1aV1TK58bxjWhnMWwEsETQLQyxoFLGmvlLyDpGF4GaCyOr0I2BbHJF1cMhv0AZyTzOYJmBWM8E4ODgUJrJKZklQzdS5N2cbr6l7HwTUESZAxybENkgrAfnSR7qSF8dEAGW2wkoqrIRbA7FojIE2xEokOXarKyqkduPGUsMTtBXWL4ttIJ4qC9nVlFSJyKkXkNRE28K+kRYFsoztACLLOtI99QJpZt+xFWB1QL1xHZ6DQ/6C/oS+g3KatCkoYUFybDs4OOQ38vouJ78aOeJIrxFLVbzooouMmqgPyFImsWz+/ITfIcWWQqfxlczyv74PdJoC5UHq1ZPqkSphyZLZIJkJIKSm2tiaNYbUBs21qgpxUIIIocar6rUcpAMcV64FiDrKjfPROTjkL2jHyGOJGktbhWjhZlgcHIoHWfXMQlwgRkwv2+A1Slk83HzzzYbMvvPOO9KlS5eY34OkZJOoLP/xR6mx9dbxv2SRWZ1mVzVBSaw+KzE0doMGDaR6SUmlRfFbSGTQKlWavy0e4YTMQjDpLIKUxVWEVXGBBpmlE+wz/liUG5eWx8Ehv8HsFX0GbQcDU6fEOjgUH7KqzDJy7tmzpwneUkDaeN23b9+Yv6NcG9Up3njjDVPtIpdRLcAUl63MasAY5JIpM1VBed/OAWvIZ82aUt1DWlFPtXRsUDUjEUGls+BckdImTHqssN9PNxgAoMaqj84RWQeH/AXtI7mgsVxhNaNakSOyDg7FiazbDEjLRe7YRx991FS9os4wJEizG5ChAKuAglRcl112mcl2QG5a/FE8mCrPWzKrntlI6VpVZu1AMICn0ya85atXSw1P1D1qaNAGHTsChC6ebUDThPFdlI+glgG1SuSKB5WoZs1XiyfbdXoODvkJ9bpjKSBAlEIsQWeiHBySxYwZM2T77bc3fWa3bt1ivudQpGT2iCOOMJaByy+/3FwMU6dONYqrBoXRYDH6Vtx3332G5B166KFmmlgfLCMXUS2Av9RWZtk3ANmCENpkUH2tKIwQxZU//ijVPcFfQbM10CGgaMQL/AJKYjNhMUiXekPqLwY7qLGZsDE4ODikB7RHVO/ivkbMyFT+aQeHK664wsw0kgNfZ5P93ouF+fPny/HHH2/KthLT0qpVK/N77fMVb775piHIDNSYbTjkkEPMb7359nv06GEslK1bt5ZHHnmk6E9Q1vPMgjPOOMM8/MBJs+E9qbkOlNmE+QzUD4vHdvlyo5RCBGm4Ia6oDhBbDWjQNFl/z54tDVu2jC6Gm0Lz0XpVSW4e26ZAyi9Gk4mCJPDL8j2ew3iP2Y+MZ47w2QaSpdMguE7PwSF/QZtGhgJmilBiY5XddnBIF+bOnSv77ruvEUXivRcLqLhcv/fff78hoN98843Jsc9MtIpx33//vRxwwAFmxpqc+sR3nHPOOXLwwQfLl19+Gf0O66RqGN+BRJ9wwglG1KPgVLEi68psoaNes2ayyhPgFrOwQsRmACCQeDvxv6LSQlLVDqClZf/8+mupZhFXgpognHxfA8b0fY3cV3LLsiF5iQCJ5Xdh8r1q0YdsTeWz76j5NATkjXVE1sEhP6HFTGi/mBlyRNYhXrtPPA1EkX6Qtn/06NHms6+//loGDBhgRB2sZieddNJ61kQKMHXo0MH0ve3bt5d77703+hn9GTnxqeLF/1deeaXve/EwcOBAGTNmjKlY2rJlS9l///1NRbDnn38++h2Wx6zDtddea5Rb1Fe+w4y1ZjaisBTq7i233GK2FyHw0EMPldtuu62oLw43vE0zWgwcKCu+/jrh9zpceOE6BdfKZMCIDSiZVXBRM13+13ffSdm8ef8UUVi50tzE3IzeKl2M2ugQILCostzoifys6t/FMkAnEhSQ5WyVgtXiC64crYNDfkPvZdL0YSnIFf99saG0pESWzJiR8fU2ad9eaoWwhRFbQ/wNpG7HHXc0ggZqKP0oiiVB5V988YVR+FEyIYE6PY/CidXx7rvvlu7du8uUKVOMaoqFYOjQoWZZ5LKHkEIuEUhQRr3vhQWCi231IyCe/h7SO2zYMEO4x44da9ajvnAKSnnz6u+1115y9tlnSzHDkdk0w5SVTaRQVlTI1kcfHX2pFy2E1KvK6vt8Z/Vff0mdiC+Vix4CieIKmUUdhczaSi/pzrgpIbJBVFNN8cUyguaWVTJLSdhs1F/n2GBvcNOQDg75Cdougnppo9y9nH1AZMf27Jnx9Q6ZPFma9+gRuM+54447DBmFfAKUTUgtBJd+8bHHHotm1+F7gwYNMgHlxOfgXUXpZDofoHx+++23xhLA8ug76VMgrJo2lP+974XBnDlz5K677qoU78N633rrLTn88MPl5JNPNiotJPy1116Lfod7w6/Q1F9//RW6YFIhwZHZXICnShiEDHIGiVQ1wk4jZaYbSktNFoQ6keICBGhxQ2k6LLUUKPEFXORMb4RRRtiOjTbaKPBvdLvDkN+qQIs+aDCb9yZ3cHDID3AvM2vE/cx9XKydcq4BhRRimY31BgWZkBBfdtttN9/PunbtWilNZL9+/UxfReAWZBTvK8FZqLEK+tB0Fe8hKBlF97DDDqu0TogqryHQgwcPNiQdxRgbwdtvv+1mJ+LAkdkcBDcR5BQiq8qqlxyuiWQtqN2okRm9cWMqaeVZy+CqvzYZ0KmwLWFyxXLzZcqjyiiUKSOIPmpzpgi0g4NDeoI18cUSTOMsBbkDpvqDKqTZQlUGPuqdRcHt06dPpc/S0adQPn3XXXeVHXbYQf7zn/9U+uyee+4xBBrvr2LcuHFmhmLixIkmywGilV+hqUaNGhX1ANAFgOUAvNkOaMhRGnmGpEJW7YpgvK9kFmXWmwaLqQ9VZpMls5BoVF2IbJiOBTKb7pRc7NOPP/5oAkNIlo6K44isg0P+QctK024wIGUWyBFZh7Bo06aNIXJ+6bEIkpo2bVo0BgVMmDDB9Knt2rUz/Qf9yLx580zwmP1g2j/Vimz//v2NNxZfrNfux2yo9z3t2zSoG9uBdz/ffvvtuIWmigFOmc0yZt11l5QuXSplFECwArZQVzX/HBexjh6VnK7+9deoMstn3Iyq4nrJbDK5VZmyYXlhcsuynZpKLB1g2eqL3WSTTVwFLweHPAVtBZYCOm/IhKvG51AVcP2MGjVKLrjgAtM/YiOgr5g+fbocffTRxhPL1D0ZB3j/zDPPlCFDhkRtaVdddZWcddZZRhVl+p/+b9KkSaY4B2myUklkmXnAJ8t2KNRzS8otAtjIkKA2g4svvtj8hsA0QOAZnl/2dfjw4fLee+/J008/La+++qoUMxyZzTLm/ec/Un+TTaRaebkhjtgLuBlRN1EeAcosgFxyk/H5X3//TZoDQ2ZLImVvVcHV/6uizKL2opCEyS2brvK12vGxfLIx5FKJXAcHh3Cgg2bmCRU2SFYVB4cgoDIoQg4eU6byyeAD8UPMoRDBiBEjpHfv3uY1hQhuvfXW6G/JbsD7N910k5x//vmmj+ncuXNKMwSgnhL0xcObHUiFKNKHPfHEE8ZmwINtQnGlkJRaCFCLIa7knyXojWU9+OCDRZ1jFlSriCY5LQ5A0hh9kRIjUxWqSI7sh8lnnCGLPvhA6m28sez02mvSpnNn4wPVIgdsq3pfAVMikF0u8AWTJskXV1whhz33nCyKVLeC6EKAuYmpksN7+hwW3HB0NlpCNwhoQPh+GAIcD1ya7C8Pgrs4X67jc3DITzCwJsCFwTWDUmcNyj3Q35CUH8Lk1HKHbF9zYfiaU2azCIgsKEdFrVbNNPKcTC1qAOwCCEyzQ1ghmWXVq8sG7doxvyK1I3YE1Fi7g0h2nMJ6WFaYSE7WRWcVi8jyGVOKjJz1wbb6kVM7QwEXsMsx6eCQv6D94l5moM50aqoGuw4ODg4KR2ZzABURMqvETrMYQCjxnyq55JkHJJDPG7VvL2tJzxXpHPhM86tqWdtk1A9GQ/wuTK5WiGqsSEq2FdUWcgxJ1/1QK4RC1wlhdxkKHBzyG9z3DMyxCDFjgxrrZlYcChXXXXedefhhp512ktdffz3j21RMcGQ2B4Aya4orRLIX6DMPKlmhakD0NKgLlK1aZfyykEP1kNpklmcIZjJ+WUzvYXLL0mlhZo9VKIEpAtJ1xVumknfdB1f0wMEhf8GAlHRBDLSxOWWrtLWDQ6aAP5diB34IkjIr3kxqkFnWigTfScUygMbl5BocmU0zSleujPt5tRo1pOXJJ6/738orC5mDzHITcPFASpWcEs2/dtky5u8MmdVyeJBB9ZwomQ2bd07tAmHILOSX6mN+WQzYBz5P5Ntl3x2JdXDIb3C/k/uZNgRLQbI5rh3yG/lCzFKxHgWiUrzgZAZ4QRFkBiPRd6olsQy/3wT5Ti7Akdk0Y9XixXE/r167trQcPlwq1qwxU3KaEks7AUZAPCCpkEJSifCd1b/9JquXLjU+NFUxbVsBxFLN02HAb/htUCWFdfKbWGQVVZkpRqfMODgULmizaAcIQGU2KZnynrkKJTQ82//Hey/Md1Lx/WR+7we1gDEYSRVpyWVilo7tcMgOHJlNM6onyLkKmVVAZgl8grja3lcIqeaO5TMU11U//SRrsRpYv/faDFBtwyojdEZhVFmtE+13k6MgQ7bxyjk4OBQmMWNwrSkFaTtQZ3mdrvUFJWaphB3PoM9B3wvymf2dMMuu6vpiRZZzLl2gnkM+wZHZNKN6giCqKJldsyaauYAGWhVWGhzsA9gFeI8GBoV2xYIFUqNWLTO9r+C3qoBCZsN6W1gvjVnQVF4Qb5Yfy8qAZy4W0XVwyEV4iZL9iPV+uj9LNVJBhtTXTxvAM1lHaHN022MRs6qsL9Zn9rODg0NxwpHZNCNRZ1Rd86qVlhpiGIvM8prpOwgqiidkdqO2bc17NrRRxyrA6DpMI0/HpCQ4EdhOgr5Ieu4H1GPW7XIVFj7SReiqsryqIJZS5kfM4n3GfRTkd0GWl0vgGKO8MpNEJT6COx0cHByyCUdm040Ynevyr74yz7UihvFq1atHlVlbYbXJrD1dv/rPP6VOHD8s39fAsKDA3xq0fC1EFi+sn/JLZ0cQiLfKiUNhQUkNMwUMglJBAr0EMCyBtN9zSD2wDTHjAoF1+Z8dHBxyBY7MphkVkYIHNiCM8154wfxfTYO3rEpfeF9JZwXo3L3FEKJk1iKefMfuxPk/DJlVi8GWW26Z8LsmAG316mhday/YdqI6XXqtwgXXKLmDUd6p3OIIZGGD880AlYE2Kfj8Mpc4OBQK5s+fb9q1KVOmSLdu3bK9OQ4B4JL/ZUGZtT2mtSLqar1NNonmkSWS1FtQQMmC5qFd9eefUtcK1GJanzK3yWLFihWBCiVAegn6ihWtrKm4wpTBdcgvMFhZuHChmSlgmtkR2cIF9ztBoZxvAlGZbXFE1sEhdzB+/HjTBmvQZbHCKbNphp+Hj85A399m6NB1J6J+/Wi2AhRSJbNeomDSb1Hdq6SkkjILGQ1qEfADN0K8HHne78XKkuBScRUuuCZ/+eUXc/26RPiFDwbIqLEEmTpLgYODQy7DKbPphg+ZrVOtmsx+7rkoiVVFE0WWqGDULkirn+Jl1NuIglvXIq8Q4KqkUoEMJ7IlsG7IbCzVVVNx2RkWHAoDBPv88MMP5hrBXuLyBhcuuM9/+uknM8OCEsv97tR3h1zHs88+K507dzYzn1yzu+++u+nXwIMPPigdOnQwYlH79u3l3nvvrfTbzz//XLp3724+79Wrl7EXhMH06dNlv/32M/03/R/la+fOnRvt26+++mpzL9FHY1t44403KlkauL+ef/552XXXXc0Ma9euXeXTTz+NfmfBggUyaNAgk/oOMalTp07y2muvmd/yG8BnLGfYsGFSjHDKbBaUWSWyoEZEDUX1woeKuspvVJn1/h7CWBHx19aJ2AzUU5tsh6NBZ4mqhSVKtcXnbtq5sMC1xXnlnDs1tjgsBQxcuM/DVg90KEyUlpTIkhkzMr7eJu3bS62A1jlmjAYPHiw33nijHHTQQeYa/uijj8w1/fjjj8vll18ud999tyGsENUTTzzRkMKhQ4eaLD4Q0T322EPGjRtn8uyOGDEi8HYy8Nt5552lf//+8t577xlCO2HChKht8I477pBbbrlF7r//frP+hx9+WPbff39DgNu0aRNdziWXXCI333yzeY//2Z85c+YY69/pp59uxK4PP/zQbPe3335rgjCJcXnuuefkkEMOkZkzZ5p1F+t968hsuuFDZilhq2iwzTaVPmMKV20GdiYDBTdIWWS0qcoso88gFoFYoHJPouIKrIPtieXL1VRcxXojFSI450wz44116ZeK41wzmGbQ4pRYBwVEdmzPnhk/IEMmT5bmPXoEJrP0jQcffHA0TzoqLbjiiisMmeQzQGAXZBByCZl94oknjJjz0EMPGWUW1fPHH3+UU089NdC677nnHuMnf/LJJ6N+8rZt20Y/h6COGjVKjjzySPP6hhtukPfff19uv/1281vFyJEjZd999zX/X3XVVWY7ILMoycyKQVh1n1q2bBn9nc6obrLJJlWyGuY7HJlNM8ojo7NYhRS8RRXs9FyQWC+ZRZld+9df5n/1zAaxCMQD04nxyt5qvfVYOWVVvYv1uUN+gfPN+eSZcxqm8IZDfoH2hHNNu+POtUMshRRimY31BgXT8rvttpshe3vttZfsueeecuihhxqRhun+448/3qixCoiv9nnfffeddOnSpVJO9L59+wZe99SpU42twC8wEqGIrC/9+vWr9D6vp02bVuk9tkHxr3/9yzzT70JmzzrrLEOu33rrLWOfgNja33dwZDbt+Onjj0U8qT1UmdW0XADiALQogsJPmV2zZEklMsv0Q9iytTZQguMRUYK6IMuxcsoyzUJ2A0d68h94nslWgeeMKSuHwgTtDZYCBsJYClxxE4dYYKo/qEKaLdD3vP322/LJJ58YwnfXXXeZqfr//e9/5vMHHnhA+vTps95vUoFUzUbaZNjOXgROOOEEQ9JfffVVs3/XX3+9UZvPPPPMlKy7EOACwNINH38pBRJAbSuQSi9aLmKbzKKa2jcd5HbN4sVmGbWtQKtkpwUhwvw21o2NjxeyG4vYQHSxODh7QWGosZxPfFiOyBYu8AgSUIIXj0GsI7IOhQD6MRRPpujxxSLw4F3dbLPNZN68edK6detKD+wGgMCwr776yvRzis8++yzwelFI8efa/baCdpT1sx02eN2xY8dQ+0e7fMopp5hAsfPOO88QdKBCVpknnWexwZHZbBz0iCJbxycrgNY8V9VTqyvZIMcsqqx+tyr+NtSZWD5YO6es3zpQdWgAqmJxcMg+OIeQG0gNDaYrdlGYYOBKvljILCQWf53zxjoUAiZOnCjXXXedTJo0yfhLIXxUqYSoQm5RMu+8806ZNWuWfP311zJmzBi59dZbzW+POuoocx9gQ8BLS5YAfK5BccYZZxg7AZ5Y1j979mwZO3asCcgC559/vvHJPvXUU+a9Cy+80FgTwgSZnX322fLmm2+a4LQvv/zSeG7ZN6Ae91deecXsM/d3McJ5ZjMcAEZqjuoRFbSmT9CWl8xCLFQ11cwGdvWvqloMtL56rOT4EF2/5WtFIDpF1yHmJ7ieUGKxFrhk+IUL2hM9zwxMq5LCz8EhF4ECSqQ/QVUQSwge0/B77723+Zx+7KabbjLEkplEvLUQREBwK3YEVE+yDaCYQj7xpQYBliyyGLDsXXbZxfTXpN9Snyx+V/pS1FT6TJb/8ssvV8pkkAiormQ0IDCNfR04cKDcdttt5jMq8l111VWGJB933HFy7LHHyiOPPCLFhmoVfrmjChhc6Bi/ubgyMZX67bhxUm55ZiF/iz76SF7Ybz9ptssu0vPuuyt9nyhIcsdxWuiEmKJgm3lWpfS7a6+VXydNkiGTJpn94HvkmAsLfsdIlXV684byGWqdX7J0toPRr/Pa5S+wjxABzL3gFLrCBW3H4sWLzewJ7Z0beDokmqVB/WMK3tlPHLJ9zYXha06ZTTd8iOAvET9ObZ80Gkzdo7aintDxcCJRVXjP/KZ27ajNAPB+smVsUWUZRfolwKc4QiySw+iSC8s1dvmbS5SpKAZIVVH1HXJ7sIIHmnbE5Qd2cHAodDjPbJqxVaQ6hwJy+Nm115piCZ2vvXa972uiZb6nRJL36JwgrkQ82jYD3k922hDC6keEITyMhPzSdUGA2Z5klGCH7ILrB0VdZwgckS3cQD4tcOKqtTk4VA3YD7Ai+D34zCE34JTZNKN+8+ZEWUVfK0Htfvvtvt/XiEhUT8gHxJIHpBUVlfchsxtssYX5HsQy2RQjLN8veAtpn5J8XsUWIouqR5CQQ/6A64eBCwMU8hc6z2RhnmPuW+5PPHyQWAcHh6qDUrQUNPCDy/qSO3BkNs34iZQcFmFUMlvhSeNBlSUiESGzmioLFVbLzEJmCQbj5lm1dGm0lK2t4IYFpnKvMqsZFLyElfeYmuZ9P1uCQ26CwQ5Ju7mGXGWnwvWcocTqOXb3p4ND6kCAdKwgaYfcgSOzaUa5h7Rq2VktfKBQUgl5bdq0adRSABkxPtlVqwzRVJsBpWz5TrIdl2ZM8Kq6eHbpFO0MCpBsiC8R7y6AJH+AEotShxrr/M2FB9oG7k2eOcfONuLg4FCscGQ2w+Vsoz5YTy44mzwyDUwaHQguJBJFFo8qgVfAkNlttjGVtwjiqUqxBC+IfCbVh24LEe90km5kmj/gmuG8MfBxSl3hgdkbDQrFUoB3z8HBwaGY4chshpVZRZlVbQSowopiCrGFkKgyC5klswA+1sW//SZlpaVSs2XLKhEVtS3YgECzTt6HyJLTjnWybof8AL5miA6eyWSzXDjkJiCvnFvaBEiszvI4ODg4FDscmU0zKiLT+V5U80zv22QWMqlkFoJpk87fFy+Wba++WmpVVAQmsvhdyUxgfx/bgl0LGigJMuv5/Xej+Dgimx/geiEHMefYqbGFR2LV6oO33pWOdnBwcKgMR2bTDU9NivJI/eRqHlU0GhhmkVSe6ci08yIAq8HatVK3WTNp6CGisVdfYYgpnkm7E/RWDsMryzbwnqbfchHR+QHOHecYouOmnAsHzJ5AYrmHObfO9+zg4ODgDxeWnmZ4C6yNP/fcdQfeQ0aVzKLM2l5WlFntxCCZ5UuWyKRTTpEGTZsG7hDZBi26YPvudLklJSWm0ySIhO/hm+V/h9wG1wreWNJukTfWEdnCALMmCxcuNPckwaBkEHFE1sEhv0G//uKLL2Z7MwoWTplNNzxkdtZzz8kOTz8tqxcvjqnMQjTxzdKp4YvjM943xRMiQWD1Nt440OpRc8klC6m1wbLoICGyqHp0mKyHoDICwFx6n9wG5410TJAdfM0O+Q8Grlh9uPcIuHT5gB0cqo5hw4aZAb8jkoUNR2YzrMyWrV4tjTp0kGXTp/t+T0krxBLlTX2tagtYunixUXVrByQwTEGT8QDiY4Nl48FD/YHIQp4hspAjl+Ind8F503zEnDdvEJ9Dfg5MILGcS6w97v5zcMg8aFO9cSQO+QNnM0g3fMgsqBGZ4ldAJG1lVsmtKqSQUqaRV/7xh1Flg+R7hazyPW5Q/vfz0iqRRcHl2al8uQuU+gULFhhFnZy/jsjmN7inOZ9amY1BpyOyDg7J4dlnn5XOnTub2BCyfey+++5y/vnny6OPPiovvfRStMDQ+PHjZf78+eb/p556SnbZZRfTpj7++OPGYjd48GAzO0k2GJb33//+t9J6+vfvL2eddZZccMEFZtZz0003lSuvvLLSd2bPni0777yzWW7Hjh3l7bffdqc1zXCyThaUWdCwVSvzjN2gzsYbGzVWof/byiwdHx3eqsWLpV5Avyy/8UvfowUTIEOa35bk+snmrHVI/zWEcsc0NCTWqQf5fS65LzmfdHR0mm5Q4pDLKC0pkSUzZmR8vU3at5daAdMLEjsACb3xxhvloIMOMvElH330kRx77LHyww8/mFLPY8aMWbfcJk1MVURw4YUXyi233CLdu3c39yOCQc+ePWXUqFGm2uarr74qQ4YMkVatWsl2220XXR8E+dxzz5WJEyfKp59+aqwM/fr1kz322MP0rwcffLCZZeFzBqtnn312mo6Sg8KR2XTDS2Y9gVg169c3JBIyqcDfijrLjaUZCDRlF8ps3RB+WUaoANKqOWuVLGseUtaHAuw61dwD54aGmtRq6mt2yE8SSwfLfc497ZR1h3wBRHZsz54ZX++QyZOleY8egb5LG0m/BokkNSFAVQVaDh4F1QtIJr+xMXLkyOj/Z555prz55pvy9NNPVyKzXbp0kSuuuML836ZNG7n77rvl3XffNWT2nXfekRkzZpjfqUB03XXXyd57753UcXAIBkdmM6zMevHT009Lx+uuMz5IBZ0e5BOfrLfc7MqAyqxmMNAgEqYveW0I8cqVhhQpmWVqRUmvQ26A8wfxYUDipp/z+zyiCnEumSVRW4+DQ74AhRRimY31BkXXrl1lt912MwR2r732kj333FMOPfRQUzkzHnr16lXpNXY8iCfkFesffSZE2FuABjJrg1lTrdD53Xffmfvcnuns27ev5CNnqbBiefQZ4SsXA8QdmU0zNthiC1lqva7mMZhv2qmTUV116t9LRrlo7IsLZbZRZOQZD1oGVwGp1ZtSMxswrcL3UIFdIvbcAecdpQGPNCm3nBqbf+CeZXqRgiX40DmPjsQ65COY6g+qkGYL3Fv4Uj/55BN566235K677pJLLrnETPPHg9eGd9NNN8kdd9wht99+uyHGfI56601t6bV6acB2NuBHOMN85ge7z9H/c70fcmQ2w9igdetKr+vUq2cuKvtG0FGPpujiM30vqDLrLYrA/yhEADKrZngUo0SjV4fMgOuAFDIaEORSM+XvOeSB585VY3NwyAzoz/Ct8rj88svNvffCCy+Yvs8bAB0LEyZMkAMOOECOOeYY85q+d9asWSaIKyg6dOhg8kQjSGi+9s8++yzaPugjGTIab9/jkVB9+H1WKHBkNt3wXoSei6d2nTpmesK+WNXfqhcg/6uqo9kMwpBZSCzKq44uIbOosqyTaWzScTlkFwxcaPw4TzTChdTIFAPo9HQggr/ZkVgHh8wBBRbPKvYCcjTzGusexJLYE/yrM2fONHY67s9YwP9KVgQUXkQegsNIa8lyuMdtMqqxJypG8aCPJYsByyFw7Prrrzf978UXX2y+y29o62ORSpt0xnp28Icjs2lGohGVVK8eVUwBpBUSihKrhFYtA2sJDFu+PJAyC2FFGWL9eH+Y5lT1l5uJG5X18h13k2QPNLScB81W4So95Re4p7AScA433HBD2Wabbdz95OCQYdCPffjhh8YewL3IYPLmm2825JZMBe+//77xxyLeYEfQIDH6QrugEKm85syZY3y3WPKGDx8u+++/vxmk2uqu9uu26smDfppnFOETTjhBdtxxR9Mm3HnnnTJw4EBjT3Dp99IDR2bTDQ+Z3eGppyq9ruZJes/UMjcDz5pvVpVZ0nKBuiGUWW5ebkoSs9ujSHx8KIFEVTtkDhx/JbCcE84zSkGzZs0cCcoj0LFBYgnWZGDoSKyDQ/a8ni1btozmkvX6WJl5fP3119f7TPOw62uAoPDyyy/H3e4PPvhgvfdYt4127dqZ1GB+++uQHjgym2Zs3LGj/PnLL+b/Vb/9JnWbN6/0eXWLzKLKochCXBnhqeqj7/0+bZr5XgOfFCNecKPyG6Y+SUnCVImm5bIjEl1QSvrB8SaDBASWZ6wEKAlMhzlVPL/AfUX2D5R08lU6EutQDEiWcIb1enoJp9+0u/d/BwfgyGyaYfytETL7wcCBsteUKZU+r2al6bFJJg/ILVMgKKy1ataUjy++WDbr2zdQZKmOPCHEqH88szyUWj6DWLlqX+kD5xLlleOMEos6jgJLIm3XEOcfGARCYhmM4LtzSrpDrkI9nerj1If2B34P/YzZQK51Zva87VS8ACLn9XTINhyZzSC8JWzBL4sWSaOIWkuDoKosjRHKDwoQ7/01Y4b8PnWqHDF+fEIyRGMEGdZgFAAhZjlkL+AzSC3VhxxSX92J406nAIFlCtr5YPMX3EtU62JQCYl1arpDqhGWeNqfxwJ9hC2M6Cyc/k8f4/c+1zmlXukvXDYVh3yCI7MZRI2GDSu9LscT61FmdXQMIKJ48szU5tSpplrY5v36JVyPFkvgtyRvBhAr3kdZ4jPW5SwGVQfnSwksxIe8hHi0XEeQ3+AehMRyz3A+/aoHORQfqqJ6xptyj0U64xFPHqme5XGzRg75Ckdm04zlEYsB6Pfcc5U/ZPQcqdAF7MYPKCGCJP06caKxF9ge21jQymF2pQ7IrFoMeI+E/A7JgXPEQAELAf9DYFHsXJRq/oN7BxLLPQeJ9Vb+ccgvJEs8g6qeXnKp5NPvfW+uTwcHh9TBkdk0o8yqHFK7UaNKn0FMa1iFDTRPHQ0eFgMlojSwv0yYIK0POCDQOjWfrFY3QWXS4C+Cj1hesn5Z9fAWW6PMMYPA8uA8MRhArfNWgnHIT3BdQ2I1+tlVxMsN1TMW8fS+H0T1jEU8Y31WbG2cg0M+w5HZLKNahMzSqNJAa05ZtQDQqEKIl82bJ5t66khryVvvlLZW+FK/LNVIIMdajAGEVRFZJsUdWC7kmA6/0APIOBeorxBYwP6SusUuE+yQ3yA4DxLLvURQl/M3B4dNPIOqnUFVTz9y6VRPBweHWHC9cpZRPUIqafDpHDSllpJZo/wtXWr+37BVq0q/xf/6888/S6vI+7xmWlRtCkpYIaJ8D3IL+SUtVFBAXCGxdEBMpUOcWT7VVUgbRnR+IflD2U/8r5BYOlaOFYFyzl9ceCSWa5hzDInNp2tYZ3B4cH/6la2MldZICahdych+z6t2BlE9wxJPp3o6ODikGo7MphmJpqpq1qsX/Z5ds1nJEwrob/Pnr/tuxDZgd8iaw5SOjc6ZMnp0QJBgLZjAsomqJ1CJz+KV87MBiWXZkFh72pVtY4odkkz+WogA25nPhA9SQKYH9pfjQzGJfN4fB39wfrmuObdc12oT0QFgkDyaifJpJvM7+zMlkFyTbBezKXYQkWY94aHthk0+vcvT1/HSJ3n/j/UdL+IprYnIdZjPUrE8BweHwoUjs1lGjYgipB2CNrxKpIz9IFK9q5YnGAUyy7Q3+S/p8OiYIbV0XEyX/vDDD4Z0sizUJzpylq1e2nhgOZBVLfvnB0gsZXKZhmddkIMgy84lkAsWEqup0FzqpWBQiwvHTwdVqUiini5ABtWPrjMWDMSC5M9M9J1kfqezMDZZ1YImQFP08eBe5t5W8updZq6pnva59j5ivR/rM5ucV2V5VUUqiHWqSHm2z69DZfTv31+6detmSunGgpa4PfDAA9N6+ObPny8tWrSQKVOmmG3ywyOPPCJnn322KagUBBSG4fs8chmOzOYYtHwtJEHVl1IPmWV6nzrwkE3+R4GF1KrtgI6PTg1ihloLwWQ5qLSoPRpYFg9c6Ki5QYCXlHUsWLDATMnnelQ/xxgbAccOQu4yESQG1yTXl01eOXYo9nawYljSl4m8vwz2uPZJU5fJgD3bDqCDQ027B7ROO9vGM48g92auI5PnOBOoChkP8lnY31YV8YizDqy4Tu2ZqVjnMhXvF8p1Eg+Ujg/anwbFsGHDTD/94osvhvrdEUccIfvss0/g73/xxReVRKpMEfOwcGQ2A1i9eLHUoRJYQNCY4NukMYEoKpklzyygc6bj0+peqK7cLBqZy/s0Svg9IWyqbpD0XTMdBCEBLDcoWO9mm21myDRqbS52yhxXjgdKMscGcuOsBOuD6wXCCnGFwGpQIsSV65HrIhfPr339MsDjPmGbGWClI2hP1VWbsPJQy4KqwDxQV7nmILDF0HkXEgpJDU1EnBlw0T6q1zneMuL9H++9eO8ni3SS6iDv6/GL9d1cylNdr169UNlawvCAbCJ3e6RCQZINIWQUQmn+VzJbr15UuUVZ1JK3PFBmNW0WHTf/a3EEHWnzvhZRiAeIACOxsNvN+lDpfv31V8klaADcjz/+aI4P0yYQe0dk1zXCqvBzjJimIvsF1wDnk+uK44WHmGOGipirRFYVd2YIIOFc6wQoVoXIqp2C44EdhWsbSw3r4JnXfAY0XRuDOew5PPOae4LPijGlnUNuEnMN3OPe0BkC7ne9RvVzv4faX7wPluN96GDO+2BdVX3Yy2Nd7777rgwYMMDMtNFuHXTQQaY9Y5u5V/nec889J7vuuqsZlPft21dmzZpllMc+ffqYWIl99903GvDM47jjjjMK5JVXXmnaEmZETz75ZDPQp0/loX3yyJEjzb3OPX/ppZeadlUfHNNnnnnG/D9z5kzzeuzYsWYb6L87deokb7/9tvlcixuxbtpeiGfbtm3l1ltvja7zsssuk0cffVReeuml6Dl99913o9mKZs+ebewPtNddu3aVjz/+OOq7f/jhh81+2MGeL7/8svTu3dtsC/EvHDsF26AWCv4HfM46ec0x5nqZNGlSpWuN39AOxstekko4ZTYTiNGBrVq0SOr6jHq4ObS0IECZrV6rlvz+xx9mlATRhOjSgOiUPhchFw43Ld/RsrVcSPqamzEImLpIdiSJ+sSNCDlK9bRKGKi6rMcBIuZyh8a3C3CM8pFwKYnlXEMawyruXjuAZglQ2J2yWgJyldA7OKQa9D9LZszI+IFt0r79enEiNrztFG3aueeeK126dDEDzMsvv1wOOeQQmTp1arQ9uOqqqwzJYqA5fPhwOfbYYw2xvfPOO829ffjhh8vVV18t9913n/k+9/n7779vPhs/frwhbpBMCPPo0aOj2zFu3Diz7okTJ8qnn35qLAC77LKL7LHHHpXaESXi4OKLLzbb0rFjR0NU2dZ58+aZdhjQjj399NPm9SeffCKnnHKKmf1kGyHOkGLavYceesh8n/4WQQKw7zfccIO0bt3aEN9jjjlGvvvuO8MZVBVX4vvaa6/JoYceKhdeeKE8+OCDpv174403ovxDyTqvIcVs15gxY2TgwIHReJzdd9/dvNfLSh/Ka45DptpKR2bTDErWavotL765/HLpFblp9GK3O1FgqhFVry4b9ehhpk25SSEeWvYWtZGbialUbhIuRIitFkngMzp4zaWpDQCjNG5MbmrbR6hBKFXxFnKjQ6rZjkwTSI4LZBybBqSfm79Y88Lmu10gEbhOOc8MnNgfBnN+++PsAA4OyQMiO7Znz4wfwiGTJ5uql0EBGbSBAkkb9+2330YrXkIC99prL/P/iBEjZPDgwUbR7BcpE3/88cebACkbDF5ZFoQWBRWye/7558s111wTbW8g0FdccYX5n4xCd999t1muTWa9OOOMM6LbDHmGQLKeCy64wKyT9ShIvwlRfvbZZ+XII480KrKWqKfvV2hfx37uv//+5n+2k+1mNql9+/ZRYq9C2I033miWee2110aXg0qrgDOwXPgFM3QAZdcWvE444QRDtiHlfO/LL7+Ur7/+2ijHmUJx9vIZROny5ZVK1troePHFlV7rSAnoTQIJkfr1pd0555jXXMCQE7Ps0lJz40BSILpMD3DhKaHle1yEvIdiyihO03IxPcpIDq8tIy0luRBBLtRY4IYAOnUay3vEDcZ0NWQ5qEpmWyI0cjssiWWf2f5YxKYYsgtoqjaOn/qjOCaFQurtAQvXNeeafeW68SqsdnYAVVd1yj/sNebgUIxAIYVYZmO9YcDUOookpE+r+QGEFdRPJZ0Knans3LlzpfewGdhgmt4ua401AFGJ/k2z/djLBdgcvMvxguUoaJtRNVFPFffcc48ht2y/tumxMhR4YW8P2wLYHsisFyjXJ554olQFWDFOP/10ExgGMWZAgJ1DbQmZQGH0bjmM8rVrYyqz9T3+VdsUr74lyEm1Ro2kbNkyc0Np8BI3kyqoPCDC33//vRkV8RkdNuRVlVHIDCouZJZlsGwIKeRRMxewPD6LdQFyM2mOWaZ0aTBYHsv2EkduThqGn376yRBbti/WQ6HBNCwrVoCAXeNcj5H+z7bku9pYzHaBIPvMNcc1qp45rnX1rDo7gIND6sFUfxiFNFsYNGjQ/7d3LlBWVmUf38j9quCko8hdCpBLiMhFjFpQqCwDMYMJlZAkRQO1FETJjEWQpGJoEtYnsUIgWqKBkR8pUMgdBQIGUaFIU1GWgNwEhvdbvx3P+d45njNzZs6ZmfMO/99aZ+a898t+L//z7P9+tkNcPvPMM75GDjHbvn37Qo2ewzWO9nyMH1caj2d8TWZp12PMmzfPR1cfffRRL3qpeZo6daoX6iXdnyqnjzPZ/mSi9pRnMZYNrAWDBg1yzz33nHviiSdceSIxWw42A1eKVFXmieUCrHr22e7ku+96EUtElQvHegrjBc98iFcTukSsiNLyS8x8q8zLBc56EQT2i5L5sBuwPJEtLuxkIsiitmwPK4H1lkW0FqFNNNgM6maM50GCD4j1W0MB8x7aMPORQox5i0qfZF1jJvsgauJz59lxhxsp2PdEopf1hBvSZQOV3S5QnB2Aa5zrif+WCszErLIDCCGomcRDipC98sor/QnB35kJNm/e7J+7JvrWrFkT8+anA+v5yle+4r/zbNu4caO3HsBrr73mevbs6UaNGhWb/5133im0vOmAdOnYsaO3ROAFTgWeuYm2i9WAHw+/+tWv/PEgasuT7HhbV/LIbEmxX3UWCa1ClO10r15gVSgmXM0wzg1mEU3EDsuH88MhAhCWRF7DeUGphkAkMw5xm2q6LuZHLCNwEVpmb0BgWa5bliM6yzjzLYVBgCJkOYbiGqhZUvhU/bwmjsJiiGOw72FxHK6OtpuV6Za0Ptzwx6LBZZGgvrLbBTi+VO0AnHM7H/x44nqvbNFmIUT68B7iHTJz5kz/PqNqngZNmYDnD15aMhQQ+MEbi+hMN4CAjQCbYNu2bd3jjz/uvf80SgPGz54927388su+EwQyH5B1ge8G73GmI+LPPffclHv2jIfj6dOnj/flYhHg3UijsLFjxyacn+2az5igggXMOI7u3bv75TiO8m4vE923YkSoUcwFZg21rPrfR2JPCyqEi2+4VVDgGnTq5IUrVfy85PHr8HInEsmFjPDhJqY1I+LL8t6FhZ9dePEXGfMzDaGXrI96xJV1jRuP9SqWqPcvplHlQ/SW/WEeHgIcMz0wMb0kvtqSYMZ16yOe6GZYyDIOgc3xI55MaNn0cCtOzo1ZIixFTUkeZmE7RLwYtvNRWewC6WYHMA8417Z6ZRNCFAfPD6rmR48e7aODX/rSl3yGAtJTpQtCD3FJFJV3AY3GSNWVLlOmTPEfPKtkHSA9lgWTSP9FL150cMDzn20SpV2yZElseXyuZFjAa3vo0CGfdaE0HlXOEWnDaCjG/qArLGKcCKwPZG4gCo6FEIFvIPrJvGCivDypElRU/5IVhDWCssYj5cHWrVuLnYeLmH3jpW9V8FwoPpflhg2uJvkqmzTxogpxiPAhkokPFoFL9NNyviFqEcEIXG4SA/FIFJT1s2xYfJpwSxb1ZP3sYzKxWxwcF+ecm87EIlFeBHs6Yg3hw3FyPswTZI3Iwp5cHnZhYWvHbKI1/hPOmxjfTSjrtvyBzGuiLFnapnDXnPHbtO+WMzjTdoFM9lpkkexwRDucq9CyZfAxG4D9UErFDkBZIWIpT4R8sgaGQoiygecobS+IAHLvnumUtpetdLucjSoTJ070wnjLli0ZueZKotcUmc0SeJEjhniR8/K3yJ/vFKFJE3do0yaX26qVFw1YAkiRYVkKKGgTQcxvGQfMF2sXjEV2+W7duSKYTYAU5VVl/0orZIF1s69EeLEccKwIc/bVPL+I62T7YFFTlrdGTyZezTscnw3CEn+HDfCsAxFmEdFwdNQ+Vh5EFNnHsHUjHJW1FGnMywOPHwoMs75wkvFExDdis2Msr+4rw+c1/hMW3fHLh5OpU1bxUeqwhxmxz/UcfwyJzg/nmWX4ccOPsShbKYQQojzIRK9rQQnXkei9RpAKkU5KsnCKr/JEb4wsAZHFCx2xiQjAIwhELz/au9c16NbNiwAiVkRdzSqAMAw34LJew4jImsBAlFh3tyxPtJfIbLhr16JA+LIdIHKGYI63FHAxs/1EkVYT0vzn+EwU2zpZjuWJHCMMrbOHeE+rRVdZ3ny54WwM/IIz8ZrpiJ5VnYd7dTFRbOmeLCE248KiGxhv0Vtr9JZINIb3PZH4LMobbB/rXz3+f/wDynrzSfTfPmURGbVy5RxyPbF/XE9muWGcRX3jKapnovCnMjSIE0JknlTFW/gHfrjBU7pi0bIr2PskW7rzhfC7J9m8iZbFQzx37lyfoqsiLAZ+v2QzyA6bgb3IiZTie8VMffLoUffSrbe6i++/3506dsw1ys31Uat4kUErR4tcYkGwtFx8wDy5iANEMoIXEYtQtlx5RYkWoqdEglmf+TpZF4IYQWldfSKwmc4+WqYD6xbVkjwn2w4PC8Qf+2XpuazTBT7xkTrLgMDDoCIjedZAKSxyrbMKazxmyamtYZdlIzBxawLY1mfR3mTiNJkwTSZK7Xu2VNlzHig7jgPrSjiHY1GErQ7FfRK9WFIRwdl0noQobxJV+ZZV9C9T6y4tJRF6mRaLqcx7pnBMNoPKhVWREyXFn7pj1Sr3v9dc4xoPHOgKDh/22QysdX1YFFj3dQg6Iq3WhSvikdQhFqFinZaJgCiY9QiGkEBwWpQ0HsuogEhDaFoHC1yAbNuq+GnExf6xXpJXWx/P1pFDPGybdbBtn0v3dCOyVBo9sRxWC6LAHFNFPgzMHxpvwbAfF/Ei1/y4lm2CanjmCx+DRaDDQtRSikU58sg5QMRyDrguStraNWxPKCnx0Wv7UAbhYYuWJ9tucdHgM/3FJP5LaX3pqU5LNj3ZMqlidi3LolLWgq6oCGBJxgkhm0GWUlC3rqvXsqU7t1s3d5g8rqd7tQpD9TqigEisdemZKD2HeUUtQgiIRus1jOhsssY2bINpWAAQrDYPYpV1ICoZR/SWlzkC03LcIn4RqLaMeVARsAgHxAzrZj2piDMeyuwz4pcIdjpd7pY1Zj/gE/6hYKIKQY64M4+tYanHkuXFjeKDnGNFxLLvXBsV0bAknNmipJjlxRouWoTc/NfhafHIFpEaxQmxTAi9kk5Ll7BNKJl9KJVp4TSKJVkufnxJomQ8d9JpIyFEqmQq4i4xm2UgLKFK9equ7fjxrnr9+m7f2rWubq9esY4SEuV9ReCZzzYe7AHxvlhEJgKY7VlENV5Usg2EJ+PM3mCwPZZhvewHos0aQlnHBQyTA88atFlDr9LYAhDC+H4RhuHud6OGiSrOQ3zeXatGD2di4Dzb97BYsgZ7JtDCwjdbqsqJOnONcP1wbUb15WgNA0t6zcZngAiLYesMwoZLa4uIbzxY1hHB4qalQ2nFXvz4cBq80qwvkW/wTMGe8Vyf5Z0nVJyZHD/tIU43PafEbBYQ/vWNMOR7AdkDcnLcWTVrugPbtrkG5Jzt0MELIESdeUkNBFCiSCWCAtuBRXW5cIiYWhegbJsXEZFUPkR2zQvLsrxs46NpCCwsBuwnIraoqn5e1OwvQqY0lgD2DdGNIMcPHI4uVzZKUo0eL3ot6m1RwzDxEd7w97J4YdsPHevSuDKXWVnaIuIFsJW53Zc2LhOiLb6b6NKKQRFtzMtPTYqlJRSirOD5ZelC0233IjFbxgTF9M/MCwBRigAgWoog4eX36dtvuxq5ue6sGjXc8X373Cf0yZyX50Ud5nyLftL4iyr3+BcmFwnzIFqtUwJLx0XL/7CfFrARcDHRaIt1Ij55cVoDJmv4xYuUeU30FveiZp00HmNfzIrAcVrr/6Jg+whhLvTiGqmdaXAeE3l147HIYFj4UobxqcwSdf0bFr6pvNSsq2SuF6Lv2WwDqcxCWIh0rjvuXawGluJRiLKEd0vYwlhalM2gjHlr4UL3WevWRRfC6ejoWcePu1On+5vfeOutrv20aV7MHvvwQ3d+gwauSdeufn6EiXlS7QKg+t2q/C0dlDWostb2CFXLTxsPgscahVlaKV6kiKVwmiSEDQ+7VFugJ9qO+WbZL0trxb6GLRTsKwKYVF5K3l32mJc3LHrD3QCHq5Gtyt2ELtcTZcW1QhRfOWKFiDaWilCIsiZRR0OGOk3IIo6frs4vChMKh/fvd7XPO88/SA6//747dfSoq167truwbVv/YEHgmU3AIqVEafkFbbYBGmAhbBGACAxy0DIfYpZ5TchaKqx4HybjLBMC67T0UpmqkkawIrrNw8vxsB2yLbAvRKkZhzBSNDb7GkiFq79N6HItUTsgEStE5cBSIwoRFbLCEPPUU0/5rli5ebp16+bWrVtX5Px0l9amTRs/f4cOHdyf//xnVxmolZPjThCxPHTINR4yxFU73T0qUVD6qEdoWr/2iEH+I1hNGDJMdBUrwc6dO734BSKfCFnsAVTbI34Rj9aa3j5sh3Igmst2sCNY5wRlVcXPPnNsVDMgXtke3loaDMlWkL3V3/zY4LrixxPlJyErhBDijBWz8+fPd/fcc4976KGH3Ouvv+46derk+vXr56vRE7Fq1SqXl5fnRowY4fs2pscJPql0TFAhJGjlS2cIq/Ly/PdTp6twfUMOqm/r1HGfHTjgLvzmN+kD1vsbEaA04kKc8p3/1lexpdRCYCBWEahENmkshacVcYowRPgjGC3qyneqhBGs9kmWnqu8YNsIakUEhBBCCBEZzyyR2K5du/o+fQFRh9j6wQ9+4MaNG/e5+QcPHuw9l4sXL46N6969u/vyl7/sZsyYUez2SuLByAR7li93B3NyCo3zqWwKCtxZp6t0EbfVLDMBVbjkIP34Y1e/eXM/LyKP84KvFHsBVbpENBGvVPFyPETHLHWX9TAlhBBCCBFFIuOZJYK4ceNGd//99xfy6vTt29etXr064TKMJ5IbhkjuCy+8kHB+633JsKp36+q1rDm7c2e3Y84c93F+vgsOHvQCtt3w4e7Au+96QVoN4/PpfWzer5+v0t+/a5c7WlDgo6v4EhGy1nrd0i5x7qjiZZrPfvDpp+VyPEIIIYQQZY3ptFRirhUqZvF3Is6oDg/D8I4dOxIuQ49TieZnfCImT57sHn744c+NJ/pbYfzP/1TctoUQQgghIgLBukS9m4ap9HXRRH3DkVwimfhPaeSUaX8ovyIQyfSqVR4WBlE2qByjj8qwcqByrByoHCsHB8tZ4xCRRchSS10cFSpmaYBkDZfCMEx+0UQwviTzJ0osT/V8WRJOPSWii8ox+qgMKwcqx8qByrFy0KAcNU5xEdmsyGaAZ7RLly7ulVdeKRQ5ZbhHjx4Jl2F8eH5YunRp0vmFEEIIIUTlpcJtBlgAhg0b5i677DJ3+eWXu2nTpvlsBcOHD/fTb775Zt96H+8rjBkzxvXu3ds9+uijrn///m7evHluw4YNbubMmRV8JEIIIYQQ4owTs6Ta+uijj9yPf/xj34iLFFt/+ctfYo289uzZU6irs549e7rnnnvOPfjgg278+PGudevWPpNB+/btXUWDnYF8ufG2BhEtVI7RR2VYOVA5Vg5UjpWDmlmscSo8z6wQQgghhBCR7QFMCCGEEEKI0iIxK4QQQgghIovErBBCCCGEiCwSs0IIIYQQIrJIzGaIp556yjVv3tzVqlXLdevWza1bty5TqxZlAKneunbt6urXr+/OO+88N3DgQPfmm28WmufYsWPujjvu8L3F1atXz11//fWf67BDZA9TpkzxvfrdddddsXEqw+jw3nvvuRtvvNHfb7Vr13YdOnTwaRcN2iqT9eaCCy7w0/v27eveeuutCt1n8f/QNf2ECRNcixYtfPm0atXKTZw40ZeboTLMPv72t7+5a6+91veyxfOT7FBhUikzelUdOnSo70iBTqlGjBjhDh06VK7HITGbAebPn+/z5ZKy4vXXX3edOnVy/fr1c3v37s3E6kUZsGLFCi9U16xZ4zvdOHHihPvGN77hcxwbd999t1u0aJFbsGCBn/8///mPGzRokMojC1m/fr379a9/7Tp27FhovMowGnzyySfuiiuucNWrV3dLlixx27dv97nEGzZsGJvnkUcecb/85S/djBkz3Nq1a13dunX9c5YfLKLi+fnPf+6efvpp9+STT7r8/Hw/TJlNnz49No/KMPs4fPiw1ywE5BKRSpkhZLdt2+bfpYsXL/YCeeTIkeV4FP9V3SJNLr/88uCOO+6IDRcUFAQXXnhhMHnyZJ3biLB3717CB8GKFSv88P79+4Pq1asHCxYsiM2Tn5/v51m9enUF7qmI59NPPw1at24dLF26NOjdu3cwZswYP15lGB3Gjh0b9OrVK+n0U6dOBbm5ucHUqVNj4yjfmjVrBnPnzi2nvRRF0b9//+CWW24pNG7QoEHB0KFD/XeVYfbjnAsWLlwYG06lzLZv3+6XW79+fWyeJUuWBFWqVAnee++9ctt3RWbT5Pjx427jxo0+9G7QyQPDq1evTnf1opw4cOCA/9+oUSP/nzIlWhsu1zZt2rimTZuqXLMMIuz0BhguK1AZRoc//elPvhfIG264wdt+Onfu7J555pnY9N27d/tOdcJlTJ/tWLr0nM0O6NCIruZ37tzphzdv3uxWrlzprr76aj+sMoweu1O47/iPtYD712B+dBCR3DOmB7Co8/HHH3uvkPVYZjC8Y8eOCtsvkTqnTp3yPkuqOa0nOW7gGjVq+Js0vlyZJrIDurPG2oPNIB6VYXTYtWuXr6LGrkXPjpTn6NGj/T1Id+d2zyV6zup+zA7GjRvnDh486H/0V61a1b8XJ02a5KugQWUYPT5I4b7jPz9Aw1SrVs0Hhsrz3pSYFWc8RPa2bt3qowgiOvz73/92Y8aM8T4tGl6KaP+gJLLzs5/9zA8TmeWexKeHmBXZzx/+8Ac3Z84c3938JZdc4jZt2uSDBDQsUhmKskY2gzTJycnxv0LjW7kznJubm+7qRRlz5513esP6smXL3EUXXRQbT9lhIdm/f3+h+VWu2QM2AhpZXnrppT4SwIeGejRW4DvRA5VhNKCldLt27QqNa9u2rduzZ4//bs9SPWezl3vvvddHZ4cMGeIzUdx0002+ASaZY0BlGD1yU7jv+B/f2P3kyZM+w0F5aiCJ2TShGqxLly7eKxSOMjDco0ePdFcvygi87gjZhQsXuldffdWnkwlDmdKyOlyupO7i5apyzQ769Onj/vGPf/gIkH2I7lGtad9VhtEAi098ajy8l82aNfPfuT95MYbvR6q08eTpfswOjhw54n2SYQj08D4ElWH0aJHCfcd/gj4EFwzeqZQ73tpyo9yamlVi5s2b51v3zZo1y7fsGzlyZHDOOecEH3zwQUXvmkjC7bffHpx99tnB8uXLg/fffz/2OXLkSGye2267LWjatGnw6quvBhs2bAh69OjhPyJ7CWczAJVhNFi3bl1QrVq1YNKkScFbb70VzJkzJ6hTp07w+9//PjbPlClT/HP1xRdfDLZs2RIMGDAgaNGiRXD06NEK3XfxX4YNGxY0btw4WLx4cbB79+7g+eefD3JycoL77rsvdopUhtmZDeaNN97wHyThY4895r//61//SrnMrrrqqqBz587B2rVrg5UrV/rsMnl5eeV6HBKzGWL69Ole+NSoUcOn6lqzZk2mVi3KAG7aRJ9nn302Ng8366hRo4KGDRv6F+t1113nBa+IjphVGUaHRYsWBe3bt/eBgTZt2gQzZ84sNJ00QRMmTAjOP/98P0+fPn2CN998s8L2VxTm4MGD/t7jPVirVq2gZcuWwQMPPBB89tlnsXlUhtnHsmXLEr4L+XGSapnt27fPi9d69eoFDRo0CIYPH+5FcnlShT/lFwcWQgghhBAic8gzK4QQQgghIovErBBCCCGEiCwSs0IIIYQQIrJIzAohhBBCiMgiMSuEEEIIISKLxKwQQgghhIgsErNCCCGEECKySMwKIYQQQojIIjErhBAiRvPmzd20adNSPiP//Oc/XZUqVdymTZt0FoUQFYLErBBChPjud7/rBg4cqHMihBARQWJWCCGyDHoZP3nyZEXvhhBCRAKJWSGEKIKvfvWrbvTo0e6+++5zjRo1crm5ue4nP/lJbPp3vvMdN3jw4ELLnDhxwuXk5LjZs2f74VOnTrnJkye7Fi1auNq1a7tOnTq5P/7xj7H5ly9f7qvqlyxZ4rp06eJq1qzpVq5c6TZv3uy+9rWvufr167sGDRr4aRs2bIgtxzxXXnmlX2eTJk38fh4+fDjpsbzzzjtuwIAB7vzzz3f16tVzXbt2dX/961+LLH/26+mnn3ZXX321307Lli0L7buxa9cuv6916tTxx7d69erYtH379rm8vDzXuHFjP71Dhw5u7ty5uu6EEBlBYlYIIYrhd7/7natbt65bu3ate+SRR9xPf/pTt3TpUj9t6NChbtGiRe7QoUOx+V9++WV35MgRd9111/lhhCzCdsaMGW7btm3u7rvvdjfeeKNbsWJFoe2MGzfOTZkyxeXn57uOHTv6dV900UVu/fr1buPGjX569erVY8L0qquuctdff73bsmWLmz9/vhe3d955Z9LjYB+vueYa98orr7g33njDL3/ttde6PXv2FHn8EyZM8NtBXLNPQ4YM8fsY5oEHHnA/+tGPvHf2i1/8ohevFl0+duyYF+IvvfSS27p1qxs5cqS76aab3Lp163TtCSHSJxBCCBFj2LBhwYABA2LDvXv3Dnr16lXoDHXt2jUYO3as/37ixIkgJycnmD17dmx6Xl5eMHjwYP/92LFjQZ06dYJVq1YVWseIESP8fLBs2bKAx/ELL7xQaJ769esHs2bNSlg6LD9y5MhC4/7+978HZ511VnD06NGUS/SSSy4Jpk+fHhtu1qxZ8Pjjj8eG2a/bbrut0DLdunULbr/9dv999+7dfp7f/OY3senbtm3z4/Lz85Nut3///sEPf/jDlPdTCCGSocisEEIUA1HSMBdccIHbu3ev/16tWjX37W9/282ZM8cPU83/4osv+ggmvP322z5K+/Wvf91X7duHSC3R1TCXXXZZoeF77rnHfe9733N9+/b1Edvw/ERJZ82aVWid/fr185aG3bt3J43MEj1t27atO+ecc/wyRFiLi8z26NHjc8PxkdnwOeL8gJ2jgoICN3HiRG8vwKrBdoleF7ddIYRIhWopzSWEEGcwVrUf9pEiGg2Ea+/evb14w36At5QqfDD7AVXseEbD4I0Ng5UhDN5cPLksi5/2oYcecvPmzfP2Bdb7/e9/3/tk42natGnC40DIsn+/+MUv3MUXX+z381vf+pY7fvy4y+Q54vyAnaOpU6e6J554wqf8QtBynHfddVdGtiuEEBKzQgiRJj179vQNsPCtIjpvuOGGmLhr166dF61EIRG8JQX/KR98tvhQn332WS9mL730Urd9+3YvSlPltdde86nHzMuLICZPbHGsWbPG3XzzzYWGO3fuXKLt0vAMn7CJ3J07d/pzI4QQ6SIxK4QQGYAIKg28EGnLli2LjScTARFRxCgirlevXu7AgQNe4JGhYNiwYQnXd/ToUXfvvff6yClZEN59913fEIyGWDB27FjXvXt33+ALKwLRTsQtkdcnn3wy4Tpbt27tnn/+ed/oi+gpDbvCEeZkLFiwwFsg2HfsFDTc+u1vf5vyuWG7ZEBYtWqVa9iwoXvsscfchx9+KDErhMgIErNCCJEBsBpMmjTJNWvWzF1xxRWFpuEX/cIXvuCzGpDCCr8qkdXx48cnXV/VqlV9Sisiogg/Un0NGjTIPfzwwzGPKtkQyCJAei7aarVq1epzacLCICJvueUWH0lmfQjigwcPFntsbBN7w6hRo7wflrRaJYmqPvjgg/648fSSmotsBnRMgagXQoh0qUIrsLTXIoQQolJCBHfhwoXqFU0IkbUom4EQQgghhIgsErNCCCGEECKyyDMrhBAiKXKiCSGyHUVmhRBCCCFEZJGYFUIIIYQQkUViVgghhBBCRBaJWSGEEEIIEVkkZoUQQgghRGSRmBVCCCGEEJFFYlYIIYQQQkQWiVkhhBBCCOGiyv8B1r3unGuTHDkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIjCAYAAAAQgZNYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQfYJEW1/mtzZmHJS9wlLkFAkiRBRREw4BUDcAVRMV0wYSCI/FExISYwe8WAiaRXBUQUBFEQAUFyTktcFjaxeff7P79i3vF8td093TM9Mz3z1fs8s/PtTE93dXWFt06d855hAwMDAy4iIiIiIiIiIiKiBzG82wWIiIiIiIiIiIiIaBaRzEZERERERERERPQsIpmNiIiIiIiIiIjoWUQyGxERERERERER0bOIZDYiIiIiIiIiIqJnEclsREREREREREREzyKS2YiIiIiIiIiIiJ5FJLMRERERERERERE9i0hmIyIiIiIiIiIiehaRzEb0JJYvX+4+/vGPu4022sgNHz7cHXLIId0uUk/j7W9/u9t00007ft2HHnrIDRs2zP3oRz9y3cBPf/pTt/XWW7tRo0a51VdfvStlqDK69Xzuvfde96pXvcpNnjzZX/83v/lNR68f0R0sWLDAvetd73Lrrbeef+4f+tCHCv2e3/y///f/Gh7HMRxbFpLOx3jKuBrRGUQyG9EUmNzovHqNHTvWbbnllu7YY491Tz31VNtr9Yc//KE744wz3KGHHup+/OMfuw9/+MNtuc7Pf/5z97Wvfa0t5x5KqGI93nXXXX6y2Wyzzdz3v/99973vfa/bRYqo4aijjnK33nqrO/300/2CY5dddmlb3Tz++OOejNx88809Uf9FymvH6KzXX/7yl5bLtXDhQvfNb37TL0LWX399N2nSJLfTTju5b3/7227FihW5zvG5z33Ozy3ve9/7/HN/29ve1nK5IoYGRna7ABG9jU9/+tNu2rRpbvHixe6aa67xA9cll1zibrvtNjd+/Pi2XfeKK65wG2ywgfvqV7/q2k3CuJeiFoKIfPW4ySabuEWLFnnLaKfBBL5y5Ur39a9/3W2++eYdv34voBvPh+tde+217uSTT/aL406Qw9NOO81b0nbccUdXdRQpL4TQ4ic/+Ym7/PLLV/l8xowZLZfrgQcecMcdd5x7xSte4T7ykY+41VZbzV122WXu/e9/v7vuuuu80SHPuP6Sl7zEnXrqqS2XJ2JoIZLZiJZw4IEH1q0mbA+tueaa7itf+Yr7v//7P3fYYYe1vNJPI8RPP/10T28LZ93bUIKs+t0AbQg0akcDAwN+sTZu3Dg31NCN5zNr1iz/Xmb/fv75592ECRNKO19Vrxniv//7vwf9H1IJmQ0/LwO4BmBN33bbbeufvec973HveMc73DnnnONOOeWUhotG+uQ222xTetki+h/RzSCiVLz85S/37w8++GD9s3PPPdftvPPOngxMmTLFvfWtb3WPPvrooN/tt99+brvttnM33nije+lLX+qJ3kknnZTqw3fllVe622+/fZVtMixtbGczoDIJr7vuun5Afe655wadB7J98MEHu6lTp7oxY8b4rebPfOYzg7bDKNPFF1/sHn744fp15FcqNwvKY0E5wm27rHtbsmSJt0IwyFMOfIDxBebzPH6Fb3zjG/0kwr1uuOGGvm7nzp076Lg89Z+EvHUJLr30Urfvvvv6rUUsMrvuuqu3xjaqxzSfTCw0++yzjycDkJrXv/717s4770z0U7vvvvu8uwDH4WN59NFH+8VCFri+rD9rr732IF87vnvNa17jrUos1Ki37373u/67OXPmeOsyz4nnxXP74he/6OvKguMoE+WhXGybsy0c3it1wyuPD3Pe56Hys1Oy2267+WOnT5/urXIhKCcuOvyG+6ENHXnkke6ZZ57JfD64aODiQ3vi/NTTb3/720HHLFu2zFsQt9hiC38MC929997bk6k08AywBoOPfexjg9oK+Ne//uUX0LSxiRMneisgBM1CffOqq67yVsF11lnH31cS6Ke0VUC7UfvU/f71r391b3rTm9zGG29c75/UF9bj8HlRnvvvv98ddNBBvh8cccQR/juO/cAHPuDWWmst//nrXvc699hjjyX6d/I55I9ny/V41rhU5S1vK9DYdd555/nnxs4X5eU5M6YwJtH2qU/ulevbcYr7s0RWeMMb3uDfw/6bdG3mDcYK3ZfGV0juO9/5Tl8vtKUddtghl6UX0A+oM37HOK++nAd5n39E9xEtsxGlgsEcMHEBfN5Ykb/5zW/2llusLmeddZYndUxM1voye/ZsP1FBtrAcMHCFgHiwRcZ5CRb4/Oc/P2ibjMmdgZ2BlgmEwfHss8/21/rb3/5W3y7lGAZktsN4hzx96lOfcvPmzfO+uIBtTgbxmTNn1t0ZOLYZJN0b5ISJjcH23e9+t78HLBtc65577skMelm6dKk74IAD/GTC1h6Elonw97//vScokKii9R+iSF0yATORnXjiif6cHPOHP/zBHX744YXr8U9/+pOvKwgYkz0TB2Xea6+93E033bQKyePecHWhLfD9D37wAz/hQjLTACmE3P3617/2rjGU50UvelH9+7vvvtvvLFAHxxxzjNtqq608QYawU898zgT397//3d/zE088UfcJxpIL+ea5vve97/XPletAaFtB3ucBIPiQEAgA14UQQbhY1Ihw0H9YMEAyeH4vfvGLPYmFlPKsICdJYBHJs4DsnHDCCX7BAQEiCPPCCy+skxeeHc+Edgeppm/dcMMN/hm98pWvTDz3f/3Xf/n2A2Gg/iGGaitcl/JCZFnwcb8QExYDENfdd9990LkgsowX9GuspEng2eAqxTH0Qc4P9txzT/9+/vnn++eODydj2vXXX+/bIvXDd2FQKn0Swv7lL3+5vvNCvVM/+H+yhU5ZWUiHINaA7yFxuFdQdhaJPEPqDiLZqLxlgGfGAo5nSzvifqlrAm1ZOPFcWUDQFul3lCULTz75pH9Pa0+A+2Jc57mz8Dj++OP959QB/Z9nTFmoF65J3VOvjHUf/OAHU8/LeIoPL+eh3DwjFrFJc0sSijz/iC5jICKiCZxzzjkDNJ8//elPA7NmzRp49NFHB375y18OrLnmmgPjxo0bmDlz5sBDDz00MGLEiIHTTz990G9vvfXWgZEjRw76fN999/Xn+853vpPr+hy/7bbbDvrsr3/9qz/Hz372s0Gf/+EPf1jl84ULF65yzve85z0D48ePH1i8eHH9s4MPPnhgk002Sb3/Bx98cNDnV155pf+c90b39tOf/nRg+PDhvtwWHMfxf/vb31Lv/1//+pc/5vzzz089pkj9H3XUUYPuM29dzpkzZ2DSpEkDu++++8CiRYsGHbty5cqG9Uj9cT7qU9hxxx0H1llnnYHZs2fXP7vlllt8XR155JH1z0499VT/23e84x2DzvmGN7zBt8NG0O9pvxaUk8+5V4vPfOYzAxMmTBi45557Bn1+wgkn+Hp+5JFH/P9/85vf+N9/6Utfqh+zfPnygX322WeVe6Vt8ArR7POw5b/66qvrnz399NMDY8aMGTj++OPrn33qU5/yx1100UWrXF/PLun5vOIVrxjYfvvtB/UTjt9zzz0Htthii/pnO+ywg3/uRaFrnnHGGYM+P+SQQwZGjx49cP/999c/e/zxx337e+lLX7pK39x77719vTfCP//5z1XuMWuc+PznPz8wbNiwgYcffnjQ8+IctAWLG2+80X/+oQ99aNDnb3/72/3ntEHhne9858D6668/8Mwzzww69q1vfevA5MmT62XJKm8j/M///I//bRI0dm233XYDS5curX9+2GGH+fs98MADBx2/xx57JPZpiyVLlgxss802A9OmTRtYtmxZw/JxvrDNfO1rX/PlOvfcc+ufUT6uP3HixIF58+bVPw/rlDYzduzYQc/qjjvu8P01D/3J+/w1loT3QruI6Ayim0FES9h///39qpftF6yOWFGwQmG1ueiii7z1EcsZFh+9sCKy9YirgAXbOFidmgUrZSySWH3s9bBGUS57Pev/OH/+fH8cVg5W4Wyhlo2ke6O8WCSQhrLllatGWD8WsryyFZ62pV60/pupS7aMqT+sOKFvZTPSN1g42Y7H6sIWtoDVlLIQXBgC66cFzxFLONasZoH1BytbWCece4011hhUJ/QB3FOuvvpqfxxlHDlypLfmCCNGjPAW9E60bYDfoax2gD6KdZkgHQErKtu1sqTmeXbPPvus38WgTanf8KK+qS9cX7BcAyysWFP5rFVQv3/84x+99ReLvUDUPNZ/rODh88aiTr23AjtOYN3lXrGCwpuwiIewzxywOyErsUXYFjgfz+O1r32t/9s+Y+qVnQ0s2p0AbibWyo/FmzJhvbfgc9yVsHamAUvqHXfc4XcQ6BPNgP7EmGVjMCgfuxPsLmDpTmszjI+0GXZRBMbcsG+X9fwjuofoZhDREpBiQZKLgYqtGyZMtqMAkxidHuKUhDBCGgI8evTo+v8ZwK1vEt9ZghOC6/EbtpizAn4Ak+wnP/lJPzGHk2Doc1oGwntTednihWg0Km8S2cJFgmC7n/3sZ5644LKAC4OIbtH6b6Yu5VaCT3AZwK8W0I5CMAkxOYWBNXaiApBNwJYoW9LNgPpNqpN///vfDZ8X9wDJCl0pku4pL4q07aQ6Ub1Y/1qeHT7XRcBWL20K1xVeaWWhvbMdjrsF4wPt49WvfrXfarfuHHmBewyLtrR2waINYmV9NpOeYVE88sgjfhsd14vQNzkcJxgDQ99c2gLjYViWMBCK+2PLHHm4NIm4rPGgTIRtR+MJBovwc+qdepBbmQXuWkjeEYuAu0izoA4ZwzSvCHIt05gRgjpl/kga/2hHSQvjVp5/RHcRyWxES8AXLk0DkoEOCw9+X0kWknCyD6PF8YWyTv74K2bpIXI9JnvIXRJEQpg0OBdEhwmXoACsilg+PvGJT6wSzJOENMtVmp5iUiQ819l+++09IU1COHmEOPPMM70Fk2A2rFZYKvB3w5+NSbVo/TdTl1VAmvXthV3H5pD2vLCM4q+ZBEhbUfB8ksoZtqOiz6MddaJygI9+9KOp1i0RNfyyIcxqn/gy4zP9ne98x/vRthutqk/wDHjeWKMZF9hBYRGF5Zl+F44T7L6EhCsvdC4Wo2m+1c0sAppBWtsp0qbwp6XO2DXBaNCLKPr8I7qLSGYj2gZIIgMdVolmJnpIg5WQkcUt63oEDxGckjWRQYjZFmUbnglXsAoMjUirygIxtkizEqSV95ZbbvER2c1mo4EM82LCIBiJe4csfPazn22p/vPWJccBNGSzZHfy3p8i2QnACoH7B0Ek3ZI74l7Z1sStoNE9/PnPf/bH2gVD0j3RjuzWf1o7yvs8ioBz8tyKQFv8WPUb1QNgJwX3Gl7UB/2NQJyiZBayTkBVWruARDZa/BVtmwQPEYjJgpqtdyFLjSGpLUB6GFushRALd3h/KAdAoBrVa5mZq9oBFi88X4L52LlrFdQhOyLUo10syB1MY0YI6pS+kuTmktSO2vH8IzqH6DMb0TYwmLGaR+YlXL3zfwhlFvD7Y2DXC//ALODHx2TAtlYI/LpEPGVhsGVCHeBb3/rWKr+DOCVtJ4nEyU8ScO0iWaQoL6t8tuJCsD2WFoENcI0IfdUgtQz2kstppf7z1iWRwkzCWITRYg2v0ageQ7A9jxA8E4hdKEC6sO61sl3ZKqgTxPxxdQhBWfU8KCN/o5IgUJdEQSe1IyZlaasCFjioEzTzPIoAFwOuhY97Xgsu1mEiy1ERwL85hL2PsH1B7Fnw5JGdC0E7pq1BlKwcHgoASMChINCsS4kWR2EdJo0T/E2SjbyQ9TocW8K2wLV4HvjNJi0wbL2mlbcKYDwkdoJFC7sIzVqqLehPKCL86le/GtTmqUPaFLtsSaBOqX9UYXAXEHDtSurDSb9v9flHdA7RMhvRNjBRYyFEuogJCEd8iA9WCiZQpGXYriwLDGrIF0GsCCJi8sOCxMqcABoGIeSKcODHIsZ2HlvzWDqQhUmawCHQDKL4p6JVyOBJkAa+ecjocG9sQ2GB+uUvf5kZDBEC/0Eke9iKI4AHqxuEBXLD59I5TQK+vgRXoIGI1ZXrcg+aFFut/7x1CYFg6xhLDPVDMA51C0nCx1FuImn1mAR87ZDm2mOPPbwskaS58NHLk3e9XUD3FN85NFwlc8WCAwvOBRdc4OsYyzH3xbMkKI7PWJSxC5BE5gmqwc2ESZd7xS8Syzrty/py530eRe+HctOGKAf3Q1vmHikDwWFJwNoGeWTxRJAV1lpIJUQfySKePeC+Ib6cl/6BLBfXazarF20ZqxjXJqAKH1VINeT4S1/6kmsW9BOC1bhn+gdkkeAmtpX5jj7CopO2DtlM0llOA/dOf0S2DXIvaS4sfqGV9Qtf+IIfB7g29Ur98Txwf8Iqz99Z5S3DR7gVsJuA3z73RFsMpatwk2jGVYJxiudMn0OrG2k+2hELPuqVOkgDC3mC8IgpoM2IBNO/sPZmoYznH9FBdEg1IaLPIPkbZGIa4cILL/QyOcga8dp66629RMzdd9+dKbWVhazjv/e97w3svPPOXiIM2R5khD7+8Y97GR8B2auXvOQl/pipU6f67y+77LJVZLUWLFgwcPjhhw+svvrq/jsrRYNE0P777+8lj9Zdd92Bk046aeDyyy9PlOZKKysSM1/84hf995xnjTXW8GU/7bTTBubOnZt6/w888ICXpNpss8289MyUKVMGXvayl3mptGbqP5SCKlKX4Le//a2XZuK41VZbbWC33XYb+MUvftGwHpOknwD3sddee9XP99rXvtZL6uSR1kqTTSsizZUmKTV//vyBE088cWDzzTf3MlFrrbWWv+8vf/nLg+SMkBV729ve5suOrBJ/S04tvFckh6ZPn+7PhywZ7bCV55FW/iQZMMp57LHHDmywwQb++htuuKG/tuSh0p4PbR+ZtPXWW29g1KhR/vevec1rBi644IL6MZ/97Gd9O+CZU17aHXJwtp6SkCbNBW666aaBAw44wEsyIaNHm//73//e9Ngk/N///Z+XkEKyzt4vbY4+zvV41sccc4yXiQvrhDqjbyXh+eef9/2NPsp5kIui73GOL3zhC4OOfeqpp/yxG220ka9X6hcpNJ57nvKWIc0Vyv2l1WfYf/T7tJeVzEpDWtulXo4++mj/DGintPuke066zlVXXeX7DL+jnyF9mCSllYS8zz9Kc3Ufw/ink+Q5IiIiYigCKy3WM1J7YmWKGLrAur7TTjv57HzKFBYREdE8os9sREREREREm5CU+pTtcfxJbQBqRERE84g+sxEREREREW0C/rz4er7sZS/zfr5I5fHCF7RZBYaIiIjBiGQ2IiIiIiKiTSDglMA1lCiQJyMpAYGMJ598cqzziIiS0FWfWWQ8iFxm1YrMCxHWRFxnAY1QIqLJ4MSqFn3N6H8WERERERERETE00VWfWWRtkH/JK6yMpNDBBx/st2twoP/Qhz7kJYHyaMZFRERERERERET0HyqjZoA2XSPLLCnlLr744kGi0gg0Ix6NllxERERERERERMTQQk/5zCLKHab6Q2wcC20aENS2GWdIiYf49Jprrln5tIAREREREREREUMRAwMDbv78+W7q1KkNs8n1FJklpd2666476DP+T6Yc5E+ScpaTMYcsIBEREREREREREb2FRx991G244Yb9Q2abAak8CRgTSClJNCmV02wu74iIiIiIiIiIiPYBQyWB/lkpi3uSzK633no+B7gF/4eUJlllwZgxY/wrBL+JZDYiIiIiIiIiorrI4xLaU2R2jz32cJdccsmgz9Dv4/OIiIiIiIiIiIjiWLlihVu+aJF/LVu4sP53+Bo9aZKb9upXu6qhq2QWAen77rtvkPQWkltTpkzxrgC4CDz22GPuJz/5if/+ve99rzv77LPdxz/+cfeOd7zDXXHFFe68887zCgcREREREREREUOJXJb13cply3KVa92dd45kNsQNN9zgNWMF+bYeddRR7kc/+pFPpPDII4/Uv582bZonrh/+8Ifd17/+de8Q/IMf/MArGkREREREREREtJNcdoJYFiGXYNjw4W7k+PFu5Lhx/jWq9l5/jR/vxqy+upuw/vqJ36X+znxvv6siKqMz20mH4smTJ/tAsOgzGxERERER0XtYuXz5C0QwhSAuX7gw/btukkvzeaHvMojn8FGj+lJqtAhf6ymf2YiIiIiIiIj+IpdZxDLtd4XI5YgRySTRkMNEy2WTxLNfyWWVEclsRERERETEUCKXNfKY9l0WIU37XdvJZUAe036X9N2IUaPaWtcR3UcksxEREREVwcDKlW7J3Llu8bPPusXPPZf6vuS559yiZ591S+fNI01Ot4sdkQN49PF83cqV9b/1cvb/PE/zd/2Y8Hf2uITfFW0XbI274cO9RZG/9XL2/1gbzXf8f/TEiW70aqsV/l0SPFleuDC2pwpjzW23dQefe66rGiKZjehpLF+82N12zjnu39/7nhu75ppu3Re/2L/WefGL3Rqbb/7CoBoR0UFAJJY9//wq5LMRQeUdIptEQrBkjV1jjRdeU6a4MWus4SZtsIEbPWNGbOPNPqeVK731ktfAihX1v/3/ea995v/W/5ctG3Rs7t8tX+6JZm4MG+aGjxzpXzx7/Y2FcRh/1z7zf+s1YsSg/9vf1Y9N+92IEc1WY0RV2/aKF9rroLYYvPzntWMSv0/4bvmSJa6KiGQ2oiexdP58d/N3vuNuOPNMt2jWLLf5IYd4EnD3eee5f55xhj9m1MSJbp0dd6yTW97XnDHDD+AREY2wYunShtbRtO/StlyxYEFGLTGdvOmmdYI6LnjXsWg79rsPXuK2eOBLmfZd1lZ64vcLF75AMJvYFh+VsKU9aHs74/u838Vt8f5d6K5YsuQFH2HcOTLe8xyT9r4iL+EcNuyFdjd+/KD3elsMPud98rRproqIagYRPYVFs2e7m77xDfevs85ySxcscNsedZTb7eMfd2tsscWgY57+17/cUzfd5F/8/dw99/jvRo4d69Z60YvcujvtVCe4a223nf88Yuhu2ycRVKyrSaCthOSzTlADomotqWNXX72nFlKlksscv2sHuSzru0gu+x8rli1rC7GsB7fV/s7r/jFizJhEopn3fVSOY7hGlRfJRdQMhi6Zffzx5Mphu8USm5QJzYMtbKu5VuTYrEZN4xo/vrljFy3K3s6aMKG5Yxcvdm7FinKOpbzqQKwgsyax2rELHn/c3fDFL7rbf/ADT1C2f+c73Ys/8AG/1VoH9Su3gqVLnTPWsSXz5rlnbr3VPX3zzf71xL//7WbfdZffJhw5YoRbe8YMb8Vdm9f227tRNhf06NEvtAvAObPKW+RYghJq5GbYypVu1KhRLwwySUELpGQWEeKcWStvyqDfFjmWZ8azyyovxxc9ljZGW2vy2Pq2/Zw5bvG8eW7x88+/QDpnz3ZLn376BfI5Z84Ln/Fe+/9C/EqNT+mgEJDhw+ukk0CTMVOmuNFrrVUnpuPRZYSMrr56/RhPTldf3Y2krbcwRsjHkW1A/7fe8YccM8Z/Tj2sXLDghe/C4/iOeuLYGuFc8dxz/yGJixe7FZpAFy/2ryW14zxpnDfPrdB3/Jbf1f7mtbj2N+emxWVNdcsMuRwzdqwbzUQ5duwLJHDsWDdChHDsWDd8tdXq5HA0bX3MmPp3fmKt/e3JI/UsfcuRI91Ijtd5Q3JZZDzJGCNaOpb2oH5f5FiO4/g02H5f5Ng+GiO8vuvy5W4ZbRhCuGCBb+8iiSKOIoxLsXwuXVr/nPZuFRO85bL2vnTRIrfEWOqzwsSYKVfU2vqoCRPcONqjSKFZAPn/T5jgRkyaVP9+DG3YaraKUNKWJ0xwI9dY4z+fDQy8oIiQ5PoxxHjEvOeec5OnTs0npTowxDB37lye5kDNM23V10EHDf7B+PHJx/Had9/Bx661Vvqxu+wy+NhNNkk/dpttBh/L/9OO5TwWXCftWMpnQfnTjuW+LaiXtGPDZnToodnHLljwn2OPOirz2DnXXz/wx/e8Z+Aro0cP3DJ6dPZ5H3zwP+f96Eezj73ttoGlCxcOPP6Pfww8cfDBmcf+1LmBM2qvv2Sd07mBX5pjL29w7IXm2EsaHHv5OusMnLPddgM/3W23gWuy2oNzAw8edtjALd/73sDt5547MPOkkzKPXXnWWf+psyuvzK6zL33pP8def33msc+8+c0Dd51//sCdv/rVwH38LuPYe7bYYuD8Aw4Y+Pk++wxcsO22mcfeZOrs7AZ1du+UKb6+frbnngPn7bVX5rGPrL32wC9e+tKBn++118DP9tgj+9jx4we+v9lmA9/ddNOB72y88cDSYcNSj310+PCBr4wZM3DmqFEDXx4+fOD5jPM+Ye6N15yMY2cFx87KOHbeiBED/7v11gM/3mknXxezJ01KPXbp+PED/zzzzIF/fetbA7eec87A8zNmpLedceMGFs+dO7B86dKujhEDTz/9n2Pf//5Sx4g6Tj01+1j6g9Cgvft+Jpx9dvaxv//9f44955zsY8877z/H8nfWsZxL4BpZx1LGnGPEvA9+cGDmNdcMPHT55QOPfPnLmcfeu+OOA799y1sGLnrtawcu3X33zGOvN239u1lldW7g32PHDnx3k00G/nfGjIFfvehFmcc+teOOA9d/+cu+vd/23e9mHrv89a//T1sHWeWIPGKgDB4BT/N8be7cgUbonT2viCGJn+2+uxtYay2352mnuW3vv9+5H/ygtHOzKl5/t92c22UX5zJSIr/6xz92y7fd1v89ntTK3/hG6rGv/M533FLOx7Hnnefcl76UeuzLvvY1t+fee/u/x/zmN8599rOpx26w555u+CabeAvC2DvvzLyvey680P37l9DqATfdOfdfGcf++bjj3G0f+5i3CGw8fLh7Xcax9/761+7xWbP8dtzwf/3L7ZdxLL7Lf+f+iX51zm2Wceyce+91D913n9/uarD29haR1dZe22/Xj8dKUXMfSQLWO6wdWFJGMFRmYMTYsW61jTf2lg9vEbn22tRjx6+3ntvy0EP9eQkwHP7FL6Za4vAv2/dDH3rhuBEj3OiPfpQ83onHrr7ZZu71Z5xRP+/4d77TuaefTj3vEb/6lT8nVpzVX/965+69N/HYSRtu6N5h28yuu5J+MfFY6muXWiZGjx/9yLmU9sbzGtPIWhLRFaxYvtxlhXQ98c9/utnDhvnxZPwNN7gtM4694StfcXf+8IfekrnWs89mjhE3ff3r7p9f/7r/ez3n3H9nHLvomWfcojXXfMFyucYamfcz/TWvcWscc8wLxxIkeeihqcdu/453uO2/+c0X/jNrlnPrrJN67Do77ODWOf74/+ywvOc9qcf63YA+lfgaGBhwC59/3q1YscK/JmZYqVcODLgqhlVHN4MQ0c2gq24GT918s7v+C19wD/z+927iBhu4nT7xCe9SwCAWtxDzbyEOjBz5QqABW2xz5gzy26rrSLLNxnbc0qX17Tu25PhuhT3m+ed9kN2CWbP8tv3KpUv91vOglTDEhu36yZP9azTb9muu+cIW/RpruAmTJtV9TOv+pnzPdjIuHXldEqgDtlMBBDVLxqfIsUX6fRwjKumK1AtuBn7LHLeZJUte6HNz57oV9LmULfMl9M1awNCK+fPdigUL6v1S7zp2sfFFJko9y1JFzbMxzMIJ15CxJtgn3DIfPnGiG8mL78eOdWNGj07fMl9tNTdq8uQX/o8bybBh6VvmJboiDfUxYuXKlXUiWn/x2Zgx3kWD/3u3pcAdgAXpCBQuWPBPmuT/HolqxtKlbkTtO/99qApUQTeDoUtmYzrbSmHOgw+6v33yk+7On//cB3PtduKJbpsjjnAjNIBFdBQLZ81yD156qXvgkkvcQ5dd5pbMmePGrb22m37QQW7aQQe5TV/1Kk9EmZyJ+sefscqBBBERWWAa9D7ERYJ6wncT5NPWKPOE90GkssDvYmBbtZBISmsvkVJeIW0bZoinXp6UBp+tQkorjpjONqJngPLAdaef7m7+5je9xe5V3/ue2+7oo3sq6rsfwOCI6sMDF1/sX09cj5fagFt35519oN30gw926+2yyyqapl630loKIiJKbpfInBWJFm+WkOZFoyjzcWut1fdR5hGdJaWjR4/uaVLaCUTGENEVsB2GxNb1n/+8t+695JRT3M4f/rAbbbcZItqu1fvQ5Zd78ooV9vknnvB6ppu86lXugPe8x00/8EA3YT083yIiUrbMzXZ307JFDd5RccgDRZmnkUQ0fvF3LkosB1lAUWWICQaGDCIp7R1EMhvR8Qnwjp/+1P3tlFPc808+6XZ473s9kZ2Q4aQfUQ6wAqC3K+vrzL/+1Vu9pmy9tZtx+OHe+rrBXntF144eRylb5jnecS8pa8ucXZlEApkg3B63zCOKIpLS/kcksxEdm2Dxvbzq4x/3eq9bvulNbp/TTx+U7CCifEBqZl59dZ3Azrn/fr+FudHLXub2O/NMT2BXn47mQURZUMpH/CNXQCpr7/x/ecp74eP0d00Tttktc6/dmuFziZ/0anHLPKIiiKQ0Ig2RzEa0HQjYX3rkke7+3/3ObbjPPu7wa691U1/ykljzbcL8mTN94Bbk9eE//cmTG+SZIK4v++pX3UYvf3nfuXN430p80UKy1w4imfZ97e+82+IhCHZEIozFxsiUd74nahyVCP85r9rWetwyj+gVRFIaUTYimY1oK569+27369e9zks7vf6ii9zmhxwSAxva4LrxxHXXvWB9veQSN+uWW3yg1tQ993R7nHKKJ7Gk7G1XQIlPA6nMUwnWwyyCmJso5iCcXlqnKJAOqpHERPJo/iYrHME9eQhn1jmTzg2RDYPrIiKqjkhKI6qCSGYj2oYHLr3UXXzYYW7C1KnuiH/8I7oUlKwC8eAf/uAevOQS/05KV3Rbpx14oNv9hBN8EBearu3A0gUL3GPXXOMeufJK9+hf/uKeuvHGwtZIiFte0od+bWFymPPcw0eNiouriCGPSEojeh2RzEYUwvNPPeVJU5Z0Flu+N5x5prv6E5/w5Orgn/88ZgpqEdTprH//+z/SWddd5wWw19lpJ7fj+9/v9V/X2223tkRa44f52N/+5h6tkdcn//lPv6U/ft113cYve5nb9qijvMWyCOGM0msREeUjktKIUgJI8fuvvZax82be11hjjYYJDLqBSGYjPNjCJb3gpA02SK0REhpc+va3u4lTp7qdjjvOZ+ZCON+C7d4/HnOMu+Pcc91uJ5zg9v7sZ6OUTQsW0Ef+/Oe6+8CCxx7z0kObvPKV7pXf/a4nsDyLsoHUEmTZW16vvNI98Y9/eNUDgoE22m8/9/K3vc0HkE3Zaqto1YyIaAMiKY1oB0ldsWLFKuRUf1ugbctr1KhR/n0cqiK1z6qqfxwzgEV4kLjg76ed5l71/e+77Y46KtHSetXHPuYlnNiavesXv/DvJDhAVB9VggWPP+5+84Y3uGf+/W93wA9/6GYcdlis3YJ47r77/iOdddVVXv6IusXv1Utn7bOPt4CWvZCBsEJcIbAQWfxQkUuCvEJcscCuuc02lR3IIiKqiJjRKaJTJHV5ghWVl03MQMIFEdTwPe/Yzvk6NQ8UyQAWyWyEx4UHHeQeveoqH/n+kpNPdnt9+tPer5Gt7L8cf7y78Wtfe+Hzz3zGN2Q0Ym/+znfczd/6lrfoYiV86qab/G8O+c1vfLaoiHzBW+i93v/b33oCiw4swUAb7rvvCwT2oINK9zWGIOMqIMvr43//u7eo45u60b771gns2ttvH4OSIiIiKY3oQZI6svYKs4XxO507fCUtvkJ00s0gktmSKmeogIb97fXWcy9697t9Bih8Xbd+61vdK7/zHffHd7/b3XPBBe4VZ5/tdnzf+1b5LSTozl/8wt189tlu7JpruoN+8pOYNSpH9P8jV1zh7r3wQnfvb37jlR5wF4C8TjvoILfJ/vu70RMnlvZ88W998oYb6j6vM6+5xi9aeNYbvvSldcvr2jvsEF1CIvoa0VIaUQkZwZUrVyGoeg9JapIVlc9BHkK6cuXKVcqQlDZXaXLDz7q5GxfJbEmVM1Qw/7HH3Hc33NC9/te/dlsccoi7+4IL3KVve5sbNnKkG1i+3B38i1/4zyOaB6T/oT/+0d1z4YXeCrtkzhw3efp0t+Ub3+hf6+26a2lWUKy9WMkhrhBYLL/LFizw/ra4KUBcIbDr7rRTDMSK6ElEUhrRKyRVf4ck1RJIWU8hjrZt62/7WyGJeI5IIKa896p7WBG+FgPAIry0Elh35539+1aHHupW22gj99eTTvLuBqQ4jSiOpc8/7x689FJvgb3/97/3hHLKjBlup2OP9QQWS2gZgwyuIE/fckvd55WMX0vnzfNZnTbYe2/3kpNOeoG87ryzGzFqVHyUEZVBDHSK6BWSGlpR9eI7bd0znieRx9DPVESVV0g8R5M8JYXsdup+B2ovlVH3yDvl41U1RDIb4a14SCuRJUpYf/fd3Zv//OdYOwWxZO5cT1whsOi/kkwA0rrbJz7hCeyaM2aUQl6fue22us8r5HXxc895ySsSJez6sY95v9f1d9vN+99GRLQbkZRG9CIgpkuXLnVLlizxxJS/+UyWUVlEQ6KqvyGbY5AczNimL9M6aglmGtlcmeO7JEuvhe4vyd924sSJkcxGVNcyi9WuV7ciqpDA4L7f/tb7Fj/ypz/5ACs0X/f8f//PE9jVN9uspfMzgMy+4456koKZf/mLvyZEdf2XvMTt9IEPeNcBFiAQ2oiIZhFJaUQvIS2YKWmrX+TUEjnrO6qAqfHjx3uyhn9q6DuaNkemWTK5PkQ5L/HMQzIt0RRJHp7wd9Z3cmcIXSFsXenFsTagbGxF55homY1wT990kxe+j8gP1BwI3sICC8nEWrrh3nu7l37pS26L//ov76bRLBjQUDWQ5RUCu/Dpp70UGtbWHd73vhfI6x57uFHjxsXHFrEKIimN6BWIzCUFMyUFNOl4ux2u81iyp2ApyCl/i5zaa6ZZMRcvXuwWLlw46PtGyEMupS6QRjyzCHNRBYTlNauzTYBg70PlsSRVf9vAL5FyWbA5D9boqiGS2SEOSBn6sPKXjUjHvEcfdfdedJEnsCgCELAFqUTpgQC5Ceut11T1MVjMuf/+us8r5PX5J55ww0aM8IFhJKfA5xUXgtETJsRHNITBZMSkYrdGwwjotGhlJqkkf7yIiDLaZRYhTQpmCkloms9m2LbDrX59pnZvz6P+QX/Jslyqf2RZNbu5c5mWlStNpmukSXoAmbcktdHY8vzzz/uxhZcss5yHsQMSW0UiCyKZHeLAXxas8+IXd7solcScBx7wCgS4EDx5/fXeOkoGrgN+8AO3+etf71P7NqsggTwXGb54n//oo54cs6jYhgxb++3nLb3IZ0UMLTAxWcLKuzL0MLEoAEMWpyQtyYiIom1OZFPbzHbL2W49y7oXktI8hE+/tRZC/U6LK0u87FZ/GhHtZfc4BZalkVQLa0WlXqwldXjO/i/Lrciqxhc7tkBW8Ytdc801M8lv1RDJ7BAH/rJj11jDTd50024XpTJ49p573N3nnectsE/ffLNXBZj26le7F597rtvsNa9xYyZPLnxOfFyxukJcH73iCvfs3Xf7zwkO2/LQQ93GL3+523CffZo6d0TvIdy6E3kVRFiZsJCkYfLq5Uk7onWE1spwm1xkMySe+i6PX2aST2ZaoJM9X5Kuqc4VCvlbrdR+bdN2MRD6pYZE3taLFqmtpo4dqC2ILWnl+lo0yMI6YcIEf01dxy5ocLNIWtR0MmlCEUQyO8QBmcUq26+DStHkAn//9KfddZ/9rNdkhbjufvLJbtqBBxbe3l+6YIFXGZD1FeksNzDgs3lBXMmkhvV1/Nprt+1+IroLbQ2GhFVkwm7dKUI49sPeRBlR5pZo2q32JN9QQe1F75ZsWrcSa9WTJS+prdmt+VCKijZsrxtaCfudpCZl5ErTkbUWZmtF5e8yrclJVtaBWjm0IGZ8GTdu3KBFB2WeP3++mzNnTmJAXB5f2qohktkhDtwMtj7sMDfUMe+RR9zFRxzhU7vuddppXt6qiDLA8iVL3OPXXlsnr7gkQI4nbrCB2/gVr3Av/tCHPIltJTAsonrQBGEJq6KXgQgFE4qipKNLQGefTysSRs1EmYd+m7YcoXU1JKN5hfCLkgotrERKQ0Jm78MSGevOUmUiU5Y/akhSG2XkkhVVJLVd5dNzIzCNl8hzKKE1YMqqxbNIqJ6pxiJ93i/jUSSzQxgLZ83yvprrDnF/2Xt//Wt32Tvf6UZNmuTeevXVuZJE+CxbN95YJ6+PkSJ28WLvQ0uw1su/8Q1PYrHE9uMEMNSQRFi1XciEIMLK9pusYRHNb5kXIZuNkEe2yAb/qHzAbqMnpQkNyapE8BtpjpalPZpExJJIKgjTomKt62eSav1RQ2szz88idIGwluZ21o1NyMC4AlG1fvJqV7bdhs/OWk1HDmH/+UhmhzAU/DVUlQyWLVrk/nL88e6Wb3/by2kR1IX/cBIYUJ65/Xbv7/rwn//sZl51lU+QMGriRLfhS1/q9vrsZ90mr3iFW/tFLyotLW1EZ6FoXktYNekpM0+vBkcUQRFrZVnC7GVGmSdJPYX/5/nmyVtvCWknMzOlRa/r3SL0SYXotOpzWVVY8pfkDpHkj6q66YSV2ZbP+puG/w/7jdq0XAPwS4VQM95UhZwO1BZ16h9VQySzfYqFzzzjHrj4YrftkUfWO+3S+fPdbeec47Z7xzvc6IkTvWVx9GqrudWnT3dDDc/ccYf7/Vvf6ubce6/b/9vfdju85z2rDG4oGVjFAbReSVSARNYuxx/vLa9IZ8UUsb0DCYVbwipyYKN5mfSYUKpsteJeZCFu15Z5UWH2sqLMk4TwQzH3MEuTRWgV1f9DIfxOR8PrvpKsqFKsSLMW9jtJtfUSktQkf1RrRZ00aVKmL3BZFt4kghpaedXWdF/6PZDMlYgqr24Gdw4EurThK7w37mv11Vf3C/qqIZLZPsUVH/iAu+sXv3Crbbyx10IF13/xi+660093t//0p+6/Lr7YW2ZxMRhKlkQ6760/+IG74oMfdJOnTXNH/POfbu3ttqt/v+CJJ9y1n/mMe/DSS928hx56QS5rl1281is+rxDZUePHd/UeIvL7mFk9VjuZMIkwoUyePLlnyAETCxHG6ECyHUmZuYdQtiiPJbPd95slhJ/0eRKStuj17KqmlZtExuzflowlSSx1Yku7G7C+ukn1YqHnq7oh0r6o9FQeJFlOw78t7A6BtvPlcwpCVRItsKwuK3/r+CoS1JE9GPAVIpLZPsTj113niSySUv866yxPZhfPmeNuOussv51OkNPP99jDLXv+eTfjiCPcUAF18Md3v9vdc/757kXvfrd72Ve/WiemZPD69w9+4K7++Mfd8NGj3YzDDvOW14323TfKZVVc2spOJIJID5MIVptek7bS/UFeeXFvmkQh4Ouuu25XCWlITJO2662sU0hIWwlm6nYEexpJtWRM7a8dZKwKCFOh2nqxZCkMKGuHhdm6ZKQRVAuVKUwukEbgQpkrSVYBK3PVzgDPoUpQiyCS2T4Djf7KD3/YrbPjjm77Y45xVxx3nJv70EPu9p/8xK1cutTt/81v+kClCw880M194AG33hDxl0Vp4PeHHeaWzJnjXnveeW6rN72p/t3sO+/0JJcgLiywpKQdN2VKV8sbMVjg2xJWqxQgwooVp50Rxe2GTaGpyZL74b7WWmutpsm4JaONUoYmbdcn+Y6q3ssOZuokQnIQEtWsCHa2WPuRpGrxkkZSQ39USwDVB8sgS+GzSdraz5KT4m+RN32epzxW5ipUJbESV2yzl0HEI0EtF5HM9hlIt/rEdde5N195pffnvObkk931X/iCTwKANVIpVw/729/czd/8ptvsta91/QwsrrhXXHPKKW793XZzb/nLX+oJIpDT+sfnP+/+8bnPeZcD6mzj/fbrdpGHHJIIq1UKEGFlEukXaSvuT8R10aJF/jOJmMv1Ie/vNcFXNZipm4Qs3N7OIqnt2tbuJRcIRctbK6r8UZsN+rGkLY2khgup0LJokwm04lqS5oLE59bKiipJM8FXkaB2D8MGGkUD9BnmzZvnJ4u5c+dWMotFq7jota91i2fPdof//e/+/1cef7y78Stf8YFL73rgATdpgw3cUAH+r5e87W0+eGv3E090e/6//1cP1nr06qvd5e9+tw/y2u2EE9xLTjqpkK5sRDEogtwSViYx+XOKsOq9itGyrYB7lb8r9889QxQgUFiRGk2aDNOQ3gULFtTJL78NJ/heso62GsVu39MIWfjeTyS1lVSoYQKFZp9FGkENF1YipyFJbZeclIIjrXuAIvGtC1KeAKxWCWp4v/3aR7vN16Jlts98Qh+67DK37xln1D/b6X/+x9341a96BYNuElkspCsQcO4QYXzg0kvdpUcd5YaPHOne/Kc/+eAtsPi559zVn/iE+/f3v++DuY688EK31rbbdqRMQ0XaKiSswMrOKNtVpwIiOg352Im8UgcSWEchgQm00YTGOahDfs+LuoX8Une4HfQTKUvKqpS0tR2S1E4I1ncDIXGy9ZLlj9psKlTrG50lJWVhM1yFfpmdWljJVzbc1QFcW4Q1SUrPElT10eiD2tvoz9lkiOL+3/7WrVy2zG156KH1z5DdYmsdH9puge38X+23n3d/QAoMV4cJ667rxq+7rv/bv5v/k2ggTe+1ESDMV594ordGTzvoIHfgj37kU8YyeN19/vle5WH5okUvyHG9+91DSsmhHWAimD17dl0rUYSVSbUs37Kqg4ne+rvyfwWEEKgF2coDJmLqE+srE600banHXrRUJ233p5HUUIKq1a3tXvHRTSKLIVFsJnhHdZ9GUJMi9kPLqZQy2iV51ewiWXJ6IvNWTo/yhveMdS8GSTUP6pPxjR0h3rGQVnFXO5LZPgJ+sRvsvfcqFtiNXvpS10389aST3NM33eReftZZbjnWqqeecgtrr2fvvvuFv2fNYsT3x+MSseWb3uR2fN/7vPU07yD63L33+iCvWf/+t9vvK19xO3/oQ/63cx9+2P35f/7H6+5u8cY3uld84xtu4tSpbb7r/gak65lnnvGTyNSpU/vWypolkcWLwR0w8bPtL23aPJBViBcTtQK+1l9//UrXZxgkZIlqFkm1eqD9RFKztvqTfHSbsSzLckp7SwuKsrBWW13XuqRUcbub+7CEVTJXNsBLOzz8be+fvjhUo/jLxLJlywYRV2W0ox55yUBRRVSzVBGFwfb5Q3/8o9vvzDMrVXuUCSsp5PLFxx6betzK5cvdomee8UT34csvd7d85zvuzp/9zK21/fae1CIhNiZjNXjHuee6y9/3Pm/ZPfzaa71KAylnkSO75pOfdGNWX90d8pvfuM1f//o23enQAJPGrFmz/ISywQYbVHZgK3uAh3BKIosJFWKAdWKdddbJPUEyMYi8MlEwSUitgPrsNrJ8UtMi2UOd1H7x2201FWojf1SRYC2MkiynYcR+kuW014iaXHAgS7xkZdW96h6sTnL0QW3fc1i8eHH9xWfaGWFc6rUshzEArE9w13nnud+/5S3uPTNnVibIiyxkP95+e5/i9Y2XXlpoSx8f24f/9Cd387e/7d0nRo4f77Y54gi3w/ve59bZYYf6ccsWLnR/Pu44d9sPf+i2edvbvPTY6EmT3FP/+peX2yLL2U7HHuv2/uxnM8lwRINnuXCht8QyYUsqqh9hfVWtRBbkVTqSRXwRbdAWv+McCvrqFPlIImZpmqA2OMgS1n4gqWmpUNMIe1LAVFoq1Cw5Kf0dxlqHltPw716q7/D+rQ+rTSQQWuzl15ql8xrR+rNZsmRJ3doqv2LqHOJaJG1uuOhoN2IA2BDEUzfc4CZtvHFliCyN/rJ3vtP78L76Rz8q7JvK8Zu+6lX+NX/mTJ/Q4Nbvf9/d8t3vuql77OF2eO973Zrbb+8ufdvbvF7uq0nT+/a3e3J71cc/7m74ylfcmtts44649lq3/u67t+0++x0MgFhimWTY/u43EguB4R7lNkC7ZXCHdBbd7tekAXnVuWTlaEfQlmSG8pBUS8okAdYvxCEpsUGaHFeS60MSYbfpdHUu2sn8+fNzyUlJ/qwMOaluIU8Uf5g+GUihRPePhU/1HNEZ//1FNeJK+1cwHGPRlClTUhfkch/KUgvhHVcqFAaqhmiZ7VEQrT9po43qqVjPe8UrfKaq1190kasCIJ2Xv/e97pD/+z+3+eteV8o5Vyxb5u7/3e/cLd/+trfagrFTpriDfvpTN/2gg9yDl13m/vS+97kFjz/u9jz1VLfLRz9al+KKaJ7Err322n1DYuVfJ39XWUt5MdgXJRxpQVsKRik7YlsvTS5pElT9QlLTtvpD6alQMzaU47JW2bSgqCQ5qTQpqV6V+WpGZkptSaRVRN7KXOnVa5n2ehk8B0tcV6xY4duk/FuVaU3HWnKatei17VoLOp63XhBZSHEnEC2zfQ58QS/57/92G73sZe71F1zgGxjb6bt+7GOuCiCjFlnIsJ6WRWQBxHTaq1/tHvj97/3/19x2W/f8E0+4iw4+2PvWPnPrrV6C69DLLvOKCBHFwaAIiWVAW2+99Srhy1mGRBYvBnD5qRLIkEciKy1oC/LK+Zi8Ia+tBG2JYNitWZt9SNZUWbp6PXFE1lZ/OLnaFLGypOr/YfCVSJrcQ9Ii9i0prUrEfisoQ6hfhDV0ERDJp81BjkRae8mXstehHRgRV56NArOUMnnSpEmDdmqee+45/xKsi4x2Cfi/xh1Z2RUToH5gswZy3iqPO9Hu34N4+uab3eJnn3Uzr77aN+A599/vlsyd69bdZZduF83LcF18+OFutU02KT0Y7Zk77nC/e/Ob3dwHH/SuC9sddZRbtmiRu+f88929v/612+X44922Rx7ZkxNSlUgsclK9SGKVElb+rpqEIYBYl5u5p7SgrWbOl0RYbaYzSQw1m32oiv6oaalQreVUqVB1v0n+piKoFknBQYp072Vy2s5MUlrgSTGARZlkrmwGrF5PD90vC3CNEXLdAPwtS7myJY4yqZb1rOl72smRNZbzh+40Or/tl1bazY5JtJeq7tJFMtuDINofLJo1y1tBsUiCdXfeucslc1454Jnbb3dH/OMfbtT48aWd9/af/MSrFZCK9r//+U+31jbb+M9HjRvnCSyviOJgsHz66af9QEZkPgNWr4CBFkuFiCaQv2sRiSwLBnclO7BBW3ktuTbzkEiDiIf8COWK0AvRwq2kQpWfHghF+RXFb5EUsa9scP3gOtHJVKdKEY2Pr9qjnpXVZVU/6eV67SXY3QSpOigoy44TWtzaBDPqWzwrEVW9P19LrCL3D/s8Q7IqLXDOp3NzbdqK/P3pt7QP2g7/Z7sfUC5cDLAEVw2RzPYg8BfdaL/93GPXXOOtswRAEfw1fq21ul6uG778Zbfvl7/s1t1pp1LO6dUKjj3W3XbOOW7bt7/dveLss93oCRNKOfdQBoMUlljQKySWgdtaLCSRxcBaRCIrb9AW1te0QAnrvyp5oTDzUJXJgt2STCKpFtrq1/akJsOktKay+AGrDyoC1otyUlUhqEnX5plZXVZZ36yVlYVYr7umVB3qC1lJQrSVb1UdtCvB+KW01iK8doyRT778VvUsdd3hNWurSK8lrEl+zNrFwhUBIiwSbHdCVEbtRmlc4+8qIpLZHgPb+JDYfT7/eZ/JauZVV3ltVnRVu4lFs2f79LGb7L+/2+XDH26bW0FEeSQWslZVEiuSKfLKAMtAzUCaFZGbB5ocGMQZvJXwgPPaSSIkrExMwGY647cERFRFSilMaJClcGCDe7SNKeuPlZOy/qdJltNejtivGkHNsvZb0iq3DQVgcU22gmMAVvul7bKShKj+7Y4GECFUYBbH2PFlzpw59YWIdSsQebV91lpV9fewHG2M8nAdXmpDKqvGAM7FeIaBwPpS9wIime0xPHvnnW7FkiVu6kte4jNnXf/FL/rP9z799NKvhdZrXkkttF4p14E//nHibzgXiRHI7tWKW0FEc2DwgsQygEFiGaiqKpHFu1LCMgEQiNaKrE9a0BbntaT1qaeeqmswAk0WvBjcq0AURPLtSxOqJiVLUMPJykrsiKyKdCXpnfYDOa0iQc1SrbBuKqG1n3YYA7Da40ITvqdpDtu2oKxs9qX2Ii1p61IgdwDbH23/1O6FJaxFfZdX1HZIrLuU3TmyPuVci7GQV9VdnhohktkewzO33VaP5F99iy3c6pttRgt1W77xjaVehxSwP9puO68MsMGee2YeO/Oaa9xdv/iFt56mpYm96LWvdQ9ecokbu8Yabvx667kJ667rxq+7rs/YZf8ev8467uZvfcu7FWx39NE+BW50K+g/EiufSQZbbUvLTwtf0lZIlM4NeWVy4VwiAwzYsoTwshaOKgW9yJWBuuEerLqB7kVWHEHWnDQR/n4ip71AUJNgXVREXK3VW89WvpLdXjz1KvJopgKrlqEkAklJK2ziAfkha7tfJFDkVM/XKgKob4pAhpbVov1SwaRqR4sWLRqUnEIv3ZMCxtS2tJvST+ivuxkCmHXrrV4pQNmsXnTMMW25zpPXX++WLVjgA7recsUVqcdhcb3yQx/ySgrbvu1ticcsmTfPPfzHP3pyusaWW7rnn3zSW5VxjyB4jf+jziCQ7Su6FbQGBm1ILAM4JFaBON2AfPtEXiWRxYDKllar2bA4PxMML/m92nSYVsReZKEqpC6NtMqVQZHElog/++yzbu7cub7ueLZVuZehSlCTYCWu9NJzDX2q+41UtBOyYDfSTA2TY4i85SGO9Em5N0nST4Q0TLkrX1j93y6crWW1GatnSFitVJolrHasG1ZzFVBdaZGuJCn9jP6+uz61zK5VS5TQbtKMu8CjV17pHrnySrfxy16WeNztP/2p17g97JprUl0SOAcuBi85+eQXLMkJWIEcyaxZnuRipa1KJrNeQxVIrIILNBkwKFuJrGa36620lZ1ogCwQ8gMW+asKQr/HNNKaJMnFcSwCILEcj28v8mm9YrXrF4Iawlrh9EyVcckunmIAVnNZ3Oy7hUipyGKz2ezk2qSteGslt5ZUPU/9PySqrYw1SYQ1LIN2YESoRcwVqCVyO9wElGmXaSghktkeA5bMGUcc0fbrzL7tNp+UYcmcOe5vn/qU2+jqq1cZKJYuWOD+euKJbqu3vMVtsNdeqeciM9fk6dNTiSzAlxYCG0lsc2DAf+aZZ/w7qVMZ8DoFa8lgUgDyd2UiLzLQh9uw1hqhF4DgcJ8QwCpZJhuRVgXq5NGRVcAGsjjUZZXSCfcrQW20iLLPNAzAqlIgYJXQKMo/LYsb2+H6f7NKJZKu0s4HL9s+bfCjla1Ksqw2+1yzCKsIqN09oowirhozaGP8lrGAHSj9VjJ/E4YgeQ0RyWwPgcQI8x991K29/fYdsQBPP/hgt8krX+kzbCG7tekrXznoGILPcA94aS0ILQ24GGx6wAFtLvHQBAMzllgGSKySnSaxs2fP9pYNBlMGVQhmI5JmhdutqDfQAM7gbgmsyHFVtstEWuUaIB1PbSO3kvyAc2KFpU5YDGy66aYdIUhDiaA2CsCSlVUWr1afaT8iTDdsiWqonGH9UmknBLKpnbR6fZscQC9t/1u/cvm3soMjgmgtq6201zyEVf6q/N8SbAwACvxi/GbnhbrhvljMaqeN8mkRzzjYi4lt2onuzwoRufHcvff69zW22qqttUZWrefuu8+niJ124IFu/Ze8xP3tlFO87JY6PAFiaMru+tGPusmbbJJ6LrKT8dovktmG1kgbgW79s8LPAIMbllgGRA1unYJ8VCGyDLxcP0nHUBqYdpIRrLSVrKsM6graYnBn4MensJuDtiYpkVYb+FGmjifnxOqC7iPnol7LCNYbygS1kY+yDcBSlLeeaVXUK6qomWoDqGyUv1yJWrVkJvW/kLBqkSu/0VDRQ4oljIsqU6vlKUJYNR4osQvjB2Mmvu7qVyKuIvSUnfHv8ccf97+RzyvjC+2xCuR1eU0VoQoGhRDVK1FEKgiUAmmKAWVh9h130LO8by4DwF6f/rS74FWvcg9eeqmbftBB/pi/nnCCG7P66m63E07IPBcuBsNHjvQuCxGDoWAeBjoGN6spaB38w881mMuiAKnllQchOc4izknfMZgxIItwMWBL8koDvd2CtRmvbHS2/NX4LWXnPEw8kNc8mbbKhhX8D4X/tY3cDt9H6o02gIsGpH6jjTbKtFZpEpcAexJRHWoENY3Ah9qswPoo90oWtm5qpoqoakekbEUMkWYRVksSbXlEUkPI0gox5L1V0lqUsKr/aPEutQPGdKkJSP4qadeK85OBkd9wHepXSWC6MQ4Kmmes5JiScchyXDVUr0QRqSA4Chmu8Wuv3Rn5r5q2KxbZDffZx/vOYql9/Npr3V2//KV79TnnuNETJzZ0MZi6xx519YWhDhvMw8CWN5iHgQ7Sx2A5depUP7kUzRbUiCRnfSf/Td4hdbI6aKXOoM2Ekkb2FBTGvfMCTD6tZO9qBpbkKI0kKNvSmkVEpXuLJZb/y0WDz5nYwkxBFlZ+y8pw9TtBbeSuope2Y20GLG3J9nOdJGmmJmV0s1mibLtRlH+79HOtO5FcOMI2bqPxZYUU2QXailfigWYJVbOE1d6TEq9IEktWVMrFojRNZUTjKAYBrs15aZ/NjOllj4mLay4PCmK0O2e9oJoSyWyPWWbHsbpr86oIMjt52rQ6UaVh7/npT7vzXvYyd99vfuP+8fnPu3Vf/GK37ZFHZp5nxbJl7pErrnC7feITbqij2WAeS2JZ2TdL/EJZmbxgkJYmKwMaA3ze3ylneFamrU4M0Nan1ZKcvJnEROytNdT+nfSeRERVLiVuEMkSKbUEVZHTEatazW32IllZq5w6uFVkRfknaaaKqKZppraLRIcEMewHdiGmha8sqfJXpr/K7UO+rcpE1UnCau9PlkkRV7U7ytdoJ4lrQnohrzYZDMGCRYNjW8VAzXpsra1Khat6bkVtptuIZLbHyCyJBToi/xUEmW28337eVeDSt7/dLZ03z70VdYMGky0W3KXz57tNXvUqN1TBQIpvadFgHgZBfsf2M1uhnbReClwbSyHW0zzlZkJSmljuVzIxEPd2bUspA48lOiFp1aQRbtFTTm3vWTKaBCvPY4mntl2ziCjlwhLPOwS6agoMVYD1sbYBWCB8llXSCS7jnpOIalmaqWX6GVtlAGWes76qsqyKSNsAKxEkCfzLh1QWzWYsgGURVnuflrjKQsl9cD+Mw40Wv3Zcsdm+KMPGG2/csqZ2MwGqi2s7UKHbQ7+52EQy20PoGJm99Va37VFHrfI5vrO/3Gcft+Wb3uTdDhoBF4Nxa67prbhDCQqQIpiHgZ1BI28wD4MxxAdSiCWWwb3TJJZBnNSuTAgbbrhhJhG1fr8cB3mlzGUEK1h9xTAIS4EosvZYiR1lu2FC4iVyGRJObcmH35VR32EbgMR2M3FFVaXLZMELZa4gNr1qIUrTTA3TpALrl9qKZmqr5Q39VtXHrHU1zGIVSlhZEipiSP9jN8oSQ36bd1ekbMJqz2uJK/cqVyP6KcaDPBZtyRIyXktTWwSd8VuqDe0EZV9srK1ytdG95K3rXkcksz1GZtn+bycWP/ecW/DYY4mJGTbce293yG9+4zbYe+9c5yL4C2mv4X20+ssCgwjkhYGNQQwimHflK5krfgv5TVII6KTUFn68WeRLaXIZvClr6PcrIpq1HR9+lvQ7TaR2C5WJS/npQzLa7QGbNgC5pw6LtoF+QShzZZUsQumyqiW3aIdmqki6iGun26jItVUDgPSEfqtaEErvlH6WJ4uVxPtFDLmW3brmOWfdd7sIqy2fyiY3Bs4rNwbpA+eByKsSLVgLOhZz7pX3djxjG5SlJA98Jt/nsbUg1SoGZ3UCQ/Oue5jMEkzVTjxz++3+PS3L2Oavf32u8yx85hmfGWzH97/f9TsYWCCBDHT4UDUiouGWqiYWVtCd0hQNgRUR31zKv8kmm6SWgbIqSIlBm0mB3yX5iCZZQ21kvYJT7IRq5ZGUw7zbBLURKDttABKrNtANi3q3Za6U4AKIwCUpWVQR3dZMbRWh36q2lmUpFGzK1dAVoFH503wurXZrGplqN2EVVD4RV1s+WSmLJnGxWcLkYypC3C7ZLPmJ6z7CoCwIeNQ7HoxIZisOLKUj8ZEaM6ae6rXd/rIEmE1pUcv2kT/9yct7bdqn/rIMamyfERjFoKI0qmnR1toiT9pSlU9nNyZ7yoRLAWWBxGqrMIwUt9m9mBRkHVXq2LTgiTQhepFWzsX99wJpDcGzJLCDF8+RrckqaEGWjdDKarOahYS1alahJM1UG+UfaqaKqLZDM7XV+wjdAKy7jZ6HXAEov0hWM1msdD2RKT1zpY1OkpoSYYX4tZOwqnwhcdW4ovI14xOqhamUCoBN4KJ6xR2kjMVLnqCsoax5XATVGnkiVsHZU6b4bf03/uEPPpiq3T6z+MuSlIH0sq0AFwOsu/2WntbqgrI6xqkfMHBDbG1wRJU1LZlkcBOgrJBJyovF1erEiqRyrwymWI0Z2C3Bxa1Cx1sirPvXFlg/CdFbP2G1gV4PSAqzsoko2QAsCbhXJQBLMmdJ2/5ZmqlKk1q2ZmorsNms7I5NuHMhVxqRbe1etEIO5ccsUmgj9rXYVsS+tbBC+NpJWBttr5chHSXyCgFnPAO6V/neU7+MXa0GbyUFZYFWCXjEC4hktgfw2DXXvKAx61z7ySxKBikuBkUGCIK/tnrrW10/gPthoJMrgVbMDOZsz1vSWkU/wNCtQaLemnj4zEaKcz9YnZWIgcGcCQsLro0sZzKlPp588slEAXEr2yP/Vr16DcrOA3kvog9cNWj70lrd7eLFbmN2w78T2HYTEtVuaqa2inCrXdvH1hVAllW5MKivleVvq8AnEVebJlWpUrm+VS6QtF47CatAPYTEGiQR62bPL71rxnT+rwUBhJLPuCbkFWLZ7E6DDcqSb62t56ESlNVJRDLbIxCZbaebAR0bMkvQVqt+twsef9xN69EUtnbAF/HTto/N610VC1W48g/lc4AsogpMwqVAE4cmVrbLNYlxPIRGfnVJE6nSr3KuNIJqrwEZ1IIAaAGg+qwiyWVSwuJOO2DyRty8alvpWdHpoXuHgnu08Oq0312VNVPLzGZllTds6lUrXyWJJI0lZd8b9SpSqMAnJR5QG7BjBsfQ1ttNWBtZhIsqHhQhr1xT/rO0LX2u7fykLF2Nzh+DsqqBao/KEXUsqlnJ2pn9iwCzxc8+69YONGaL4qHLLnMjx451G+SQ76oKGOghZ7ysJJS2katCtKwfqt0WBtaHUZYFBmYGc6yqSlzA/x999NF6IIgmUgZ1fMEgp1mEjTJASrk26VezBn9rjQjPofKL5Mp6UQWSq4Au6pqArm4F5mXBLhT0Uh3aVMKdcO9oRjNVWeNEWKu0MGyUzcpuFVtXAFlW5XeLJVGWv3Y9A5tKNUw9qsA0XZtnIeWBThDWJKkuSWFpbIBYQiLLqB/1CSVr0U4a4xr9gM8YbygLnzFGhrEOeeS8YlBW9RDJbIWx0kwCc+6/37+PnTKlrf6yoFU3A8jshi99qRtVcV1NBicsbhBYgKUKyxtED6H/buqCKlLcWtdEChQ8JV1K3jWI63glA9A2JqRcViBNGtJChbRxrxDTRlZHfvPEE0/446irZiefUKKpCMnVq2wLaRjUxwSbd6LrBEL/Pm2RttMnO9RMDYlqI83Uqm75N3JvEGEJU69a+SotFGx7bDchD7fhZflVHVt3BSCXBY0XnQhmow5VvlCqS+le82Q/LEpepfOq/sCYx1jCGMc4wvPheW2wwQaZ/SRLtUFBq43kxiI6j0hmK4zltWhK8OQNN7gxRL2XNAgkAReDkePGtaRlu2zRIjfz6qvdPp/7nKsiGJQY3NhSZ9BiULKDG0FRkIJOEllIAWWyGaxE3hTooVSdNrUnAzjb/CAMNuMdkkpgBIN6qAHL/fM9hAMSm4cEce3HHnvMn49XO5CH5DJpSQYLhP6FRUku56UeFdSXtz7ajVAWCMjKJKt7q+dPsqambflbOapuaaaWKSemYKLQb1USciLk1m+1k9ZjWTOlaypSbQm1ZKfU9ztFWJNcGSRdJVcGKZWUuehMSpPNffOcWFwDpY+FwFIGCGxaBsW0TFny0U1SbYioJiKZrTCWPf98/e+nbrjBjVtrrbZeDzK75rbbNkxTmwWI7IolS9ymFfKXZcDSAMffDG5Jvo/Ko82WcqfKRZAVkxVk1QZgWYssREtWMKvDKqusHaQltcXnoXuESCznow6KuE9QHogsQU+Q607Dktw0K4rUFWTBtlqnCg6yv2MyhBRzbvzzupEyOMmiJfJKWahrnnORCdVGxofveTRTO03a2hXsKLIqVwBrtRRZ5Z7pe1o4duu+ZUGUC4ANuJJ/rSLqO01YbZuyrgyMXyob7bSohmuz5FWuEUqTrZ0o+r5SxzJOhdbftOQJZfroRnQPkcxWGMtqUiHg2bvvbn/ChNtuK8VfduIGG7g1t9nGdRPKkQ15Y9BigFtvvfUyt7cglp3IvMUAzVY2LyZSBlMGWFmLgSwtsso2sm5IaouBn4Hckj57PaydVk82DygbigUsAKq07Q6sBTuL1HDvsr5J0om6hcC2Eh3dCiiPtkcVZKgsQo2ItQJbWHyJrPaKZmoZrgB2C9j6rSYpAogEZmWx6gSsED7P3OrEKuhK1kzeu/WsrA+ulcLK0pgtE5a8Uj+ykIu8KgsX4x3PX+4ekFHKZF0PrEauiDf3kGdMjUjWHdZ4UjXEp9kjllnQTsvsAFbC2293W7cop/XQH//oEyV0axAWgWUwZtDNK2SvVTvHtxNYENBzlfULH00G6mb1O621lQkGwi4w6EPi+J7t86Ik1ioWVCkIrijJZaLj2WKFZUCmLqh//mYBY32RQ3eFsqPLRV6ZYKlPJoW8ckPaYaAN0b6tJbUXAqiKSlhZv9DQb1WuDzbIqgqKGFZ+ywYKaSElS6ueO+/dLLOInyyWdpsd0teJTFPUD+1a5JXnyphoratyxeI42oFd5Kv8jFVhpqwq6SL3InFdVGsTQG2iLH/nshHJbIWxvGaZhcSiZtBOMjv3wQf99VoJ/po/c6abffvtbo9TTnGd7nwQRDoegyB+okUzMbHKb1cKUgZfCKF0Wykj1jfIdiuDLPeLSwHnsURV12NwZzBvJhK/iGJBVcE9KKCLARjLTaiqYI+12pAsAGQ1s9naipBcJlZZmPhbJKbIdia/0yROWXjWzbTvKk6WskiHfqtWEUC+0/ILrYJlOSk1q1U00EsBQyp/t3YAkvxDRVJE/GSt7EQZw36RRF618yBfdvkG0/5lNeb38s9V8oRe9OPuJgYSMr0BtYlecr2IZLYHLLNrzpjhZv71r20ls7gYgFbILFZZN2yY22T//V0nAUlkUGvW11VpIsvcOhEJkU4tgyyBZgzarQ4MTJyQWLDhhhvWt8uYZLE+QnxakZMqS7GgW6DumQSZ7JjgqKNG1i/5jyrbT5IUmiW5of8yLyXXkIWJ77W4yis7pElc/pN5I7CrhDDVqE1tagOYVN/UkfSbq0BW0wirLPgqv46TxZX70DZ2tzPdKXhMz0AWS0XjlyWFVWRHghf1aPuFXZRJTYSXdi5sPfPbGJTVPAYSNHHLTEjRbUQy2wM+s1NEZlM0ZiEwbAflmeyef+opNyFIvIC+7D/POMMnZJiw/votkdn1dtnFjVtzTdcpYHVjoMafqllglW3VvUCySZAQ3nkWstSwRV+GOoKspZBVyivyzUDP50wWrKRb0UTthGJBOyAiSV/gb+qhDEu7JV1YhQT57fG8aYPSzZQ1TooSVgqtkX8359KEDYFt105BGQiDaUK/VasIQB3I6tdtkpeXsMqHVe4blFva05KZEnHttu9lUlYvW0bGik5aLNPIKwQ63FFQ0KZktVTv9B+Vv1csg1XCQIrfs/XL7mXimoRIZnvEMgvSLLOQG0W3Z+HRq692v9p3X7fFf/2X2+8rX3GTN9nEPXLlle73hx3mFQxed/75TTduNHEfvvxyt+P73+86BQZLVvFsgzdbbgmMp20/59Gppf4ZwLUNxiTO5wze1srXCrgGpJtBCJcC7pdrQmIZrJBqapX8dFuxoBlYv2DKTNnbsQUvi6ksr1xXfY56F6GxAUqKspbUlSy5skAqgIvvigq4txtJQVa8bJCVJau0cwWZVWmCFGEVWU0irHqO2sK2Fk1lH1PQU7et42kR+bJsly2FVSSQkZcsqmrPIqLyzYW40ualPyu/cXz9u+0/3KvoBHEdqMWjKIjYyiZWBV0ns9/85jfdGWec4aOld9hhB3fWWWe53XbbLfX4r33ta+7b3/62e+SRR/zgcuihh7rPf/7zTZGRXvGZnbL11v59fAqZVZRsIzI786qr3KgJE9wT113nztl6a7fZ61/v7jn/fLfRfvu5g3/+81UstkXw1I03+uxhnZLk4n7xk8Xq2UonLWKV1YCsLWArA8MEouCuZv1Uk8DkS9+wUltMaLhWUBYmjDIkpaRYwHZ2L/hjcu9YYXkXwS/Tr1eWdp6z0mBK45XrpU26SlVKu7CWXFmOpSqhrWkFMqltyRLcCUUNafaGfqu6D5WNiVAR9lW05uQlrMp0xWfWT5CFEJD6ARM1C5Ru+4lbVw0r3K90rO2QwmqFvMq/Ui4OyrSl5yF/aEgrrj/cQ9XaUtWRlu1ttAnYow2XVa/WZYtnnDegesiR2V/96lfuIx/5iPvOd77jdt99d09UDzjgAHf33XcnEoyf//zn7oQTTnA//OEP3Z577unuuece9/a3v90/uK985SuuH90Mho8a5dbZcUdvlRWpTXPsDz8jkxWTvPDkP//pNthrL/e6Cy5w151+urvprLPc7ief7PY89VQ3vMVBEReD0ZMmufV3372l84QZbJIAmXv88cdz+UJmQe4AWdYwRZDzYlAOU8UCCAEWTQbpskgV14Vo81wltcXAAlmmHKFyQSvoFcUCZSyjrBBGJs+ykltkJSiQ5E8z5ZX7AJMO52OyCf2Q5ZPLi0UKzxmobepVZLs1KbDDkgqdX4oAEDjar4KsqoaihFXWSZtGlXZjfUeroi0a+hiLoIRW4W6Ra6XAldSV/INZ4PC35Mbw45cbBu1K2dRoTxzLuNltl4xeQlq7kI9rHgm/VhMLcW5chKrs8iQMG7DihB0GBHbXXXd1Z599dr0S2TI+7rjjPGkNceyxx7o777zT/fnPf65/dvzxx7t//OMf7pprrsk9cTOh8KCqaCq3uP6MM9w/Pvc5d1wty1MaHnroId/QLHGl4d93331uiy22qAenfHv99d2LjjnG7f2Zz9TluFpJkGCzfp0zY4bXwX3NL37R0rmwDjK5Q1STQBvBKg/Ba5XIPPzww55YhFIjEjCHwAJZ2ULSy3EM4AzW8ktrFaHUFhOAJKSoFz4rywXAKhbgc9xtS1QauG9tT1IfZWylyudVEzSgPSkYqdm6oKySz2IyV074ZiyaluSKxAEr9C73h6TkAFYRQIE/0i+tIvISVkmuhW3AqlGEaVStf2u3iWu4yLAERdbvbvZF+XBb8qq6k+FESgiyZlN+WWz5Xn7fjFVVHVeqBJuUwhJXaft2ol0srqlH8Px4dvCkbi8+ivC1rpWUznDjjTe6E088sf4ZD2r//fd31157beJvsMaee+657vrrr/euCA888IC75JJL3Nve9rbU62gisJXTS24Go3IQFzs4z334YffoX/7iNjrkEL+iYksT4jf/0Ufdwqeecuvtuut/fldSx7jxq191Cx57zO152mktnYdno5U9RCMkbXRuLLJlpJuVn3FIZGkrukaa5ZdBB6spq+YwQUErkHUDAsTChPNj8aVOILFlptiVYgH3X1XFApu2lrbcSkKLJOsS7Ssr1WVeyPWEc3MezimB91bA7xU8E96LXFrCaGTuqdsTUDssrEkTP+OFzUalLfhu+Y4mlVNWS223VzF63C7stCshVxeeiXYttICStrHVfq2i33eVEfq4Uscirp10c1mxYoUnivQl2iXjbNo8I0uxFjFVQ9d6u8TKIQMW/P+uu+5K/M3hhx/uf7f33nvXB7T3vve97qSTTkq9Dv60p7VIsroZADYypxWOhk993vq//+utuUe86lV+sGTCo65wMQCWzGrrswiUcUUD8IInnvDX2+m449yULbd0rfpAstUtF4nQ75R7EQFpBdQH7Si0/lr3haTOSrkkfcVg08hHOS94btqiw2eV/1MOysl1yvYHr7JiAXXA4MqL++b+m5kceZaaoGlb2hrlfhljWg2GkJIB/UGJGZp1Ryh6X/QDniG7WFUkDmUQ1kaWTFkEu70FL8hiaYmrlcKqgjuDLav6hoIZVX/W2qqXFvTyI8d6p+C4XpONq4rvs81O12n/7IHa+KXU34yJzLu2DFaTWO1ZOwjwikhmW8Rf/vIX97nPfc5961vf8i4KbKN/8IMfdJ/5zGfcKSlC/Vh+8csVFP3eKz6zBGxlQVuKDJqeEN51lxvAcvPEE26ttdf25I+G+8T117tJG23kJq6/vv8NlkUIA36XecghHZHfaKWuAeyak092I8eObSlRgsgbJJLz82J1SmdjEgD8LcmlVgEJCS1Y3NPMmTO9RS3sqHbrn5Wr1ATKAhZSbengZsG5myVxvapYQLlYKDBwJg2ueSYMTdCcS0EpZQnB00blPqBUuGUQ47ygfUp+zcqy9QNhbUQIq2jJFDnhJSmsbmi4Fk3tbd0v5JMra3ZS3cpyp3bPsWXsZvQrQlcB6r4qvs/Lli3zO7WMY0rlLfcQlVftuaoLsUpaZiVzIvF3gf+nBbZAWHEpeNe73uX/v/322/tO+u53v9udfPLJiY1E/mK9iMWzZ7sxq6+eeYxW1SKzz919t//8eUTvX/xiPwFghXzy+uu9VVbbyzTOzTbbzPuNZkmiMKFgCaIh81z4HXWO5XTkU0+52370I7f/N7/pxq6xRlP3KNcBOpYlkXQgfIEhDHQwOmCaH23R60EKIEv2MwgeW2ShFZR7hcSHWbbKAoMLgwlEmWfQLmmpKioWUO88V+6deuWZ5yWHyt8OgVV2LWlZlkUkrO+0Va7opFXCLqSon1ZcLapAWO25rX+rJlBZA6tCCMOJ3vrhaku4SlYqWbJpMwpaVTCZpOuyUpLq99ZtphvtvhdQZeIaBs0yzwAFL1Ne5gK559gsar36nLtGZhn8dt55Zx/Mdcghh/jPqFj+T6BXEpi4wsZht0D6DSQzwJKaBWn1Mak89+yz7rl77vGfL3ziCf/O50tpuDfc4Lb74Ac9eYXg8gJYAFlA4DcZnhcSC1GAaFqSB2ngOfzqzW/2CR0IKmsWEEsF3gBNGAwGXBeiy/9bleASGOTp0Ja8J7kvMIFTL3Rsm2WrzOAKDYLcZ7sHkSopFoi8M8jy3Gl7ebaaVW/8XpmjwkVQK9A2qnwxlQ2sW+l8uVfaJmVox0Kq3YQ1nPRFXjVmaQKtQqBJWE7eq+iHm2Yhli+4MqypvErx2ug81m1Gii2dcJvpFfQCcbWgjBixpNijrHU852bdczQGMw6U5WJXJrraM9n+P+qoo9wuu+ziA7qQ5qKyjj76aP/9kUce6a1I+L2C1772tV6Ca6eddqq7GWCt5fNuT9BlggQEP9hsMzfv4Yfdzh/+cG7L7HMPPOCW1yKzlz7zTP2YCVivFixwm+yzj69PO/nTqJm8WcVLF5P/QzIhulYr0+KRiy92z/zzn26fn/zELULjtolBXjqElEkWU+m3MuFBMDmm6JZzVl1BoqzqA//nc1argHJAYiHxskSXKfkknUUmcAbIdm/3W8WCbpEygfvHlYD7zkq3q8AZWV5pC7Rv6qmMwCoLRWDT5rWN2kn3gSTYhRTPrNX77QRhzdLA1KTP8+uWNmpYTktOFIBTtXKG5Q3T0yrDoIIZWRTmVQ9Q8BYvzsHvynLJ6XXYxBRa1NA2JNXHXFGVthFmgJtXSwWsNqHA4Waeq8ZGWfiVBbGqO91dJbNvectb/Bbupz71KW/y3nHHHd0f/vCHelAYEky2Y37yk5/0D4R3toUhWxDZ008/3fUTHvvb3zyRBRMaaInKykG9zL//fv8Z2rRLZ82qH/P0TTfh2e822mOPRCsW9U1dM5FpEs2yBEGYr/rYx9z017zG7XL44f5ZMAAUCSaic/DsuY4CkmQF83Xw2GPeKoVVlBUmHbPVQRbiKm1EIB9IXdMHyj35pO+szWq4SiqJc0PEgFbvVquPQUdbf+1CFRQLlG+dbS7aF4NrOBiqzkRelaBAE3TZEwdEgDJxPVAVMXAb3FVUJaNThLVRpH7VEg8k5aO3kkfdCMDJU68iriLalE9Z/7T1T7vNS17Vx5TwhT7FvTfaFel3yI3EZlSTNb7KixprIVbWQcD8xqKkmTJrZ0oZ2mR4oZ2oH8nlqoqypl1vxbgUpLkVEPBlQac79dRT/auf8eAll9T/bkRmbSTq4kcfdSPYXtpqK7fEkFn8ZUm4MCalAdLwGdAVANVIAurGr33NLZg50x36hz/430IGIU10AM7TqCNRZtwHGEghFJBVritXBnVOJl06EOWR3lyzEKnCGgiYJESmRfL4v8T488J2ckUGaxvHJlawUBpaayEuG91WLIAwYoVl4uT6tBG1C22PirwCWT2aHYjzTOQ8f0VhMxhXJQq7meAuG5jTLsJqyxdaBauWeCAkgpTTEuwq5qO3/ri8RFTts9P2sFLuFkn5KsuaUirb6Pmq1EEn0WvENUvFQ3Mlz5fyr1GzqjdzDRl15FajOUtJX2g7CsKsiktQEqpZqiGOhYaITsjpMwsWPfKImzR9uhu//vpucU2DEqBkYCW5khCm38zy4yV72E7HHuumbLWV/4yBEWJKh8DCK5/ctAET6yedT1v8oRWY7yEbnANLMd9BjBiIm7WgQBYYrGTdsOoJ+p6y5LHIyneIQUBb4Ew0eckR94flrV3WoG4pFmjw47kC6htyJikYXtKxlJ90GuFvFcrcZifydmXM6WRwV5jGt2zXkTDgyfpg8lJykG7XoZUOEnGtIsEOrcPW2iq/YUWN8x19RLro2s0pQrCSEr5wjm7vOlQhcK8KqYCLLBZDFQ/Ac1U6bD4vsjBZWXN5066UFk+KuWGusNkGq7JbkReRzFYQS01ih/EJaX0t5M8D5t57r5s4bZobPWWKm3vLLf6z5UuWuNVe8hK33jbblFK2az75STdi9Gi3x6c+tcp3kE0GT4ghgWZJViZJbDEhM6BYqyEDOVZarTQBhIytVzoc781s/8tCAVlIkuBS1hM+SwKdXuSVgUa+Q834b7bbvaAbigXULwMs98Z9McBST0yqknPrRKCErikR9ypP5JSRuskT3NWONL7Wb7TKiQfCQCfeNdlXTfnAltXqc0q7VeoHtEeNKXppQVzUrcZqHlM/0jzutn98t3xGLXGV4kQ7dnuaRVIwpM1Sx3gVtmUpCvGcGdOYA7PUKFasWFFPFqXryMeaepAvLeeSi2I/oPsjVcQqWDp/vtduxTd1UiBHRWO1jU+WQYDG7LS3vtWtHD7cPf/44/6z2bff7lbfYQe39vbbt1zTi+fMcbedc47b94wzUqW4KBsdRVZVJmAIKZMinRiiy98iW5qoIbd05jDoivPxeyZ+jmlmOwWCrAAvZffSNo2C37DSql5FfiW4T4cvgxi1272g04oFDJKyEsrCJL/ETuiwhn6AvSDiboO7Gj2nMI0v99UMueyVxAMhMdHWu53sFZ3f7Qk4DMpKIiYi2QAywXNUsiBFhDezIA5TJnda87hqxFWLZbmSVGEBluarrUCyRm4Ncotj54ZjmPfsrhLfy0defvIrVqyo8wO1T+qG/s34wXX7uX10/6lHJJLZrd7yFnfgj360ynds41syJJ/ZJXPneheAdbbbzs0jQ8szz3ir7FM33ujGrLeem7zFFi3X9GPXXOMGVq50m7/+9Q2PFWGlI2MJZaBRABaDrqyzksqyPpVJgEhyr1h8t9hii9ydUhMOAwGrWwV92C0bS2SZIJhwmDTLju7FrxiyXjZp6KRiAc+AOuPZAW2HaXJut0+ipM14TgzgveIHaIO7slQyFITRbBrfXkk8AMJgltCiViViEtapXQwkERMrJcd9tkJedX1pv2pxXbayR9WgbfFwYVM14tqoz7HQoM/lGZeVYY1zMK4xV6qfQG7lB67zy61m+PDhdXIvv/m8wYH9gu63hIhEMjs6IVhLligLbR3MriVLWH+HHdy4xx6rJ06AzK7zjnfALluu6ZlXX+0mTp3qJk+fnvs3DDpYoB588MG6nipWVgZlZdPK2+Ho2HRYkimkyTqF4FoQHUizleCSS4Nkv6hbyAYDRzs0Pbk+g0+r28PdUCxQsBEES8EADNAMtp0gRqGMUC/lgKfN0c5ob1nBXWEa3zzqCiK+NhNVVbffk1J65rVSdRKhtdVmQ6KsaQtcq5DBb6SD3GyygXDRJu3XdvmYdxtpWdWqtrAJJdJkGW4l+xttB2MEz5pzaetf0pXyY1Vgp9oG3zNeUC8Th8DiphGG7p1X3Gd2dEKKWRoxnclCnWn+o4/6/68+fbobVSNMCx5/3M264w637qhRdemOVvDoVVe5Dffdt/DkCKGE/GhLmAG5WUsalscHHnjAZyCzAVxJYBJgoGDSt2mMKQdbvSKyCghTppuywfkhgmW7F/BMsXoz0JepWMB5IV9SaNDkzEDNYqTdk2mSJarXZIS4ByzYvCBqae29aBpfEVgmMX4DYZI2bhXqJk1rtmouDVlBWXl8hrlHWV7lR98KeU3y+e6lRVuZxLUKbTlLM1mLxSIEW+eTS4D1ZQUs6OT+xvO2Czvb5yWZpbZRlSDHKqD7o19EsmU2ILOKcKVhyx+GBl93M6ilqxszefJ/tEwfesjNf/JJ9i5aJrNLFyzwVt7tagkt8kLZlKQU0KplkntmMmQSgchlEVosrQw4vCuDGAMJlky5NShgqoyyddK9oEzFAmUAUmIHQBvj81Z0C5tRQlAWIrkPdDJ9a6eCu5pJ40udMJnxnBTUEqZe7jTSfHG1vVoVrdm0oCxbzkbbwDZgi98rfXIrfvQiKQre6gWf734krmnKGM1oJtvgK/m0Kjsp5+O5SgeahR19P1z8aDEvYwL/T9IqjxiMSGZ7hMxiiVQkv/xN6WjKAENwFq4Jw5HZYMU4dqx76PLL3ajVV/fHhRbdonj82mvdwIoVbqN99y0c7MJEUWZQEgSLiZ0JXRba8Nwi0Gzf6HtWwRBABdJAJmSxbdeA2g73glYVC0LyKj806kDi7NQtk3U7B04byEKZej0LEW2OhRPPJKm92zS+TEyNLM1MeLQfpZCk3XdLWiwtSYLadhV8cUNRecqbFpTVqJxp5JXftxIESnnU5pVxDgJbJcm4MiWmwuC9dqbsbkXbV2XMY+3UIs4GYGl+tXrPUq7wCY3mz/e7NPKDD8fWUDGH3zFG9NPCpt2IZLZiIGhrJY058JmVBYTOQofQwCFgmYXEAp8hZoMN3AMXX+xW3203Nxkn8hYtszOvusqNW2stn3wh76CBnywrb0h4mQM152LwhxiwUoXQhgFk8n+VBBd/Y8kVgYDU8i6LbTvQDveCZhQLwpS6QJldsAxIfF8BKu2ccKz7gCJte93Xq1FwV940vjoXz1gSbvSfTlunbUBLmCRBGp3d3t601rSkoKyiaUeTFEzK2MoV8VGbV/auVtwRqoCkNmJ9Rxmfu3l/2ta3Fnmr7ZvHD5e+GCoGyMqqoFebSCBsI1rc8lvGWmt0sX6vHFeWYs5QRu/OIH2uMWstsyKvstDo/7KOiMyOrZFZQKDWnPvvd9O23dZNmDy5Hn3eSvDXhi99aa5BnUEEv1Ym7nb4oIqMSZxf6XgZnBg05JMk1wH5lopUo4gAQZCqQTugwKyy3AuKKBYkkVe7TQVsxDz1ljegrplySweTZyIdTAhRt7ef2xncZdP4MsEnpfEVaJ/UD8eDPL6zZUsdyZqmbWCRkiTdyyoFZTVLrtPIaxlEXTsfavMK3urVNp+2uBEp7HYijTS1CZHNLD9t7k2+rNbKqmQCsrIyRuZJJKBgWfoyxzMHUkc2ZbfSaA8lSbVOIJLZCroYhGRWATgSTRaZtdm/rGUWYJkFq2+9tf+tVpTNAL3bJ/7xD68v2wh0WIilZEWKQhIkeawqnB+SiuUTgscqFwLJ7xlAuG8RWSZl6rFTCQUY0DTZtluxQL53Nj2sMmzZQZy6gMCqfvJEzJexldpvg7YN7gqDGZlIWWQlpfFNylAmlY1OpNdNyopUJf/FMCir1aCbpKBG+gjn5b6VPrkM9wjpyEpxo1ddZkS6QpkptZFuL26SFl+NFjZKJCDXE1lZBRFWPbOiiQS0YKffcx0tRjUOSltYxLpXFzVVRySzFcOyWhrC0Sa1rISx5X+p4ByRNbA4ILMTpk594X2jjVre7oHIrli61Ftms0D5sB4yMKRl02oEfGyZ2CHEvCsFbRIkSQKpYBBiopP1D+JEeWQZg8RxnnbIbiVNbAxsWDvboVigCYeBUuTVbq2G9yftQsrFOdpRBzaNZr9spWYFd9E2VY82oMum8U1adECmaJc8i0bZfMrINGSlsGykfrezIilQJszqVVbwmHayLHllDC3LtzcpYUev+TjqHpJSAjcrM1Vm2dIy1KX54Gq3ksW6TSQAlLJVpLWMdK20WeYX+r6yaklfmM+jZFZnEclsxbCstgUxypBZBQrQaaRgAOjQIjNL5851qxnyhJsBGFPCKhAXA1QS1srIIqatFQY+m4SgCLg/BhsRUwYENGUhaFh6k87JdxzDwCbStvnmm/uBhN+L1ALqDf9aSJ80UtvpXqDyyjLA4Mez5GX/5nuea0j+pFgAMeIZakub+5DlNU130uqWMnBDsMqOflcCBZ475e7nNJpJwV08UxZv3D/PIomYijBQT5LSynI5aMU3UJYnabjaNtItgpXmu2gDg2g3rZKmpKDGsncE5JoAgeWeeiVhR7gVX0Xiav2fkzLUqQ2L5HKMkggkJRKQJmvZOw3KWEl/BrQxXip3Wa4qEcURyWxVyeyECau4GYi4WDIryS4ss2sby+xa227rXRXGmECyMBUuFj8GsUYkBzK7wT77eKWELH9OysaE3szEyTkgaxBhoIh6JiPOjWWVSYPBwoLj+BydWAYUBhIGMNwJLKGVP6MsNvI/1WDJeYuSMOn+2pcmOoiPBXXCM6RMWrHrb69GsXixvwcmFp4z5xF5whIoy2sjixr3pBSzEPx2+F4yeaj+WHR0yr+zm8FdkpbjeUinmOec5m9M3dD2JKXFcWWmk6S/sFBh8SZFgTwSU90MyrKkpIxrQcoUQEO9tkMZINxxaFWOa6gT1zSLvJJSyHKue5BEFeON5j3GTI5RxH8niKPGVfqz3PZkpKAM/aBG0euIZLZiQM81yTIrKwOTlzq1gpuSfGY3PeAA957HHnNP1gK/RILDlItYEXEJSCO0K5Cz+vvf3Z7/7//5zotlM/S/VWICJqpmfUSZMLjHcCVNuZk8IHGQOgY1yKm1bDGYSNKEgZrjVKZQdovzMeHxsnp+ckPgXLxkAQitqFavl+NFSBUAwbGQuyKTheqTiRKCAqnXwoByNpr8lRRCW1vUVavas0nXYBFAPUkbtexrVDm4i3ZNHct3OcnSzbPn+dGelCWtHZMc/ZbFGmVqV+Bes0FZsraWbZ3KUuQos45twCLXUcBiVXccwuAn/rbEtVvC+lYmTa/QR1tjsKyr1Lt20XQPIqzd2F2QlJ4kteSmI+NHr7iTDBVEMtsjllkRMvnoAT5jJZukZuCjMceNq3c4bYvq//zNpAyRhaCmEVoSJSxfuNBt9NKX+omEAcYGdlEWtvlb8cOUZRcSmAbulTIyWGMp4z4UjAAoO39LOzbPJBem/rQO+5ao8r3+TgsOENHHspzHahNmclJaT7k/cC9KbZo2aEKeZC0IpV/KAnUiVwIG8F7KwlVGcJfcXeTLHdaxpLQgP3wOgeV37VKGUPumL3QiM5QNypIbQ1lBWY2uK8urVeQIgxrLgHZUuJbiE6oYsGiTVOhZaGu9m5Jpackz5Ooi8ir3ALUlwDgn0lqGu0lZ451iDKRIQNmqbI2PiGS2kgFgw4YP90kP1Lkk2g0YxJUCT1iJHt78+YMssyEJ5t1aFTmnfIqwOkDEICrhBImLAcR67Z12cjMff7yeElaQAHwrkwukLY8FElA+ygCBY1teViAGH8oBKWaibya9q8hIM78V8cxy2ZB1UwEKCkjRb2T1I4hE2cogUTwjiLl8xhRsJFeMdln/rCtBJwLnqpS5i4WSrDJhOlrJbklKC5LbbssdzwFrLG2cZ9GOCd9GiicFZdEv2uXGkFeRo6xryeeSa0njs0p6xyFxDZNUdIu4pmVTY9zSS1mulBQlKZFAVayati0whlNmykl/p6xVWsxEZKMaPTdikGUW8qhOJH9JDeZ8HqamXVKbVEMyq5zhgMHDZgETmQUM4Fic8KENty0fveoqN3XPPd2iGvkKc0ZjGQwJbjPWpqKJBSgLllwGSzRtuQcsqtOmTet4mk9FtSbdg3x0GSw5Tjm47aKBzyHmVrEA8HwkOYY2LvfIM9TEW3YU/FBzJQiDuxTEJkkxLHPqIwr8YMKj/3FcJ6zU2rXgufDMy7AONQrKkv9tO7VDre4mhJL/ZylytAr1Q54hY5+0X6sQvFVV4hqqCdDutWPFu43BsAsfm5Cg23WbJaPGywZM0hYYf6tY5ojGiGS2gj6zob+sjYxnkOczSypxMQDWzUC/tWTWkmBF4wocJ59cBk+wcsUK99g117hdP/YxP6GGpFWSJK2ssrke121m8pJfFS8mgC233LLjK/4k9QJpiEJgRT7DoBGehax73Lv8MsNzM9FDlLkvPUPOVyaRHWquBIIC9dSfmNh4BlZyS1JayqXeSbkxCATWWOlWNjPJJgVlgXYEZRUhr5Sr3bqb3KtIC9cXUe6Ee0ZRtw0FQHVDmzbU96VcPB/KYMuhRAJyDZB7QNV3bKQxLPKqvi1NWIh3v0kIDkX0/4zVo5ZZwfq5NiKzSZZZDdyQEykfAAYvrC8WDKT4v9LBOf+sW27xGcnW23//RKtsEsEtAslHtaLHyja8BN+7sXUFCVSCBsmTcV9JxCdJKD/Jz9WSyzC5gaLrsZ62Sqys8sFQcSUA1D07HljplO0KQmUz9fCMmNS7QYAoA+WjHLic5H3GNuDGJkUQUeqkhU/bt9J6FXnNo8jRyjW5bwVvMeZhfe2W9qss4NbHVZmpZL3sNHHV4gZyZ6XcrLFEgU6WsFbVyprH31pKF5oDuUcFyfbKPUU0RiSzFfSZVcIEpb2zHU5k1k5waWTW+syGbgbWBUHgOhAnyBJbmvjLjhg71g2svbaf0C0oG5MT52RglMZeETUDiBSDSrMDCoMV96eI804D0oBrA4O9grBCvztZV611L00o3yY3SCOXnBvLKceiQVt0W3aouhLYBZhk5Khj2p8mOdq92jXfdSMAiOeKNTb0080KACwzU1YZ5JX2DpGGCNE+20kmw2xz7ZDn6lXiqrFZChDStKYM8mOlrmgv/N0LVtY0qO3RFqwOt5Lq8J1826virxtRLiKZrbBlFj/K0EeOgUj50wU0ZtPIbJqbgc4VggFAEyRkdqtjjnGTVlutPgAwMEDMpJ/JsXLuL5IqVvnom7XKynqFRbaT/mQ2ep0JAtIhbVsLWfeopyQ/WXsfNlNZ3uQG2g7nt/jTEiTDxJSGoepKIEBgaS+0YxYc1BXPUhl85GbTLR9KJmC5PIRycknHsoii/fHcW8mU1erWtCyvlrzSttpFGKycHtftRra5RsSVdlSmpnARzV353Mq/VZmvIHLKfNUP/Z5+IvIq1QFlYNOYSh8pMqZG9DZ6v1X3GdjWx2dWk0VIDBPdDGrafDZBArAO+pbMhjqxIZgYnnj8cTfzmmvcnj//+SCrLJO/MhhhYbTgM6yFypDUiFxwnmYHfH4v2aSiwWNFwWAJCVRkLkSIgZPJASKRpjNK+dIsRNIwhBQ3m9yA83INfg9R43yhBu9QdSWwpI+2wvPg3nnnWZIumXqQP2o364RJGSJLPwtdf7JkwzpJvEXgRCJpv9Ql5LXdKgAK3lKCBAVvdSLHfZhhTVZwq/DQKeIaau3SpzWmK5GANFA7SaY7gTDDG/OLTWChHScMQPxdhX4d0VlEMlshLF+yxD11001u+mteU88wEpJCOqd84aybAQR4eMaEYjOHWfeDJDA4LJs1y23xkY+4iePH168l/13IASvgpN9BcFFFyJIq0vaXJYJFIMkXtohblQVLg3J8M0Byfiu/xOQGaYcchYFcEMYsnVF+S/0xKVL+MkTvuS4k1kp5MdBDeoaaKwGgHiCxSrPLc6LeIfwgzVe506Dt8Lzo540WgJINo+ydSpRgLa/0uU6RV8DzkvYr9UP7bXdwlIT+ZXEVcaUNSeGh3VZwkWcF7TFOytIK5ANNeSgL7/1EWpMs8FK7oA3wDKyBgLqRe1BaSumIoYFIZiuE8172Mjfv4Yfd2i960aDECBaKMA3JbKhkYJ369TshyeJrMbBypbvuAx9wm77vfW7arrvWP5cmoxIIJIHBlUmHCH+2G5MGWohGK1YlCIB8e1sJQEsC96jtaFb3ofWH58LqH8sQpD0rkCvJv5bjIbvt8Mfk+gz4EtbnOu0S8K8apL+LFVoyQVj+qXdpx1bJtULklH7AgqyRbBj9Nc+ORyug3mQBlYsSBKETW/gKvKPddip4y7oKdJq4Kq2rVRGgzhkftKNGHYjEJ2VH7DdYy7/0XpPULqTzLJUXDAhVkFiL6C76u3f0EDxJuvZa//f6u+3m/8+gmmRRo2OHZDb0l1VWqSQ0IrO3nXOOe/K669zLvvxlN9JMYhA9ztuIQDIRyDoWWl9ldQhdFPJCmWMUHV3WREe5IMnUKxNoOHEokAtiwbF5rAA22EoZy9oRFR+6EkyfPt0P7FiA8aeF+PerZda6a/DsaHc2d7pVgqhKefEtp6xZLh+SDeMeaGftuAeRV178TZvvpP9pGLxFfw4tb2UTV6urK3ky6c2WTVxtqlb6Ji/KIcKqY5SJkHtXAN9Q2B637iPUjdof7T2JuPPc6Osc266Mh0MVAwMD/nkoZbvSt9uX2iyLqyx3qG4hktmKYN4jj/j3g849162z445+AJSFIIQc+20AWEhmFXiUBAZUBg3rU2v9b/960kluxuGHuw322mvQdww6kLg8Ex0WQayz+JBi4VRHwBrVrPIA54BwMoixzZ/k6lAUdGCIIPfGJB6qMdhALogoZdhiiy0yJ1sb1MX52mERDFUJqO+w7FgmIbfUWRlSXlUCxIR7ksuMJHeUwa2KAR9Yk1hg8BzS+qYN7krSHi4jaIaXsgpav8NOgOcEeVXwFtcve8ERugpIFJ+6ZNxrRzpcS1j5W4sp66Kl//PslZyiG8kQqiSZ1ch9hHqT5KFSy5bZJ/oZAzUt3SRiqs8taJtK2Z6Uyr3qC6xIZiuCxc8+69+nbLWVf08imkUss5AvOr4F52Ngl2WWFLZYWe11/v7pT3tFhZd+6UuDfqvf5VUf4Jz41hFoQ0dgEmfAohM1OxhBDpmMJCvWKkFkUoU4UE82RWhSIBcTPvWlVLNJKCOoqxGKqhLwHWWWlFc7RerbjXB7Ue2ctsACh/qoIjFg0mBhpyC0pLpvR3BXGnmFzFFnndKbVeYtBW+V2QY7RVxlZRVhtcFXnF+LRFldFe8gSyuvfllINpu4QpJZjZ6LdsEYS5XYIAZzvQBZT0NSurz2UlyMYIlpSE75rorjZbOIZLYiWPLcc/59bI2AFiWzq2288SpbBuEWjBQNFMglPUgatpe6uv12969vfMPtedppblJg9VRa3SLbOpQfknHffff5yQtC26zygEgcZBpfVaxbzYKJCGslE6v1Q5SYPpMi5bX+plgBIQJJbgJFgro00WnS03uWH3IZqgRFpbyqBOmpQoqoIy2sIAe4VHQzo1MWZKFnUmbrNG0RV1ZwF31E5JV2oohv2nGn5esUvEWZygreajdxlSXLWlhtohlpscpKJRcCBeTK2sp9DtXtb7mOWMmsvFrDSguuzJJVcxFqB9TmsiyoVn1IvtT2pfY2stYu+4mgFkEksxXB4hqZHdMkmR3zohfV/69BJASN3WrN0lnkq8Tk8Mdjj3WTNt7Y7fKRjyRu9TRDIPmd8t3T6RiomrHMKliGyUM5wIuC++A8nMNKWFnSwcTPxCiVAiZMWWqxEODHKAIqyR6RUQYUWdeyoAFH77zkSweh4cW58rgSNCPlxfNIk/KqCuy9UzdA1kTqgh2FKm83UmassRCcNILaanBXEnmFBHQy05cN3qKPK0iUPtSK6oGymYm8anEuMfxWUvBqMWRJq8ZF6bIqa5rujZeO7Wbq2aoh1LgNJbMagfql3TBmanxqRbKxCpAqRpoFNdR7t9ZT/qbeFPDH/3txF60biGS2amR28mT/bv2tivrMpvnL8htFekurlsGZwef+iy92T151lXv9b37jRgb+hhAfiETRICL5xmGdlU8jSgBMtkUmIgVOMEGyVc5gVwR2C5ff2uAzZVyiPLwgT0pPK6LJfdikB5QHcqstfMnjtDoAi0DjziCHe4ht2T633Cd1IAs1gyeTTxWsSXLV4AV4DrQXJdngOUDGqzrZ8cykJkEdJ/nuNhvcFRIH+pPSw3YjLaqCt+TfT/9sxj2CZyvSGhJXkfOibVOEwhJWXkCLYSV54PyWtPKSJJ9cBOiHvZTStZOSWc1kXeMc9BOed9WURloJjrLzs7WeyqKveWaot6N2oJqtZ4iSWYjscLPlndbgsXjY77xltkaCAYNMEuGjEzFQQxDogEwU2kZ74Le/dZO22MJN3X//Qb/RJMD1ivh8cR223rE4KVoXUC78VPNaeRkkIJvcsywoRYJ7GCwhbEy0spDJ6sfnEAsF2nFMOKBCbrHIQhhsUFejLE2tWKMAE6wIA/ePxaJsn1C5WUBI8G3mGry6MdDynCB4kmWivikL/6e9dFJftVnQl3hWPCfrg91scJcIlogDoM92I10roP9pgUrZtLVfxLJviSv3JpenZokrdWpdAnjJb1BbsMoOpUWD5LAoA4sO7ay0Qp77GaFkW7N+z1qsM44qFqEbKaMbBUclWU8VHJXmfxqtp91HJLMVQRjEleVmYMncMtIXzpvnxhuFAPkThqDTMRkx2dJhedck+cwtt7j1dtmlLj4tKDMRpK7oFmtS4gTODcltlLhBoLzKHc4581plOT9kFWAZpi6V3IBJjPrlXAzIafVMPTLwMnA/9NBDbQnqkj4qVookVwLKqHIoPSPkukyxdMiR0hjjT5uk6tAOiNxx77JCs2jhWUM2sMLz7Nutr9oqKDttmr6j8jcT3JWUIpb7p/3xu26krGV8UPAW/ZVnlFf7VcRVxNESV155SaNNJCDSKtcT6tESVut+QPuSpZU+Zl2UqFfIFH9HIpJPMqsZNRQpGNDHGZPbFRircmdF7ofBUVmR+9F62nuIZLYiQEGALF55yKzFgsce8++TNtzQvysYIem3dFAGFgZx+dX6SXPpUjfnrrvcDu96V53cAv5W5rC8LgYcCwlJ85ejXEzmuC5wTKNzKWhM8jeNyiFioQxhytYlyzL/hyDyXVb9ci0IrLaIyrYKcn4GeOqYiSJrm01uALyYmCFFEHXqoiwZKp6zlfICTF7t2PqTVZx7gdRIiQDoefEck4hh1cA9YI3VJB22ESlmpFmWQ6uXSBntoRsEXu4cvKQ8QhtrZEHjWOvjKuKqoCj6W6P7sYkEZGXV9i19V64BLL5CNQbtarAgk8XXugl0UsGh1xDuAOSRzGoEngfjFO2I51/Ugq9yhb6mIVG1SAqOUtDyUA+OGgqIZLYiWIHlY+zYekBRls9sEpmdWCOzClBIgnxmZfkSCZp1221u5dKlbr2dd3YraulyORbCiRUGcphHJJkyy6c1i2AxUDLBN0rewHW1lUVZsLpkAasrlmRNmpAEJj7IgVKZQoyzJlW5Nei3+DSWNQBKWgorK2Vgsii6XUy9UiZZPJi85fcM6WiV/MkPmEkN1QhZu1qtA4gJz1zJDXiukDurw8n3tMuy9VXbAa/+UVO+oL5CixWfQ9hDy3IYtCW5rG5pAMsHUsFbPGe1+7TyJBFXnqMsriyI0hZBSYkEREo4hwgr4w1/h31Vv6cfyeoqNwER5+gmkF8ySzsA8nluZQfA7jIB2kG4gGMMzNrez5KWCoOjog9zhEUksxXB8hqZ1eDCRJJnUJk/c6Z/n1iT0soiiJpg+F7b/Lwev/56ZhK39g47uPm14Af5Z0rpIE+iA/mmZqXnFDifyHISIN3y/dV2ZVoZKC/ES9GwInWWcEAWGlkwOV56oNR/WUTWZq7Jk/o2D2Q94aVJBCLPc4WMUAetWFU5L8Qf6woW6makvGSdkV4k55w2bdqgxZYCpiD4XKMbvqBFoaBBFiOhy4AN7tLuBO2YNmqDtjqtOJC0jQyBpU0qC1YSkckirtqqT2pnaYkEAH1LigBqp0n1oIA3uSqEbgLtTjnbj5JZ0hzmGZSxA2DdCHjnudI2NCbR/5OkpSxJteQ0Wk8jmkUks1Uis+PG+clQRDPPRAeZxdd2dG2bNmsrXk7svOsaDD5P3HCDW23zzf05JtYSHIgsaSBqVBYGLo4NEzWkQbI3THRJlmSIsbY2sT6Gvq0K4sKaxzk4lolV32G54XdM0FkEiUFeky7Hy89OfrbNopOZa2RN40X5ISmQcvmh8nkzExbnVerCvFJe2qbmWNqy/IB5NpZ0aLLj+UFoqh7cBahbpTMOAwBlWbZuPDyDbgdtCZRH2q/UfZL+LPcH8RaBZIyw+qkhcZWVlN9YK6vk0yRxlcc3VW4CeunaIr3RTaAcySzqsdHujZQgGmmf8jftSn7QjBNKZmMJa1xsRHQCkcxWyM1gxNixdTKb5TM769Zb3ZozZrjhI0d6NwP5ywImF5G6EJwPUgjkxsDA9vRNN7m1dtjBf87koSAUSIay9jQCExrHFwFWFcgBxMCCa8vfThH9CvySLiHEk4GT77Egyuqq7V0lCZDPbyiEbrP3UAdyz8Aa26ylIgx26EbmGpvSVdHDWK31OdaYouUJpbyoJ56HDbThGUHeZYHjmLS0rVIu6IXgLtsmFQxpXW5sEJsmbu6P9ifyKl1izmEzRNmkGeHfSf/PC8nE2YAY9Seeh4JbJKsllRBprHKM3B5sIgHako5XeeQWwG9EdhulepY+M/Uk9QERoixrb0TzkllW+1SLhUbBUZaUyvdUi3SeIXMJY0ov9N+I/kccMSpkmR1ds6wxIab5zC6dP9/9ZKed3M4f+pDb78tfdgvwazRktpFKQLhVP3L4cPfc7be7zQ89tP4ZExQTDRMapDFP8BcDaSOf1hBMgnbyB9w3pAGSA9imEjnXlrUkgbAWYkGlvAyubP1Kcox39FpDXUkFNthoVVlkm3UrKCPYoR2QX64C4SAjSHBBUpiEikp9hVJessJTf1xL0cp8ntQG7RY825tl+IjmIYKtfif5Ou6f9sfOBZM69yMSKIuUFk+ycNrEGPZvq0WZ9F34/zw6xtpK5jnzLCwx5B6U2EALOZVZuyQiOko9KoKj8tiXyiM3BOlIhwlBRJq0SNd1pdJgF0URzfk6K3jQWkKtBBrgs6zUpo2s5tpl4jeM82UEnUZElIlIZitEZsevvbb/W24ASZPXwlmz3MCKFe6Gr3zFbfnGN3o3g7VN9i/QaNKzVp759933QvDXLrvUP4PwKRiEwTCPxTUpfW4eQK7ZjhV5la6rMmBBEvm/pLGwtmLhkoYtx3FtUubaICiIRx5XDQZp7hXf3SLELvQJSwp2qBIgEExCvJT0QSmKKTvvecuOtYfjeSaQFEWYa0EiHU+RQlmI+VwuD5LjSiOQRRCSvywCKVebPMfSLrC6SnVD8k4iC4ry7xYZ0za/tF8ps/oAz0W7BNJ5VoIFqxrAS2ON1WNV/8m6tn1mSjUrYmsJswJ3OKeOF7kOLYJJsAQ5JMxJ/0/6O89ioNtoJMxv055qvFVAlJ6XJayt3G/S+FY0hXZERCcRyWzF3Aw0ASjYIcTimt7r6IkT3U3f+IZ3M5h20EH+s7wkwBLPWTffDBtw6++8c/17WYZBHj3YouTDgnvlxWTMOwMoJFUSX/Kd00AK2eVYq2GLRRYiJUKcF5AASFYR/9hQUisr6ruqYOLT1iOEAmJLHWqrOMuqLOkzad5C5uQzqTYrAgFEcCCxkkPLSzy7BYggrhkKdmJCF0lUpHZZluWisDq06hsiMfyf/iNiQ58QcZUvalIigaKLOLkJ6KXxRIFktK2y3AQsYdbL/l9/y48z67gs2DZYhCwnfWfL3kj7tFFwlJ4rx/O9XIXalfHNjm+0+V4c3yKGJiKZrZiaAWCCgWhlkdnpr3mNe+SKK9yiWbPqPrOS3WoEjtNk89SNN7oJm27qxpvALW2P2uMana+VAQ/fWakRQI6wGGqy3myzzepWWvw1ebfkk2MgpETJFwHnhxhDihtNCgqqgtRQFghfL0TdNwLll5ySBPIhqkxoTJhMnPa5SjWCtsHCQe4noWxbGNzVajBdJ3U2ZUHmnqSAIb9YXp2WDaNvKQqdts7zUCAP/YSyyrqpd/qvFDmUrUn92C4U5Fdr/x+SMYiwVRPgM84rKSfK0U5rXbg4aheSCHLS/5N8Tfk7izSHRNlu+fNuCbGs1sqyZl2jbLR/mf2pX8e3iKGFSGYrapmVD1qIRbNn+/ct3vAGd9cvfrGKLFceUmmtrU/ddJNbfZtt6oLtgImLiQpik2fiTlMkyAttiSmpgyLgKYeI7OOPP17317Lgc0VN5wXXgAgkZShLktTivSxJrapCW9S8REZZPDBRU7dMrhArttyz3E56IbhL2/MiiUzm3CPPWfJh2p3otGyYkiioviVdRPuTT6tkkOQ+oK18kRwRKvnu6p7D9/BvbWNbf1mRLUu6KIcSKzSDJPLc6LMixxQ9XverexdRVX2Eii5JklJ5MkeFrhkix5JukzIA47Bk8NRWZQHXb8twzeDaui7jPUYFJZbIq2ITEVEVRDJbQcusLF5pltkRZKR61avcMCbclSvrltlGSQhCMrtyxQr39M03u62OO84TUn6rgZLB9MEHH3TTp09veD5pVTYLBlO7VcjWFi4GkE0+429F6Ftoe5st37zgeLbUOXca0ZKslyS1iviT9gO4V54/bQRCq1S7suAqSDF8hhzLb7u1BV/Ewgl5hbhTVgm90+50j8rc1W7ZMBEKJVGwPr3yzeU7SVTxHe0T8sHCopn0oiLFsrjKTYBxRxmz2iFIn0Sow/ei36V9JiJqCap9t7+xLi6h24utX0tGQ1WHIrBkWYt46lvXSstupeehcSuNrFOmcFFjrfdKB6z746X2kFSntgxJZUojy/pMBN++h8dERLSKSGYrSGbp7FtuuWXiFj9kduyUKW7M5MlunR139JZVS2bzKA8wUDJpP3v33W75woVuzR128L8FDGicg+8V8doIDI5FZbksIJcQCSvvpAhrFAmwiCndqSC3A03CecB5seRiYU1zn1C62E5LalUJLBKwXCuIB0slz0OyPDwTSX3xXLDgK6lFVTJ3iQQqaCspvzwTuiz+IqzttiyLvEJIpZJgSZR2Gbi+1D50Pw8//LAvM+03T2ISuQnIt1XpYa2aADsdnbKeh1bRIrBb/El+qGmZo6zuqfVH7RSB0jPQgoX/K7EMfaVROcpYAPCS5iztiGvbBXrec4XHJCmByCARfh6Wx56z0f3nsdQnvWcpgnRjB6DZ67XSb4YSIpntMh764x/dxYcf7lYsXepGmK3yNAsrbgZja1vtG+67r5t9110+aUIRyywTIpY3/GXBujvtVJ9YGXAZ7Og4m2++ea4OlCdILA1KKiCLmIKL2NaFNGF9SiLU8u/iPvKWEQtvUupRgetDrDlmKBJZJaGQawd1y3OwFiG0JXnRhrBeU6fy65PGpfULDC01epUNbalTBogb10hKDADkPkDbYxFF+5JsGCjTskyfpK2KVAMFS+GbKG3VLEJJWVH84HgWFkntXck+ZG3lfjhOfUuBfVWZELOCo6wwv0C5Q1Ja1cxRCsSTZJb8lnkGRRcOrRAZ2gBtRxkdadetprvuNJJcM9KCAJNelmSH5w2RRHyTiLDGryTCmXSNZnYc0r5rN4blIOS4PIXGpSogktku4/ovfrHuB4vObCNgmR1XS3yw68c+5jbZf/9BK+w8REHkk2QJq02b5lZbd10/sQMmQyUoKDLwNjPYMsBAXlEqAJAR+QZCLLBAJZEKfifJmDwWYY4XMc4azCFnymIzVEAdSuqM+4Yg8H/qKssPGcLE88INRf534UQiUpI0waShEQnW97Q3yKHIG6DskstKa4/8BmLIYEy7ozxY+JWyuVnLsrZvbepauWOIuHLNIuoBlJV2Sz1CYm3ZFLBHm5XqglwEaMPdyFsvF4akqH39bcFztJH7kpmygVG9AKUH5iU//3AXoJNlwUWGHRSef1LK5V5CkntFOxAS5iLkOfwuz/2EbhitqGaUdf8gD7GuYhwEiGS2y8DvVRg9eXLDRio3AzBmrbXcpF139X+HPlZZ0CSLZXaN7bevkxZtBxWZRCTW3QywgjLg63pMBgy+TNBZW7wQXSaLJN/NEBwDIVBkehqk1yli3e9QkJeC/CBy1CuEgjrICmLhOJ671Z0sKwGCnSQsEZYIvN0uFxnSBAG5U8CTYCcA+QpCePk/LgZKP8v9SwYpK2Jc/pJ2+17JE/gOIgZphUA062vN/VLHEBLOpYA0XZ+FJxY3nls7pZOs9TRN+zScvMOAKNqTjdzvVVJlYdUvpMdtZe26cY9hsCpW2JhFLT8syWwn0khx1tiXRJ7zkObhTRDk8Lte6q+RzHYZwwxhk7tAFrDirrnNNv5vbV/S8JjgJO6eC/ic/utfbpvjjqtHsDIwF7VMNatkQLk1CQB1VBHZtEFFqRgVWZ8FzoeUFJbmLL9auRdwvl7qvM1AwU2QWIgS1m/aDtbJRtZYuWpItqpsyEqhRUxS0BaLHcqdZwFl/QW5P6k1SIJM2+8iiFkTiP3ctk3+1jayiJu+V4KFvNYUlQNXD64FUdXOA/+XawTuH1kBjI2ukUZMk6ynCkiz/qZ5M0f1E6z6BXVkfY67VQfyYZer1lAMVu01hGNcN10zVqSMd/bvJNDOQjnGKiCS2QqRWSyzAzkts7KsYR1j27SR5THEnPvvd8sWLHCTt9mmHigBOVaK0qJkVsEFebOFEWBkkxwoT7y2rZOgoC/IKRN7lkWKYyFekJVGwTJMCAq46VeIKLFYoD6oeylFaMs9axJkEsdamObD3KmgraKAGLIAgvzJfYXy0840ocjf1GavUqCU2gS/5Turzcv34aQQuluEUldJ4JxyU5DWKO1WizspHcjiJgungmOSfE8tYU0LjkpKa9ov1tOy2yLPWgoS3bR4yr2E8U/j7VAOVo3onmtG1RDJbIXcDBaTJjQHmcVnlomXSYhBjIClvGBio6HPvuMO///VttyyHkUNUSwicwWYZCFDEGHKlIfMipBaMoFllK3eLNIC4YVEQMoIQsoa8CH4TD6NVpBM9kwMRLP3I6gLng0vLHoirZAkJmqsf40yfokQlh3dHwZtce60oK2iwBpLm2JxBjGkzQHODQngnuSuwHW0mOFYERn5BcsXN0/0eVHYwDPOT3+mzEo5TPuUzixllY+s3W601lNLUEVaqxQcVVWIJKotUl9ltcUyoHGK8tEecGPp58V3RERRRDLbZQyHHNQI7TK0PDMGTTRlvWV2zTX9wJZF6NIgIfYn7rzTjV5tNTd2nXX858qdXnSFLwUFJl9ZoLLOwYTBZGxFwfFdVOaZNHBetobZFseamOU2AHHRlnRev91uT1Zlg/qCwEKIIELyb1UAlKyzWffNBMqzkTtCq3VkJYJ4zxu01Yy/qeTi6Cc8Y7kAsCBSkJTIAGWBvFJfKpPSsrarXYiYUh7aPeWEONE3aedclzrJcvvhN7w4ln7NC1gfVfu3/azf2ntRyPdZrgP8n7pu93MvWkZl5gKMZ1ZdJCKiG21yZU2XumqIZLYCbgZbf+xjbsyUKW6l0dRLwpJ58zyhJfCLiavodi8N8aGHHvKT5+w773RTZsyoR/czkLPab+oealueTARMDCKqIRQ5zpavgIWMMlg9wSRwHOQdq2wW6cV9QRnEGoGJoohObS/A+lZC5kRiJXvG5N1I1UGLDp6VEgk0g1Bjk7KVnQaVhZHcA0RMRNpoM7QVq4ohQs2ztxZRpYjtxHYt5aSdUjZekBURb54LJDbr+WjngXsMpbrk9mCF+eUiYT8LkUR47Wf9YN1NksziubOzVaXJmWelLG+MpTGYK6KbWLlyZT3VN/2GcTKPznWnEclsBdwMRk2a5NY/6KCGUYpYZcGIqVObssraxAi4GawxY0Z9kpdmaxHIZUE+efwewpR2HhFS+ZxhNYSUM6Fk+aFJgolOhHB8mksAli46GwSsEbTV3C/qBfKvlKXPZq1icoT8YI1sZI2VxRBS2IxbQVqmrVYJA/entJ6hogHET/JcEHWIAORQlnnaDoRRSgcK3ukUeRUoPwsE2joEG0LLZ/KtzZMumTolqJF7S3LpsXqsebehbVCY9bWlTm0mrfA6jSzA3SbASW4s3ZLMylNWBXNRfzzfftwxiugNLDcpqxkf6DfsWFRZpziS2QpYZpfVNF5BFpl97p573Ib/9V9u+GqrNbUyUu55JtBn77rLbfya17TUOBX8xfl451xK8RgOwiIhsv4yySjTFkRL2rZJgAAwsEv8O2mAZyKAtGDFyDMBYJXrNJlpByAZ8n9loWBJrKyx1FsewXTOhVsBlkqs53knUq3aFSjDM2JB0UygDGWGEIcBWfLrlmYr98Kzk5UToi7SQhvjHUk2WYPl/9iN562AR8pEO+YeSRXNPVEm7idPuWQtLzsIzxLgvBABtySY52//Hwae6Tpprg+tqiOEklmA516mG0uZ0C4Biy9JxuVZ0EREtANLlizx4zjzhYxb1gih9ioFl6ohktkKWGbzktnHb7jBrf/qV7tpW2/d1MCswIaxaGMuWOAmTp9eCpnVuwgH/w8nW0iVJhRZqGQlzMpcpm1jzgcBTQpQE6GzRC4Lod9uL0IJJ7gXSGzoS1fEGmsDppJSB2dBPn1atRdpl7L+SbNVWauUblUENGlylxKDdgeUEU4WWhZ71Es3FytWQUKklWdCXdMXsL7lrS8ID3XdjhS7zUByY0UsnFaz1ro/WItwOP4pSUYaCZb+sNRUqiCZ1QjcJ+1VAa2UtV0KIRERaRA5ZYzinbmbOVF9R7tszDFScqGdtpK6vp2IZLYCAWDLFyzIRWYX4ibw8MNND9JK87n44Yfr7gqtbLdJLkjal4B3BdmE1jY6i0iIJIZkzcsS6GcCl2xRkvVI6W/zEIMkv91eAhMhJJbBh0EnzO5T1Bqr1K48M+qkiHWOZydXjaw2KdkpWVtlvddWeJGsVbo/Xjq3BmB2HapA9AD3STuDrEBc9cz4/1ZbbZW7D0vpg/sqYi2vIrjnIotnm4pUZJdxhLYqvWnr7sDfSowhf/g0EtyN7GgQA2UuDF2BIiI66f86f/58308YjyCn2s2S7BvHKSMki+4qpcJOQySzVdCZXb7cPX/ffW7C5punHrdyxQo3aupUN27u3Kavpclhzt13uxGkvlx//ZYmfyYOKRnITYDGL6Ih0Hmwlkj7FSuetin0XRKwaNHRKCPEICmoS9Y9zpkHkC86Z69lx2HgoewQQeohKeKaeoD4SHuy0eBDW8CtgGeY5/jwtzxLtqFsdqrQr1XqFiKtRQdGG3VuVRBoE9RB1awE0rKVBijuL9QD94DrRRGxcZ45dYyFuYoi5e2GMhIpuI9nL8ksJt+knYCkrGWy3lqrcGg0aJcCBM8dcgBJYJxrZ8a2iIg8/q9yvWF8UUIZ+pn0sxlvqmIUKILemtH7EQgcY52tkdQ0y+yzd9/tVpL1arfdmrqM0s76QKG77nJTttrKbdmku4KgABwr1aGgDyYMfcaEDvGAaGFFs9vYWBCTMnmpA2L141xaRYbAFzGvVTb02+0FyPpJfUBik1wApAXLwAS5zDNZUg9seVMXzfhf81vKQ7l4BnIRkMQbz5lzF91FEHmVAgLPXtY8SA33BiEuskXfCShwjl0K+aVTXuqBz7CqFrFKtss/tlcls2ij4S5EWRmWylaAoM3z/GwwV1XkviKGBpYsWeLnT/oQYOyR4Ym+xXjNOMXcqQygvY5IZivgZoDf7OgaSUkjswsee8y/T54+vanraGLw27R33OFT4rYabAHks2ghVwNlMaLjYK2VILw9B5NEkpUU65YmACwbSXJcTHpSQ8hTXsh03gCxboN7gyRSP1npeK01Nu82tPRnrWRVEfAs9UwhGpSv2YAAuaDINwviwKDLM4XI8T3R+wqQsck2qgJlR6Mdy32CuuUz2n/RDE0K6KuKf2y7wTNXti2eM88f8topyayyFCDku8vf1qeXhWavKEBE9Lb/69y5c31fUjtSm6NPMVYr0VI/IpLZLmMU0fmLFrkN99zTzX722VQyu3DWLP8+LiPqPw1MqhLPx7px8Z13uk1f9aqWyq2gLSkZWDARyV+QbWwGdK4dkk6IWJK1lU4JCYDASTg8SY4LspfXygpBgGRXWVoEsHLmvrhviFuaxivfK0I+rzVW/pcMZkXdCgDXoi1BOvEDhVw2MzBay6slr1YBQdZmCDPtoFni3U5wH9QnBIx6oI3z4nOUFLBcF3EP6Cf/2GYks+Q60AsQAeaddswYxThIX0yzpGcpQOizPAoQSRrAEUMPknPDOLF06dJ6W6EvMWby6jV3ulYwdO60oli5fLmbuOGGbuSoUX5QStvyXTx7thvAb7YJgX8mDkXNcp5Fs2f7hAmtIFQySBInV6rNNCLCMSHB5TcQYaXoZZKgTsKJXf6YeQT9FRBSZU1ZJnXIKfcJic3aWpaLAFbuPFuvgMEO/0vOXUTFQQMmLwZG6nLzzTcvNEjyG1neaBuS70rT+2QxAxnkvnhmzSZtaBdEOmlTSnIgyTjqiZ0E2m8RYtbP/rFJklllZ37r9P0oYxwklF2jPNb3shQg6MtSZEmSQEtTgAgtwBG9GbwlzWzaIWMM48WkSZN6IkirnYhktsuAoA6vra6ZyNIsjYvwqU3RWM08f03zVVtfT9xxh/8cN4NWAJlkQqJz0ZE0wGNJY7CWlUr/TwIdMgzqggxADPQbEYM0N4RGULYkrH5V6+iKcOYeFdCUtc3JYIa1krovYqmUPFQRgqUsRJAQniOWQqlQNCKyIq+8lD45j1g994dLAb/j2GYSg7QTshbz4jlBYES0KTvtjDZW1K2gH/1j5TrSS5JZee6JPiG9606IyJehAKEsefb/SRJoacoP3VKAGMqQ77h2MLRbKf1Xxscqar12E5HMVsAyy2DBgJU10S+eN88NbyJQR4oDyv5FGlsCztbIUE4QSH2LZSxpEOO8WAYhq1j7RHwgTNwPnQ/CmZXaFtiJTalYZUHlfEli7kWEmyFyTKRVIglMJpLDYoLPQxClA6sFT56JRX7CIA/BkksHZQuzEPEsKWuSlVQ+j7xoZ/zWRpznKSdkW+2liHRVJyA5MCzntLnp06cPanv0BdxpiroV9JN/LG1a1ne1AdoLBL2XtzoZk+gTLLLpB0V2Q7qBZgPgkizAeRQgsshvJMD5ofqGvEp2DvBcGGswxtCfqjQuVg2FR5lzzjnHveUtb+mrfPbdxMqaZVZR4GlYumCBG9dEQxYh1OD77J13eiI7Ikc2KBGUJNcHqRXIlYDB3uqNQh4VXZ8EWTcsIAvWciOx+RAclydlLQMC56iKewHPAlJEuZgU8+hMKnsUBKGIDizHQ7DS0p6GFifqiYEUMhlmIZImYdKuAcRX/tjNRMZyTayx/GbatGmVWnQoRTCWWOo9qXzNuhXIVYHz9qJ/rAJOQsks+mvR5BlVBH3V7kzkWXD2KlpVgLAW37wKEGkkeCgEwMnthrFPCwa5hshthL5Eu8N40O/1URYK984TTjjBffCDH3RvetOb3Dvf+U635557llaYoepmMCzHILkUUtnEYKoAC03CUjJoBDoZvmBM1iGZ1Qpd7xKDD62sdMLQn8uSWatQICkjuQ5IjiskD/wOwpSHOEAWsCxWIQsUfk6Uu0i2H2uN5T7yAvIJAWMCTlsgWRcHWZyS5INsYgT7nbbVuac0630WOK+yYUGSuceqDNpKTCFrHEQ13GEQGW3GraAX/WNblczqBTDm8Mzpr4wv9An6aj/cW9loJgVykgKEdMItMQ6v0+sKEPR3EVfmOEC7YmymD/GdLLDyfY0ojsLsiEH4d7/7nfvRj37k9ttvP7/ldvTRR7ujjjoql7UsYlU3A7b9G3XG5YsWuZFN+GfJzUCTMW4G2x51VMPfMcBg0YPIyO+2Xpaaa4SUDLBehVY7ZQVj8kvyfeT8ttPiMwiZ0vYKk4qV8bI+i2nWXguuy0DXrR0EWYWZ+CEsRXKuM7Cx5c4gWMQaq4xpTAhpWbkoFwRWwXdsA6e5tyQlRrDb6s1o1FI2yqjgqaLBZO0E7VkpgqlLFh5JJLsVtwL5x2YtNKqCbktmdQI8Z2U9UqKLoouTiPYR4F5TgKAskFa5DCiTFqQV4w1lk/6rdKh73RWnKihcg1T6G97wBv9iUD733HPdj3/8Y3fKKae4V7/61d5a+9rXvjYOBgUDwBqSWdK+NjH5ScfTCybPm+f1atfMoWQgyyxkMHQ1sEoGdNQkRQM6LIsbWRaTEjjonpksAUTC5mhnoWTBcaxoG3V8bc0zKXVj6xUSSxmK+LeGZKcoUeIZQ7CYjENNXjthUy6+z5NoAsspx1kruLbVi0plyS9W6TyLZsNqJ3hmanuyOLKwSmpnzboV9IJ/bD9IZhXpL7RF7pUxjnus+uJiKKJZBYjQAtwOBQgbpMUYwt8cwxylNLA+ffzixd64w1zIfUBgmRvigqlctLQcYOtz7733dvfcc49/3Xrrrd5Cy0PEtxbLbURjn1ncDLKIBZ1m+bJlblRBiSJZUOm8dBxcDEAeWS46O7+FHDHRJ5FZrTxD8iTrKhOgggtsx7Xpbfkbn0n+L/F9+SmKhKsOKAeWykaADHZSXN/KVzGQNRPlLGssdVfEGguoQ8h7GA3Pc2fCZiAVQctbLgWByaJvNWqLuBUoqEwpjnm+lLPbZE5tj7ZmBe4h2UluIM3ef+iSUSX/WPnuyTe+1yWz8rZF+gT3lndRF9HfBLiRAoS1AIdkWMHbIrAaS5gjGS8guIy9LNxjFrgKklnIwk9/+lNPWB944AF3yCGHuN///vdu//3394Pipz/9aU9qH3744fJL3GcYqLkZZGHJ3Llu+Jgx9SxhecFqkU6mierBP/zBjSZQZ7vtMn9ns3pBPuiQ1tVA2yMQHjp56F4CeZLVja1srm99DplQ6PhqH0wo1k2B7yUFJQsY5+RcjUgQ98xgU0RLtVlQL5AhuWQ0uz0p3dii1lglTqAc1tpHHfBslDUrzeUgDfye+pZlWxq1RcsnRQsFCvKMO/FcskA5ZF2lDXI/kBssJWnyba24FVTNPzZNMqufLUWSmaM90v76OZgropwAOBukRZ+RLJYSEsiKL+KrfqX5R64MvJQIp9cUIAYwotX8mrkHpYOX4alqKNyjcSG47LLL3JZbbumOOeYYd+SRRw7aRoZwHH/88e6MM84ou6x9CXxhhzeIAF9ENPW4cW5MQSIgv1Q6GLjnggvc5q97nRvZYDuN31nrFJ2XTi31ATouq17ekxIaQEbZhgZMHljleJcklbb2IKpYZekYGjz4rXyM+F6ENo8qgaSo8lhvm4X0dCmPtIFbsWIpyKuoNZYBBoKlbWDKJWUByD/lakYZgPOqPNxTMxq1kF9ILNCAzrPrpjXWyqFB8CGuKmMW2W/FrUBpbrvpH2tVSZiQ+kUyK+9uCe03lJmLiMgbpMU8xHiR1FcUEMmLdiX917R+1awCRBb5bUYBYmVNhk0v7t3+zfeyQluyzxjG2NFtg0QaCo9mmMqvuuoqt8cee6Qew+T64IMPtlq2IQEkt7C6ZjXGxc8+60awGmyCzNIZIYfP3n23m3377W7vz3624e+kTiDI1cBKaWnVFgZpWZkRIN9akQI6A+fDygVR5ToQWmslUtAW5AEigN4tW4KNLEe4JlCedkzSdsu+UeBUXlDP7HIUJbLyq4WQUSeQT+oYy18rwSs8Uwgy5+X5cV4+y3tO6kiWYp4hxJHxIpRg6yQYnGm79AXaBnVNGSF3PMM0gtqKW4EWFlyj0/6xaZJZLG76QTIrz73bXYkigZcRQwONgrTSMmnJ4MIcwG8Zs5VQJs/4WIYChP5mvLef6Vi9bPntZ7w0P2vHTORWMpuMF1Jb6KWsYoVn/f/93/9teIzSUEY0xjKi7huQosVkiMIy20AvNIR8e5jE7rnwQjdqwgS36QEHNPwdHdVuiYqQWv9XTZQhGZDmqAW/h2iiqwpBoOPgnsKEw0pW/q0MFBBGyIdWg1xLyRTkn6SOaGVZKB9lamX7w/rUcW7JjUFKKDMDXR5t2DxgEMVqx0CYd7KV3zC/pSzawoeolKHaAMljMUE94wKSR6NW5cJ6yyBPWbTKL+re0A5NX/oACydINc+VNLmNVBhacSuw/rEQqXZPBEmSWVoU9otkViPQ1ni29F36rHzvIyLyBGlljb/aiWNsY1ygfWGZ7Ib/q7Xsaoy1gWwjgmA1jb0cw1zLvUsJQsRVLzu38rcCx3nXZyLDfUNmP/CBD3g5Hd4tzj77bHffffe5r33ta2WWb2hYZhtYTLxldtw4N7YAmZXfq4KocDGYfvDBuYLI6CSh1VGuBpxTQVpJhIBJNdzm18oQIkF5sLZCbuWKIAkrBgppO2qbg+8gbpSH3/C37dTqzLyzFdxMZ7NWV23BKhOWOrMkVagbZRRr1uLDvUIcixBZyogFW/fL/8u0OikxgizlebbGGRipN2kG8+x4Xlh2kzKFtRtSbYDEUi/S9OWzRx55xE9CjRYjrbgVyD+W63ZiK056wtr+6yfJrLwBfFLHKHOhGdG7YFwUceVF25Cea96kLpyDtsV8wN9KBlLmAsn6o4Zb/bKSCiKTvCi/As342xoLBmrEXb6tsjrLRUBza1IdFFGA4DxV8P9vmcxeeOGF7re//e0qn5M84Qtf+EIks01YZpHmysLSNdZwY7A2FND0ZBVJw/Wd5Omn3dP/+pfb/cQTG/7OBn9ZYKFjkuecTPL8HZJWrhVKmMgniO/IoCRCS8fDgsXxTEShFUnnoDNpkmJQ4TdFt+Ub6YpSPu4PqyKDGIQEcsB1LTmwKQf5nQYK+VblkQ3j/Pw279a9TfXKNagn6qHMSVuJETg/A3iWRZXnyTG89Ox4YXHn/rthjVViCrVPuYDQziDmlAfin/VsWnEr6LR/rMoKumn97gZoqzxn+iB9lIVTq+4+Eb0JbftrTJbko5J5QF7z9g3aFYtD+b8261du/VFDX9TQH9YSVN41f+TRweWcSn2r9LfDajulnAeyyTiU9/6bkUCrGgozAibipK1HKo8JMSI/nr7lFrfw6acbSnMNmzLFrb7DDrkbpjo5jRpL05O//70bOXasm3bggblJcAg6BudUZ9eK14JrhW2DNsGqFhJK26FT8zeTEMdm3RPHW9F6ysXvIChFrJpJ1jsIIoOLfIIYyCCJWZqakqqyVjfOwWCq9JeSQbMEVwME1+C6eXyslNxAGbraleqVwVfpZLV6T9tqwwrG/dkkENw35D+UBesE5H6iBB1qE9IZpsy4sTSyErfiVqDFBm2qE/6x8pduJmFFr4LnyTNmfKF+07LVRQzdIC3mhaK+qAo45pxZ/q/WrzS0oCpgKskvVpkqsaTydzNKBZzbKglIWUjklxfGhJF9HMyZF4VrABeDP/zhD+7YY48d9Pmll166ish9RDZ+suOO/n14xgToV3PDh7txU6fmIrM0eAgkxzI5Q0DuvfBCT2RH55j8wuAvgU5Ip4Rg8k65sLLSkRgEuF6Y7YuOLlLNMQwaWjWH2rRJ9w0ZCX1g+T0EhWsXIbSKbpbeqQgnZYHENmvdklyLJRayRlOXXNM66lN2uXGEA1uYjUgavu30faQeuRZ1GZJR7oH2IyWLUKe2WSWGMrOrQWxkuZeFVougPBqirbgVdNI/Vtnd6FNVTbpQNhTMxQReNItexNAM0sqCFuUQWM1LjGsshEVOGTtEUu1Wv/xKQyuqtvpb7fvyUaVcIq8yjHCvXI+xrpcCsjqNwjPQRz7yEU9ksXy8/OUv95/9+c9/dmeeeWZ0MWgSwzKIlPd9uftuN37rrXM1Yq00afQ+acGKFe6J6693+3/zm7nKwvXSgqggsRBlysGgwuQC2SFYSKoJlhTSRiBiEA+IEBZABoo8QUWy6CbdsxIA5CG00jrV6ptrawumXYOC0ugqKEsJFbBearHBBC1rKAOVtu8lBcMx7bS+yYeZcrAIVR3a/PQ8zzQrWDeILIO8rPu0DUvy+Q6LJfWZZ+u9VbcC6k3W3Hb7x9JmKKvkpfoZ8l9nHONZNisxFzF0grQa6aNCYDmvlHa0ja9gKEtSZUVtZ8pbGTtkbWU8A1yXNk8ZaPdx4VYMhWehd7zjHf5BnH766e4zn/mM/wzLyLe//W2vORvRBDImUup63q23ulFBYoI0MCAogMqv9ubNo3e7CTl/TwdP85tR8gUIFh1QOqsMNlhlrWVL2nmQM/kyyarUMHXv8uW+k0Oi0qAUlHI50MBj5XmYELkW5BDLWze2YjQxS7fVqg5QVllwKRukCiIJ+S+aLrYIqF+ILO+bbbZZXU+Wa1OmRgkgOk1k5aNMOSGPdudAcmC0LbYa81hXW3Er6KR/rFwY6Fu03172Z8tjMbPplluRmIvozyCtpK1+/W39UTX3ibwy5jKXcH5F5XcCYUAW444NyGKezhuUFtEYTc1E73vf+/yLSUTbxhHNI6sh0xmef+gh537/e+de8YrM80htgAldQVcrILNYM2vWVqWiTYLVoksCkyoEMgzykqVWVmHAJAxRUOYTtmMZSPJEucui26iDS78UYgaphjhqwJCFrhtR9YK0RtO2oPlMfk/asqaO8hD+ZsHzgYhyPSzFWDOps7zBNJ0isjbdLO0Zi6QlqnzP8+ZVxILdiltBJ/1j6fe0B+6rne2hm7BqGPTl8BlH9H+QFgtKIFKqY/T/JH9UWU5pK8oKybGaf/ie3RLO3ynrpgwwZQVkRRRHS7ORTUEa0QIyGrj3HX3sMbdahpVSgwbJBZgQ+A0dicli5fz5dTLLwIBLANnbkpBFdCXdgdUEMhBatJiURCK1TURHVkYqCcg3Ar9lIMurm8pgxnUhtFwbq2K7EicUgSKuG8mFibThVsAqvV1b1iJiDPhqH/zN88xL+JXkoZ1ETr7NtCeebZKfpDR680htleVWwO+x5tLG2ukfq3S73D+LjX7TS6UepeXMs6CvDhU93KEUpKVIewUr2Sh9iJ6y0gFF0esYyB99Oyu7lbXmy/+V37S7LcWArOqi8IzPZPbRj37U+8kyoVgnaZCUji0iG1mdz5PZRx91Y2v+yWlQxKVNRedXt3Pn+u9Hr7HGoGjIpGtCVtL80xg4NOgkkV5+y7YrxAPCrG1yOdRDOvJsk9KmstwLksC9QgSrMilK7ov6SNsuk44hdSPS1q5tZNqBAr2AMpgVqSubrawdRFaawtQLC5Ikv1fugzJQ7kZSW2W6FXTKP5a2gDVWuwpVaMtlQWofvPMMuuX2E9EarPQU/UJKLt5wUkuoowxTiuYPJaia9UeV/qv0vuVP2474BxuQJReBGJBVbRQeTd7+9rd7AfJTTjml8ISYhG9+85vujDPO8FaTHXbYwZ111llut912Sz2eFf3JJ5/sLrroIj/5MeiTqOGggw5y/RgA5n1AZ81yYxMkkywYSBgkRDqVMGHZnDneJ/e5xYvd+NrWDANPksWHTmvVCCywFsnfSIOWBR2dAYzBhnMzcElCBb/MPERNZS8a8EHZOpFtKQ+wsFLvYd+QRUpC3GyBheoAZUK+w7hsYCVh0McCy/OBZLc7W1leUFfUGe0kTYGAuhPRzSO1VZZbAeCa1GG7/WOVAKFbCSfaARtMSN2rDUZUD8oSlaSRqoxRSlajvxVpz+KEBXI7SCXlkP4r12QxyRhQ5sI/DMhScK4CspQ0IQZk9RmZveaaa9xf//pXt2NNVqoV/OpXv/LqCN/5znfc7rvv7knpAQcc4O6+++5E6xyN7JWvfKX/7oILLvATFFbARjJPlUfKAMAEPsBKGHWCBmRWPjp0PqkZ+O2eWbPc6NVXd2PHj6/rwKaRWT5PmvAVqMRElJRUgWsrBR4TMqRHQUZZuq3hNSANygqWFww+SuHXbVB+BkYICXXE3yKw3F8nRN7lh8jgz2TDdbfYYgv/3NCDLZpmul1EVqoOlI+JIs2tRCQPIlTEWtmqW4H1j21nYgLaiKzN/ZAAIZSXaxRMGNHeZ2FTn4YaqaE/qrWcWmUa7ehI01UR/+0wHmiuod9j3JC2dxnZ7WJAVn+jMJllUgtdC5rFV77yFXfMMce4o48+2v8fUnvxxRe7H/7wh+6EE05Y5Xg+Z4L5+9//XicEbF/3OtIGBZ+Ws/ZdI41YbYEoyQD1w4Aw/8kn3fjaFjzn43MITwg9U+l1yqICiZB7AYNZEhGWfizH26AsfpN3ocHkJz+pIuB3adbkTkIuN9L2pe4B94RVr51bqmFWLiwlWpjw3CXDxYRQhFSUTWTl50Yfpj4oW5q100ptFfXRbdWtoFP+sf2UAAGipEWUosdjMFd7UEYqVGsACIO06KMK0qL/MO63czGiBRDjl/V/zaMTnYYYkDX0UHiGxXoK0fzud7/bEpFksr3xxhvdiSbFKh1m//33d9dee23ib0iju8cee7j/+Z//cf/3f//nJ4HDDz/cfeITn0id7JjYlC0E0GF6wc1Aq8ixNRI0ssH2nKSyRDy1en5+1iw3vkZolBEsaRufazHAQV4YzBjE2CqHePAbSYkw2CT5yzL4yKcS4sRkhqVSJE5uCiK7SduRRduTnPG7uXVJvWIB1AIBn0f5BLbTWpyWlUsZ1ixBgpgxMRQhF2USWZtulmeVRe4ltUV9sp1YdGu/VbcCrosFu53BeMpQ1usJEHiuCuaCdLBwbYWADHVYf9Qkkmphg6pkaMjrj8p5GTvo45obpW9a9hZ+GsK4Aa5N++E+irSfGJAV0TSZfctb3uI7AX6QIkwWkJ88YOtQGZEs+P9dd92V+JsHHnjAXXHFFe6II45wl1xyibvvvvvc+9//ft85Tz311MTffP7zn3ennXaaqzRSojX9Cru2xZNFZiEdgEmR+mcyZ2sZ4ojPLEoGDFo8r5DcCwwqDHAQWBtIBSll0Akzi1nwHe0AQgURkDXQElfOwcCTRGbzSnGFSEqf2ynQ5qQJS52IPLabmPDseL4sIMKsXJAK+Q+rX3Kstuo6TWRtulnaRtZ2s5XaghDhjlH0Wq24FVj/2GaJcB7QV1hssJvQqwkQbBvsxM5DryNtqz8rFaqkp6wltZk2bTNp8VKSAJHHTmaU4p4ZC+T/WiRuIAZkdd53ellKW2W3tpkdr0paZrsFKpPG/73vfc9PsjvvvLMnTwSQpZFZLL/45Qp0JibpXiCzHjUyOypDqopBivrghaWEesKlgEELNYNxm2xST1PLMRCeENQLdRuSHlk+acxMvpzXWstEujmn3BwgWUzYNHpBlgUFitnzc+5mtlm5Zh65r7KA1Y5rahuOepa0UDtB3XFdni0DP5MQz0KTkIgcZbKapDxzJWzIC+4NQtcKkVVaSK5v0802Is+0gbxSW2W6FdB+Vd52+a3qGtxrO5Ur2gVJpvFSZjjbBoeyP2poQU1LhRpaUctKhWrLJIUB2lmrmbTKgE/6UzOUyAWq0a5VDMgqHyuDhBP2Pc13Wm3VZkSrcn8vTGaPOuqoUi6M9YUGzda0Bf9Ps8pgNaRibUeYMWNGfZs3aYUH8aqyVuOME090yxI6dl0+q5bqLssyK2d+rd6lWOAjM7HMrrlmPU0tx/jAskCeS/nPQ0CGIBlYzKjHMBJeUl/KwAQZlg+W6l0DO1ZUJkPr45r1vLPAgN0JEWrug8FYYtzUEeWn3EwQoZW67C3cRlm5ROTCbXHahJIb5B2AWiWylEU7LtRRUhpcC8qo/l9EaqtMtwL5xzJot8s/VgkQeD5Fnke3YbPp0b+HQjCX9UcNSWqaP6pNhRoGT3U6k5asud3KLCX/V8YujdGMmYyTYZ3EgKzWkTcr2rAgwK9dC6puoqm9ofvvv9+dc845/v3rX/+6n7QuvfRSP9Btu+22uc5Bp8Oyil7tIYccUn8w/P/YY49N/M1ee+3lfv7znw+Shrrnnns8ye3VYIM1d989dUCFRK585JFcZFbkg8bJ/yGdfkB55hnvZqA0tbxEPlVnWsEnDcAQHAbHNLksWZumTZtWj0hXkJg6CNcSEVS2LqD86808Owg5A3Y7ACmDvEsVgnLLDYK6g/xgrS478EyLAGUy4/nTttNIHiSbegiJnMrIIiEvQeQ5S4miKJG16WZ5Jo2k1WSlbEZqq0y3AvnHtisAS64TEO5eSoDA+KEgRqUY7ZWy5/FHDSf+UBs91EUt4o/arUxaPKNulU3+r7QX6pMysfCxlntl94oZsppvr2kk1bbVMTUpsX4iqW0js1dddZU78MADPbG8+uqr3emnn+7J7C233OL+93//10tm5QXb/1h6d9llF68tiwsDk6rUDY488kg/UeP3Ckihe/bZZ7sPfvCD7rjjjnP33nuv+9znPuc+8IEPuF7FyIRJFMKnVfaiBQteOC5jwlc6PytazWsiPrJz5rixa645KE0t30GWRIAgREnSSHQeOgjHhgSFa2FVYwCD7Nnf85m1EirJgrbbFGwGeWrGTUDbe+2YYDk3RJCBOLQs8kwgPwwW1oWijGtKR5V65txZhFB1D5IsZVhXmeDykkRLZItOiNKyZfGUZ+tcUlu4SjRLQlt1K+iEf6wSIPAceyEBgjLRQWL5m+fTjMtHJ6FEMWmWqTR/VIn5K+aD8bNq98k9iLh2K0grC0ofy0v+rywKNV9oUa6dOy0KeNG2hqqPdVqQX7ioSmqvzDtSoahae60CCrcolAw++9nPeiJqCcvLX/5yTzSLBpMxoXzqU5/yVha0a//whz/UAyNIzmAnVybbyy67zH34wx92L3rRi/xEBLFFzaBXsbLmRmDBAEbd0mCXL1rkPxuZ4jNL5wgTIciCuLgWjDdq8uRBxE/i+Xp+DEhJwSgipZAdawW1ZAKrU6gJzPHWasnAJrLLQKZUlvzdzHY2v2+XtrDSyobknvqcOXOmJ09lBp0xiHFe6jJPJLiyUUF4k8oh60jeLGq0A6ykzRBZBl+5MjSanCS1RVttJYK/VbcCWYVpk+3yj8VizjV6IQEC7Umplzuhg1zEHzXJFzXc6tcC2VpRG6VCrRoYw2mPchnoZpBWXv9X6pbySQZQrgVKpMBzYA6gj1ah7O2GdlOTfFIjSa0omb311lv9Vn8IJk+IQFHgUpDmVvCXv/xllc+Q5rruuutcv2BlguarOr8nswsXZlpmNfAxIEJuNKD4KNba8xgWWOmYtJhs/fVrqW+TVAY4F36EkEdNcMobz+f8TokabHn4zJIEm1mMARBSo+3hZmWemvltXm3CkAgq4UDZRFaLgrzZpWTVTDueSYXv89ZNK0QWSAIsi8jSHpThqxmprTLdCqx/LGS47ElW5F5lrKpvKfVAH6Ivs6hgYdTIv7kdE374t0WSP6oNROlVVDFIq5HPtFyurCua7oP/93OGrCQf6rQ2a31Sq27570cUJrOsFJnE8JG0+Ne//uUniIj8GDVhgteADaGUsYMss8G2M4MMnQarSv18NZ9YTawis27ChEHb1pBZJl2gTFHhQBT60cray3a4th8hBqH6AecL/Q+tgoHujXbUTAdnUGWQaMeERkR9KBFGWbGcUt4y5Uh4fjyDPJHt1DtlY/BMI0ki3HkTI7RKZLXASfM1lcIF7ROLcysyVGlBblXyj8VapfZT1QQICuZSsCdtrwwCEqZCTfPvA5ag8mKR3Yr0VNXhx+EacWWhrJ00BY9WyXJpffZpzzxD2gdlVPIERbdXpcydIKm2zfLe7212yJDZt771rX5b//zzz68Tk7/97W/uox/9qPdxjcgPUtU649cVQmQWq2zYaZiUGGQYeJTKVn6wDKCWzI5YbbVBW7JKPSvCkeSfCWllsFXwFmBQZhD25Vq+3E+KYTR/6LIQqiZwDu8LXCPpRcF9J22h8zkDbrOTM3VHnVn3Atq2AtbKFNCHSMpfuFF5qX+InAIq0sACM29ihFaJrALk0izAPFus75C6Vi2UrboVtNs/ljaihUYVEyDQpnlWWGK19dsoQM/6o6ZZUbNSoQ5V/74qB2llZciivLxrV00Z3ChzVcrbrItK+J4V6BdJ6hAjswRckYGLiZBGs8022/h3MnF98pOfbE8phxiZlRWU92ULFya6GMixnoFHuq4MoFgQ+U5kluxio1ZbbZUJhUGWQQxiEhJSCW1DniAC2hpmUpS7AGRXA3W42rWWRgV/6XtIDqQCK5lVpcgDTaIhIZE1gQnb6qwWAYTEkmQRWeqmTEubtDrzSByJhBEJn0VAeBbUeR7C3SqR1VZ90ja9pLZ4znzfiu9lGW4F7faPVQKEVgLR2pkdjkWAdkF0/1IyScs0FfqjhlbUXtGc7ASqHqSVlSHLqgwotTTjXFUDs9JIqv5upEahv4d6m+1nFG65EInvf//77pRTTnG33Xabnxx32mknn3Eqojkyu9122w36XBZvJgxZZkNImNu6FjCBQcjo9PKZ9UoGCZM4gy5ESStxC8iW3AAYrBnk6ul1x47151YQgLVEKTGDhSWzkE3JhkC8sOIW8UFlcg4DvyxB5vqQC8hfkUGLyYj7UDmpP4gsA3ySL3GzELFqpDXKPSmlayNrH/dMH8yTGIH6hvg2S2QBda3t0SSpLdpfkjJGp90K5HZBeyzbP5b7xbJO3ecJfusEtACVf6MioHnOyqwm0J4sSRWJ6XV/1KEcpNUoQxYvjc18T9ugbzG+dfOZJyWfSFtc2XYbJp+IJDWi6VGYSbaT2Zf6lsxmQG4GYfYvBlY6sLRjtZXHoMAgpYHMa8ymiPozsGGNZDAOiYndQpblFqIiYsf3DIQMihahJBfgGKxWlBkipfNCYrV9XkQ6KNSWlZwV9yBVB4hVXg1aEUclg2AAxUe2DFJmr0Fd8851GiUSoF4kddPo2LyJEXg2LAZaIbIsRrgHa4VkcofgtiK1VbZbQTv9Y6UmQR10KwECfZvFJG2f8mjiV4Q5/dWS1WiR6q8gLZ6/CCvvskyK4NHmaQO0TdoJ/VaGBsZbFCs6EeyXlCEtSZEiLq4iukJm3/GOd2R+/8Mf/rCV8gwpTNltNzc8gWw2cjOQhZTBTBp+QELJDA5+C6xmmU2yHPF7yKnVnwUM3gx6IjyQUKXAheDJz1aDpQUDZujPKj9ebcfqvCqTtrkagUFZ5Q0tZHZRBYmFbFDGPERZZJi6k0Ww0bZ+EVBG7p06aESwRQzzSDoVSYwgIkvAT7NElvbEIkGLEesrWoZ1sgy3gnb6x9oECCxIOpmkRVHl3Bvv2k2hziEzkKtmZe4iBgdphZm0uhmk1UyGLOm/0lc5ljGzzKQXoS91+J6VIU1+1HEHIKIdKDwD2eh5QCPG3YCBHq3ZiPxYbcaMxM8tmU1yM1DqXslqyX9NZIlBxA/Qs2e7MVOmJBINfs81wm10rKcKNJKigoSe+Q2rfKyvDPrWQqcEC+GgTzkgFwy8oV8hE7CIcZ52F6a9pazhJM71IRtoFDOIZllXLRkWkcyjLlB0q5v6ytLF1TY9dZo3iIg65byNSG8ZRFbEmXrlHKqrsnxFy3Ar0LPkXGX7x8paTl13KgECfRzyyiKOPqQgIqzNfAfxp22jKhO3WIu1E9oIbbhKQVo2IIuXgnoZczV2pqXvpj1I/5Xf0IeyMgcWDfiTS1tIUkVU+0U2LWKIkdlf//rXq3xGJyA712abbVZWufoeDA4jGhCtOpkNjmMwFklj4NNAI1JYJ7NkWtpmm1Qyy2DO5Cho0JLVSf6uDJQMVmy/c16IEX/b30KYQkuotpkoTxJhZfKAdDYis3YbzZ6bciETFoJ6o4ycO8tCxwKMSUKZj8qMRqd81FGWEoJNGyqppDzEJG9iBOpHmsCtTDIQZ8pH/WNl5t7Kqqsy3Aq0aKBPlO0f26kECKHrgGTPLCkRYaff9nIK76EcpJUWkFUkQ5ZUE+Q+oFThjDVhP0/KkpamSmED/kRS9XckqRFVRymRCzR0MoLtt99+7uMf/3gZpxwS/rJJWb1EYus6szU3Axv5zwDI1qL8ZCWpIlgyu87qqycO2Bq4rOUSS6fN3AVpYrDU57z4jcizyqMJw5JbgPWOsoSf2zIwITMwZ23rQ3bC9LFJmrAWXFeqCUnEi/qE6EEYIBDNqiBkZfViskzKJNZK2tC8iRHKIrIQLK7JfTz88MMtWU/b4VYgq27Z/rFKgEC7aYcSgnUdkCC9xOeTtrVlDacflNlWh0qQFgttxphO1VtSQJbG9GYyZCnoljGZc8mSzH2JmDJOJ6XyDVUpIkmN6EeUFoZ7//33r6LjFtGAzCZMviKz1jI7atIk9+CDD9Yt3wxYyrIluRI72doMYKPWWCN1lQ/ZE8njPAyU1q+TwRGLFOezGqdycxCYZMMMQvyWQdeS4yQovW3oQmDrg0HcEmLOyz03Ii+UkXJDLEMCgLVN9dwoKKuMrF5lpA3NmxihLCIrqS0mXsmJlWGNLcOtwGZEK9s/VgkQaNNlqllkuQ6ktT+Ooyy8V0U5oQqoUpCWArJEWimLtHdtQFbe8mi7n/PQxrk/JZ7hxX1qDExL5Rv9pyOGGgqPjFhgkwJcLr74YnfUUUeVWba+J7PovyZBBETSXOPXXdcP2ko4IBIr3UhFMgveYsugOn++GzV5cuoEaMkg5IdzSv+VAZJ3XqFfpILE9DfXs1uwnIuyWjmYNPC9tEmTJnQpJNjvmNzzZpSSdI6V7GISgARBKEOLb5lZvag7yk99lJE2NE9iBKUpbZXI8jxw0+AeqP+ykkaU4VbQLv9YBbWV5UaRx3Ugj4tDlbOKDaVMWvK3lZtAUkAW/SRNKirLJ1WWVMVBaHzn/nj+kqGK+r4RESWRWdLWWtC56GxnnnlmQ6WDiMAym0AQQsssagbDa5M+27wQMKxFWpUDJspV0tHWdCVHZpBZqwvLhAvpgyRqK1zWWohR+DtIlSSn7PdMwPoNZKgRYeEeuR8m/aQJW8RH4Djup0h0LltxkuziHh944AFf/jKJrM3qJbLMZMfkVkba0DyJESyRbWVi57nT1ni+BBiVlfK0DLcCyoZVt2z/WC1EWglqK+o6kAbaD2XhN+1wcag6qhCkFQZkKS1vUkCW9Unl+cunPUznG2ZKE0HlONqM1X/txexbERE9RWavvPLK9pRkiOFX++3nNn7/+1f53Foo5WYwrLbqVxQziwcGew2IDIIh4Vjy7LP+ffQaa6QOimy/b7755v468sPVdYHkv1YhyjUrk5IgiCzLCin9zTRrawgIJqQ4JLMi6TYAhuPyJAgIwQRIIgSRwjQ/3mYAgZT2LtdgQqIuywoYypMYgTLwPFolslxHpHP69OmlkMWy3Ap0njK3/1tNgNCM60BWWVi88RxZtJYlD1d1dDNIKysgizJwbRbDlrBKu1XgOdvtfn6n5DBJllTOxb1yDvm/Qo651+gLHRHRHKIDVpfw5PXXuw2OPnqVzxlI5TrgRa+x0Kyxhh8ctRUllwAmTRHOkDgtrUmoIc2V5XNmXRSsFZXvGLhDhQIFovF7mwSBiUDZpTwJz6kfq+tqa80S5zAgTeoDzfgNKiCE8jfy480L6gDiB4mX+0eeNLVFkCcxQhlElrqRu4fuo4yJtQy3AiDtzDL9Y+k3uG7QxvMmQGjVdSAN9B+eM2S/U/JfQylIywZkcV3JXwH5oWrsVWAtx1m/VNqdFu9KVJMX2uXixd+y2Jel/xoRMdRRePQldW3eTnzTTTc1U6Yhg4GEgDllTvGWAKwFzz7rxtRcCyAsBIExATOpy78vKRhqzp13+vcxKVvp/M7maVfEq8DnTPZM0hZSHsCaZaVgFDym/zdSKAgBSeX+ZB1Wek6reQuZTZLiagTOC6HCogch4u8w81kRSFKLczGxQfzaYUXj+eDDnJUYoQwiq0QDWBO5L+qpKkkQlKGN9ljWQkEWUNpsowQIZbkOZNUT90dfo093WiqqndD4IncBBUax8G5HkJaMANSlYgy0YNciTUll5M9vpaiaIalZUAAXbadZ/deIiIh8KNyrXv3qV7tvfetbbptttnF77LGH/+y6665zt99+u9eabacWY1+htg0fwn628PHH/fuYddf1ZEn6gvztg8OWL/dkBthJYdZtt7nbzjjDzTjqKDc2hcwyySj9qyZpew65F4TkgWP5Hde1W/WUy1o8myGzuD2IzELQsNRoYmHCT8o61ghKRoDljfNLNSFNsisNUlWABEFA+D/3W6a7QggWK9RLWp9qlchKforfUhdMvLI0VsGtwPrHNrNtn9buWQxyzjTrc5muA3lUE2jXeQMah2KQlkhqGDSliH8Fqkr6SpJ/0mzl+XUipa/GZykQcE2lPY7+rxERFSOzkIoPfOAD7jOf+cygz0899VTvLxjT2ebDsBEjUi2zvBiAH7vxRv/ZuFoUfhi0xeAtndR6MNiCBe53b3qTmzRtmnvJ5z/vlgUDOOQFQsdEwCTDZCCLiQXfJwVIKd1jGJWvqF6BQT1POllBxJnrQqgUyKSycL5GSQKSXAA4JxYvJhdtFQLIA4S20fYy14bAKp0uZYCANMrq1SqYEJm000gOFlSee7NEVrJW8j+FgHLORvq1nXIraId/LGXDdSVMV2xdB5R+uQzXgbyLiF6UUbJBWtqOV5CWUqg2InBpJFWfWcj3VNH+srRyPSUbSMuQ1U5okWv9Xxkbyl74REREZKPwSH3++ee7G264YZXP//u//9vtsssukczmxDB8tFasWMV6af22nrn3Xm/BHbfeen4Q51gWE1tttZU/Vn6zygIDbjvnHDf3gQfca6680q0YMcKNMhOlgl2wFjBpMOkwgTMJWZFtuTqEFjptG4aSW/a3QhGf2VBzVvI2muSTdGzz6LFSfgi5tqqt6gJEnnqwkl32PqUMwOecg8mJ8zbK6lUGGiVGEJFtJppfRErb/4rGhji2og5QlluB9Y8tK7Uw98xzpj2qbJAw6pC+I0WNdks8qV0pZXRWquWqgf4sd4EwSIu+aZ+Txg+OSyKqFjYtqoKnJGElzVaNhyKtUgHoFrg32g7PUv6vjAmUPRLYiIjuoPCIAIn529/+5rbYYotBn/PZUIm+Lc0yu3KlVxMIocF7/syZbsL667vltcmBuuclkidrqHy/wJz77nOrb765m7LVVn7isTJDnIPJh8mUyQDyCGmArGH5tMfZtLaCAjZCCykTjg1kUPmLDuyQT0gcE56swiIbed1X+C2EE2Iiwgk5UtYbC+5fkl1KFsHv2WGg3vCn1G+ysnqViUaJEVohsqE1VmCxICLXTbeCdvjHyh8YsiEd5Xa6DqRBSiSMkVWX20oL0lKd0Tfkq89x1LH8UtNIqrb6td0fZsiSSwf10kyGrHaDskJe5f/abOKTiIiIipDZD33oQ943luCu3XbbzX/2j3/8w1tkTznllHaUsS8xbOTIRDcD+X5BUpfMmuXG1XRfleXL+mhyHJMDxE+ka97DD7vVNtnE/55JApIiMOFY1wIGYj6TmoDABJbkYwYZCgPFdLxdyOjcheukZn3hfFhLuW+IltWZzQLXVcCUyC/ngKymWTmpT37DRMUEJb9aS57Tsnq1A1mJEZolsqFl0hIp7ps6akZblbYjPd1W3QrK9o+lv3A+ybtRbzxfnmEnt/XV/iBrtKuqRa9L1YTyKXUxn1l/eUX3y5Jtg6bor/p/VhYzxiJtxbeaIauTbhSUOfq/RkT0IZk94YQTvP7k17/+dXfuuef6z2bMmOHOOecc9+Y3v7kdZexfy6whkAyekFMN+EzqKwjMqpHEMMuXwGfWHWDeI4+49XfbzU8MTBrWGinpK8gv5EZyNMr4ZUlrkiWUQT1pMqa81n+U/zdrpWdSg4j4e5k3z9dDHmIs0fuQVOG/ie9umiWMSRWCQ4IHjsUaZO89zOrVTmQlRpDfblEiqyxSSRZl6jmL6KeBdsTvaA8Q77RUxJ30j7WqA7Rf2j4EnbJ1y7qntkPfKEvqrAi03W+3+KkX6ala31PaHX2bvkJ9yYqqrFPNZsjS+eUekJUhq9uQ/yvtRwGstKHo/xoR4epay/TnKipyNFUiSGskruWSWcgBEx+uB0sefdSNmDrVrVi0CBHWegrWkEjKgmIx/5FH3JaHHuo/l/h36McK+ZVPG/8XeRYgKWGUvuTCkrbY+b0tGxNBsxHxTKS8uJbVsc3jrxkG0/A5fq+N5Lw02UL8LJG1Wb3abTXKSowAkeWZFCGy0qdNssYC2oaszXnJCvUpUX8WHWVM8vIhbWaxINUBXvIpp51yHu65WwOu0uLyDJpJxJAXPENJXlnCqu1+m01QxFVuSTw/+nKz7g5hhizpYjMO8LIZsqoMWZwVcCnJsOj/GjGUsMIsevXS/8PkICzO+4bMst15wQUX+LSgH/3oR701C7cDrD95t4SHOqyagSLvwZJnnnF3nHmmG0PWGSycU6bU3QxCa6msHsLS5593i2bPrrsZhNJa8n0DvGOdVdIFqzygQd1CgWJJZDbM9MX5rHtDM4DgMKnkmQxpj5Q/JJwsEGibjQgXv4eAQFpxM+Cd+4UIl50EoWhiBBFZSGde4qio/Sz/XvxIRTgagedLHfHimbA4aJXENuMfm6Y6wJhDHSoBAoNttyx/8ktu1X+4UT3wLJSBT4FYWvSyMKJ+RC75zvrVl5UhS9bWqk5uaaCOpP8KaEPtzjQWEdENDNQWsiFB5WVdC7U7I/ch+oT+ruIuShIKj0D//ve/3f777+8njYceesi9613v8oThoosu8lu1P/nJT9pT0j7DlBkz3Frbb+//HqQ3i/wM/n6XX+5W32ort9paa9Wje5Osa5bAYZUFq9UsieEEQ0Nm8uGdyU1pMyFMdWmvmj9b+FsGfq4Xkp8k1YIwk1dRKFd5HqssZYK8hcdyDoiPArvSIFkdEUm2umnX1FPerFCtAKKKX3CSDFRRIitCB8nLCjKSb2QjjVwbfQ/xLStwSYFYDJhZcmt5EhYUSYDQiQUJ7b5dAV5yC4FUQiBpM2q/rWbSCgOyILDSba1iQFar/q8sNFgEVclPNyKiCGyK5eWGpPK3VRiijUNK9dLCtswEIT1JZj/ykY+4t7/97e5LX/rSIMvDQQcd5A4//PCyy9fX0lzObAcyCfkJu0ZmVxDdu2iRGz1xYl2P0U6QIsCDgnlqZHZSzdIVWho04SlhAkoKWqFpUGdyDBu5DUALG3+YHEHpblsBW7R5pbiU4ja8pjJaZZ2DCY5rWX9GyBJb3u2etEXCIGpJbgwQSIhcXiIra2wYvBaCdhTec1LZKBfEifook5zJPzbNahy6DmSpDuRJgNBuWKt1o7pvFrQDnoVcKejXXA+SSd1AbIuQMgVkibT2QkBWsy4YEFiNUVH/NaJXIGtqSFKTtv1lUR1rfNKr7t5TCTL7z3/+0333u99d5XNWudoqj8gBJl5DZiFPDLqrTZrkVi5dWncbGDVhwiAyCRR5vwqZffhhT5In1WSdQv9LOgMTlCKSZcWylmEsXKGFUNnAkrbhQjKr7d9mISmgPPJXIhKhVZbJWTq6jaLnIa7hpN3uiHPpulJPSdZfSCn1mofI5rXGWj9ZSFcaUYEAsBCQZbpMQpPkH2tdB6SCIdeBrGunJUDoJGjrjHm0szJcL8JnJZcFuRNptwXymqePhQFZvLSb0wsBWc30K+os+r9G9Mq2vyWpjbb9G6mGDHUUJrNM9ExKIe655562pvbsN/gGGQRqeCJC0oTa6msp0e3jx/vJR2SWBo8OKooSq0hnPfKImwiRrZHRkAzIasq5RADoHDZgRC4Ief1lteVZhpKB9R3NAwgNk3FI4GTZTYOSH3RDJ1KWSfpKUpCciGyYyCHNvQLrbl6LIOeW/2QIrkm9UR8QyTJ9IOUfq4Ao6kAuFEmuA3lkxhTk1Q0LBO0HkqnnVKZrA32T5yAZPOm6NgrWCgOyNDHagCzaXL9ZbKz/K+0s+r9GVG3bn1eaBrPSPffjtn+nUXjGet3rXuc+/elPu/POO8//n8rHV/YTn/iEe+Mb39iOMvYnApcB6tErENApapbZ5aSprTV0kVkskdJiDYGbAf6yWVCQiFxEmPTUgaTJGU7OWM6UOjKEDSpLIrd5IYKZN4WotulDq6ySLKQRan4HGSKQqR1bwnksk2marGwlQ/QaEVltr3OPeS2C1AvPMVwocD2IJueQjFWZ0OJL6hr83WzCAiVA6Gb2LPk4KytcGYFwPBvahnxf6ZvTpk1L3SHgGGXjkrW1lwOyikDWZgisXKIg6tH/NaJK2/5y2RnK2/6dRuER78wzz3SHHnqot3wxCO+7777emrbHHnu4008/vT2l7EMMBJZZWagWEFlvOsgIE4VMZ5FmKAN5OJEqYUIj0AF1Tv5WIA1kgc5oCY2CQCR5NOgebOBaC24GnIeAIKxzea26crVIsspCBtMAGZKlqlPg/igXdZgWuZ+HyFprbJHtdaWwtS4NPHfqgu8gZWVu1ct1gLJCOmjX1DfPqxm3BdogBJL775Y1lntSGVqV22ISlDWR56AdE54pdZTkGwxxVeAexyodc5E0z73u/0qdMeeo/xLc2e/3HtFexG3//kHhEZlI2csvv9ynr73lllv8gPziF7/YKxxEFAwACwgjPpJ3P/roIDKLZVYEQJm7IB5sc65CZh95xE3dc8/E61niaSW9mCiZmEVAtLIU+AxLmk13m6YvG547LyB6TM55pYy4BhZOiKEFbZHypJFpyBVEIovslg2uB1Fn8lWK3hBM0o2IbDPWWIHfQVh5tjZrF0SoDOt0kuqAXGMIMmzF2itLaDulrvImnkhzDclLxpRBS/7n9Dnaq13EcaxSySrFK8fSP/K6YvQDGBOpL+peUoHMPSzkh8L9R7SOuO0/tFCIzErr9Oabb3Z77bWXf0W0gMBnVn+Hllll3MDFQFHHkBFLOlci/j1zZqqbQZLKgALLmCAhyer8lnwoG1ian6Uls81IcknjtYgurax99lrcCyQtzd8WcgCZ7YTcVpgBKsunVeVOi8ZXkBtl5zxFLahYcSXHwqKhrKxdKhvnp2yQDYge55bFF9LdrBVVfra083YmHsgCfYPnlye4Lum32gpXQKOCOKgvzkkgHOeknXCvvEuxgOPzutz0Cxh7IK/W/5UFV7fk1iKqi7jt3x0MENPThMGqEyg0UjIQM+naqLuI4ljKJPfUU/7v2267bRCR8Y3FkFnS2SqyUT6tQEkRhOefeMKtXL687mbApHjfffd5XzKIn/RgrYUWX2elsWQCkQV2UCKG2jWTLFKhf2xIbhtB0jl5A76sVTb8jQTkk8g094B1r1PyTY1kt5KC2JKOkTWW5wKZKlp2iCBEmPPzrMvK2gUgaZBjLM6yFDMu4PesIJxmQbm5b9pWN1KJqo1BRvMuIOhvsr7SD6Rlql0A2gP1xWfotUJcqSvujeerILgqThLthPRf5f8a9V+HNuK2f3X76dy5c+va7d3aJctC4WX/ySef7E466ST305/+1A/KEcVx2THH+AxgriZsbIOwvGW2FgAGhtdSQjLRyTLLxBk6lVuNWRE4SIX0SpkwtfUriy6Tr7IoMdFCEK28GufgexpyklJF6B9bRMmgWYIp0h2SP8hC6HZgBfo7FSDCs1G0fSMrcFoQmz5XUotm/Fm574cffrgu51SWdBTth+cm6TdZDiFw3HcrwVkikTzjbiVA4D7oA0oSkVVntGFZX6UVbbfCVSdKG81nClCEqA/FlKk24M36vw5FIj/U0Oy2Pws9/h+j/TuLpUuX1gksz4GxrRvGhbaR2bPPPttb/JhsGOxDLU/S2kZkY/6jj3qf2YEamZXPLPBqBmz9T5nipblcjcwy+UFmJc8VBmNhmQUTp0717/KtxU+TCZVryGeSd/5PAxW5lYvAoIxite18iFXaRGM/Z/JulHGrFYLJgIfvYmiVld9vkhuFJLg6QYyoc+4r78qVemWACC3hPC8lKyg6cChrF+egDEXS4GaB9kLdM7BB1qzbRJJ+bFHwDJEsY2HVjQQI3B9b/dQ/7TLpPjjGptPlGGtJFFGj7uk7Iri0B96H6na5/F+pE7mqRf/X/kLc9u8PLF26tO7qw/hGP+2VQMvCZPaQQw5pT0mGEIajJ8dK1JBZJkMGhIERIzyZHT91qiezw0zAh3xrOZ5Jn4YnLIb4IklV2/YXmeV4GiOSSKyqRF6lJ6uMS5BBWWIFJm5+kzQJU9aQPFqrbxpEMCFERSd3BaOFBJhJMiSPShDQKQkuCdynyW6F4Bmy6sViGlpj2ZoumrhBahSUwZKsssT7IbLsxNiBTSoJtIM0lYY8YJHGvUO8252wIkvyC+ugdY/g3q31FbDIoE1RTp6hsnPxLuFzuYV0K5lDFSDFBpF6SbENVUI/VLb9JewfRf57B8uWLfPzjhImQWAZC3uBwBYms9/4xjfcu9/9bj84H3300fXAhYgmQVpYY5mVQ7VPRoGlG7K66aZuzm23OY7gOzlei/SG/q+Lnn3WE1mpJGA5olECJhAmXgV88RyVDUyBZfLJ1WSj4zlPWvCXnaxVvkYdQL6QzWxFQxqSCBpkJPwcUtcJCS7JblGfRYKEsGRCiqT7C/Fu1hoL0YKM8ZwgwtRx6LrQSoYrnnN4byKABOhkZVrLm72s7Axaea+PywTXlW9zmJGMssnPVfquEG/qhvpQX+I7nmfR1LL9BKv/St1E/9dqI277D10srwVbKjkLXKEVg0TPkNmPfOQj7q1vfasfuBHzZgLKyrAUkY1hIrO1la2spEyUwo6nnuqmbLWVG1dbOIi48jeDUKhOgGV2rPFhljuBwKTMJKOECQr0UkIGJnT52QIaOr+nTElKAyGZ5XqNrLKQUa38ioKyQ07D6G6RbksgsHhyT+2W4OKetTVeJOAJ4sMgAoHjHEoWUdSSpyh46l1peQn0wsLZyqBE+UTQwwxXVvO1UXBbHkt2NxIgWL1exjHugcUFbZ1+ADlXPIBUMNR27XfKYgaJbZToYqj4v4r49/Kk2A+I2/4RSW1CyVnonxh6cNnrl76ai8wyOV544YXuoIMOqm8TJ+mOgqQgnIgEMotltUZmsWhAGJk0hbFrreV2PvHEup+szRImMmvJ45LnnhtEZv11zOTKOaRfyYRst4o5p75nIpK1kcmJz5JknPjcWj2xZGWRMWlsNrv1DfGhHSad1yotcH/UWbv9LvPIbqUBYsTzVnasokSW9sLz4ZlZf2CpCzS7VS8ZMF5JmqplaL7SbhVk2I0ECCzYWIBI61VJNLhXnqMypUG2+RyiTR1rEcX31DPgGZYhcdZLkN8wE2L0f+084rZ/RDMEdv78+f7/zA8yfPQbcpHZT37yk+64445zxx57rCcIu+666yrHiGxF2a6cZJY6q7kZMMEqCMt/P3Kkt1gxWSjjD5MI0FYo/7ekxbsZ1MisjoWUSDqLz5iYlbtdv+e5YSmFqEjQnQkesGq7//776ylEk4Ku+D0EhzJlWUKlAdsMwZTqQpLll46qXYJOSXDJt7UZ/VOsndwPiwYFp+UlstQ5RIpnxz3b56/sUM3umFAmSUeFW/4KjuL6rVhju5UAQRZE7k/KHrzoV9QZ/YF3PlNyAkuyFVTHc6cdNuPv3U/+ryyGo/9r+Yjb/hFltaP58+fXjWNDxd0n10yMv+xhhx3mpX5e9KIXuT/96U+FRO4jViWzO3zxi27e1Vf7/4cuA8NrsiQKnIDsyBVAltkw2Ao3gwk1wilyDHGwOrDKjoWF85577qm7HLBa09aDpLx4vtb6ChmVUoEWLvL1ZJs1y3UAEsO1m+1MXDuJKFMOJXnohASXZLcgsM0SZu5FRDZvBi7uUWQSEhH+hu8has3silipLVbsITmXBZoyN6sdK0s/7bJTCRCoE6z20n3l//Qj2jP3zH01yirF89bChX7YrxaNrKhm+b9y/4wbQymJQ5mI2/4RnVAMmTt3rv9bSjZDqb/mvlMqZ7vttnPnnHOOz/zVjajjfgEas8MhqzVL7KBUs5DWmswUk638Ca1vqCJKbUOFzK45Y8agRAfhcfxf/pRM7EzyTOaQQZWBz5jY+dxmdoLQQHQhNZxfagF59EDZVm+WCEE6whS7liRTPhGudlrMispuJYH6p36l29vIV5QJkLrjPjk+KdBKzwELbxGilSW1pfNCoClvKwRUWqsseFpJpJDX+opFQr6vyq6lRSEv6py2lLUQ4TnJh5ZydyM4rdOw9cc7dQTxj/6vjestRvtHdNPlh3l6xYoVfnxjHmhWHrHXUXiGOuqoo9pTkiEEKQ4sr0lrWTK78I9/fIHsJmimAggLZChMKbfY+MzKNQFix4Qs6yq/U/CKMg+J/PG3Mh5hNVTwF6SWY/kcMsffSt6QJ/KesnBMsyRTQUJJoBwi7K1onJYtu5UG6yKQpQDAMcpABXnOEqrmOAhaEb9d3Q9ELekZKgNXKyLZ0gRmsG3Xs+HZS79UbR7wzov7oO3Y3YlGxJsyMzHQT3hO/Uxik/xfWaj1+303s+0fCv1Hkf+IboB2JwJLO1Tw8aghSmAtho4NuoJklvSzwA6MTz3+uHczCCE/WOtba2HVDCQpBInFykKDlz5taGETAcBSSyd58MEHfXls9ihf5mHDPJnDAspneYWUFezUDKS4EBJIbbtLEaBdep6yTjJotBqsJNkiLNlJqYF1Pba1GajyWAQVrJQ3HTBlwKWAXZUk39eyMnAp8UPZCRAon9QFeJe7ixQylM6YRYMUHho9M+nzct9q1/286yQlDV6MB9RZv99z3m1//V9Q25J+KuMMZD/MvhgR0QkCy6KTsTX6rCcjktkuklm5GVhAcHEzCGEts6GLwYqlS90y1ATWWMP/X/60kAnIpDRlNVAr45gl0QzuEBgmdfxTk7aV+Q3fIf+UZ/LjnAqsaQbSMU3aGsfaRvnbRWTlgyux91YImRYHkIYk3VsrFQUpy7OtrYQFeYLqOFbZrdKyoZVBQHUfWMybSfyQlROcgZz2q8UNZJ9BXSlhbdKJJLeJtKQVlJXzsFDrV/8y6/9KXUHI0vp4r0N+9EkW1SjyH9Frbj+MUYyBCkwdaovOIui/0ayXyGzN2moxAPFMsczKZzYkiLgYgNFmO1W6r/LpkpXBKhFYK4T8Z5Ost6uUMXBxSIN8bJuBfHeluCDJKGWhgtS2KyLe+uC2qoFK2ZHf4rmlpfqFaHJcEeuvtJ6znlUjqa0yMo+FCRD4fTOJHwTaKuXVIM55WLAwkCurUFpyhzxJJygn7RJiR3vvhjxYu8Ezpf9I/1UZ4Xrd/zVu+0f0M9RvGf94Z+5h0T6UMwkWQSSzXcC9F13kNjvtNE9cQ5DmdkSC5cxmAOPdWtdEZp8h3eujj/rJXNZbyIWSMYioyMJliQEkgomvEUFMSmObFV2ZRuAaQeoJ8u/EomktlpCRZolyI8ji2arliucEwWPxwJZ3Eng2kDG+z0sAIZ88uyy/W0ltQQDTLL2Ui/Ip/Wqz1lilu21Gc5f2JMsrA7is7VjeeeZZz4A2Rtvgd2FyhxDUMWXknmk3rVrbq+r/Kv9hKTf0gv8rz1wKLeHWf9z2jxgKBJYxULKBjH1KRR+RH4VnayafH/3oR+7Pf/5zPaDF4oorrih6yqGHwGd20Fe4EiRYn2SZlTxXKMsFVp861U9eTABM8pBOOof0MTXZM0kAnUPnlXUuC5CCPNY7OqeCx4qCayjVKJ069O8UGW+HlUkuGmUQWUlecQ9JdaZsWkX0d7XtnpauVvUGkqS2BM4hl5JmVv7WNQILQl4Lp4K2RF6ld8wiKqu8ISBujD9ZxFQ+tpBYyoZ1t1mXlypC+re85P9ata3IpG1/kdS47R8xVCECy/jE+JslERiRD4Vn7A9+8IOezB588MFeqitWfnEowGvZ88/XP5OEEH60yHaFkH+rJIeSyOy42kTGCzLLsRANfD/5jbXMAp3Duh00IhNhGtus7e00wpUFyvDQQw950gHRStpWxvrULheDMKNYs4BoQcB5rmlZorAAQ8TyEjgICzJcSVZcKSBQ/iyfUbkDsLBpRnIKAqLrNNqmpx1AviGeHC8VDupFUbjyeS1y/UbpdK3vLm01rR31MqTxDIHtlv9r3PaPiMgPGSKUBIjxsxd2TnoFhUfAX/7yl+68887zqW0jmgPSW8raJZBpy0+4kNkUn1k1eibwQW4GtfNMSNjSV+Qtv0+zzEo1II9/KOQMApYFyAuTbDOWU0WVZyUAkCpAOwDpamSdbgRlUKM+ldQhBNY0nmcR4gyJw/IWErNGUlv2ms26A7B1zW955zpJaha0MdoHgzVtgHuX1Z/rYUVttl3ICkn7SJM2g+hiKaY+2GKnDfWyj2ga9Lybtao3Qtz2j4goN/iSeYVxuxW5w4iSySwT8+abb170ZxEWtQl2SY2Ebr311u6uu+56YRJhCz1DzQCwLR1qzI5Ea7RmrbTEV9ZZ+xkkg79FimQxazQxSs6mkZUL0kN0eDOAjKT5l1p3i3ZYohQs18q5IRmcA8JF4FdSPVD/1FERyzUDIrBqCJLaok9mpZmV8gFtpmjAk7bpaS/hNr3195K/q1JaU4eQXizorSayYEKg/LTPpPKLaEtHuV+THMgtpWiwoEXc9o+IaC+YIxkTIbCSDWTs7McxqUooPGsff/zx7utf/7o7++yz48NpwTL75J/+5BY/8cQLD8GSpxQ3g9Aya4FlFiUDnSd0F4BQsSVpz2WvKzLbyFqnoKysTgmpadbnVIQtK7BJVt92QA74zQKrIQMZlk/KCfkK68Fm7MpLRjinJb9Waktb9WlgQJXEWd56kxWUhQX3EGZW03YZ98i1ZYGl7pRlqwyLqHRvlcwjXGyJaAMmi1aVJ6oMZVLjPpPk3UDc9o+I6A4YA0VgmZ/7eWeoqijMOK655hp35ZVXuksvvdRtu+22q1jpLrroojLL13eoW68gZZtuusp33mc2I2lCEiCzo1Zbrf4sQjKbttUtUqpADPsbRX8TWantciZUq/uaRngbuSEkgfuDdDXyhYVkNauQ0E5/WYgfZFjuD9RDUjIDjoP05SXNtAl8njmvsq9xDuogzRc3tOJlWW2TZLGoY54D5dfvrLWBdia1AUmElb3AoK1hjeUa1nVC6gmQXIh0O1MYVwGW0NOvJKUWo/0jIroL5kTGSvompJWxKtw1jagwmWUSe8Mb3tCe0gwBeG3Z4cM9ad32k5/MTWaztF1xMxg9eXKdeIRk1ioQWHeF+jVrBFv/h4hh9WLyhNxIGaGRVZYJVtHpRQGRxfKWRSYpG9doV7S27rkoZKXEAi5VCGWjSsoCluUPnFQv0v8l8QL102iLmfuAyPK88gTKyfILgbSZxxTspcGavi+tUj6jbGWnquU+CZ6jTNSnzs3n0sMNiXYvI2vbXwtI7pM2r4UEfVuau/wdty8jIjoDxkQRWACBZQzsh7FoyJHZc845pz0lGUJklqQJvI8IrHOeWKb4zNKJwg6zfPFi9/xTT9XdDKxPbEhmRRIhBZARrjVz5sz61iTWVyULgLQoCxSfQ9Tw/+T/WMHSyEuzqWuZsCkjyLLw5VFSaBbSzy1KDCSNJIUB6jXJH1aas7Kw5gH1Tr1AbiCojaSrRAR5nnmssTxvykrZIKlYOeViAEEHobWB70U2y95Gk0uE3Uq3RJt22Uv+sK1s+/PcWUjQjvpJTiwiotdAP9Y4D1hMs9COBLZaaDrShUnn7rvv9n9vtdVWTVm0hiKwvPoMYIGF1H9XCwBL05kNt1P//b3vuatPPNFNWHddN2W33eqfM2la0odvJb/lHKSilUWHzyENTJqaPJOSBdCJRWggu/LfxVrEeXnnNxAOCFEzeqxsmUP2sgYIypHmL9gqmvHFZXWO5dpKZUECKWNI8ugvkLG8W+IQHtwLeFZ5MpFpIQIpxZKbVd+QRp4156bfUiY+43qQegZrSHfYDspM8WtBe6XsPHuRcBFt2hrktkoajO2M9tdiIe+CJCIionzQvxnfpeGcNiZGVAcjm5n0jzvuOPeTn/yk7sfJgHvkkUe6s846q6+DMMrASvxTa24GFkxwXnUAl4AEwpZkmUXaa/nChW7ugw+69V71qvrnoWVWv1V6S/5mYoXMKvIcMpm0fc8EzXEievID5Xd8zgsixHsjN4QkQP6kttDI6krZG/nsNgv5JOaFCGFotWQrPLTKKstX3vNTFqzmENNGOoRcE6LMQiIraxn1qzSxkFEGZiu3Jd3XNKs75SdwrUz/WJtuV9q4IdHudAKAbkb78xyoYxY9RReFERERrUFZK5kn6ev06W5pOEcUR+Gn9JGPfMRdddVV7ne/+53ba6+96kFhH/jAB7zSwbe//e0mijF0sHzRovp2tIWsNrgOjEyYyCQ2H56r/nuT2jUp+QHXhMgwUUKusB7ymbIwpVkM0wK6KEuRQKYkSBcU8geBySJJTPSQhXZY56hbWa/zgPqjXsJtdu6F+rWfKRBLbht5JKioFxYGjcgvBBNrdpZ2oWTAKLOyzDBYQ5ZZROTJGCV91zL9Yyk790oZqBvaJvVEG2ALrx0TSJFtfxFTbfvzN22+XdZhkXoWGf0c0BYRUSVop4rxh/Gg0aJ+qGPFihVtk8ZsFYVLdOGFF7oLLrjA7bfffvXPSKAAqXnzm98cyWwD/PNLX3ohaUKCOoHXOYXMJhDERDK7cKFbfYst3MSNNnLr7brroGOZdOmcNihM255KBytXAz5PmqQ10bfL2g55wdJHWSBbWCLT0M6sX9RBXgsg1mG2gcOoVYgSAyI+nUlZvrK2i6XkAMGDcHKeLMUG+eUq6Cxp4GWRwjFyG9BihmvI8teImMnqW6Z/rA0w5B65B1xfKFMr2qnNbPszZjXa9m83eD4sSChDVsKLiIiIcsB4wbjDeMgYwWKVeSguIlc18DCPKKaFMZZ5jHm6L8gsk1DSFhiNge8isoHygMMyWwKZXbpwoRs+frw74IILBm110whJCUvjw5rGd1h9IEqsQvm/iC7HpxE5SFu7fKEhhconLzKSRSgod5LUVScluSQXleTLiOWSTm7JSJ4sX9w3VlLIHOQOYsd9ppEani3kh3OG1l4N0pRFSTEUPFY084z1jy3LtUMqC5yTwRBSS51llauZbX9etOmqR/urPtohbRYRETF4HKG/aUFPf2O87bQbUxWxYsWKOmnlxfiq+UM7xozRVZccK0xm99hjD3fqqad6n1n5OEJMTjvtNP9dRDZQKpCagbU6KrMVrgO5LbOLFrnhNdF6WU/pqDROsrSJfEnWB/IDqWWC5/96fqGvqoKyOK4dkdQ6vzJ9NUpWwP3QudrVmWThzLOlnyQJRfl4htYqmyfLlzRkcfngbxQjkMZKIl/yx4Ug48dlB2FZhfleCxTeaROyfBeB/GPzBJ7lAfXD8+a8lAVCjnsDlhDqiUmm6La/rKlVJap5rNP0zxjkFRHRvn7G3KIMhYxlLJ7bpYjTy9bWMWPGDApQ7cVxtTCZJfvXAQcc4InIDjvs4D+75ZZbfEVcdtll7ShjXwEXA+tmQOdCP5QGRUNasWSJGxF0NshWEpldViOzNsUsf8saBUHknUYLCZAkF+/6DFgiSeOWRQ5i1Q5gOYTAaauikZJAO10MtIjIcgNQYE6aNBak1Qa/5cnyJaku7ov7VzkYfLW4sdDzwsIqsqckCrIAK/c352w2Cr4M/1i77a8kD9riB5BWyK3KLLJahW3/doM6oW1wn1YFIyIionXYFNsykrDrBT8ZSn1tRZ9YW9tKZrfbbjt37733up/97Gfurrvu8p8ddthh7ogjjoh6iDngZbmMm4G1sMnNYFRgpZQcVpLP7PCadcumprWEi9VoGMRFo5b8kXUz4DxseUPMms2E1QhcA7JmLZZY5rL0aTkea2Q7wLWzrI8QWch9mm+qLIu2fvNk+YLMUe+8pOkaaqjybPgOcgkx5pmp/iCd8oOmXApOoiyU2Voz9WqkioBbCYNgEf9Y+e8yYNptf0BZ+J6FCxOKJNyG0qRiwTOjrgjyitubERHlQQSWMQeypmDXfh9r+t3aWgRNefEy+R9zzDHN/HTIY8zkyYPcDLSdqkxcSW4GrKok6m+B8sGwms+pvlPUvyC/WaWk1XE0dqxmWET5jPOzzQ1pbOc2DMTcDjKyQGZZMCUf1g7gbpGmyyqtV4js/2/vPMAlKcruX7vssrAEAVHkM+4uIDnDEgUECUqSICCSRDHAh4gSRKKKgCCioIAiiooCBoLwB0UkiCxpkSA5g+EDUYKwLJvu//kVc4b31nZP7p5w3/M8c+dOT091dXV31alTb6gV7cGqso1k+cKpivNF+X7kkUdip6PsYQLXCuWW406YMKFqZqDYqxBEjmvrJW99a2NK567PFlx/kV3ZVCt+bDNElutJHbhvZEKA8qjUx6kd8UgE14V2oh1adXJzOBzDQV+r7Iv0ofTj9UIZ9jNGotraDBpiCJdddlnYaqutYqPxfy1su+22TVVgpOEtmGZcdFFm0oRIRnJsZrNsRtl37GKLDbMv5Aa3ZNSmf4XYQDxEENnPKrqQmSKJrJzPrGJZz162lWQGzSAv0YNU6lqhkmhb2g3VtNEsX6islI0S/dhjj8X2Th2+pOCpXJzCdO0oO081p23Zp55Xrq4/9af9Ide0MZ85Z3s/ybHKKrz6zO/4n3Ohfii7tCeDSj9l6ioStAf3RKOphR0ORz6YLIvAyqyqkwlcegGuthZIZrfffvuoLDDr4f88KJ+7o7F0timwl4XkWptZKZdZ6iHKLETQkg+Ikl3CtCYIEA6ptnQKkDilkU0V3U5D4adSxZJOqZZJAypnUba71r7YwqrUtZaDOR9rXlAvyxfqJ+SR84U0clxrN8lxec4A15U60G5c+07GXpX9KvcDxBnlN+vaW9tXqbuQM66J7HxpH9n4ovZOnDjRQ9xU2o6JC+1UK5mFw+GoDfofCCxiCM8R/WErCXr6SW1VZk1W4HgfqWprM2ioh7XOKKljiqNJVMjsu3bZJZOcxotilErd3PL8t5iNMpuQ2awlebsErtBF/IbPUmKLjCer5WiWnOfKYvbqq7nhv2TMX5R9YVZILo4J0UQVraVSQ/5tFIl6Wb5k50qnxDnzO5l4ACUNkJMe14zJIx13pzvtRu1jZVudXjPMHSgDss87yjGDixJxjHRwX2BqwfWtFWbN4XDkP0MisPQ/9C2dinXdDbjaWjyalgsIybXLLrvMRTAY3C+44IKY1taRj6jIooxlqJHK6GUdwOTkk4VZOHvNP/+wB5yHJk9lU3kiYBBFlERgIyJ0EvLsR2lM1WVNjPLOT2S7KDJAR5k6lkE4aZ96Ickgg4q/qtBTeVm+UOdQbYGCc0PuZUYAeYbsykEKYljUxMLGj20lZaqW+GTjy3kzSWGwcbw+acGOmmtbRFg7h2NQwdhE/8szxJhGn5Imp+kHuNraJ2R2n332CVtuueVcgdS5AfnOyWx9MrveBReEORWHHOsANrOSdMIqs9ZpK1OZHT9+Lg94KWmQRX2HGggxtKTVmiAUQWYV5gtbQZHmZiIJ0LEVRZKyHMuoL0vDtWLDahIApNxC6PKyfHGOtAH7Yu/K8VAyRSQhPhBEOS8UmYVG9putxo9V2kepjXIucyL7Rtpi7it38nI4GgN9sAgsoC9hFbLV0IK9pLbaUIO+OtODZFZLoClQl/K8wh2m/WSmkdGGUmbHNKrMVrKFWZtLoI7AElQRR8iayHFabicfOB5qbD5R7fIcX1D4ahGhNORVJ0Hnk5oR4HRFfespAaismszVyvIF+aMNrFc/2+SkBbHkevB9UecpKKlCq/FjuRa0j4isyFtRWdn6CUoygSOcE3uHozaUZIa+EzA+sNLTywTW1dYBIrOrrbZaHMR4bbrppsMULS70448/HhVbR2Nk1gbYt0kQgBzAIAzM/PJI5hzMDOabb5gJga6RPus6ocziSAV50vJ+USqgHKggaLUiEVCnvFSpec5ZnUKaiEFhrFjirwXqrJl3rSxfbIfs8Z3agOsEEWYJmnTDXFulVSwKrcaPTYk/ZdglPz5D3kayYxNtq6QV7SSZcDgGHYw5IrD8T9+rlapegqut/YuG7yRFMbjzzjtjBjCrREGKCMWz4447FlPLQYtmwD8JSeMhevmFF+L/81TskVEueWXNWOfMnh3mzJw5LPIBhMySFavMKiUsL8UclTJJ59IpuySFd6pnM6i4uXlktcisXyKllkTKBrYeeYaMyvEpK8sX58V2iPGkSZOG2ZZDcOm8UWT5Pe1TZFxE2cfSjq1GhMhK4+vmBW9cZ56hPFtph2Mkg3FFpkn8D2eg7+wVAutq62Ch4bvqmGOOie+Q1l133dUz2LRJZhn8WFqB0ECkAOQ0XpQKAeJhS0NtpSYJozOUWUERChTSRHazlKuwStqvE6qSsmU1kuGonr0sdaZ9ioCIvUgo7QLqOewotiEvFO7UUYxzUrY2FFnbBnwHEcbcQHFmla2mF+1jbepVm8bXzQtevw94ZttpW4djEBFFmQqBpZ+DwDLh7+aqhautIwNNT5GWX375qM5Onjx52PZbbrklKjdrrrlmJ+s3cLDxZSEyVnWdM2PGMGVWpDNLmRWZ1b5ZyiydCb/FBAQVUgSS7ZQtstWJGLM27Wsj5gsQgiynMEDdrCNbp2ETMWgZHgJeCzIRgNilWb74DkcuSDEkmbJEUvWdUtKyLI06AdGslSWsE/ax7cQ3tUkj7L0xks0LdK/wnHHtetnGz+Eo87mgT6Xf4dmgby3ambUVtZU+2eO2Di6aHpH233//cOihh85FZiEyJ510UiS1jnykyRLoCCCVEKShhMxCKPJInWLSBmNXmpJS2YGKEDNjRhmk08lzFGsVED2WshvtwGrFj62XSKFd0A4QMoANF+pqvfPnN+xHm4nk0e60OcSU+nKtsBOWWge5Ramlc2cbx0LN4/xwluw0GeL41qO+1aVvBgTOMU0aMZLNC5SmlwlYKyHNHI5BAn0M/QFjCc8G/RuCSVExwbOO75EEim3fOZX06Foh1v+Kkd73ZPa+++4Lq6++eqaDGN85GiezkA0bHWLhCglKyWyWPWtVmc1JXavOhhcEVjcnBCrLtlIgTgIAAKbVSURBVLbdmJgolRDyRoL880BQj7z9RPqKgJJF0E6NhuKSuooaZ7N8SQFFcRWZh9RSrhQ8lFwmepwr14HfQTgx1+kkuFc4DkSznYxp1B0ii7JiTSBGsnmBrnO9jHAOxyCDfpAJOs8DYgSkhj6tyBTowNXWzoWinGVIafqeJsSCIyiFOeM17/R/vdoHNk1mOREGNdJWWqBOjcSlx04osxCdx887Lzx4yilzkVluqEbIrG5WKaPcmGyDXEJucD7Sd8xo7Q3ZrjKrlLgci2X0emQKZTLP1pA6c95F2VjZc280FBfkGpLKefJC1YU48oBD7lBfcbKCSMqeUmGaaA+ui0KUoe512ulL9rHtBupX9jPqnl6fkWheoPTCnHM7SrfD0a9QFkYILESW/oXJfBHJbGqprRxPZgJFRrnpF6Sq6eyMdxspCVhSyjt8wG7rt+QUKZoemTbffPPwpS99KVx66aXVuLIM2EcccUT4wAc+UEQdBwsZZBa8cNdd1W3WASwrnWhKZiF+XANrkgBB5bPUQOu9z3c2JrCO0ypQLSF7HIuQU3Q4tcqD8LFv3ndFOtUohS0PPMeqFxaLNkS9hbQSboz9SXqAOQHlQHboZEVU2V/2lFIzOVcIPh00bd3JJRoGGa59O/axOk8IOvdFauIxEs0LZCKi6+xwjCSIwMpJlX6B1bJOkUhXW2sv6acqqmLIC1wHS0THjBkTr5PdNtIIf9Oj3ymnnBLe9773RaUC0wKAQxg3+k9/+tMi6jhQIKRWamYQYbdXZkgip5nKbMVmFjKLIscyqG5wq5ZqCUi2LvG3s2bNpeC1c+NjYjBhwoRYBmQPclvLTIC65dnWopbWc8ZqB0rFClFppHOGKELiIKXU2RJHTAu4Nmy3BFeA/NL+bJc9a5o+txP2se2GhqIMlF1IdlbK4ZFkXmCd+dqdIDgc/QT6ZaWrZvUKBbbdVaSRqLa2s6RvyalVTmuZ5TleR9M9NUTg7rvvDueff3646667Iikije1uu+3mQcMbwOwKyRSq6WyTmZe9ybNUzuefeSa+L1RZJmcJWNELbHB/gYfHhley3vbtAJUXaOkehRIlkw4si7CqjlkPJnVW6KsiINML6qY4r/X2F5lF0aVjp4On7jpHdVxpClO+53yWWWaZKuHneJ3w8O2Ufaw1IaBeWWWNJPMChSLjHlamM4djkEEfJgJLv8tklsl3K/f+oKqtrSzpW1KqJX27rd/aoB/Q0giFgrPffvt1vjYjkMw+9thjr8d+nTZtrn1FuFJy9/T114eXKrFp32JUTJvxixmw/leCAiVHsE5l7ZoYoE6my7Aonnlqng2LlaKeotsuWDJTXN9G1F/Ubtqec0F5FvlluyJCZMUa5RxpFxFc2j0vU1i37GNtm4Msc4uRZF6AXTTXCOW8aIcWh6ObgGTSfyn+OASW579RAtvPamutJX37XmtJX+dpVdORQk6HhoZyndL7ksxiTnD22WdHIjZlypQ4SH/rW9+KTmHbbbdd52s5oGTWprSd9corc+3LdoiiVfNm/Pe/4cJNNglLvv/98TPpbKtlG2JKh6XfoRAyI1Zq3DSxQjtqIYpjStIUPzeLuObZqdIpahZfFOi8qVcjobjo1CC97E/kAUtk2Y5Ci4KRPtScByYMXDf9BsLYiKNZPaASMwh1avmbc+GeyDJ9GCnmBZwn14t7L1XXHY5BAf2ZCCx9GmSzkfTWva622iX9vKV9X9LPB21Tr/1S1VnOzL2GpkfEM888Mxx99NHhoIMOCl/72teqsxiWKE877bSWyOx3v/vdcPLJJ8dBZZVVVgmnn356WHvttev+7oILLojmDRzzkksuCf2AanxYg0hmX355rm0g7SRmsB9Bqp9+ei4ya2dMVlGTEb+cwqwS207ChBgbd2goU8liSR7PeFRLS57zjgfhgxwWCWX6qqeQsh82sJBRSCnnIBtVCCC/z3JSUyxSzhflFNDmlNfOuXXSPlbQ0iJmQ1nljQTzAqncTK56sXN2ONoBYwArDggOjAuMB0xOs4hnr6itllx1YklfqmmvKcRFqs6z67RfI6pz2n79gKZHKojmD37wg7D99tuHE088sbqdzF9f/OIXm67AhRdeGA4++OBw1llnxUQMEOItttgiPPjgg5EQ5QGveY634YYbhn42M6huT5TZPDKrKAbTnn46jB43ruosloKbWsogZApiwnsahovPrS6rsiybF3mABwGCYEN1cayszlC2p0XGr9ODDHGp9XAqOoDsemk36gcxp4yll146k+DJjhXyq04AQELb8QJWuSwF5mVMaxZKN5lnFzro5gWKUEE7EAe4m6k2HY5Ogj4OAsuLZ5t+IyWwZamtnVzS70dyVYTqnL7XU53nmWeeOEbbz4NK7Jsms6RGVRQDC25+lJ5mceqpp4ZPfvKT0YkMQGqvuOKKcO6554bDDz888zdcyN133z0cd9xx4U9/+lMkH/2CORWHqblu2kSxzbNNeaVyrpDaeY3neTpblWJKW3Hzcn0gMNz8dimfjqwVVYrymfGj7OUhDdWVZy+LKlsvRFa7UOiy1Ftf4DvIOZ27Ekuw/M42zpPvJ02alGlfrIxZTL5QNJUQAVLI9Wt1sqDwUJ2yj1WdOKc8Ijvo5gUMAKjndPCdUrkdjm6C/oc+CgIL6M+ZpNH3MBHnO6mtGlNaUVs7Sa5Gopd+1pJ+qqLmqc55IbhGiupcCJnFEYZQXOlS7VVXXRWWW265psriQZs6dWqMWytwcTbbbLNoi5uHr3zlK5E47LvvvpHM1oIC3Qt64HslaYIwZ9aszGQKlsyy7clHHql+VnIF6y1v9+WGZzsEkv/10FhC12rCBDpHIHIqEwZLlNNQXShhqYMXv8sKFdZpoMRBTtMHX0HBWW6mHlKH6eRFemzs2LxEA5gRcG8plI1MA1olhZ22jwWcJ2Q7b6lx0M0LuP9wzOvk5MDh6BYxEoHlf1aEWLlRCnP6jnpqq8iV4l83Yi+ZLukzdoxEcpUu6ee1nwXtkpJTrokl9yNFdS4CTY9YmATsv//+8QHggt56663hF7/4RTjhhBPCOeec01RZkBwueEpw+PzAAw9k/ubGG28MP/zhDyOhbgTUCwW3V5CSWS0BpIqtwkhZAgUpH2+I5zyVATn1ltfsmIeHDs+GWuE7S15b9UyEHPIgqlw6TzpWxZsV6GQVxiorsxf1hjwVCRROzlsKNP+jEisFr9Rp7jtl8OL+5jPKaN5StBINYEbBdeL8RO6xrZXq0Qwok2OCTiqHnCeEHSKbF71iUM0LlF44K4Saw9FvBJaJrky27LMLcaWfoi+zS/w8+/RrvqRfX3WuZW/qS/oDRmY/8YlPRFXjyCOPjA/QRz/60Rjm6Nvf/nbYddddQ5HgQd5jjz2izW6jy9KovhBwAcLVzSXUlMxGYoFJQU5mMEtmYodlPsv5i0kBhFBhoOjspA7aaAUqs51QXCqHztHaNEP+IHKQOJvdi3pACiF9aaQCdbRylioCNiGA7CTZpgQBKHXcv5BuCDdqKvc3dSbpAWpuXoQFSCeTEQYPHMYUFYDOD3Ivc4Nu2sfa+KmQ8jxyPajmBSLxTDjyTEwcjl6DHLI06daEXDalNtQi2/if/UVgR5q9ZDNL+npvdEnfpnsdKe3Xj2hpLRF7VV6QKwWTbwUQUm4UBlELPmcRnEcffTTaYG6zzTbVbZotcbPhNIZdowXqYZGORc3i3vPOC+9MHOVkYrD2YYeFZXfbbS4HMAgin2nveQzpHVNRZhmwpW5CXBi8td2eux5EmzyhlYeTDpbfWVtbOgfsZ5988sm5FEnZZ6XOYqiyeWltmwWEXvau6nTotKirOnnagnZCvaC+kFEIKOSV7zEX4LfcexBZCG2evSvH41jUnwkS+4n0ogI2G3i8CPtYwHlyXhD2WuYkg2ZewPMiUw3OvciQbw5Hu/aS9FEKI6XlfZmaKaEJ/YJd4h/pS/qpilpvSZ929CX9wUVbIxc3Rp43eyPg5lpjjTXCNddcE6MjAG5aPh9wwAFz7b/sssuGe+65Z9g2FGJmrijD/aoqKfvX4iutFN66yiqvbzOzRgZkiBpkbI6x/x1dGaA1Q9f/kBZILRMNm9AghgAziRWylv0bAeTaeuxbhYCJDZOR1DEsnZzQ+UDgWp0IWXAeEH3K4l7QkhrnpsxnKJ2cP21CW3JsCCgkTnazigABIaesvHvbxmdNTTyYQFCfNJFEHtif8njvdPpUOaZRz1oTukEzL+C8mdDRv3BdRsKA7+gPe0mbrEZL1yKsfC9Sq5WjXhJiilrSz2q/rCX9eiG4/Dkf2Who5CR6QaM3yh133NFUBTAB2GuvvWJoL2LLEpoLMqLoBnvuuWckRti+Qj5WXHHFYb/Xcmy6vZ8gZXZ0YsuaRUJfMxEjCM0l6PooeoEUXatUqwMRCW0lxqyWs+ySrVWAIYAoYmnkgvT+YckfVbMTHRDnSb2UjUzL6ainfIbAyixFEwNCbKkdIKO0CwS2XmQHyLJCOlH3NCFC3qqCBXVFzaUu1FOqSyc7YynNnFOtaAqDZl4AMVc4tHYm2o6RgyLsJfkeQcHGbeWzQk3RL9Fnso2+gH34fb3ntRfhS/qOviGzUk2LwC677BJJCIkYWGZdddVVY2QEOYVhizhoDhvPXntteMcWW1TJlJTZ0UaV0xKTOgs6uGhjapIrjMqYtatjYX8IktpO5dkZbCuRDOh4KdOSPlROuzTOteO6YTOaF/7JEsx2wHlRJwYGCKZAW3EMiKJINcSTQcU6VkG6Id+yfa1HlCDhCmslz2GdB0SXeuQtadNOUnVRQalvu/bLWVCEBcwG6hG6QTEv4JzpR3R9i2hXx8gjV40s6TcTt1WrQExk6Y94PumjrDPtIC3pW3LvcBSJhkawY445ptBKYFKQZVYArrvuupq//fGPfxz6EaT+5UGPtlE5ZFZQbNhoW4UyS8dAdpYMMiu7K8ilVQj5LWXYjohOt9HlcIFOGNjlLzpnS0w5LxRzFM8swgqhowPvROcth670OJA0VA6IKsopy87UC/tJS+aZQLG9nprKOaL42RSQfFYoLtqcwYnvLWhv6iCiS12KVF4UYQHlvN61HRTzAmVe45ybtVV29DY6Ra46EQIpK0tWo3FbRWB55uibuVfbSaZS1pK+3hE97BK/P2OOXkNLcgyD869+9avokHXIIYfEARrzAh7OWkH0HW/AdgajKp2JJbO2g7ahtmYS0WCRRWLGMKIZpPtp31QdpBOlM7dL/60os3R+qdqXZa4AmUWdpXO3dZGS2qynfx5QSrV0J8j+lXpCOGV+oExkdhke5KV0FeRUZ5VUJUSQIk09FKJLznqQdq4PbdFIHvRORm6o57k/KOYFEATanknKINoXDhr6xV6yE1myILtKG81veCY1+W0VIva1TCKyVGfbfu6l7xhENE1m77777pjUgAeTyAJk74LM/uY3v4nk5Sc/+UkxNR0g0NWoQ4vKbA6ZrZohmGxgr1VI7LgFFgjzLrBAXLoGdJqQEzk6peof+/Gd3W6dwRqBEiPY5XiZL6QdtEJypYSJiRD3TicGH+oDkbaqqpIVQG4glAwoqHWpSqmID9SxFqGXE5WNBsAxUH5l1iBnO0gxxJn/Zf9Wphc9dZLncyP79rN5AYO61HaPHdvd69AKueqVEEhZaivnpAlys1myKEsElmex1mqB+vW8dvMlfUevYU5FMOvFcaOlpAl77713+MY3vjGM1Hzwgx+MMWcd7Suz6shsCC1l9Jrx8sthnvnmC8vutFNYZPnlo8oJmaIDhaxCWtk3JWhpmK7ULrcRqGyrzNJ55xE2BgLqwRK7AnlDZtPsca0CRY76W6KqTGhSXjE/SIksiilthoJZaymeMgjRBVm2bcc5cD5cDy3rK9kB14Bjlr0Mh4kDaMQOud/NCxTGLGuS4mgdnSZXvZbVqBNqaxbU/9L3cM7ckzyH9B82YYEv6Tv6EUOVKEDc49zH9LsDQWZvu+22cPbZZ8+1HVVKmYsc2UgVCsU/lc3sqMoNgsIt5wP9jpsoer9Omxbjy2500knxtxAzOktUQvaB4AHrAGNjFtptzRIujgM5tZ29QlzlAXWSUFcQR5HaTgxuMldAXeQ8RLSx0+Vhw4YyS6VkPyWVYL9a5YsMW+c22cCi1KIAc06UBUHv1gMuct5I8ol+Ni/Q9YWMdzqM2SCiU/aS/RYCqVNqq4h9VvspUoEIMf2i2obt7KM288D7jn6DHBUZ63hnglb2SmOzaHo0gFBBIlI89NBDNcmB442oBYBO75FHHnnduStRZul86QgtiVLs0pmvvlpNlsDAgxIo+015yyo0Vy1VtpaiWovMpkkOuNFrZauiHhBOlt+pZ+og1Sq4BzlXjs2MUbNGzgs1lbbSQMZgQj1oQ5kXKCJBFihXDkVW+ZPaqzBgUsJrZdYqGlrSrGf32+/mBcqOxvWode1GChSnWXGN+2FJv9tqq7Jj6TdZRDVLdVZb8Zn2VnIWJrqU3yvKs8PRLmQmgxLL8yPTxH7oI5oe0bbddtvwla98JVx00UXxMyeJknjYYYeFHXfcsYg6DgzmJEt0wpDizI4ZM8xzV6YCtLE+z37ttSqZTRMmaN/0xktDZ+UR3FqQSpEuTTdSDr9BPUSd7VTIJBQ6yuWhg9iSGAAbbpY3IXYopoB3luBpJwYh2irPDIDzo62U0UtOVPyO+iul5IQJE+J5MGuFXHWLGHJudDyNkrt+NS/QNeQa91sMzjJUxpEQAiltBzl5ShWVghz7yEr/yXNshRelgm3GS5+yVA7f0SewAjKo7ewYeZhdSb9OP6tIRN0wlWsXTY/C3/zmN8NOO+0UJWcG94022iiaF6y77rrh+OOPL6aWA6TMzjP//GGJTTYZ/oVRZqUOaJnKKi0xA9j06WG+hMxquVDKbEpcuU5KdyswKDYTVJ6BRINBLfOFPCjJQCegAOQM5BBKyOtjjz0Wz1sKJedsTQS4R1V/pXiVQxuQmgPhVtxHTDYYxGSuwP44jHFd6AAguJ2y/20WaczbRs0LOqWMlwHVmWs0Epy8NOGyKiNo16azH2CX9OlrpDorI5aNk61VKC3tp8pzu6ozx2NgFxEuMia0w9ENzKnEeofE8mxxjzOW9HPf0jSZZWZ69dVXhz//+c/hrrvuig2y+uqrxwgHjvpkdr4su0YTZ1YkVuTUvsf0rCizJuySnAwY+KSQpjdklkkBv2nE613gpk9VsWbS4XZyIGCJn8FKNrOPP/54rIdNmgAZgHjyoEL6WIqXfaBCkmG/q/rTHgygyvCle10htdhOG6qNqQNkuRsPP+eGuUAznY/MC/plQOYcMQmhzv2mJDdK3LJURqmt3Fvcm/2mjgh2Sb9WlAPZ9crJVSZSIvD0UVJci3zWOL5WOjS4MzHul+fF4agHhYzkHocTMP6x2tVvJmd5aPks1l9//fhyNA5CcM2uhNIaBsWRrZBZCJOWxGU/q1BdQ8R0TZRZoAFC6oWgqAjpoCjS3CggjqlNNHUse9lXqWBpI14sP9NOkE4eVnkP87Bi/iJnDc4fsosanUUQssKN2WPahAhSjBpxuOo0ODYkDyLb6PXrJ/MC2h7FG2LB9Wo2DnKvQfckEyWeF+4bRRuRiQB26L1MmpS4II+UysnMQqsgWeYPCu/DNp5hEfiyVWerTvE/fQCOnYMyuDscgP6HFUzFmkcgGMSY3A0/tVOmTIl2iltvvXV1GzFlyQ4GeSDl7emnnz6QjdQpKJ5s9bOWuCvv1mZWnT1tq6XxSGZnzpzLZtaqILIhE/i9TZRg0YzqAyFM070yQJcdGglzAcXcRbHhQWV2yXK0FGjaA0WHF85gDJSotKn5RR7SdkHZxY5IhINjKd1ymeAa4JjWjMNZP5kXyEGP62VTDvcLUrVVk0sRNkgr92e3z6uWl36eIxnPW7qMz3lpm5b0s2x8NTGnDeiLFKmlG+3A80CfCIHlPOnTmJT2+6TJ4bDg3pYdrOIdt5uwY2DILE5fG2+8cZXM3nPPPWHfffeNMWeXW265cPLJJ8dZ7bHHHltkffveAWwUaise9SuuWN0uLWL02LFVFQRw4zEwMHhoyRFld6yxddXyHIOQFEhLdFAeUkW12WQJDEiyU7NgkEptcYsE5wKxZDCE0MnjkkGVdpL9KvawkE+F54LENkpkU9BWHEdl8781NygLsvO1yRsGybyAdsV0g0lCM7bcveaUxX0mL+CyFL5GlvRTWFKqjFrNOpIpKgDXrpNxW4u4XiKwSuHd62GGHI5WVy1fMs6KZWSe7BU03Nveeeed4atf/Wr18wUXXBAmT54cfvCDH8TPLHui0jqZraPMjh4915LcaKPMzjKKiMJJycMQzGLwNMt0IrNSheQYIdB5Z9nLNtORs+ybZU6gAbwMMBARmomHdOLEidWZJyST2acUYrUFdZZnczO2wSlQNTWjpWwIV9kqJ+eAwowC3QyJ7gfzAmVT4z6lXXuNdKdOWXKE7CZh45pyz/NSP5A6QclL34aV6pUsWd2wD0QRxg7ZVw4dgwRN1F544YU4TrDSMFJtvRsms5ADu7R6/fXXh6222qr6ea211ooDrqMGGHgMiawu5Rkyq+1yeNCSujI7zZ4+PQyNGRMHFZQUmRZIkbHKrBydUjQblgvlJVVgbbrdIqH0tNx/EAgGTc6R5WhUSv5nUJf6bG2NaY92lquVKlhKYWpuUAYU25Znrxn75H4wL4BkoJ7Tpt0w27CwE0J50nOPa3m8205ZtJWcEzl+UfadRWXJKusacu0gsNQdAjuo9oGOkYt+TGhQBhruCRls8BpHgaVjveOOO8Jxxx1X/Z6O1u2O6psZbHjppWHa3/8+fLuJMysPX2XdUeYvATI7T8VBTGQWSDGyeZMZ+LLsZdm3VqKDYXWr2PCm5ZTh/MVAqhBaqLGE34JQ4IzFoEob0VZWfeYB5/xoA5TMVomnSDSzXKuGlRmKS1nIGJCbXXrvdfMCrpMyqZXdCSsCiFVbrVMWg0O3206OYywZojByP3cyfE4/qq21BnYILESW50Sh9Xq53g7HSEpo0FNk9oMf/GA4/PDDw0knnRQuueSS2GlsuOGG1e/vvvvuMGnSpKLqOVAOYKOSQXIYma2QU6m2UmYFkibMM998sQMHUmMZjFBr7KSC5YcsxauZ7F9SgtKJSr00tu2Ac+ahxeEQQGRZ3ueek2e40rHahBAMxhAkBmE5mrQKjk8ZOm/IYZkG9LQBZhVpFrJ+Ny9gYoSqTrsyMSi6PWs5ZXHf9IpTll0ah8Bqssg1ZNWhnfqlaqtsaPtBba1F9HlGaS+uI88JfV0vXEeHo1OwSTuYaHKf92NCg54is9jL7rDDDjFJAoPreeedN4wQnXvuuWHzzTcvqp4DARHV9EacUQnOPWb8+DBUSdOqfSyZjc5hr70WHcAgpEABxXnXoKzf5sWBTQlyLfAQZS2t1ktj2yo4D5aelY2HZXLUIUgqmbcUlkr1oX484CJ/UpLaqRuk2CZEUOavshyTOBfOEzKtLGSDYF4A8ZANcl6EjU5miGKb0reW7ZTVbHgo7mOe13aUxSy1Vc96P6mteRCBZZKuDH2D7qHtGHlIQ8Zxn/d7QoMy0HDPzmzghhtuiA0MmU2X4H75y1+WHqapb5XZ5KZ8hXBEiy0WxowbV1VkuXFtiC4wY9q0+I4yK4ckRT7QEqE69jznrDTkTiMKSNZ1bTYiQqPAhIABncHdElneIZjch/a4DNoMaCi3MtGoF/9V7WZfamt1JEqIIAcllsPLAsdT1rFWftvtJfIUtCHXlWvVCScvrpWN3Zpl14ma2audv3Xgom1atXnjvKXi9pNtaytLqxBYhRhqV6l2OHrV3ltmcvQJ3QgZN1QZQ/PGRl6K2DIQGcCywHKdozEyOy4JE/XyP/4RFqyQJZsiFiVLtrDg1RdfrJJZxViVAxiw/+eRzWZMDORMlYa1UraiToO6aTmFmajqD0FDVVNcSFs/8OSTT8aHHhIKEUbZVZSHPHBeNjWmfXEsKYfUhzLL6lQgfUAOf/1uXqDYuFy3ZlMayx46zZRllUZlcet1cqN7G1JG/Vv1Oub6Uo7yqHOt+1ltrdVWPM9cW19adYyUhAbwqGaIoiWesxPSWYuQSgTLgrLw5Y2PvTpB7q01t5FiZpDcDH8544zw7g98YNg2heWyJgevVswR5jGxVUVgeTHwa3DMy/DVTCQDBkzKTZfXKaMTMzPZCDJoMSvVMiu2byKyIuyQAOt8xf44RynlpUwM5PSlIO7tDPA88EQwKMvpi2NxDVvJLNaL5gUQEuyeUbXr3XP94JTVimMSbcC9ynlAOhmsmh0MbPxIMIjLjlKZ6XN4jjnHVtrK4ehVSKiyjlzc6zItUpgtnoOUeLYqzIypxIzO+n5QJr+Ck9luZADLuIk2qMTwtcqsIhWoQ6+S2XHjoroqu0Dtw0MiBTFPmYUwNGL7qQcLpOW06vylB5mHmLL5jOqLSsXSIQqrwm0JqHocH4Krc0SpVdpefk9IOJRMBsROhuHBdAECVcaAKmcW1LpWOpleMi+g8yVTG+fBRCBtvzynLKmtveSU1QzsYMRzxr0JgW3FrjMr1eqgxY+0KjP3yEgL8u7obUj1rKV4Nqp6KvSfdUBl9U8kU7btCsnZL2poL8HJbMmhucBcA9uoUWHJyZNf36fyIHDz0snb/V9+9tnXL9r48XGwZyCwZNaSuVpkthFbTAZSBmM5mllAQBpdBk9tgag3Kls6MDNoK4asQCcBweNY/A6nKM4R4kuZnD+fOR/Ov5M223KkgYgUDc6dl3Vs61fzAtqM68Q143qoHRW7tR+cspoB9yjPCs8q16Cd2KZaqeBZUaaqQUu1ar2zlaVo0FRmR/mwtp7NLrfXUj1rLbXXIp7yabEJDZikyyTI0Xl4q5ZtZgCBSwjLaEPqpMryggDoYQJPXHZZmO/Nbw6LrrhifJAY8DSjY7+UzGapp40kO6BMlod5+Oy+bEdxY+BGKaqV9lJBnRX7sZYtEOXi3JUukUvd4xiYFEBiFf+VekE0GRR5Z9/3vOc9oVPgGEWH+pFzGR1qq0S2V8wLuN84F3mac/9gNiGHJEjLIDgkWUUREgsgndwrrZDONE7qIGaqos+hz5CZBAM69tODpDI7mkM94lmLkOYhj1hqfCxL9bRjH89zPyc0mF1xttVLMep7QThJ4WS2C2Q2JS3K/BX3qZBTJUBAHYU0Eov2yYsvDsvtumuMemBDdyl9pWzzdBOmM0BrwlALDDw8hNy41vmLB1SdAjc2ZIWyGMwht4oPq6DOjcZ+hABxnGHxdGfPrqbRlZrLsj//MxCi/knp45idTIVKfaQeFgXODztf2q2ddLvdMi9ISZjsqOm4mbwMkkMSUAID7g05XrWz7J+GmVIWtEFpM/ou+hHOkXul3fZydA9Z0V8aJZ55qqdEijziST9fS/XsNSAkMT7yPDMR7afneahiAmFJq4QyrgXno3PSdelFOJnthpmBuRmwo7VJFOgAuGGkzIjM/d/UqeG1554LS+2447CbiRuOfTVIaAaYZWYAOa2n+EiVxdYRsiWipcGXZU86L9QjXlpmRR3UsmGzQZ0hxQp9xfEpj2NznpBUhd3i2Jwf5yF7XtTYTpJOyuVcinT6oi2xBaazayd2bdnmBTIZkVMTExCuB//TXmnUi36GzhVCxrtSKbdjQ80AockeE0IGh0EKM5Vl51tEyl1H/evQCvFsRfVk3NEK3Uiz9ey3hAZDFZ8VS1plw8s1FGnluZXZIvvLzwWyDuAErsyOcAxVMu+kZgZpRjAGTpEcdQbTKzfS/EssEeZUfs8NyA0KmdN+GjhsfFpB4T9qgYFIN7NMEhTEn4Epdf7SQ6ybu9kHGXWPOqveqLEQSh4y1FiOi9oHUeKcUCLpPER0O0VktVzPO8SsKAUJcsRkAXW5HVvIsswL0nz3yrbENeE8uKc6qYp3E7Qp9x7XSKsSPAvtBObnGaLtBtXJSW3GOSp03qDZ+fai6inn4GZUT5mspeSzU9FfRsr10ooD14HnuddMZuZUIsPYlxRyCWX0bay+sq8IK325RCLuB/YVF5FvQy/fHz5l7oIymyLLzACiEr9TwoSKfR6RDEJlm1RYm5/Z3mwpoeVmreXQJNtVyJyNjIAyykPL8VBR01jD/I6IAnzfbFgp4qqiTgEGQzoJHj6ACibzBY7Ld2zjPJRDvpOZqZhV2zi2RSQO4Nw6QWaKNC9ICaw6M91nXCdsmOXI18sdXD1oZUHhcNpx4MpaYgdM9AbJyUmOLZyfHNX62S6wGbSieCpLYx7ySGcW8UzJp2PkJDRIkZoGzKiEM+TeoP+ifrzzXLKvSKucuvneEtZeNiFoBE5muxBntpYyK5tWOkEZrA8jsyiUld9r8GC/dNZEOY8//niYNGlSdRsDT60HECILUeWYDFYM7LKHFOFMY8xyHIgNZIffN5MZTA+fiANOXCqTpQw6DcUqpV6YFCht7dJLLx3aBW0MUaddbJKGToPjYFZAu3WC/BVhXiBPemWUykurKuJPZ96vZgVcb2Xgks038Ynbuf4yj4HgQV4GbYndhh3juaVvoE/oZQKbp3o24u3ejOpZi3y66tm/sHbt9HXNJjToBJQ4JrVnBVrRtHbGMyu2rorV3W/qajsYjJ62T4ATF6jnAKaOFQInpfC1CpkdjaNUhRRLleOdFwOyytBsUgS2XhQDjseDq4gAPMAMVpAwedqrk7fOZxBLZSGifNTHRtVZSCoqmI7HQ0mdAeU99dRTsROxy9gQKTqUdkmCQkjRQWG7WhToUGgj2rITocM6aV4gAis1PI/Aat9+NiuwDlzcO8pI1s552PaTYjNICmWq0HdCta51rHpppvO+65Tqab8b1AHfURtaHWSiW6Zdu5b7LWmVom8jGuleVxx6fTdvhbT2u7raDpzMlohn77wzzL/FFmH0qFHD4remobm0jK6wRnGW9corYRSdLzOrCqmUiqsBGWImBUWG+ahFEJRa9rI8SAp9ZdPhQl7YJuIom0kdG5LGAC6zAwY7yGwj6qxCflAn2cJSto5PZ4KyZZVkdTSQkHaX+xmk27VbrQeuA+fVSAassswLsghsPcWBa8WkhuvTagixspE6qyn1bbsOGpSrFJQKO1cUwesG0igVmuCk90ezxLMV1TON8ZmXzchtPR3tIDULKtKuPQ11JdIKdDyZB8oxy5oD8BpkdbUdOJktEdd/8Yth8hJLhIlrrBGzXcn04L9/+9uw/TT7EmGBSEx/6aUwtkL8UFvldZ/e2HwHCVX4IEtms5alRWS1rK8y+L3UJoFjMrhRP+oEeWXmagFZYOleKnEesIGFRImgcTzqDfitvrNgP6X/awV0HKixCtReZIfA+dH2nVQxWzUvSDNTcd0aXTKD0GD+0W7khTKdkZRMQ85qnQiRw7Og0DvNhJ3rBdRTPXnn/LjWvCv8Hu/K0paFPNJZi3i66unoRbtv+tROmQXZUFc2PXc6kdPzoKgwlrSOVHW1HTiZLRkznn8+jGL5IIPg2KUFGXIDHrZpL74Yxsw/f9WbknfZqVrweymjqEXaNyublSWy1vFJsfJSj1nIFCQIQsgDmBUfVepsLftczYQZ6LDr5bwpl20cN6tcpT3NWgKvBzmQQS7psIpcBubcIH+0fycJc7PmBamNY7MKopwBabMi7Yk7FZCflxy4OmXLmS45QmB7JZSWri/Xxyqi9VRPSy6lEsm2jvPjuU6X23vhfB2OIhIatNNXKNQVZfHSGKXn0E7sOJYiCWT5uDjaR2+OUAOKDU49NSy4ySZhwXe9K/z3n/+c63sGTQYXDTRAyslr//1vTGMrGzEeGh6K9IFgX14avBicIKEg3RdSCiFOPfgZJG14MCBlB6KGMpWlnAp0EBDaVJ2Vk4yyXqmOEyZMiNEQGER56LPsNSFynEuzBvh0NpwnCjNEsMgOhGui2LydjsPXiHlBqja0ugTO/UObcQ/0olkB15RnhXuJunH/tuvAlRU7stdCaWVdX+pnbT/rXSs5tdB23BespFBOr11jh6NTsPGdueebXVWhT4Cs8uxJZdX4LDM/JfZhfJLC2gt9xkiCk9kSMW8lMUDeoCvzAhFHkVYI3uzp08PYBRaoqraaAWaRWW3nIWOgZ9k/JTTykswiXWxXAgRBCh/kqB5RY3BUlACps5APCC4PPGUTZUGZwqindUBKwbH5DlLO4NsIOD9m4HRiEJ2ibRq1HM+xOu3xWsu8QBMELa23mw5VjnGdcljrBGSnyjnSFjw/nQx3pZUCyudYnXAOK4rAtnJ9eW6VfrfXFGaHowikk1JEG8auvHue/en76F9kbkOfa/1SFJ+VcjRu+TPUO3AyWyJEVmV3msIu64u0KgzOHMjs+PFVswGR1nQwt8scPGxSZlOSyMCYtbzCdsiC4sxqiZ4XZgqNKo6pOguxhHxIJQbKNIb9rZYzUyLIuXBsyAWdTCPkhXOQKQTlF93hiDQXsRyfZV7QaQKbnkfRjnHNhgqDyHJu3HudImFpKK1OhOfqFDpxfa0axTlBYGsN5g5Hv0PPDf0Y/Sb9hSalGjPpS2QWILM+K/7I6ZrxknG6Fya0jsbQ/Z57JMEQWJHZf1x++TAiqu806Ih0zjNnTnjrRz4SZ49SbrOiBtgA3Vp2xCQgdd6hnCwFUVEPZIsH0VRA5WaWzq06Sx0pi3fsMOlgtGwOGHQZbLPqQxlKlNCIUkhZkN8iFNIUMn/gvSgTBrUTZcvjVmp9p2xDuZcg/1yfok0x6tVDJI5zrBUqrBPBz2nDXgmllTqvtXJ9ZeNLG/aaiYTDUVaGQsYJJUNhLLBRNHgWmKgzNjCesX+WuZ6j/+BktkRYNVb///Xoo6vbeOh42GRioPRyDEizpk0LCy2/fPxOaWzlEGUhe1nFpwNZcVTpALLIqSIWMIhix0rMWB58OoZmZ6lSZyHTlMf5KLAzZIKyUWcVwzaNjKC4e9RfdckDbcEyPx0TamzRAzjtjH0sS9JZphGdANeC68S50SkXEceU9mXCUmT2s1rg3OTAxT1bxDkq1JQmat0Ift5IKljOvRUCCwFWutxByzbmcAhSV5V6lXueZ1u+F4Dv5OgoZ2Kedf53lXWw4WS2TGSQ2eFfv6HIAh5USAaDG0kTxiy8cBwAeSghhMoSlkVm6yVJ0NJtCpkXMMiSrUpxblsZ/CEOkFkGW5QmiCvEFBVQ5gcoj0pZm6rMqJ7sr04sb+lbWcggQWWEjxIBLCJcldRJKWyospD8ItRDjoFSznUuU52UDacSZXD9qUMnBxuOoTZUKC3uj24rMKn63Ap510SXCQ7/2+VUh6OfodCTNvWqwlrJuVljHPc7/S/qKmOZUrf6RG5kwslsl5VZC4UWYqADPMQieLOmTw/zLLBA/J+HVaYGWWSW7xkoaz3UWWF8+A0dBMuwMnK3am0rgIxDNBls6YCkjkmppR5a6rFQOCQ6KAZ/2iUPlCPj/KJBvSDlnbQrzSI4XDsIXqejIuh4TBRAGcvQCg1H23GtaDfOC4W0k8e2obR4bpgEtJskoVcIrJ5tnk05RDKZ6gUTCYejFXXVvrJCUircnH4j0xme606ZHjkGB05mu4BqWA/jDKXtPKgis8xQRVxJrkAGMAtrSmAhM4O8h12klRivpK9VGRANmTnY0FtsJz5rK4Bgcl6oSCz5oMRiBgBYppd9burghKKrbZCTWkv5kEs6RBJRKFUphKGTSpXqxHE6RQDVLpw/dYacQPRob8hfEUSW+qMqc32LKD/1wtdSIPdBJx248ryWOUYv2IlmEVhd32aBqQn3CeXQP5RhRuNwdFJd5bP15bDpWUVk6RekrsoWlu/oGxWCzuHIg98dJeLf998f3rHqqtXPQxlkNlUXlWIvGAIgz3/Zz1rYmW0eZDYgW0XZqspzPI0vW89koRbkaKMlZRQpG7AdkozaZOsMOYW8yguV+uZ5civouyIt0GlyThBlfsu50Bm2M5OnnUW8qW8nsklxjkoWYdXDZpMjNAOFR+tket1aBI7r3kkHrvQ4PBup13I3kdarHQLL7ymHl+LBDkrKXMfgqquAZ10Z5GQOoFCQUl+V1Ecv+n8lNJBZGn263/OORuFktkS8XElbW40nW4leAOzs1EK2QmONJ78IaxaZ1bY0e5cFnQazX5k0QGYVaxMnK2uCoOxArUIkljrJjAJgekC5DP7W8QsSxDaptxA+iHceGSLagewuAZ0oBJEXx0PlxC6Ucjge+1GHRpUtzh8i24m4qygNkFiuH2YcWaYbjSRHaDXqAu3RaVWPsiFcNkZrqwSumXirnUyU0KkYtSKwPEOtnj/3KSos7x6NwNEtcC9LUc1SV3nuuMdlCmYde3nn/hVhlQMW+6T9OPtqdYrvGQv6JU20o7fgZLZLYNB7cebMYQQTAmNJqD7TsSy6xhrV7XICy1JM2aal+zxI6UQF1lIOgzEdE52LJW0QiFr2qvVAPSCoeFjbukIAJk6cGEmWTbOLcmiXotkvz8ueeivaQ1bnB2njXHQ+dLCUR+fJ/pwXZeeRdcqGXLbjIKXYhxyT9uXc8tSGWskRWgXXE7MC2Zp1ErQnESRo3047cGWF3elkOLJeIrCcJ2WhSkEAmIiVYf/tGLlQNJzUHIBtWvnjOdNLsdFFVHnRX0mF1XhCH1MvVWtWlr0y4oE7BhtOZstE5WGlU4h2QYa44uEvtVWgk+DBj7Zyq60WhgjuXLGhFXGwHYAM5mVCkAW2K7GCckRDtlAvIVGQB5tliw6rVkisWlDSBzorS0AgsFp6sqk0lYXFhhKDUOZl/aIcym104NeSFuWJCCsWLm0GsZVaCvnk3CHKrZA0LRNDUCBhkL1aKmIR5gVcV86v0zF3uW4ozLQfZXeaXNpQWlzbIkwVmoXiVorAdkIZ5tngueM8e8VUwjF46mqqsArcuyKrTMj0HCskoib/QOSW55B9m109SpOU+P3u6DSczHaJzEZFtKLMbn7OOXEAh0ixXYB0oVRGT07IX4XM5oWpkqlCXpo9vsNJioGYDovj0Tmh3MnGUU5gQlZihkYhO6rUeUuZwSB6lqgysLOvTRiRdy4ii6TFbQWUS4fKy3rbQ/6ktikCQ6tOXVIcGlnW76R5AefDedD+nTYrYIBj4iVHq04RTIXSgiAzaPZCKC2uZZrmtl0Cq0Gde10JTbp9no7+VldTR6ssdVUkVISVfURYeeZkQqD4rLwUErDV/kP9Kv087+3YkDsc9eBktkSMSsjszNdei5+XXGed8EzFDhYSYvePnqGvvRYjGYyqqLZ5Dll0TLXIkKIj6H8ps5qtK51fGnO2VUBOKM8O/orUoKgNWnKnTSAORFcQ+Jy35I6KiWrXCVWQdqYsKbxZaYLbceqqh06aF1COkjl0MnKAVWNxIOtEu9uA/9x7ENhuh9LKIrCcb7u2uZwrBBYiy6DeiTIdI0tdtQprlrpK/2Edr7QyphSukEoRXeuAxT3eySxYHJNj0VdoZaUXkpQ4Bhvem5aIBSqJAoSqAxjEqUJQbfxZ5YyOZJYOquIFqg6JfaVmAjqPWt6fdISosUqbmxJVhVDqlL0sHRrL6xaowBDZlKiyL2TGdqgM/OnvRTg472WWWSYUgWaIbCNOXbXA71BlUYHbBaQYko9ZSCdtLqXGyiGpnUHPkkVAmd3OWFUUgU2TG/CcdpusO3pfXdWKVqquKgVrSjwVWYDnVBFpNHZIlVVq6KImUNRBMZ4Zx+jjOx2Gz+GoBSezZaKirIqwzqmQytF0MBlqK50SmDVjRjQvIINYmmxBqTDpqERGsxIyAKvAKnKCOj0RszS+rHXOagbUiQ7OkmGlZmWplmgGIqrUBTKrCAavN9XrwbKzlGYIG51zt5StZpy66oHzRqlrd+kaQk37tmrjm1cuJiGUy7VqVaVPQ1YVkfGrWcgJRTaBnSKwKtuTGzjy1FUprHnqKu/ps6FwWIwJPEsKSQgUn5UXv1eoq6Kh55p7vVcmpo6RCyezJWLWiy+Gf152WVjq4IPj5znq0CodlzowJUpQhzd71qxoL0sXYUkoYB8t19O5MSNWLL8USoHLPhAxoJAodI4K2QW0RNUqgYEEpeogBBYSatMRqg5puCwtx+YtTRMJoWw069TVKOmxphWtlIFZAfVpxcY3D9wLRCrQANVsuWkorXY9/osisJ0k1WlyA66rK1MjV11VH92IumrL4nlBSJBNq1bSrD0rz3tWqKsyzpW60W8pRJ6bzDh6AU5mSwSEFCcwEc3ZFeV1HuyJjOOVCKtS0s6YPv31QNPzzRdmVMJyqYNT6C6IQ7ygFRvYrE6OjlEhqVjaBlrupYOlDP2uWRMDysHel+Orw6Ojo9Oj447nMWNGWGqppSLBgSQJEIDUnIDyslRhCBYDQpnhmVp16qoH2qudZWfIE+2BU0Wr6YbznMcgs82qsanDB/dPt4P985woOUgRBNaTG4wM0AdkZbVqRl1N7xuRVb1EfhXqin5Oma+6PSmifjzXSkfe7efa4UjhZLZEiKRWyez06a9fhETB1PK60s7Omj490JWNXWCBMKOShEBkFvWTzxAb9uVlTQcs6HyVXpb95PkKUiN9bFKbCckF0UPBoxOHiCoklxIXQI7ldIDdrNRI6i1HNHv+1CslrIptyHHKgJy6eO+0vaOWCVsJe0b7QK5pU9qiU+YWEFBsYznXZuzdOBdFIlCsyVqJLoqGdSyjDpCLTps1eHKDwUIn1VULmQbYVydCXZUB2gMCaxMaeOQNR6/CyWyZSJb+Z1fCcI2qkDbZHgFLZmejtBrCp1iyik6g9LAis1rGT8HvmFXzO1QzSCXvIpRS4TgunXszqpw1SYAI878cvKgPpBBCoVS6qh/mCDauLKA+WQ5MqJCUW3RAeeqoqBKtOHU1Aux+0/NuBLQlhJNBsJXl/1pqLAMtpgqNXHfuIQgsAx37d9vhI4vAdjpuq5IleHKDwVRX1Qc2qq6mpgE2PqvKpW/uVKirMsA9znPEs62EBtjh93KdHQ7gZLZEzCCagHEAQ5m1qqxNmABxpVOMRJV4q6YT5PcQOkiXsrhoex6ZlQMBv6OjYrn16aefHrbcLzBYN5MtSqGsOKaUB6m8HPexxx6LgwPHhJCqbDkwpAosnWlaL0gT9c9LoNAp0J6QRezAilpGgxBJlWlFOUUdaSfKRJapQiNqbOqxzDXCYbBbA10ZBBZ4coP+gEhlSljVr3Kfiqw2o67a8kVYeRYVdQAUGeqqaHhCA8cgwMlsiYh2sBUbVzALRbSSJhBYpy2b4YuoB5BekQa2oRhCLGxnbcO0qDx1qFZtpbOHiEyYMCESAUuMsuK91oNVUlFg5aAgpy/OBXKo+LpSJFFls8hpmgVM4atAXmrbToHjQBaLIrKKENBspi/Ubohbp8wKuGeUWKFWmVIjudcABKCbHsuWwFKHogisTW7AcSD7vsTafah/s4Q1VVchq1oZalRdzTqGCCvkVX2zJqH0b0zk+jVWcFZCA+7vbqeKdjhaRX8+iX0KEh8QnksdI2QWkppFZiFtclqZ9tRT4c3rrFMlprJ3peNhwK2G+pozJ3q20/myNM5ndeR0ylJPlTCB38sJKSWmzagKcgrQIMBxUPkgbdhRKh6sIhTIuU02vBbUPfXSpcNV2toi1Q46ddqsU6pnFiD7KNONDrDUBzWWQbNTGbekxjIYZ5k6pEpNtz2WFbGDOonAFkWoPblBd2GX7C1hteqqyGor6qo9jtJni7B2O9RVGVCmPZ4l2q/b9u0OR6fgZLZEKFasOmaZGVgyKqjDRpV9bsqU8Oa1165+x3bZqKoTUlYXPO0feOCBqrmBSFOaUEGOaGm2K5SoZpfyIUcoxfyWzlFerxBlQmipfDpRkSccmGxMW0B9UltSJUigvhCqoqBjF3kMiBKDiI2nWwsMsNg1cz06oUjXUmMVgUJqf7dTT5ZJYD25QbnQpNcS1ix1tVnb1VqmAdY8QElneiHUVRnISmjgyTscgwYnsyXif7beOrx4331vKLHYwo4blxkTlkEbsvfsww/H7F9DzzwThipZophJS61ArYRMQnboqNUZ83s6MBRSwD6op/ZYUndTB4lmlthFiKkPSiyDD9swL4AMqXzK5hUJeiWUmOomUF/OzR6fMjk3flukOgJxon2KJG+Q5UaXqmkLSHyjDlmNZgezaqyWGjmW7g8mJd0KuZMS2KKDsHtyg+LVVUtYU3W1VdvVLKgPsvasvRzqqmjYRCVcj26bBzkcRcPJbIlY4D3vCbOfe64ajYB0tqPHjasmMLBEs5qV65lnwjzjx4f5K8kQAIOABghUvkceeSQSQ8iKQKcFERRhpJOHSFm1VuYBeY5X/B5yU6vjFyFGQZQaDDFi8KB8mUqghlAWQLnFBtGWq+Vda6sruzX2I2tYUeB6cA0aVUxbAW3C9asXGYG6YALA9aM+7Q66lIcdMO0rNdaG0tJSIwS3GwO8jYpA3coYdD25QWfVVRHWPHVVk8RO2DUr1JU1D0hDXTH55b3XQl0VjXR1hXag3+xXu16Hoxn4XV4i/v7b34ax06ZVHbMWedObwr8XWKCa8MACYqm4h2Mgs29+87B82wqJxKAPIeHFZwZqaxPG79mf/9mH76WW0vGJYAI6QTkmKVwTqGV2QBmAciHCUlcxL7DkyMbYZZ/UwQwCR8xV+xtIGKSXtihSMeU8aYeiCJRMGNLEECm4VkwKUE8V1qwTaiznhoKvmJG0JdeqW6G0OE8psCKwRYf/8eQG7amrIqxZ6qrIaqc8+HVs2bH2c6irbiQ06ObqisPRLTiZLdlmVqlo4ztmBhlKHd+hPEiJnWeBBcL4xRcP0ypJFmQzi5pmlVbICc5CIo3sRwfH92yzzl9ARBdwPJFjoIgHEG3ZrWWBTlR2txropNBaRUCDHCQGxcAOeqi37Gudwag3+0B4LOHuNDRYZmUb6xQg79jk1SLktIti8bbrUSw1lmvItUPxVta1bsWM7AaB1X3N+XONPWZmbXWVl5KoFKmuCvRRIqxcJ/5XWMF+DnVVBrhOsoPl+nBve7QNx0iGk9kSETtjkwEM566YyjZjPwhJVFdnzAjjFlssjB03LsypqKB09HxPR2/JrDJpKUMYCqnIrI1qINtZEVzAgG8dshhYKB8iiWqaFUoKYoIiC1HTgESnym+IYcsSl80qxjE5js3gRf0xZ7BL/ArFxe85dpFJEpQOtqiBkuvEOeeZMEi1Zb9OpMnlmjChUUxNrnsRoataIbBlxaX15Ab56iov9T+puorSWYQ9qQ11JfI6aKGuykxowItr5JMzh+MNeM9RJirK7DAym6PMxu/nzIn7zLvIInHgQSXlt3rR8TMwWKKCOqvlQLbzPYRWqqCUWciuzSjGIGNJI5/ljMWLDtQufVMXSCj1Qh3gO8qhg6UcCCtOYHbJnHpQpq0vRI46W4LDsRjceMfMoCi0mrygUyYMMivgHLOSVzQK7gXaigkA14DjiZh0K/QP94difZaVWGEkJjfotrqaFepKhFWhrkSaec64zwcp1FXRoF15llgBU5i8TqdmdjgGAU5my8SoUdXleAjrgxddFJbabbe5dtM+kfRCSsePr3b+EBQ6Nb6zaWwFBivCKkFupMgqLJcGGPaxobq09G+hZVkA2XzyyScjwaQ8lDYUTRFqtkkNloOT4qKiEjLAUQbL6NaRS+Sc+qbOWPz2qaeeKizjV6vJCzplwiCzglYzjSkBBYMc77Q9xymS/DdDYMsK/TPSkhswGaWdefE/z14Z6mpWFiyprVmhrnimBzXUVdHwhAYOR/NwMluyzexQxYRg+rPPhqHZs8O/H3ggTEr2E3GtOltgYlAhwAwUDGIyEcgKWaWkBBALVFKl+4S8QXz439rLQkSY7VtibJVbJUFA+WPAlJrIvsrEJAcNS6zZDlmDnEJMKU8Ksew6UzLJNpRFqb1FDYbNJi9oBYqZa8+B81bUiVbMCpS1R8kt5NiH81yZao3UYOrSjdiVIyG5gcwERF71TDKp5Hks0o5UqzU2E9ZIDnVVBjyhgcPROgar9+9hzCQ0EwpGZWlwFmQSG7EMr3UIjkwJAurquHExs5c1HdDgkTpaiexo2Y8Bh98x+MnkQMoKgyLvlAk5QkWdNGnSsLS5AoQB8kA9SIMLkXriiSfivvyecqzCKij1rqItpKTVEjAILHVFJUYJLko1bTZ5QSuQnahVXVs1K7DKp5ZqaWtMGLiuWe1eFCBXTE66sZQ/6MkNpHqKvPL8MuHkOS0qgYUipljzAOChrsoB11h2sDxHPNuDdE87HGXByWxJuOvMM2Pyg79fe21Yctddw4zZs8P7rrwy/OfWW+faV0v2MUoANm7Gux2CBKGw6q3IBIMRg72UWwgnBBVAVtlORwnRkjKrQPoQVQZMyCqmAFkEReYLkE6UTS0rqy5pRi8LmyJWdbE2uHyWIxjnQN2LsqvLUkw7CYU1s2ScdoOEoSA2Eq3AeisrlBbXziq7lF8GkbRL+bRZ2Uv5g5rcQMvJ3O88S3Lq5FnpZHxQG+pKL9nV2lBXXFcPdVVuQgP5GXhCA4ejPTiZLQlDLNERhaCyHB/tTbFxW221YfspbSvKJM5fYxZcMIyqOE9AXBjgGABF9GQaADllKR8SyGfZUPI/9q18T7nsD8GVExrEkv0UiovvIUtZdpyQGQY8KYFa4mVfKTl122FoKNbHRjRgG4olAzjnldrWdhKKi1tkhARIK21J26fksxZBtyqNMmDZ39DeZaqxdikfglX2Uv6gJTeQnTP3IC8lT6FtO2HyolBX9mVNA+SE1YmMW47WbdyVLhrToG6li3Y4Bg1OZkvCaOzKMBkQmZk9O77Nm7HczIATIxnMmfN6JIOKranSwdokArKZRcFj0JcTFvsAOlAGL4iI4jeyj37Dkj4Dq5RTyCoEJiWm8pqGXFEGhJTjKJpC6kCWB9TX1NNeKWsZ2EXUi+jkFfKLpfGiQNvS9hAv2galG3OKWkkQOGdIKvWjHdKle00wylBjtZTPPcD9V/ZSPseUCstzwLH7NQA858Lzh+qqZCYir+1EeJA5AveNzAPSUFeQJQ911XsJDbgmNlyhw+HoDJzMloRRkFmTrtamrh2236hRVS9/oh+g5KLg2liyNmqAlFmppAyg7KPyGezSlLRy2ICw4Pgl+1Udn86W8pRhB7AvvxMJhWzIuUv2stTbmhOkkBmEXX7nM3WEwPE9qnFRZJNBBbJYpLpIW6J00z5q31qKtfajLbMIPBMOyD5l1mrbTi/lc7wyl/IHIbkBz55MBjgfrQBw3SDlrZyP1FbKgxDLplXOnUySPNRVbyE1EaIfHeQIGw5HL8DJbEnAVOCt660Xnv3Vr94wO2AAnDEjjDakgQFPZgBEP5jx/PNhvre+NRIwZfVSpIL4+0oILzpKOWNZ5U52eBbKDAZpkYmC3YfyIWEs/ctJSkQQWM9mBlSILyRO4XmylAfqyHlJIbaKI8RFzlEQ2SJUWZG1NI1uJwHh4DgMZFwL2i5vAJNKzP6cf7of21G/VU5RxC5dyi/yWIOW3IBrZMkr7cYzxXPSCnlRBAGuiSIIKIIJzxTt4+GuehO6l3n2Qb9OyByOfoWT2ZIwtmJO8Obll399Q4UMkkjBwoa5ArNfeSUqtJBExXUFVjVjMJUyKtWVfUV0sxQ2BkuIC7+RuQD/s6zMbzSAanmUMrVUDvmBcPId+9GBozxRBzJ/ZRFSVDcGedVFdrI480CkiiSyAOKIrWmRTl+ahEAKa5ldQIIwP6C9OP+y1VjuC64ZL2V5K3Ppk3uNe0gmMP2S3ID7VOQV0smzyvWBuDTrUBjD81XUVt7ltMl14MXz5Hat/ZfQYBBDxDkc/QB/6krC+CWWCLgerXDggeE/2LgphmzS8Sl2rFLWDs2YEQc3zfAZ9NnHkj7ID4Mp5EQxZgGDpNRSC5FeymRZGTID2WQ75EL7Q2yx5VS9qIc82+m4GYhFshnQ2QfHLYiaVSX4nrpZVZTjKRtY0URWgd2LdJpCRYWQcI61luchQZxvFlGVcx5tUoRCyrFlFlK2cpSV3KDIiBKdANdT5FW24bJ3bUYhVWYsEVfZrIu48sx5rNb+gY31zP1QtkmOw+GYG05mS4JsWGdCHsjgJWU2BwycM8lhXlFp8fDX0r4lqJSrYOoiwhosIQ+820FXjlyQCTpjiA0dMYO24s3K5IB3hQhTxAJIKaQTNZffUC/rICRVCUILQdVvbAIEBgMR8KKJLO2DKUNR0RFoGwgobb3UUkvVVBgVjSDLjlYZwWgT2UN3OrlBN5byuX8g0Fo96GXlSqsTCm+nBAXNqKScryWusmnnuaDdu5Vm2NEeuB94hniGuZZcx16fjDkcIwneq5YELddX3b4SBzCZBijiQAzrNHNmJLMMpJBOkRDtAxgsIYpSc0Vm+Q0kUra26nQhUxApBd1nsFZUA8U/tGSH33NsLZtL/ZVCDPiOZXH2pZOnbDp/xXNFjZPtrcgfaoacvYoMT8O5cT5FKCdSWTnvvAxcnC9tAVGF3HCtaA+2ca0EBshOqrEQM47TreQGkEKOr+QGRZp4dDJBgZzf6t2TmkSKtPLiWnMvcC3lud4P5hOObHhCA4ejf+BktiTMQunhn8qAPu6tb82+IJXl/5gFjFSWjz0WCafUVLuPBlTICuRIUQz4n4EZ4slvtazNbyA3qKwMtsSyhWxiT4pyCTnjfwhpGmydckS+FHJI6hXvkEaOqd9SV5beIayQW5E0PrOPQmQVSWSpJySy05m+aBeIGkoNy/X8z/WRqYEUdACBg+iobThfXpqwdJLgpckNIFPdTG7QS3E0FRVAyit11XNQL0GBngNLXOWMCXHl/m41WoGjt8B1lSMXz3E/2XQ7HCMZTmZLhmgFmb3yAPGJDlwzZ4aXHn44EiaWajVYyl6PAVbOWnS+2i5bLjpgvuO3kC1eDN4iw7aThvRRnjKDAcphsLbZg/i9bC8ZwCEuSoLwt7/9bdh5QKQeeuihuLQMqCP1hfAUTWQBanEr8TyV7ldxezl/3pViWM4/SvHL9UH9FUmVaQe/U0a1RuPwtpvcoBtL+b2Y3EDZtURelaCA+5f2ySMnUmxFXBXDlWdC9q2ozE5cBwee0MDh6H84mS3ZZlbGBdY5yg78bGfgjLaqM2aE+RdaKH6v0FsWSicLIE5yFIPIKGMYZYmMojhAckVWIWEKxq/MYgz6qg8EBZImMs13kDLKlbJFPRncbRQF/R4SAbnhtyLMfFcGkRUhoW7N/g4CKqcc2kvxdfkOZRmbV0WP4HyzjsG507YQpyKC/nc7uYHANaUeTFy6mdxA0QFEXm2CAtomi7xqYsJ9ohiuymQn+1bZijsGD1x7JtjcM1xvT2jgcPQvnMyWBA2HYyrZsl5+4YU37GcN2dVgGpXZGTPCmPnnj8Qxi8zKHhRAWJUQQAqhQnwxqMvBS/vZbEt04hAheV3LKUzOLJA1TBWk+lIWx1XaVYXsYuDntwrzBNGB+LEfBJEyUXDLWHqWvW6z4ZKoZ5aDFqSR8xAR5/pgc5yV4IF9uTZFZOvqdnKDNC2xFP6yCZ8SFPCSPboSFBCdI31WRHblnKVQWNyz/I7feAzXkZnQoNfsuR0OR/NwMlsSnr/vvvCWpZaqDqAv52QAAwzIEJXHXn01jK2QWSA7WXW8EEeIKJDNLN9B4hRjlncF8mc7KoTIDwSVukhZZLvsaimPemh/XpSjpWw+s4xv7VEhBTJNoAylvaVeEydOjMSujOVvhR5rNnYqdYXUW3IohzXKs8kNFDfXno9izXKekPZODpDdTG6QgjbBpITzlx13NxIUcL9xL6ZkhH21H+2m6B4iruzvMVxHDjyhgcMx+HAyWxIePv/88JZtt60qtFmAoECSAGRy5ksvzUVm6ZjlRc1nqZwQKWtTK3LL0qlsOG1wdgAxnTRp0lz1gAjwG8iKji27UZkhiKxawsj/MilAGWVf7EU7GWqqHpRZy6bMbQSonTpngfaCnEJ+bIxaTQ5s3FzaBlUXoolZxiAkN8gC9wFEtuj0ulkJCriP0gQFKXHls2K4ykTGQ2GNPCiiBs8O9yyrR70cFs7hcLQHf7JLxlDFrjRLl5XyyaD81FNPhftOOCGssPPOw8gsgzwEFULBgJ3XOSu2JUQAsB/L5yqLd3lkWycifsdvZENrCa2iLEAyKDtVtyDR/Ja6MYBAlMv2AoZMQ2CaOS7nyaAnAiwnNWtWUCubGNcLVRfi3gmy2c3kBrUgcl+EHXBWggLIK8qv7FY1icO8Q/bd7Adppd3zbGMdIzehAc+pJzRwOAYfTma7gLzlZ4gsAzTE5aqVVorbpMzKCUxmBhBFLWnrewvKgAQRfgsSADFQyC6gUFoCSqoiI0Di5MXPYADRg9QqbihkA+KmPOSCnGkoA5W5bGJBnTmvZkJxyYxAdp8yFUjNCgRFOZBSSxsweGJW0I7q0+3kBvVAu2ID3e55CtxDIq82QQHqM5MH2WvTvrS5Yrhau1gnrg7A/SM7WPoeT2jgcIw8dF/uCSF897vfjUu2qCuTJ08Ot956a+6+P/jBD8KGG24YVRhem222Wc39ewajRoWHv/vdmruIJMgZLG4zZBYohilkVYkSLEnNAuUppJZIK8RZy/+Kmwk5gKRyLMgCGa34n0EC8iZTBogtZMSSLQYTyoZoyD6xbKCYNhNXlfPBblg2lABFlP+zylE2MZa59T+EDNLbKsHjGqI0PvHEE5HAQapR0HuJyEJipVy3cp6KGsBkCNWec1WaZGyUFbqMfVC4WZXge8VQpk3oH3jnvlTYOcfIBc8N9xOTde4Z+hvuEVYN6NfcocvhGFnoujJ74YUXhoMPPjicddZZkciedtppYYsttggPPvhgJBQprrvuurDbbruF9dZbL5Lfk046KWy++ebh3nvvjSSgVxE7V0hqRf0LGaRAS8mzZ8yobpsxZ05UryyZ1f8il7KPTaHYqHwH2YW0QtaUtpag9jbdq5RekQ+Ow/F4WbtFOYYpQQKEDkURsgNRKdKWMg+cD/Vsxj6XwVDZ0FQG54X6mAUpP7TR008/3ZYDFIMxDnQcU9Ekem0AthELeLaamSSkCQqUXYv2YiKk5WBetKlShHooLEet+4pJOPeMJzRwOBw9RWZPPfXU8MlPfjLss88+8TOk9oorrgjnnntuOPzww+fa//zzzx/2+Zxzzgm//vWvwzXXXBP23HPP0LMQiW0AMytxMsGsUaMiKRBBtGSW/yFE1hHMAkIBkYBEQCYgb5AmBgSILsQWNZN9lKmL30AoIBtAqW55B5ATlEx+y34QE8gwRFbk2WbAKhocD9WQ+uSR0CxAImkH/YY2UPKHLNKmbGJMAFAOUWdbcWyjjbhmtC8qY5kZuoqKWJCVoEARMFCYlbCDSZeIKwTeQ2E5mklooLTavZRZzuFw9Aa6SmYZ4KZOnRq+9KUvVbdBzDAdmDJlSkNlKIyUQlSlUOYqAbvErqCizCqLVBbYzlLZS3//+xs/Gzs2kkeRS0sU5bGrtJwp+A0kDfIg5yyICQSD5Tm1N8fUsi3Lu+wD4VJucgYPDSaQPYUIs3FZ+T2/hZxB+oqGYuRCZFmK5hwadZJKiSvnwnlAUPOW0Tkn2g3i3krSB+5R2pR7HhLbbAzcXo1YwCSHCRH3oKJmqAw5IXJ9PBSWoxnwnPB8e0IDh8PR82RWhImB3YLPDzzwQENlHHbYYdFOCgKchRNOOCEcd9xxoWfMDBKbWAuFFZpVCQIPRo8bF4k6hMEqsyLFCrWVRa4UPktEgt/GGLcvvxyPA9mFsFj7QwYPVFaujRzSFEEBwsyL3/EbFEqIGWVDdNkO8eW3aWazTtvKQaJaSZ0qO1lLXKmvYvtmgXPnmHzfbGQBfkv5tCGqeJlhyoqMWCDzFJmjSIVVlAuHo1nwjDB55sU9RCQPT2jgcDj6wsygHZx44onhggsuiHa0eSGRUH2xyRXoKJtZju4oIKAoipVYsink6GXNDOappIwV8VIAeL2LsGY5xEBMIBjWsYz9RGZRYGX3atU0xemErECkIX+yaUSxUzYlyA6kUiYIsnFWnNtOhsThfFFHZWPaLIlNFVaRSsUozcrkBTjXxx9/PKqLEPVGjwmJRanmmjIg95JDV7sRCzg3JdygPZpRxR0OC09o4HA4+p7MolRBniBNFnyGONTCKaecEsnsH/7wh7Dyyivn7seA282c8VWgpo4eHWbMmjVs8yxUiEqQfQhbjKdZg8wqtqb2tbFi85RefiulVCG3QOpgB5lRalqIK05OEBeOCZnlxdIfZWG7ludwx34QxE6Q2XR5Ps/G1BLxPCj1qYgrbaEEC1llckzagPsHB7lGgFIJiaWNILHdTnLQKDRRqKc8MxlkXyYDtF+nM505Bh88G3IaVXptT2jgcDj6lsxCdtZYY43ovLX99tvHbRAnPh9wwAG5v/vGN74Rjj/++PC73/0urLnmmqEvMGpUeNNyy4VXK0RSmGM+ZymzYxdaqBqHU/soLJfMC7JII8RUMWj5LcSDfdmeZ5aAYiuCijOYkiRAyEQWKY//a2XYQoWE9IgYt4JmluepEyYP1A/iieKckkjKkaOatZOFpGap2ii2EF32zVNtLSDvkFj2h8T2xASqgxELeC4V1k1tCwFxIutoNaEBz3W/PCcOh6O30XUzA0wA9tprr0hK11577RiaCyKh6AZEKGCQxfYVEIrr6KOPDj//+c/j8iYDsciXTTnaa1h09dXxtppr+7wVxzVLUK3N7NjFF49KmEimkipAzgD7Zy0JSz1TmQwkkBBsP/mcEk1lBBOxk2OYFFZIsNLhKjxVHmw0hEYh+19+BxHmM4NdI8vznCsEknNioCSyAWSYz9jdcS4si6P2q94QVb7PUk75Pfcg31OPWkvuykhFuajG/TQ4NxqxALWZ9sO8g/uAa4JK7nDUgyc0cDgcI4LM7rLLLpEMQFAhpquuumq46qqrqk5hKG522fPMM8+MRGWnnXYaVs4xxxwTjj322NCrmHfRRaPKKsz4z38ikR1VOTeRWd5fNREXRleiEFhlFnJpyWzqUKZQSTbuKmXwP0SNsiBqSoZAGVJLLCAtqKOQGNoc5bYekdW51ApDJptbvWT2gFoMuWxG2aQ9FC5MdebFMSDFSq3LeYq4KjRZ6nhInbkX+S2KLSYGEPoscEzahraEJPdbysxGIxYoFiztwQQA85N2FHfH4ENRUHjRFzChbNXG3eFwOPqCzAJMCvLMCnDusiAofz/iX9ddF+Y3NqYp2YMkQI5ixq3//Ke6nc8Qu9RmFjIl1VRkUJApAfvpO/aFvMlkgDJxbGIbZJXyUmWbOjIwKduXyEwjUGYymTOgdKKgSlmWDS7qazthmyCfWQkHOAZ1pR4KFca9A6GnLilJ1XK7yCn/Z5XLb7lOtDsErx899xuJWKA0v7QHqwKNhupyjOyEBoTKo89Q5jbP1OZwOEYMmR0RSFOjJo5gUvZiCC0TFzfMM0+YNGlSVZ0WmVV4LIiGwnYJKGl8x4CCEstAI5tZ9kft5vcsLaOeQGJRZiFvFhBcyB/fsayspAiNhJeC/HIMjsngJkerTg5ukGUU5zxnQb6H7L773e+O7UfbPfbYY5GgYS8L2RWB5zPnBbGnTAi8ytVADSmGgNOGraav7YeIBSK7SvMLkYW494szm6McaAWI/oZ3niUmx/04wXM4HP2N/hyR+xEmziyY/swzYT6zzC2yCpmdPX16GDVmTHj/+eeHsQssMMzMQmRWWZZEFgUIp/ZRZjCbDhcyw++UVQxCC3FRalwL9mWJEMcfyB1lQvTyElSkZBYCiD0mKmcaz7ZeZq5G0rtCVGVekBdPFhKm84JQsz/nBNFlEJaTGefESwqtUv3SBkwIOB+Upn4lsY1ELOB8FcOXc6VdaMNWkkQ4Rk5CgyyHS4fD4SgT/Tsy9xnmX3LJMM6QQMgskQxGV0iCVWYD0QvGjw9Lvu99ccCwkEOSQm2lhA+llaVjJVOAsELYtJwMUWQbqiuDEASTY1uHLcgwy4Xso1BYDF6yRW2E0DG4cVyIEcSpkeVpEVDFz2UZPI9EMaBCtvJUYogrpFWDrJzK2AYoF/JK+6LQQvLIiqa60h7UBbUJFbOfl0sbiViglMbcC5Bd7hNIfKfVdEd/gvuDPkFRUnhmPKGBw+HoFTiZLQnzLLRQVFmtmcG/b7opvGWjjeLgYAni7FdfjfumZFUKahaJ1XYpr/oeEgtRkxKn9LZsE0nhM+QFAgnp4ztl14I0SslVatJGIIc2CC3L/I1AjlmQTOrA8jYDZlaUCshqGidXoA04tux7OQcRM4Hj4ODFsqgIMeeuRAccU+YJ/YxGIhbQ1lLPIfKos1wLpS52jExw73AfMJEFTAT9nnA4HL0IJ7NlAccno3CRCQxTAgHyCeEAz1x7bRibEZJKCQuUMEGAbEJIeId8QN6siouiqvSvgnX84bcsq0P4IDwQPJXPd3Imo9xGkwcA1GHKaoQQST2EyEJgqYsCqytageokFTlraVPxaUWgGZCxh0WRVD3YRzFmVYYyjEHgB0WJrBexgDZXGDKpz5B5fodpgXufjzx4QgOHw9GPcDJbFrCXNaQuktmE5EHAnn/00fDiffeFN6+4YiRiIhQiphAxXvwvcgbRk/qGciolRQkTICcQGpRdwGdLbigPJVJk2gIyy/7KNNYo0UPRYd9G92cJk/NV/FJILecHCecccFqT2QGEK0uV5feYBrCf2kZRCWTGIecmyK22cW5qP36v9qFd+1WZlNqaF7FA9rCo0krvrGgOkHwnsiML2MJr4sg94QkNHA5HP8HJbIkYRl4hqoboiTxM+9e/4vtW550XZlUSHoBHH320GsJKGcFEFPkfIgbJYykdkiabUr5TqBxUOP6XGcHr1Xg9VFYeeZHKS1l5y/opKFPOWRyrXjILyKTMBix5pI58ZpAVYec8lOkrBY5qkGB9x+/4vUg6AzX7yJOfeqJKKvEGbYBCTTtjcoANrTVDGJSIBWoHzlV20CjVXKdayRMcgwWeaZ4RJp70GTxveemiHQ6Ho5fhZLYkyKa1+hlHqgrJsjFnX6uoqvMRNqsSlUBqrDUhgGBZ1RMSBwmDPPKdyCz7sI0XJA/CwuAlksP2vCxbMmnAVi4rqUIeIEpKQYviWg+QbJAVwxbySrtBjiFnkHpl5rLtqePIpheliW2yk1VoLcpAneU7xcHF1EDqpD0u5wvRZcCH1PaD+UGtiAW0GSYYnL8cu5jcMEng/slS5h2DBSUT4f5XQoO86BYOh8PRL/AerARAIuZ/29vCHBMxIJoZVMiRNSd4rULK5ltkkapqipIG0dNyP2TEKrNAKWrZF3JmySpgAFMmLJutSsuKKtcCQkgdYn3mm68hxQalk99AjESWGlFxWQ7PK5+yIMcopfxPXTA7UEIIiDtOS4oLa80NFIkB5Zc2welLMXUxNeC3ShWcQnF8aVeOh+LZq+D6YT7B5MPaBwts5xw4JwWzp/3YhurtRHZwoRBzTFq4/3k+uAeYwHFvO5F1OBz9DldmS8LEffcNMyrL2RGJA5gwvaLMzrvwwmHO889Xs33JBhUCApljAEqVQmXsUvgsCAwKDESFMpS21i6bKyEC5aNCKvA55euYEOFGlp85rpIjpFEN8lRNiCzqaD1TBNUZws1SKGoygzOkFGVXdp4K78V2OUBByqk/EwKZILAf5Nja1+aBunF8FGfaE9LcS/FmaV/MBPIiFnAdaWfr8NZIFjDHYCU04Lnpt7TLDofD0Qh6Z0QeAbBZv1IHMKvMzjN+fIx8wICkRAUQU1QU3qVIpgSR/RRjVmQLpRTyhTLDoMZnyGqsw9BQVf1luwLlQ/Igg/wGgoTqWY9sAogsxNjWC/LEcbNMFDg2RHTChAl1y1YCBtoAdYm64jBHRi/IMIM056MEDyynA9ohK8QW+0H8GiVy/B4yyKSA47Msr5i1vRqxQLbIXFPbBqntsGNwwL3PhIvnhWePCVyjqyoOR6uT6TSlusPRKBSFqV34SFYSnr3uuqjujXvHO6pkdr6MNKyQ2bEV20UGJggT5ANiQocB+YKEQFJSlQVCCulkPym3EEZUTAiNIhMoEQH/qwy+k+0ux4DsQI61DFkrAxS/QwES4c5Ka8tgKhMImUGgBPN9vexBsvWUnSdqolRZ6s85P/HEE/Fc6VhZZkdNZt+swO5pAoVmwDWEGKJ0Uo4cxnotYgHXFoWa66HJC6DOTE48GcJgJzRoJIOew9EOFE5R0XMcjlYAv0DQanfVyMlsCYiOVNOmwYTe2IhzlyFxEEEIEg5gYxZcsEospTjKGQsyBRGEIKYkUNmsIH7KEqaEDNwwEByb/hVyKaLLgAghkrqnEFksRSuKQgp+pwD7kCZIVQrKp7ODRHFsLX1SF+qLOspnzoXjZx2H38oGF7AfKimqLMSSOkNoIbg8FBB9ytM5WGQlUGgWtCUEkXNheR9STLuXSR5qRSzgO+6BlOQqdq8Hvu9PqA+QQygvJpyA58+vq6NMiMiyKsS45JMnR7OQfws8gzG5nXvIyWwJeO2ll8IsvOmfey4suPbaVWXWAnIHMZQyK299KbKAwUse/6ljFYSSGwPCp6QK1twA4kVZdikaZY/lcv0WYmlvJo7H51R5pCyIlLJ1oQJBTFGHUptNjq+g/CKdAMcjSCCEUwRXA7MFdVbEBZval99QL8qBsLEfKikdLMQ3KzJCVgKFdgBhhkzTFtQDgl2GTWJexALOD0WdtrBmBTI34D0vna2jN8A1smSVlxw/gdJPc89DYPm/H6JsOAYLjD8islmigcPRKBC5ILTwiXZWOZ3MloBpzzwT7WOnmzBVYzPIlogvZFYRDug0FI4LcqLoBHyvSAMQFfZTeCluCl6QQ5FH1E2IJ6odJAyFTlnD5PiVkhwppvYG46ZjYKUDs9mzUJUZYKkH5FaAKFOuDf8lVXaZZZaJA3EtMwMIPoM2dRf4LXWDmNm0tKiRtUJMpQkUOgHOjTI5JrNL2pE6FEEYtaynKAvpxINrw2TCmk/IIS5PqXaUDz3T9sV9LHB/6sX9xPPnEQccvQQJLP0Wg9vRe9B4TL/oZLYPAJlNM35ZSHmRMiuiykAnlRYSo/BQlsxKpbPZwiCrIr8sx1MOhBLCB8llX/2GfSBAECUb3grSSGclssmxKVP76FiQOLaxH8QadZAZu8JuUTZKqjo+zAEgXfUUJX4PaSXFrMANbyMmoPxC4lFcIZV5sXDTBAqdBkSeOkG+caBTe3Q6YgHEPlWdUcQ5LmYFlqjTfrQ17d8Lzmoj2RyAl55X7kORVZ4Jrk2eKY/D0cvwe9bRK/eQK7NlwRDZ2dOmhVeefLL6WUQjpqt96aWw8JJLRvIiopku+8uG1poa2BtCy/VKmiCzA8gqM2rIkJROxZaFDDGgKu6sEh+wnWUABmKIMMvXKZGCyEl5lUIKwaWO+q3ILO+8LEHNA8dOTR8oN01goIgFeVCShHbsZBsB9ZQyTD0hs1kOaJ2KWEC7ck0hR5y/PQ7XXE5yjUSicDQHNwdwOByO3oGT2RIQlVWjzL54++1htiGpKIuonpDJGbwvvHCVzCpBgj5DCEViebfZw2LZlcxWIjYQnYkTJ0ZySjgrBf8XmUXlZF9UPQiiCJASH2CfSRlaorfLnRwHxTMlkuzH/pg2UC77odACkbJ6BI9z4/eW9HJutFEzS1ucB8SScy9LRaCOXFPqS5QFpY3tZMQCJiyKp5uqzUx6UHFtXFlH83BzAIfD4Xgdlmv0oiLvZLYkkCChGr1gaCgsd8ghr283pgGQ1pn//W8YV4knq/S1kCM+Q4ggNFJasUfFhMDeZDaSAUSOpUylsgUsU0NQ5RwGsYX06HuUP0jSpEmT4mBOHSDU7G9JkzUvSG9sjssxUSWxZ8W+U3aychqrB+qIjafKloNcLQU2hexFqUfZ4bOoNwo4qihklLaGxDdj+5gXsYB2gOhD0NPzEvmlzT1AfmfNAbieXIde7MgdDkdj2HjjjcOqq64aTjvttJ4us9MYqvCEWu/pthQyd+xFp1MnsyVh9NixYcI++8T/Zzz7bHW7JbMxw9fLL4dxb3pTlUgyuEpd43vIC8SOAZftKJcPP/xwJIp8RrHjd5TLwAtxRJVVrFHIFWSIME0ixZZcKkYtoCzKFDmyoAxrT2shEwXIL3VAjeX8ILZZ5DcF9cLcQWHEREqV5atRUEc50XQLnD+kE/KJLW1WcoNGIxZwTyhUWlYYEyY3TGY8GULj5gBcHxFWjw7gcDh6Fc2Q0KEaZDTv3b7sd/XA6iMhMf/yl79EQt8tOJktATNefjmMNsoaNrOCDZ80mugFxH5dZJFI6NiWOoYw+MomVuYHABIDSYLkxrJGj46DMy/IqJRXKXyQRQiw1FkIn5IzQHwxC2CApx6QUqsAcnx+k2WDShnUSSqu4sM+/vjj8TxYesc0gbKVQIG62Zke52KDvkO8qV8zaVchgpA7RXjoNrgOXB+lxE3tfutFLFD6WQh+FjlXLN80XNdIgJsDOByOXkcj5LMVMppHQkeNsBWkkTXqdQm3nX46d1b1cxpjtnqDV+xoIbOyh7U3KdsgOcqoBUR6IW+QPgDx5AV5Yj+W5u2SM9tFDFE7+S2zK+wsWdqHLCktJseScstxILHsl2deAFmjzBSUiekCdeEFWYVIQzgpj+Njz6vMYyJsHJ99GjFNEGgn2Zn20gOt7GUQW9kup/VGvcacRHbFtDnXVelns4gs5H+QkyEo1jKTL9R22oJ2QunmhWoPkef+Y7WAtoPU617jfuS+ZmLFfT+IbeRwOBoHfcWhhx4axxXGsmOPPTZu//jHPx623nrrYfvS99CnnHPOOfF39Nt77LFH7IvpW04++eSqWZ9NZpK+tCqED8vXvva1sNdee0XTJcbFK664IvbzO+20U6zTWmutFe65557YX+l1+eWXh9VWWy32Y0svvXT4zne+E8dQLftPnDgxfP3rX4/lsg9932WXXRaFqe222y7Wd+WVVw633377sPO78cYbw4YbbhjHHcaQAw88cFhMd1Z/KZe2oVz61u9///vV75WOnroxZmFy0Q24MlsWzEzrmTvuCO+omBxYSLGdb9FFq3Z7wIbpEpmVqqfQXewjswGlspUKm5oCcFNDgPQ/L25ea08L2MYDIvtc/YbPqIQQZG5uyDHHxJkM0mAVR+rGwwSJk7rL7+3Srj1PS55bcd6SSQLKZ5oZq1dAe0O6aC8mDHSm1DuNWAC5VYzYLLMCq+I2a4LRa3BzAIej/zFz2rTwnwceKP24iy27bBhbwzE4VTzPO++8cNBBB4U///nP4eabbw777rtvmDx5ciSCm266aRRXJMpceumlUSz48Ic/HMfYQw45JNxwww3hN7/5TVwpO+qoo6pL7NamvlZ/DBGFIB5zzDHhW9/6VjzueuutFwnjKaecEg477LCw5557hnvvvTeWM3Xq1PCRj3wkku5ddtkl3HTTTeGzn/1sHG/33nvvarmURbnUif8h3SoX0p2W++ijj4Ytt9wykutzzz03jtUHHHBAfP3oRz+qlvvNb34zfPWrXw1HHHFE+NWvfhU+85nPhI022ii8973vDbfeemtYe+21wx/+8IewwgordM1XY9RQnp49oEDBIRQWJMISqSJx6d57h4XWWCO8dZNN5vqOGRezLGZlz959d7h8k03CR264IQy9613VqARcImZ2vEMuedCUzIAbh9/K0YvtspeFJGUtzVPOQw89FP/n2KiEPJRp2CfKE0mlHMJkQS4VBkrmBprFQaognhZ8T0cgm91mAFFjtthMjFQRbpu4oZchhy1gIxbQZrJ1zoreoDSAfNeMat0v5gC8PFmAw9GbQHTAdAxVzoolCDU/XWON0uuz2y23hLdU7DXrLdF/4AMfiH3RddddV92+zjrrhPe///3hhBNOCCuttFIklyi3YNttt42kEXKHqMP/P/vZz8LOO+8cv2f8Zdzbb7/9GnIAQ+lECf3pT38aP9P/Q5whoF/5ylfiNgj2uuuuW3Wy3n333SPR/P3vf18th/qh6EJMWy33E5/4RBy3zz777GCVWoiq/HDScpVt87jjjguf/vSn27aZzbuXmuVrvSldDRjmQFCSWdqr//xnmH/JJauDeQxl9Y9/xP/HL754eGHmzKo9LKQWNU9pZxWlAKKpBAjyMuQ3EBz2yVMm2VcOZCzXQmQpi+V+C+pGGVJV5dilTkHLH2xT6DALbnrIZSvxXRX5oBkiq6xmKaHuZUDW6Sxk58y7df7KsqulrZV4oqwJWSPw6AAOx8gGCukeU6fOtT3TJlT/5+yTYi6b0De+CG9ebrmGVVG+W2WVVYaNj4xxkEX6YAgey+iQRca8K6+8Mvzxj3+M+6FkMglHxa2e82KLRYWyGbDcL0jogUSn2xCSII73339/NBWwWH/99SN5lvlhK+Xedddd4e677w7nn39+dR+t9EIwl1tuubnKpf34LWX0EpzMloD/TJ0a3mRuKACRBbKNjUvslViskNlnKvFfuUl5hzTKlABAZm2mL1RV2fYwmxE5isf/z3+ibY61FaQsiDBORrxDlLlB7T46PuC4ECzKz0IW6WI2JQewZpBm+WoE1I+OJ2s5vtehyQjngNrKtcwzrVAChTzFtkxwj8mOVaYwHh3A4Rg8SEShb+bFWKDxSGZpkYSOGRMWWWGFppyX8r4rEmlIQwk8gGX4ww8/PEyZMiUu56MYokwWdXyda9Y2a25YRLkvv/xy+NSnPhXtZFPY8bdWe/UKnMyWgOenTg0T9tor93s6AYjs7QcdFD+PWmCBaqguheji5pE6Gy/cmDHxZqIjYT++gzzqXR2FskShwlryI7KrDF4YftfqQNIIA/XAcZuNCytQX0hzIySYzhTyjjc/Syq9GP+uEUAKNVvOS7CgRAlpAoWywbWlzRWejTqXHcfX4XA0BpsxkpclpelnmybdQsKG/DG0aigfjUHypMeMYPvtt49mBRDafYx/C85a9HW33HJLlezRD2K2x9J8UUAhxb7Xgs/LLLNMW2Pe6quvHu67776w1FJLtVyGbGRtRtJuwMlsr3hrv/BC9fOcyjILD43S2SrZAPYpdBRKpKBQXDxQgr6TzSrkSOlkbQpbtrNUXS/uKWVBpCAtjYL6pGpwvTaAqENKIWq16qTsYIoGwFI7pLnfiKw9Z65pnlmBtaHNSpRQFmh3VH7qjPkHbe6RARyOYqGVuyzimUVKs5bpeU5FRC0phYjYz1oJrEdGGUPot3o1gH67wNSAqAa0J/azAmIRzmI4gUF6EV2+/OUvF94PfuELX4gRDnDCwgEMkn3GGWeE733ve22Ve9hhh0V7YRy+OGfGXcjt1VdfHctvBLQBXOKqq66K4xPCWTPmgZ2Ck9lemTmbWY3NQKR3lDtMAjTLVpYv+z83FPtBWiF7ZAejU2JJGgVWx8L4G9gYrJAl1FduxvTBxJaoGYeqrFS0eeetTpF3Ooo8lY8yIa+UCzBfoD36rSNVGDXOGdurWucscN6QyFpkt0hQT+x4eWfy04xC73CMdFgymqeG2v/zyGhKRC0Ztd/5BLN9bLbZZnGlD+98VsIsiArAhH6bbbaJ4xBEU+NrUUBBveiii8LRRx8dCS11w6nLRjJoBdjCXn/99ZGQY0rBvYf6DGFuFPAPojNQH+pHOXKuKxMezaAEnDJqVFj9O9+J0QwwJ5ivktlKwHj85gsvDLfssUf8/MkXXoiOWTwoEBlmPhDN5ZdfvhqfFFWMG484mzhwQTR46Fiih3CwZA1BYl/IEg8bv4GYorJCCilPoFyF6LL2mpgxsLTdjLkAx2Z2luecRJmQOToE9kPBVRQGC8X0UwxR2oMyezXkVi3Q5pwzkwYmG8xcs7KnZSnctBPEvexBirpCYrkuqBB55g8OxyCjmSX6vKXWlISmn1NltNdRywN9EKA+F1ODHXbYodvVGWhM92gG/YmUyFZn7pWsXgsvvXQkstoOIBIQRM3wWYZP48GCmA63Es6L/eggmcFBBtXhsi8k1yp8KIVKfctvZJdJOZBfpZVtBGkqWoH6QKipC8eAwKYKn7zhqY/qrMDU/UhguRacMx0jCgoEVskQ6kHxeWmDZuLstguOK3tYBilU/W7FDXQ4inBeqkVK8+xFs4inAtan3/UDGXVkg+uPcERcVcYownI5+gP9xxAGdeZfIbObXHhheP2/NyDSqlm/QnJBapnVqLNmP9nLsi/fyesdkwPZsfKwWgciSJMCRPO9nMYgm5TVjNe8yK86dM4NRZJjo+xBTq2taDp4MEBQN+rdj05FMrEQaYfANptiVqYgkEjblkXXm2uEEo4CjglKv5lwOEae81K6LWuJXs5LKfFUX5Mu0TsZHblghRK1GQHhxz/+cdMiyp/+9Kew1VZb5X4vB25H5+Fktgsgne0oQ26i4lpxyhrFkk2FtIroyWFLnTWKmRy+6ISl3PKgKEQXUCxaXhBDfoM9DERJBtpSZS1xRKGFlLKMZO1q60Hp+uS8Rdk4LUFgdQzeeUGYeB+EwSMl55hC0Bm2Qgb5PfF+aR8mFkWD64XKzz2GeQp2zv1+PRy977yU97mWvWiqgLbqvORw5EExv1vFmmuuGe68805v4C7AyWxZsB2seViYBVpldjRLVxXiqogEimiAiQAdPqRQjl8ivKieEFDKUxYs61EIoYS00PErhz1g36zsXKiy7NOMnSSEmmV0xXwFkDoIE0S3X7JyFeXIVQ+0GzFkaSfKKxLUnfuB82AyxD3gJMCRQqpoI170efaiebaiyvDmzkuOQQHjZTthrhytw8lsWajEdaXjH2UUO1TWaDLAkvRKK4WZc+ZU4/iJzPI9v0VR5V1EUSoEhAoCxPcMEKhsDEI2vJUydGHPClA12E8KRwr2rReyy0LqMQolL0itCDNKY+oR2q9IHblQsTvhAAEhpp1qxZltF9wTmBGg0HOfYMLQzXi1jvLtReuR0ixkLdGLjKbf+YTI4XB0A05mSwDklUgGmd9VnLVGzZwZVjr++KhiimDIiUtpZWM82kpqW1RaKSGoahCgiRMnVomRjQ4AgUGJg7Ti3KWUqRCyZlO/YgsqpTjdrkxkRD7QsSG2nE8/2r92wpGrHhRyDIKJ92wRzlbcRxBwJdVo1QTC0RugP+AZZ2LFey0ymjoviXjKeckS0UEw+XE4HCMTTmbLaOTKknGe8hGzfb35zW/kqjZmCDYTmMir7E8ZyPhOCqiM1dkP+0cBxRayK/MCfoc9JqpiM+RJQfPT5AmKQJA6Dckjv5m0tIPkyJUH2gsCq6QPEMwiYshyHE1auN6e5KB/wLPDcyrSyksrNYovyiSR+9KdlxwOx0iHk9kykMZPnTUr2sa+/tWoOHDNi73l4otHQqpBy6adVcgtXnwvkwWRK/ZDdZWTmGwuFdnAZhTjGK0sjUNks5bV89LPQgRxZOonFRDix3nSZu04cuWl3YXAcg0pu6ikD5h8QGI5B65Xp1RkR+fBNbKElZcmsxBWXsqow3Pr19HhcDjmhpPZEmAjF0QYhZbBaea0aZHgzjN+/DAi+8bur++vQQ4TAymq1vyAsrBNffjhh6skl31FkFFnWW5uJtSWrQPL7KkTl0KApWotdYIUNpNsoVuwsVVRuyB/nVju55pQLu3G9egkOc46B641ba4IF4MYzLwfofjJlrAq4ohs1rnvuD949wxODofD0RzKTSk0wsmsBqmX7r9/2Pc/W3rp8N8nn5yb9FbILoOfoHBWAsSUgRHFlYFQzmECRApFFmIDyYGUtkJyIMEsVafKkNTaFIpp28sDM0QcM4gnnngikg3MJIi32w6RRWUjQgRlci1oe8rlpSXhToLrSVtzPMgskxkUXyey5YNrwcQO22Qie5D8hAx9xK7kM99xbzEhxKyEiR73BTbvPCtMNnv5eXE4BgEbb7xxOOigg7pWJuG/TjvttJr7MM5ecskloRu47rrrqo7l/QRXZkuAoheICM6bkL+ZL78cRmF2kLEULFUHxyopsgyakCJILp8hUMqalQ6GLJvLa1k2ms0SHerAAM1D2Ihaq2xf6f69AtpNGdSwLU4zkbVSHudLW0NeUdiUTa0ocE8o1S0k2e1hyw1VZVVWnj/APSSVFTMf1PF+MrFxOBzF47bbbmsqUlBZiUls/wYUUlPbBTmP9hqczJaAt3/4w/FdN8mL99wTxifJCGRDmwcUWMgsAyWkSR7IfGZAhcxCcCBRfC8HJm5I1DoIFkoR+zerPMr2NSV8EDiIVLodZZKBvBWCqIem07aBnVyGpyxUNtqFttYScRnZuiwR51q3S8QdtR2wLGnl+VI2Ka45LwYlnie/Bg6HoxE0kx6+GQwZQlrv/xRZyUYU9UTb9a7IKb22itRbtRlQLL7BBsM+P3XRRdX/4wCJ6UBO6CrdQIrhyMAptRYyJmVWgfvZB+KLYgep5HuIqMLu8FKYLIX40Ssr6LlsX1NTAqWpTbNUUSYEj2M2A8gCS7Esl2tpFtJmHWJaAQ8d9adc6tXqMjx14Pc4u1EW5845oj5Tptq+CIiI0yaYRaAmo8RmTTAczYF7nuuKys21pY11/3HfKJ0zNuG0OS/snhmQZOPq18Dh6C8wLhx66KFxXOPZPvbYY+P2j3/842Hrrbceti/CAX4UP/zhD+Nn+uI999wz9vmYpX3zm99s6tipmQE+Lu973/vimLT88suHq6++ulpHXqTV5Vj3339/VS391Kc+Fd773vfGfsuuEM2cOTP2WTabHtu+/OUvx+yf9FkrrLBC+NnPfladkF9zzTVhxRVXjN9tvvnmUfQCipJy3nnnxTHnsssui/XjN/SPvQZXZktASjdGG2X03rvvDssfeeTrZgY5UMYvqbFAGbUgqxBX2cIq7BZky8aYBDwQDNhyGmPQts5gcuSyQft5cNknnYUpdW66HbLVqEIpD39enCP11m8hGRwbQss58T3159XIEgcPMGSknbBUIrDUj7ahXVCiy8qWZR3TuLZ0nP0cr7dbkINkqrIC7gl16twnSgHtcDiaB87M/3nggdKbbrFllw1jm3BshqAdfPDB4ZZbbglTpkwJe++9d1h//fXDJz7xiUgsCWdJfwsuv/zyOA7ssssu8fMhhxwSrr/++nDppZdGknvEEUeEO+64I6y66qpzHceqovad8Y0+ifcPf/jDsZw//elPcbWT8rUPr9133z1cccUVkUDfeOON4fe//3340Y9+FG666aZhITjzwO85x+985zthlVVWiWnqlSUU4rrDDjuE/fffP+y3337h9ttvD1/4whfmKoPzP+mkk8I555wTVzWpb6/ByWzJmI2DyD33VD9HJfWd7wyjMxQehd9ioOWmhtBoGy8t8es7hd6CfPIwAmtSgJLHTcxvIIp8tjel0qlys0pZhUyiZKaAKKbbNTOsZQ8kO1sZl+fFb4WwMlPkpbL5HVmyKANiCbHlXG27KU0r++iha5Z48uAqTS3HocMoU4HjekJgsXHm/NP4vY5scM1TW1ZFAuHZ4Bp6mCuHozhAZH+6xhqlN/EeU6eGJVZfveH9V1555XDMMcfE/5deeulwxhlnRIXyxBNPjIrnT3/606jcAojjzjvvHMc1+mQU2p/85CfR6QtyCsEjjbxs6VPYZXr7P306x3zwwQfD7373u+p4esIJJ4Stttoq9lkSL77//e/HOn/+858Pv/nNb6KSvOaaa9Y9z4ceeihcdNFFUe3dbLPN4jYlVwJnnnlmVGylLnPu99xzTySuFozr3/ve9yIZ7lU4mS0DhgT964YbwiwcvkaNissNzJLevPbaYcbzzyc/eePG56ZnYEZR1fKBTA70mUFaSRMghjxYPAhWeZVnPWAGCNmz4PcQS+LVcjx+yzFUriWMlJVulypby8ufd4gyS/Pp72uBerAkxIvzpQ6QW47J+UI6ZVPcamgtJXmgjt1I9cpxZVoBgeb+8CXs2mGuZCIDaCuprEwCuAd8EuBwlKuQQiy7cdxmsNJKKw0LecmKJKuWkDZUWgjr5z73uRiR5sorrwxXXXVV7GcgnrxDJDUOs0IKCVSYvUb6bPblRXmMyVYYWnfddefan/GAOm2xxRZhvfXWC4cffnhD53nnnXfGPnCjjTbK/B7ThcmTJw/blnV8zgsy3ctwMtsl8CBYsqSIB4KyfKES2mV9lrt5CGUryzI0xEspby2kYFrwWc4tWWSNB4wHC1KHXQwzzhSQUpbard0t9aLc9HgAYo2iyrJNJ0JGyS5YRJ3yIbcQ3VbJC+cBiUftLXsJBVJGe9N+TDBaiQM8aODetQ5Y1qab+1yklevlDlgOR2+Apf5mFNJ2keWFX8/pSdGA5NBpkxcx/kFmjzzyyDB16tS4PM8YuOmmm75+fhWlNEvMyXKi6iRuuOGGWG9WXbWyWg/zZ4zHrYByel1YcTJbAqb/3/+xrhH/HzIJE2yChNEJybM3DrNFmRawvK/leW5qtqHg8X+aWx0CkEUeZQebB8qA0MmG0JYnO1SZMdjUmrIxslBmMshvUbFPqYMynrUCiDCz8tReuGjQNkwMOD7tU7YS3AtIVVY5/FmVVYS1GSXf4XD0Fxrxws9yBs5axrdjYUoy5Udixzbtw3bEoe233z46XkFm99lnn+p+LMlDZLG1VZp2TMJYzs9TP2thueWWi3ar1kb35ptvnms/7GNZ+v/tb38bDjvssHDAAQdEu99GFejrr7++amaQHh/HLous4/cDfHQoAZgVCEtuuWW4q2LgDYnJUmZ5oOSkBZQtSGoqAz4KnuxnleIWex4eNJHkvNkUJgZpbNi8YPzynrTpdDERaDRaAWTNqqi9Bs4RdZulnjLJkgg0EwaO3euz3k6FudK77icb5kpmLe6A5XD0L7KcnpohpikJtS9tLxo4ghHVALV3r732qm5nYr3vvvtGJy35ZBApoNU+C4K5zDLLxGOcfPLJcSyiPAvG9T322CMceOCB0ZaWaCprrbVW2GabbcJOO+1Us/z3vOc9sWyiNMgBDMdvIgd95CMfCZ/+9KejvSznwzmjRkPi+xFOZkvAs9dfH96xww5zbbfZuuwDutRSS0U1UyRWyyEomxABZfMCeuehozweLogSD1eWiYA8u2upgHyPI5jqhP2hDe/VKOnDNIL6ZjmQdRuQdWbDshMui0xyXNnllk2gi4ZNJmBVVgBJ5eUOWA5H/0DL97wYh/Q/ZmW885xn9Z15Tk8ifWUS01ZJJkopYawQbywgnYxtkEnGRbz/EYhaAe1x8cUXR4K89tprR/IJ6dxyyy2r+2C7i4nh17/+9arayv+E58K+td74euaZZ8aIC5/97GejTwbjHZ8B///617+OjmWnn356rANlQ377DaOG2gni2Ydg5sMSPTefPOWLxh+/973w1ve9r/r5qpVWCltWIho8f9ddYWGMxyve8tzceFc+9thjVWcXgOIqOx/qb5f0WfrnJuU7heqASBCOKgWzPDqiPEctvhPJo304VisQIe7FzFR0wNjwok43Gw+3HWDewYyYGX1Z916nocmQtWflM9utyYlevXbtHY6RCmWCtKTU/q9XCq0U8q4X+7GyBPnqB3vKZgFZhSQSyYDQVY7iAOfAER7xLTVFbIavDY4s1MOYP5nZWcx47rlw9cc+ViW3dAp0OlJlZZgOSVDmjZSAEUaK7+hUFDQ5j6TJYSwLSrTAzQNJaZXIUkfIIjPaXiMzkHnOkY6qlYgHrUCqOdeRmXA/eNinDli8OA8l3RBp5T7j86ANZg5Hr4J+hOezFinlc6pTaVXNklJF/BBhTf0uahEQiS+D9OzTrowPLL1jArbtttt2u0qOBuFktgQ89YtfhBWOOqr6edmKzSz4z+23x/c5s2ZVU9qKyAJ1FHQ6mA/QQVn7U3VsdGB0RlmxXplBK/4d+2SRODon1F3MFFAPs1TdRsHxiCzQSw5NNuxWmWqxyDMTiHac1IpcQkxjswKFfpMDFmpyP5Bwh6OfoL67FinNU0vtS9FvrIraa0JCP0ARfLBLxXa0WTMwEh9g15oHBKNOouzj9TKczJaANOxWMJ3MqNGjw6Z//nOYM2NGJLOQCNKl2lAheonk8r88vpUdS8oZBARiilyvffjMchDIsyrBVIFldxREHuRWZ9uoxNSvl5bRFRoMUtZodrJ2wSAEqWdQ6baphXXAshmwUgcsJkAe5srhaO0Zs8Q0j5QqtqmgZ9CSUIWesyrqIKmfvQzGyXYsL4k/S2zXslD28XoZTmZLQNoRLbTUUtX/n7v55qjUzpk9e1isPAiqEiVgByuDe9mUQDohSKipEEf+R7lVlAP2xYmM5XQRKbZhm0J4EVsnLSlDaFFmW02ZSh2xbVHIkl6AogYQ+qqsiAq0AW1Z5jFBlspqHbAUMYD7yQdIh6M5p6f0c0p6FPLJElOFlNP2QVuWdwwHpn44cA/q8XoZTmbLgFFm/3XjjeEtG2xQ/fzyQw+FV55+Oiq08y+5ZFTHpMLyDrGEoKLWAggJnSjL19agn05TnTAKK7FgIXJSaRWGig5VaVIhPPyPmspvsRGqlYq2FjgujmN5YaZUz2bssvot7BbXDOLMtShKjZUDVqqyAo4nlVUxgn2p0TGSkeX0lPW5Eacna1/qy/gOR2/ByWwJGG2UzjsOPDBscccd8f9/XX11fF+gkmIW0GEy24IYysBeKoDILSQVxxtsMdkGIcVGVdtYKtESN6RWWb/YD2KnJXfeWXZXeKp2iA/1RdXNIo0MKASGhmQxiKRLbfzGvqQitlofytf5lxF2i7ZlQoAiS+KFTiSH4BwsYbVhrrgHaB8Pc+UYKeik0xPPj8Ibljm5djgcxcHJbAl489prV/8fZcjeK48+GuZJMk4p0xcvETpMCSCq6pghTZBRiKvsZdmf7+ik2Y9t7AOZZVkZQ3A+izCyDE60Anmmt0NkqQ9lZqm6DC4Kg5XlAKXwY/aFmqr0uCL3vGiPeoMOS+uYV0Duy7Db5XgQec4dNbbZQVExG3kpzBWwGbA4D6lCDke/Q898nlLaitOTJaYOh2PkwclsCSCGrDCP9fAfGgpvMfFnAYRGpIVOnc4ZQgrxlP0VxBTyqo4bwgMZYlmd5WV+J8ce9uU3fKfgz5gtkAUE21k8/Cmb/fgdpLEZJyB+AzHOi36AbS8kNs+TX6Gesux0taSOEo3yKXWS8xLBtXXlHDgfzrPoSArUg/PmmKixjRyPtuI6yfyDAZvrxASEl4e5cow0pyeRUHd6cjgc7cDJbAkYZYjaaBMWa/acOWHVU04JM196KYytqIgiOtXfVkwNZBcpxx0IrpabSaAA0UMB5X+UTZRCvpcnO2XIBIAy2A7BhSTyPY5B7A9BoyyOwTYU1TxiSxmooBwzSxGhLKBEDk23WyU8FC/FvNX50E62rpoAlBE5gOuDGQOKaZ4ZAyTcElcGdOooEo5y7EqroxednmoF1nenJ4fD0YtwMltGI5sEBksfeGD1fykWIrKCzV3NPkqGoCxSkDvZwhKtQHZgeDVCrNgH9VUxQ4kbC3myZgEouKiYeNyzr8B21Q2iC1lF6cwibHxPHbJsRFEsqQdhvjoJu/yuukrBLTp4v2LVQk5pdztZsMSVbUwcaBsUaSYEvvzp6Aenp9TxyZ2eHI7msPHGG4dVV101nHbaaZnf77333nHsvOSSS7xpOwgnswVj2r/+NYxgvWO77ar/v2WjjeL7rFdfDWMqtrMMHiKhAMIEKYIoQYhQI1nWVgxZq+7pf35POSi0kDzIlEJEyREMxy8eKBHCFBwLAoy9LqYCkF57HhwDUpxlXgChw563DOcrq+CWEeILUwAUWdpFZg8cG0LPdtrViaujEyqpXcLX/+l7llpaz+nJY5c6RjIgk+edd178n+eCcWrPPfcMRxxxRClRb7797W+3Fcu2UfzrX/8KRx99dLjiiiviGM4K6SqrrBK3rb/++mHQ4GS2YDx3zz1hwQkTMr9bZOWV57KjFRFS0gTUFB44Bi8IlbWrtXamkEvCd8mEABIL4YJoWcIK0YQco+wS2aDeUjeqLcquslgBysfpCfOClKxSX4Xo6mdSxznSzrQTEwjOCzWYdqXNaNNGHNIcIwty3qxHQPV/1qAm0yKFf7LvacxSDxHlcDSPLbfcMvzoRz+Kffz/+3//L+y///5xPP3Sl75UeHO2mia+Wey4446RF0DcJ06cGAntNddcE3lBUZCQ1g30L9voE/zr7rur///34Ycz9yHGbPX/UaOqL4Xl4p3BT6YGijErsA+hr7SMiKL66KOPVtUYu6QoJzGIMWotNx/b/va3v0Wb29RZA0BiKVsPAeSO5fPU6YnfUg4kt4wZbqegiQLnhVkFkwLSGjKz5ZyZ0b73ve+NaQ45Nz4raoRjcKDQTwxw3A+YyrD6wPPBZI5JHRM17nHuD5wo0xffoeBzLykqh55hpQbm+WSlAxMcVCFWN+yLbXzHvcZ+rKzwGwZBVgZ4bimL57ufJ4wOR7fA88MKJ8/bZz7zmbDZZpuFyy67LH536qmnhpVWWin6nSDKfPazn50rLeyf//znaE6gJDRbbLFF7CeygDLKs3v++edXleHtt9+++j3lHHjggeHQQw+Nzzn1OvbYY4eV8cADD4QNNtggjjvLL798+MMf/hDHnzxThRdeeCGmuj3ppJPCJptsEs9z7bXXjmR92223Hbbfpz71qdjPUPaKK64YLr/88ur3v/71r8MKK6wQ24uQn9/85jeHHYdtX/3qV6OyzcrkfvvtF7ffeOONYcMNN4zCGW3I+WF2WCT6h3H0KeY1s7CFll667v4MflIAmeFYOzcpMhBQ9mHQBZBQyKPS2TIQ84BBevnMfvrezpwYkBkQeWh5gDg22xhILRnloeF7iB4DOuWnWb5sCK5OxFktkrDIvpWX0rpSZx482bdynoAZrTtq9Ta499Kl+XpL9HmKaJYaqvjO6TYnkg7HcMxkJeuBB0pvlsWWXTaMbSPbIn2/xBqe6+985ztRvHjssccimYVofu9734vfkz520003DR//+MejyQBj5bXXXptph/7zn/88fPrTn47vW2+9de7xUU8PPvjgcMstt4QpU6ZEwospwAc+8IFYLuSXMZfvGde/8IUv1DyfBSsRhCC766yzTma0HfrBrbbaKpb3s5/9LEY3uu+++6rj3dSpU8NHPvKRSKx32WWXcNNNN8W2YLWW+gmnnHJKNF045phj4meENJTvr33ta+Hcc8+NotABBxwQX6jhRWHUUBnGGz0E1BJmSSguZcQhvfcnPwlDq6+e+/2sadPCmOQhhFBxg0GwmM1QT+rNzQfRhHDyHQ8dSg0PITNEbjIbhxaliJkeAzHv3FRaGmemKZJqAdGTCUFKSrlVUJ04jl1KUOpcjtlq5IIiQL3klMW7FDIRV96tqQakn9k1+6JG54UTcxRDRBtZmm+UiOaRUieiDkf7oE8lNTqEz44Tz9xxR/jpGmuU3sR7TJ0alqgxzuY5YNGXsPQO0fzf//3fcPLJJ8+1/69+9atISFmdAR/96EfjGIz6WMsBbOmllw5f/vKXw6WXXho2qvjHpMfX/vRvKKkCKur73//+cOKJJ4arrroqbLPNNnH1VeM1yixE9+KLLx6m8lqgqn7yk5+M49nqq68e67DrrruGlSvmjb///e8jmb3//vvDMsssE1LsvvvukTOwnwCpR2m+9957q8rsaqutFushfOITn4j97Nlnn13dRltxfPhMyivy7qVm+Zors0WjzlL0q3//e1hg4sQwujIbkqMWpgCQVG5yiKdmfQoMzk0N4UVBJIoB73LwIBMXv4WQstwJcYMEUA5EGdsZlF/2S0EZEOasRAcQBsq0wKZUDmKqezeAwmqJq0JhibjSnnnZyXhQeEFsIeOps5ujsQD4jaiiWZDKmRJO2Yem3/m1cTh6EyikEMtuHLcZsJTO2MY4SN8EQdXSPkTxhBNOiEv7kCnFB2esY4xDmd15551rlg8BZkzGHGGttdaqWx8RTIFxVquDDz74YFyqt8ITZLcRm9kPfehDkSTffPPN4corrwzf+MY3wjnnnBMJNefBWJ9FZAEkdzvjsA5Qi4nSoJVisOaaaw7b56677gp333131azCRmaCtC633HKhCDiZLRjv3Hjj8NSLL861feYrr4SxCywQl2VEZAVmgNi4KLYspgEQLR48mRRgGgABg3ihtoq8CRA6bn7URkgspBZ1FiLAd1paz4I8PFFomUFCelOjbm5O6slDzr7dWoqnbagHbUWb0NnUi+FK3ak3bUKbMvNrN53voIP7i7a26XVlX53llKQg+CkZdSLqcAwuWOpvVCHtJrAjPfPMM+O4RuhJCR34S6DSYkd7/PHHx7EEVXHfffetxmNHHKkH1Mo77rgjLrND9ur1e2nSIPbP8l9pFvPNN19UcHkdddRRUTXFHAAy28h5NII08yd8Aztc7GRTpOaJnYST2YKx8DvfSWDX+P/QnDlVZy+F4lpslVWG7a+QW8riJTVLxFYEQRELiHfKTZ8VVYAHFHUVlZYZJjK+PKjrSfYQD8pWggAeNpbeKZPjYlaAiQMzu24QFIX/4lw4x0YeTNqECQBtIfvYojOF9RvkAKWXwsQp/JmcmDA1cVtih8PRj4CAsaKZAjtRxlMcnSRuXHTRRXOpqJgmHHfccbnlY39KGZgQ0E+eccYZLdcV52NMDLQCCm677baWylp++eWr5g2cBw6rDz30UKY6i4KKsmzBZ/at1fdj0oDtbVb7FgknsyXivw89FBauLIdAaueQrjZZ+hbZZEnDzsysnSBqqRy3AKTDkjLZhoI0hBc2K5TbaHgQZnbMpvgdN75S52bZ1JYB2gUSy3lBruuRUdqNumMLy/+cdxlZwnoZSvRgSasc4ZQGmZeyyI3ktnI4HCMHEDDEmtNPPz3aqULezjrrrGH7EBGAaAc4Q2FLyyQfBzBMDxBIBEgf2yG0iEB5SRTqAVUVcrzXXntFMwHMC4888sj4XZ6Q9O9//zvWByc1SCvC0+233x5/L9MBbFjf9773RXMEIjhw7phWUCYOXDiZYSJBtAIcwHBMg5TLES4Phx12WHQ6w+ELJZhxBHJ79dVXt0Xq68HJbIlYKJn9zHzhhTDO3PxWgVUmKQtIBcSMmwNCJ2cr9rXEEjMCq1RCRpH+MRuAyCoXejPQEj5kktlhmQRHhFRxczGfqBfLjg4JAqv2os7din/XLTCpsQqrkjwAqawKLeO2qA6HY6SDpAIQO0JaQVohe9jPEnrKklScokiygO0qY+3kyZPDbrvtlqmq/vGPf6wqtGloq0bA71BTIYaQSyLs4KgG2c4TlBZccMFYp29961sxugDjIXa3OIRRb+sk9sUvfjHWnbESQovTmRRWVGkiFUBoEbC+8pWvDItkkAXI8/XXXx+d3wjPxZgDGYcQFwmPZlAC/vrXv2Zuf/WZZ8L8lWWDNPtXmgkMKN4sDw/fKYYbyw8s+0qlxANRqVQtlM0L04AyIjm0C2UrkxObojXU2x/lmtklJA0iO8h2mjI3sYRV8YgV21Qv7ilXWR0OR7uo5YHuKB4oxsSdfeSRRyJR7Gd4NIMBgCWyQCQEWM9vZQOT2QEqIzY0GKdjuwqs6sjNAZGD1EJaITL8XqSGJYdeBnVVsHoIea1MZbQJajEklvPm3KxB/6CA87SE1TpgYQogssr583mQCbzD4XCMJBD6irGQcF8Q2M997nMxskC/E9lOYrBG/AEBRMSSWVRJPkNYFH8WsoYCCZFL08qyL9shx5gjQID4XhlNepXoUF9ILOcICc+ybVWaWcwmlFGEpXJCb/V7Vi6FubKk1TpgibC6A5bD4XCMHDAmYotKfFvscslY1orJwiDDyWwXMJ2YsBkxXmXPmNrKQmQgd9jCorxBcPgsY3NUWoitAOGBFGJbikqnCAm9CNRFogtQX4grDloEYrb1heBBXnnxv00L2q/L5jYTGe8Qec5ZIa24hkw+eO/Va+dwOByO4oHNrrXbdcwNJ7NdwH8ffjiTzFqTAv3PC8ImhQ5nLsVHZRkecgsBwp5UTl8QPswPFMWg18iQHLog4KjICvElUwKIHt9DXiF6bIe8Yl6RxuPrB3COlrhyfZSJjBcTE65hr10nh8PhcDj6AU5mS8Jzt9wSFp88Of7/98suC29Zf/3M/awqiyrHUjNEBzIrsgfRU/gtHLoIUUUsWGxFUfVQORsNvSVAtCiL5Xp+WwSxgshBYDkWqqNNxmAVWv7HdIB69Fs2LmWLEXFVphQR17xMZA6Hw9FvyEot7XB04x7yUbUkiMiCJTbeuKHfQGQhQhBAOfZAkFAsCaHBZ5baAcomcWDZD/sa7E2buZkgstjeUjZZUCCblN0I8YKwEfYLtRjCJoczPkPCdbNSX8icCKri6XJ+7EfdqUO/kD3OzxJXZWFDIW8kE5nD4XD0I7RCRv/dqUxSjpGJGZVV53bHyv5gDQOGJbfaquF9RWAhSpA/SCOEMV1u5zO2plJlm7ElRRGFvCraASQM9RdbXIgnxCwPdGaowgq4D8FjGxA5TevKzQuB5Rgifb0c3kXEXKRVMYA5L+qNCQT2y/1qv+twOBzNgL4eYeLZZ5+Nn+nH+2kFzdEbgNcQdYn7p10Ry8lsjwPCxNK1MndhSoDNbBboTOhgmgFlUp5VcikHgsaMG+/JrGxfkDni1lIv9ofM2ZBfMhuAfAPsQrWNc4JwYx7RbgdImSjDIvudgCImQFqVaABzCNm3Um8nrg6HYyQDB2MgQutwtALGUnyB2uUCTma7GL2god9WHKAgtKikkKtml3VQQhXDVvab2o6SmxcVgH0J5YVC+/a3v71q3yoHM1RciCRkN60T5UGseclZDVKIo5qOJQU3j6BmvVJIEe7kcj5lcq7UnXN0xcHhcDjm7ifp+/F9sDHSHY5m0KlkPk5mS0CrRFZpZ0VosWVFMUXVzAu3peD6irmK6ooNLWYEfMdSuUJ9aUZNIOYUlI/9LL9h3yeffDISUQABJikDBBVb3TRNrMJOodpyPD5DClFkqVs9iKBSroiqXk4sHQ6Ho3fQaTHB4ehbMvvd73435hrG9pLcyKeffnrMeZyHX/7yl+Goo46K5A4iRh7lD37wg2FQAGFlpgt5ZFmeZW2SH0BIIaYolBBDPltAGnECo2PR8jhkmP2kgmKbQhnaD9JL2RxDqisEGCKK2QD7SGVlP34PycTOBUIL4U0dooA7QTkcDofD4RgRZPbCCy8MBx98cDjrrLPC5MmTw2mnnRa22GKL8OCDD8blixQ33XRT2G233cIJJ5wQtt566/Dzn/88bL/99uGOO+4IK664Yug1/OPmm2GnDe2L4srSP+8QWogo7xBaiCn/Y6cEwZQtKiRVDkryLOUz+0A8tUyukFBKQMAkgP05HuQVtRViCyHG7ED2rFJoIbf8nnfILNcmVUk5dtZ2h8PhcDgcjqIwaqjLgeIgsGuttVY444wz4mfIFHaa//u//xsOP/zwufbfZZddIqG6/PLLq9vWWWedsOqqq0ZCXA8QQ8gi5I3l86Lx+FVXhVfe8Y6G94d8QjhlRsA7yqheAsorn0UcIa+otVJS82xQUE4hxNbGlWNgAyvFV+BaQJJRdmkzSCyfPcC/w+FwOByOItEMX+uqMosqOHXq1PClL32pug0SRt7hKVOmZP6G7Si5Fii5l1xySeb+kD5rp0mjqJHKwKKTJ4cb9t8/LLLmmmHeRRYJM557LiwxeXKYd6GFqmYCUlNlKwrkoS9yaqFoAwrI34y9EjcGhDQ12Kc8xXuzx1GEAoWkcjgcDofD4Sga4mmNaK5dJbPYYELI8NK34PMDDzyQ+RvsarP2Z3sWMEc47rjj5tqO+lsqfvGLco/ncDgcDofD0efAz6deVtOu28wWDVRfq+QqrirOVZ227WQWoVBWZZgwOIqBX8f+h1/DwYBfx8GAX8fBwEslcxwUWYgs8fXroatklkD7LJGTStWCzwrInILtzeyvrFYWzSYWaBZcZCez/Q+/jv0Pv4aDAb+OgwG/joOBhUvkOPUUWaGr+TdxKFpjjTXCNddcM0w55fO6666b+Ru22/3B1Vdfnbu/w+FwOBwOh2Nw0XUzA0wA9tprr7DmmmvG2LKE5iJawT777BO/33PPPWP2KWxfwec+97mw0UYbhW9+85vhQx/6ULjgggvC7bffHr7//e93+UwcDofD4XA4HCOOzBJqiwD8Rx99dHTiIsTWVVddVXXyeuqpp4Z586+33noxtuyRRx4ZjjjiiBgvlUgGvRBjFnOGY445Zi6zBkd/wa9j/8Ov4WDAr+NgwK/jYGBcD3OcrseZdTgcDofD4XA4WkVXbWYdDofD4XA4HI524GTW4XA4HA6Hw9G3cDLrcDgcDofD4ehbOJl1OBwOh8PhcPQtnMx2CN/97nfDe97znjDffPOFyZMnh1tvvbVTRTsKAKHe1lprrbDQQguFt771rWH77bcPDz744LB9pk+fHvbff/+YLW7BBRcMO+6441wJOxy9gxNPPDFm9TvooIOq2/wa9g/+/ve/h4997GPxeZt//vnDSiutFMMuCvgqE/VmySWXjN9vttlm4eGHH+5qnR1vgNT0Rx11VJgwYUK8PpMmTQpf/epX43UT/Br2Hm644YawzTbbxCxb9J9Eh7Jo5JqRVXX33XePiRRISrXvvvuGl19+udTzcDLbAVx44YUxXi4hK+64446wyiqrhC222CI8++yznSjeUQCuv/76SFRvvvnmmHRj5syZYfPNN48xjoXPf/7z4be//W345S9/Gff/xz/+EXbYYQe/Hj2I2267LZx99tlh5ZVXHrbdr2F/4Pnnnw/rr79+GDt2bLjyyivDfffdF2OJL7rootV9vvGNb4TvfOc74ayzzgq33HJLWGCBBWI/y4TF0X2cdNJJ4cwzzwxnnHFGuP/+++Nnrtnpp59e3cevYe/hlVdeiZwFQS4LjVwziOy9994bx9LLL788EuT99tuvxLN4nXU72sTaa689tP/++1c/z549e+h//ud/hk444QRv2z7Bs88+i3wwdP3118fPL7zwwtDYsWOHfvnLX1b3uf/+++M+U6ZM6WJNHSn++9//Di299NJDV1999dBGG2009LnPfS5u92vYPzjssMOGNthgg9zv58yZM/S2t71t6OSTT65u4/qOGzdu6Be/+EVJtXTUwoc+9KGhj3/848O27bDDDkO77757/N+vYe8jhDB08cUXVz83cs3uu++++Lvbbrutus+VV145NGrUqKG///3vpdXdldk2MWPGjDB16tQovQskeeDzlClT2i3eURJefPHF+L7YYovFd64paq29rssuu2x417ve5de1x4DCTjZAe62AX8P+wWWXXRazQO68887R7Ge11VYLP/jBD6rfP/744zGpjr3G5GzHpMv72d4ACY1INf/QQw/Fz3fddVe48cYbw1ZbbRU/+zXsPzzewHPHO6YFPL8C+8ODUHJHTAawfsdzzz0XbYWUsUzg8wMPPNC1ejkax5w5c6KdJcucyiTHAzzvvPPGhzS9rnzn6A2QzhrTHswMUvg17B889thjcYkacy0yO3I9DzzwwPgMku5cz1xWP+vPY2/g8MMPDy+99FKc9M8zzzxxXDz++OPjEjTwa9h/+L8GnjvemYBajBkzJgpDZT6bTmYdIx4oe3/961+jiuDoHzz99NPhc5/7XLTTwvHS0d8TSpSdr3/96/EzyizPJHZ6kFlH7+Oiiy4K559/fkw3v8IKK4Q777wzigQ4Fvk1dBQNNzNoE4svvnichaZe7nx+29ve1m7xjoJxwAEHRIP1a6+9NrzjHe+obufaYULywgsvDNvfr2vvADMCnCxXX331qATwwlEPZwX+Rz3wa9gfwFN6+eWXH7ZtueWWC0899VT8X32p97O9i0MOOSSqs7vuumuMRLHHHntEB0wixwC/hv2HtzXw3PGeOrvPmjUrRjgokwM5mW0TLIOtscYa0VbIqgx8Xnfdddst3lEQsHWHyF588cXhj3/8YwwnY8E1xbPaXldCdzG4+nXtDWy66abhnnvuiQqQXqh7LGvqf7+G/QFMfNLQeNhevvvd747/83wyMNrnkSVtbPL8eewNTJs2LdpJWiD0MB4Cv4b9hwkNPHe8I/ogLgiMqVx3bGtLQ2muZgOMCy64IHr3/fjHP46effvtt9/QIossMvR///d/3a6aIwef+cxnht70pjcNXXfddUP//Oc/q69p06ZV9/n0pz899K53vWvoj3/849Dtt98+tO6668aXo3dhoxkAv4b9gVtvvXVozJgxQ8cff/zQww8/PHT++ecPjR8/fuhnP/tZdZ8TTzwx9quXXnrp0N133z203XbbDU2YMGHo1Vdf7WrdHa9jr732Gnr7298+dPnllw89/vjjQ7/5zW+GFl988aFDDz202kR+DXszGsxf/vKX+IISnnrqqfH/J598suFrtuWWWw6tttpqQ7fccsvQjTfeGKPL7LbbbqWeh5PZDuH000+PxGfeeeeNobpuvvnmThXtKAA8tFmvH/3oR9V9eFg/+9nPDi266KJxYP3whz8cCa+jf8isX8P+wW9/+9uhFVdcMQoDyy677ND3v//9Yd8TJuioo44aWmKJJeI+m2666dCDDz7Ytfo6huOll16Kzx7j4HzzzTc0ceLEoS9/+ctDr732WnUfv4a9h2uvvTZzLGRy0ug1+/e//x3J64ILLji08MILD+2zzz6RJJeJUfwpTwd2OBwOh8PhcDg6B7eZdTgcDofD4XD0LZzMOhwOh8PhcDj6Fk5mHQ6Hw+FwOBx9CyezDofD4XA4HI6+hZNZh8PhcDgcDkffwsmsw+FwOBwOh6Nv4WTW4XA4HA6Hw9G3cDLrcDgcDofD4ehbOJl1OBwORxXvec97wmmnndZwizzxxBNh1KhR4c477/RWdDgcXYGTWYfD4TDYe++9w/bbb+9t4nA4HH0CJ7MOh8PRYyDL+KxZs7pdDYfD4egLOJl1OByOGth4443DgQceGA499NCw2GKLhbe97W3h2GOPrX7/0Y9+NOyyyy7DfjNz5syw+OKLh5/85Cfx85w5c8IJJ5wQJkyYEOaff/6wyiqrhF/96lfV/a+77rq4VH/llVeGNdZYI4wbNy7ceOON4a677gqbbLJJWGihhcLCCy8cv7v99turv2OfDTfcMJb5zne+M9bzlVdeyT2XRx99NGy33XZhiSWWCAsuuGBYa621wh/+8Iea1596nXnmmWGrrbaKx5k4ceKwuguPPfZYrOv48ePj+U2ZMqX63b///e+w2267hbe//e3x+5VWWin84he/8PvO4XB0BE5mHQ6How7OO++8sMACC4RbbrklfOMb3whf+cpXwtVXXx2/23333cNvf/vb8PLLL1f3/93vfhemTZsWPvzhD8fPEFmI7VlnnRXuvffe8PnPfz587GMfC9dff/2w4xx++OHhxBNPDPfff39YeeWVY9nveMc7wm233RamTp0avx87dmyVmG655ZZhxx13DHfffXe48MILI7k94IADcs+DOn7wgx8M11xzTfjLX/4Sf7/NNtuEp556qub5H3XUUfE4kGvqtOuuu8Y6Wnz5y18OX/ziF6Pt7DLLLBPJq9Tl6dOnRyJ+xRVXhL/+9a9hv/32C3vssUe49dZb/d5zOBztY8jhcDgcVey1115D2223XfXzRhttNLTBBhsMa6G11lpr6LDDDov/z5w5c2jxxRcf+slPflL9frfddhvaZZdd4v/Tp08fGj9+/NBNN900rIx999037geuvfbaIbrjSy65ZNg+Cy200NCPf/zjzKvD7/fbb79h2/70pz8NjR49eujVV19t+IqusMIKQ6effnr187vf/e6hb33rW9XP1OvTn/70sN9Mnjx56DOf+Uz8//HHH4/7nHPOOdXv77333rjt/vvvzz3uhz70oaEvfOELDdfT4XA48uDKrMPhcNQBKqnFkksuGZ599tn4/5gxY8JHPvKRcP7558fPLPNfeumlUcEEjzzySFRpP/CBD8Slfb1QalFXLdZcc81hnw8++ODwiU98Imy22WZRsbX7o5L++Mc/HlbmFltsEU0aHn/88VxlFvV0ueWWC4ssskj8DQprPWV23XXXnetzqszaNqJ9gNpo9uzZ4atf/Wo0L8BUg+OiXtc7rsPhcDSCMQ3t5XA4HCMYWtq3dqSQRgHiutFGG0XyhvkBtqUs4QOZH7DEjs2oBbaxFpgyWGCbi00uv8We9phjjgkXXHBBNF+g3E996lPRTjbFu971rszzgMhSv1NOOSUstdRSsZ477bRTmDFjRuhkG9E+QG108sknh29/+9sx5BeElvM86KCDOnJch8PhcDLrcDgcbWK99daLDljYrUI6d9555yq5W3755SNpRYWE8DYL7E95YWeLHeqPfvSjSGZXX331cN9990VS2ij+/Oc/x9BjsuWFEBMnth5uvvnmsOeeew77vNpqqzV1XBzPsBMWyX3ooYdi2zgcDke7cDLrcDgcHQAKKg5ekLRrr722up1IBCiikFFI3AYbbBBefPHFSPCIULDXXntllvfqq6+GQw45JCqnREH429/+Fh3BcMQChx12WFhnnXWiwxemCKidkFuU1zPOOCOzzKWXXjr85je/iU5fqKc4dlmFOQ+//OUvowkEdcecAsetH/7whw23DcclAsJNN90UFl100XDqqaeGZ555xsmsw+HoCJzMOhwORweAqcHxxx8f3v3ud4f1119/2HfYi77lLW+JUQ0IYYW9KsrqEUcckVvePPPME0NaoYhC/Aj1tcMOO4TjjjuuaqNKNASiCBCeC1+tSZMmzRUmzAIS+fGPfzwqyZQHIX7ppZfqnhvHxLzhs5/9bLSHJaxWM6rqkUceGc8bm15CcxHNgMQUkHqHw+FoF6PwAmu7FIfD4XAMJFBwL774Ys+K5nA4ehYezcDhcDgcDofD0bdwMutwOBwOh8Ph6Fu4zazD4XA4cuGWaA6Ho9fhyqzD4XA4HA6Ho2/hZNbhcDgcDofD0bdwMutwOBwOh8Ph6Fs4mXU4HA6Hw+Fw9C2czDocDofD4XA4+hZOZh0Oh8PhcDgcfQsnsw6Hw+FwOByOvoWTWYfD4XA4HA5H6Ff8fw0B+nJfen2PAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for target in PROPERTIES:\n", + " plot_per_feature_freq(\n", + " results_dict[target][\"all\"][\"merged_freq\"],\n", + " results_dict[target][\"all\"][\"selected_features\"],\n", + " results_dict[target][\"all\"][\"fdp_info\"][\"thr_opt\"],\n", + " title=f\"Per-feature selection frequencies for target {target} fold all\"\n", + " )" + ] + }, + { + "cell_type": "markdown", + "id": "987e255e", + "metadata": {}, + "source": [ + "## Conclusions" + ] + }, + { + "cell_type": "markdown", + "id": "3c2ce3db", + "metadata": {}, + "source": [ + "Stabl-selected features for each target (after training Stabl over the entire train set): \n", + "> * **HIC** (17): patch_cdr_hyd, ens_charge, dipole_moment, coeff_280, amphipathicity, ASPmax, BSA_LC_HC, hyd_idx, hyd_strength_cdr, Packing Score, patch_pos, r_gyr, asa_hyd, DRT, , hyd_moment, zdipole, helicity. \n", + ">\n", + "> * **PR_CHO** (16): patch_cdr_pos, asa_hyd, mobility, zdipole, zquadrupole, strand, E, HI, sed_const, hyd_idx, Packing Score, Fv_chml, patch_cdr_neg, r_gyr, coeff_280, zeta. \n", + "> \n", + "> * **Titer** (13): cdr_len, r_gyr, dipole_moment, hyd_moment, zdipole, zquadrupole, strand, E, amphipathicity, BSA_LC_HC, hyd_idx, hyd_strength, Packing Score.\n", + "> \n", + "> * **AC-SINS_pH7.4** (11): ens_charge, Fv_chml, patch_cdr_neg, pI_3D, patch_pos, r_gyr, dipole_moment, coeff_280, sed_const, strand, amphipathicity. \n", + "> \n", + "> * **Tm2** (3): hyd_moment, hyd_idx_cdr, Packing Score. \n", + "\n", + "Most selected features are: \n", + "> * **Packing Score**: HIC, PR_CHO, Titer, Tm2\n", + "> \n", + "> * **r_gyr**: HIC, PR_CHO, Titer, AC-SINS_pH7.4\n", + "> \n", + "> * **dipole_moment**: HIC, Titer, AC-SINS_pH7.4\n", + "> \n", + "> * **coeff_280**: HIC, PR_CHO, AC-SINS_pH7.4\n", + "> \n", + "> * **amphipathicity**: HIC, PR_CHO, AC-SINS_pH7.4\n", + "> \n", + "> * **hyd_moment**: HIC, Titer, Tm2\n", + "> \n", + "> * **zdipole**: HIC, PR_CHO, Titer\n", + "> \n", + "> * **strand**: PR_CHO, Titer, AC-SINS_pH7.4\n", + "\n", + "Overall, all targets except Titer exhibit a plausible optimal threshold that minimizes FDP in $(0,1)$. For Titer, we see that the optimal threshold is equal to $1$, which still allows to select 13 features over the entire training set. This threshold however doesn't look quite reliable, so we suggest using the entire set of features in that case. " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "molml_env", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/models/moe_stabl_baseline/pixi.lock b/models/moe_stabl_baseline/pixi.lock new file mode 100644 index 0000000..0fdd014 --- /dev/null +++ b/models/moe_stabl_baseline/pixi.lock @@ -0,0 +1,2618 @@ +version: 6 +environments: + default: + channels: + - url: https://conda.anaconda.org/conda-forge/ + indexes: + - https://pypi.org/simple + packages: + linux-64: + - conda: https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-hda65f42_8.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.10.5-hbd8a1cb_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.3.0-pyh707e725_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/icu-75.1-he02047a_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/joblib-1.5.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.44-h1aa0949_5.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-38_h4a7cf45_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libboost-1.88.0-hed09d94_5.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-38_h0358290_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.7.1-hecca717_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.5.2-h9ec8514_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-15.2.0-h767d61c_7.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-15.2.0-h69a702a_7.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-15.2.0-h69a702a_7.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-15.2.0-hcd61629_7.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-15.2.0-h767d61c_7.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-38_h47877c9_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/liblightgbm-4.6.0-cpu_h1ca3010_6.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.8.1-hb9d3cd8_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hb9d3cd8_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.30-pthreads_h94d23a6_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.51.0-hee844dc_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-15.2.0-h8f9b012_7.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-15.2.0-h4852527_7.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.41.2-he9a06e4_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libxgboost-3.1.1-cpu_h2ebb00f_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/lightgbm-4.6.0-cpu_py_6.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-4.0.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-h2d0b736_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/numpy-2.3.4-py311h2e04523_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/ocl-icd-2.3.3-hb9d3cd8_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/opencl-headers-2025.06.13-h5888daf_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.5.4-h26f9b46_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/pandas-2.3.3-py311hed34c8f_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/py-xgboost-3.1.1-cpu_pyh35227d3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.19.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.11.14-hd63d673_2_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhe01879c_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2025.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2025.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8c095d6_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/rich-14.2.0-pyhcf101f3_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/scikit-learn-1.7.2-py311hc3e1efb_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/scipy-1.16.3-py311h1e13796_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-80.9.0-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhe01879c_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.6.0-pyhecae5ae_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_hd72426e_102.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.20.0-pyhdb1f59b_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.20.0-pyhcf101f3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.20.0-h65a100f_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.15.0-pyhcf101f3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/xgboost-3.1.1-cpu_pyhb39878e_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.7-hb8e6e7a_2.conda + - pypi: https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl + - pypi: ../../libs/abdev_core + - pypi: ./ + osx-64: + - conda: https://conda.anaconda.org/conda-forge/osx-64/bzip2-1.0.8-h500dc9f_8.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.10.5-hbd8a1cb_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.3.0-pyh707e725_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/icu-75.1-h120a0e1_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/joblib-1.5.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/khronos-opencl-icd-loader-2024.10.24-h6e16a3a_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libblas-3.9.0-38_he492b99_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libboost-1.88.0-hf9ddd82_5.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libcblas-3.9.0-38_h9b27e0a_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libcxx-21.1.5-h3d58e20_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libexpat-2.7.1-h21dd04a_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libffi-3.5.2-h750e83c_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libgfortran-15.2.0-h306097a_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libgfortran5-15.2.0-h336fb69_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/liblapack-3.9.0-38_h859234e_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/liblightgbm-4.6.0-cpu_h135fc27_6.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/liblzma-5.8.1-hd471939_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libopenblas-0.3.30-openmp_h6006d49_3.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.51.0-h86bffb9_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libxgboost-3.1.1-cpu_h4e52287_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libzlib-1.3.1-hd23fc13_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/lightgbm-4.6.0-cpu_py_6.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/llvm-openmp-21.1.5-h472b3d1_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-4.0.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/ncurses-6.5-h0622a9a_3.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/numpy-2.3.4-py311hf157cb9_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/opencl-headers-2025.06.13-h240833e_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/openssl-3.5.4-h230baf5_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/pandas-2.3.3-py311hca9a5ca_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/py-xgboost-3.1.1-cpu_pyh35227d3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.19.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/python-3.11.14-h74c2667_2_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhe01879c_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2025.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2025.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/readline-8.2-h7cca4af_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/rich-14.2.0-pyhcf101f3_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/scikit-learn-1.7.2-py311had5a2ce_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/scipy-1.16.3-py311h32c7e5c_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-80.9.0-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhe01879c_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.6.0-pyhecae5ae_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/tk-8.6.13-hf689a15_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.20.0-pyhdb1f59b_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.20.0-pyhcf101f3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.20.0-h65a100f_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.15.0-pyhcf101f3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/xgboost-3.1.1-cpu_pyhb39878e_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/zstd-1.5.7-h8210216_2.conda + - pypi: https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl + - pypi: ../../libs/abdev_core + - pypi: ./ + osx-arm64: + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/bzip2-1.0.8-hd037594_8.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.10.5-hbd8a1cb_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.3.0-pyh707e725_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/icu-75.1-hfee45f7_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/joblib-1.5.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/khronos-opencl-icd-loader-2024.10.24-h5505292_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libblas-3.9.0-38_h51639a9_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libboost-1.88.0-h18cd856_5.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcblas-3.9.0-38_hb0561ab_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-21.1.5-hf598326_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libexpat-2.7.1-hec049ff_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libffi-3.5.2-he5f378a_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libgfortran-15.2.0-hfcf01ff_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libgfortran5-15.2.0-h742603c_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblapack-3.9.0-38_hd9741b5_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblightgbm-4.6.0-cpu_h7c95766_6.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblzma-5.8.1-h39f12f2_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libopenblas-0.3.30-openmp_ha158390_3.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.51.0-h8adb53f_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxgboost-3.1.1-cpu_h64a644d_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libzlib-1.3.1-h8359307_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/lightgbm-4.6.0-cpu_py_6.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-21.1.5-h4a912ad_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-4.0.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/ncurses-6.5-h5e97a16_3.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/numpy-2.3.4-py311h8685306_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/opencl-headers-2025.06.13-h286801f_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.5.4-h5503f6c_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pandas-2.3.3-py311hdb8e4fa_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/py-xgboost-3.1.1-cpu_pyh35227d3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.19.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.11.14-h18782d2_2_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhe01879c_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2025.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2025.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/readline-8.2-h1d1bf99_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/rich-14.2.0-pyhcf101f3_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/scikit-learn-1.7.2-py311h0f965f6_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/scipy-1.16.3-py311h2734c94_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-80.9.0-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhe01879c_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.6.0-pyhecae5ae_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tk-8.6.13-h892fb3f_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.20.0-pyhdb1f59b_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.20.0-pyhcf101f3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.20.0-h65a100f_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.15.0-pyhcf101f3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/xgboost-3.1.1-cpu_pyhb39878e_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstd-1.5.7-h6491c7d_2.conda + - pypi: https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl + - pypi: ../../libs/abdev_core + - pypi: ./ + win-64: + - conda: https://conda.anaconda.org/conda-forge/win-64/_openmp_mutex-4.5-2_gnu.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/bzip2-1.0.8-h0ad9c76_8.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.10.5-h4c7d964_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.3.0-pyh7428d3b_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/joblib-1.5.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/khronos-opencl-icd-loader-2024.10.24-h2466b09_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libblas-3.9.0-38_hf2e6a31_mkl.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libboost-1.88.0-h9dfe17d_5.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libcblas-3.9.0-38_h2a3cdd5_mkl.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libexpat-2.7.1-hac47afa_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libffi-3.5.2-h52bdfb6_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libgomp-15.2.0-h1383e82_7.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libhwloc-2.12.1-default_h64bd3f2_1002.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libiconv-1.18-hc1393d2_2.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/liblapack-3.9.0-38_hf9ab0e9_mkl.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/liblightgbm-4.6.0-cpu_h5d2ca61_6.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/liblzma-5.8.1-h2466b09_2.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.51.0-hf5d6505_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libwinpthread-12.0.0.r4.gg4f2fc60ca-h57928b3_10.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libxgboost-3.1.1-cpu_hd161407_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libxml2-16-2.15.1-h692994f_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libxml2-2.15.1-h5d26750_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/lightgbm-4.6.0-cpu_py_6.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/llvm-openmp-21.1.5-hfa2b4ca_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-4.0.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/mkl-2025.3.0-hac47afa_454.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/numpy-2.3.4-py311h80b3fa1_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/opencl-headers-2025.06.13-he0c23c2_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/openssl-3.5.4-h725018a_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/pandas-2.3.3-py311h11fd7f3_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/py-xgboost-3.1.1-cpu_pyh35227d3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.19.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/python-3.11.14-h0159041_2_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhe01879c_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2025.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2025.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/rich-14.2.0-pyhcf101f3_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/scikit-learn-1.7.2-py311h8a15ebc_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/scipy-1.16.3-py311h9a1c30b_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-80.9.0-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhe01879c_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/tbb-2022.3.0-hd094cb3_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.6.0-pyhecae5ae_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/tk-8.6.13-h2c6b04d_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.20.0-pyhdb1f59b_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.20.0-pyhcf101f3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.20.0-h65a100f_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.15.0-pyhcf101f3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/ucrt-10.0.26100.0-h57928b3_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/vc-14.3-h2b53caa_32.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/vc14_runtime-14.44.35208-h818238b_32.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/vcomp14-14.44.35208-h818238b_32.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/xgboost-3.1.1-cpu_pyhb39878e_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/zstd-1.5.7-hbeecb71_2.conda + - pypi: https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl + - pypi: ../../libs/abdev_core + - pypi: ./ +packages: +- conda: https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2 + sha256: fe51de6107f9edc7aa4f786a70f4a883943bc9d39b3bb7307c04c41410990726 + md5: d7c89558ba9fa0495403155b64376d81 + license: None + purls: [] + size: 2562 + timestamp: 1578324546067 +- conda: https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2 + build_number: 16 + sha256: fbe2c5e56a653bebb982eda4876a9178aedfc2b545f25d0ce9c4c0b508253d22 + md5: 73aaf86a425cc6e73fcf236a5a46396d + depends: + - _libgcc_mutex 0.1 conda_forge + - libgomp >=7.5.0 + constrains: + - openmp_impl 9999 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 23621 + timestamp: 1650670423406 +- conda: https://conda.anaconda.org/conda-forge/win-64/_openmp_mutex-4.5-2_gnu.conda + build_number: 8 + sha256: 1a62cd1f215fe0902e7004089693a78347a30ad687781dfda2289cab000e652d + md5: 37e16618af5c4851a3f3d66dd0e11141 + depends: + - libgomp >=7.5.0 + - libwinpthread >=12.0.0.r2.ggc561118da + constrains: + - openmp_impl 9999 + - msys2-conda-epoch <0.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 49468 + timestamp: 1718213032772 +- pypi: ../../libs/abdev_core + name: abdev-core + version: 0.1.0 + sha256: 8c04f27615119f3279aa64da48b93f88e087317fb83ab8b9f59dfd5b874ff070 + requires_dist: + - pandas>=2.0 + - typer>=0.9.0 + - scikit-learn>=1.3.0 + requires_python: '>=3.11' + editable: true +- conda: https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-hda65f42_8.conda + sha256: c30daba32ddebbb7ded490f0e371eae90f51e72db620554089103b4a6934b0d5 + md5: 51a19bba1b8ebfb60df25cde030b7ebc + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + license: bzip2-1.0.6 + license_family: BSD + purls: [] + size: 260341 + timestamp: 1757437258798 +- conda: https://conda.anaconda.org/conda-forge/osx-64/bzip2-1.0.8-h500dc9f_8.conda + sha256: 8f50b58efb29c710f3cecf2027a8d7325ba769ab10c746eff75cea3ac050b10c + md5: 97c4b3bd8a90722104798175a1bdddbf + depends: + - __osx >=10.13 + license: bzip2-1.0.6 + license_family: BSD + purls: [] + size: 132607 + timestamp: 1757437730085 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/bzip2-1.0.8-hd037594_8.conda + sha256: b456200636bd5fecb2bec63f7e0985ad2097cf1b83d60ce0b6968dffa6d02aa1 + md5: 58fd217444c2a5701a44244faf518206 + depends: + - __osx >=11.0 + license: bzip2-1.0.6 + license_family: BSD + purls: [] + size: 125061 + timestamp: 1757437486465 +- conda: https://conda.anaconda.org/conda-forge/win-64/bzip2-1.0.8-h0ad9c76_8.conda + sha256: d882712855624641f48aa9dc3f5feea2ed6b4e6004585d3616386a18186fe692 + md5: 1077e9333c41ff0be8edd1a5ec0ddace + depends: + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + license: bzip2-1.0.6 + license_family: BSD + purls: [] + size: 55977 + timestamp: 1757437738856 +- conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.10.5-h4c7d964_0.conda + sha256: bfb7f9f242f441fdcd80f1199edd2ecf09acea0f2bcef6f07d7cbb1a8131a345 + md5: e54200a1cd1fe33d61c9df8d3b00b743 + depends: + - __win + license: ISC + purls: [] + size: 156354 + timestamp: 1759649104842 +- conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.10.5-hbd8a1cb_0.conda + sha256: 3b5ad78b8bb61b6cdc0978a6a99f8dfb2cc789a451378d054698441005ecbdb6 + md5: f9e5fbc24009179e8b0409624691758a + depends: + - __unix + license: ISC + purls: [] + size: 155907 + timestamp: 1759649036195 +- conda: https://conda.anaconda.org/conda-forge/noarch/click-8.3.0-pyh707e725_0.conda + sha256: c6567ebc27c4c071a353acaf93eb82bb6d9a6961e40692a359045a89a61d02c0 + md5: e76c4ba9e1837847679421b8d549b784 + depends: + - __unix + - python >=3.10 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/click?source=compressed-mapping + size: 91622 + timestamp: 1758270534287 +- conda: https://conda.anaconda.org/conda-forge/noarch/click-8.3.0-pyh7428d3b_0.conda + sha256: 0a008359973e833b568d0a18cf04556b12a4f5182e745dfc8ade32c38fa1fca5 + md5: 4601476ee4ad7ad522e5ffa5a579a48e + depends: + - __win + - colorama + - python >=3.10 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/click?source=hash-mapping + size: 92148 + timestamp: 1758270588199 +- conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda + sha256: ab29d57dc70786c1269633ba3dff20288b81664d3ff8d21af995742e2bb03287 + md5: 962b9857ee8e7018c22f2776ffa0b2d7 + depends: + - python >=3.9 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/colorama?source=hash-mapping + size: 27011 + timestamp: 1733218222191 +- conda: https://conda.anaconda.org/conda-forge/linux-64/icu-75.1-he02047a_0.conda + sha256: 71e750d509f5fa3421087ba88ef9a7b9be11c53174af3aa4d06aff4c18b38e8e + md5: 8b189310083baabfb622af68fd9d3ae3 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc-ng >=12 + - libstdcxx-ng >=12 + license: MIT + license_family: MIT + purls: [] + size: 12129203 + timestamp: 1720853576813 +- conda: https://conda.anaconda.org/conda-forge/osx-64/icu-75.1-h120a0e1_0.conda + sha256: 2e64307532f482a0929412976c8450c719d558ba20c0962832132fd0d07ba7a7 + md5: d68d48a3060eb5abdc1cdc8e2a3a5966 + depends: + - __osx >=10.13 + license: MIT + license_family: MIT + purls: [] + size: 11761697 + timestamp: 1720853679409 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/icu-75.1-hfee45f7_0.conda + sha256: 9ba12c93406f3df5ab0a43db8a4b4ef67a5871dfd401010fbe29b218b2cbe620 + md5: 5eb22c1d7b3fc4abb50d92d621583137 + depends: + - __osx >=11.0 + license: MIT + license_family: MIT + purls: [] + size: 11857802 + timestamp: 1720853997952 +- conda: https://conda.anaconda.org/conda-forge/noarch/joblib-1.5.2-pyhd8ed1ab_0.conda + sha256: 6fc414c5ae7289739c2ba75ff569b79f72e38991d61eb67426a8a4b92f90462c + md5: 4e717929cfa0d49cef92d911e31d0e90 + depends: + - python >=3.10 + - setuptools + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/joblib?source=hash-mapping + size: 224671 + timestamp: 1756321850584 +- conda: https://conda.anaconda.org/conda-forge/osx-64/khronos-opencl-icd-loader-2024.10.24-h6e16a3a_1.conda + sha256: 1cd9ca9d99acbe449df1590325cbae1e97d0a8a6979ea91ee61fca863b3a5764 + md5: 0c458c33cd3b609c6a64180af46201c9 + depends: + - __osx >=10.13 + - opencl-headers >=2024.10.24 + license: Apache-2.0 + license_family: APACHE + purls: [] + size: 34262 + timestamp: 1732916591723 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/khronos-opencl-icd-loader-2024.10.24-h5505292_1.conda + sha256: 74abb94591a42b0986b864cdd1c3b5b2e6e6b6851d5b8d0ecbe038fc14f036be + md5: fb5a6baf5df9abc027955a408c61ac74 + depends: + - __osx >=11.0 + - opencl-headers >=2024.10.24 + license: Apache-2.0 + license_family: APACHE + purls: [] + size: 35128 + timestamp: 1732916821283 +- conda: https://conda.anaconda.org/conda-forge/win-64/khronos-opencl-icd-loader-2024.10.24-h2466b09_1.conda + sha256: 881f92399f706df1185ec4372e59c5c9832f2dbb8e7587c6030a2a9a6e8ce7f8 + md5: 71a72eb0eed16a4a76fd88359be48fec + depends: + - opencl-headers >=2024.10.24 + - ucrt >=10.0.20348.0 + - vc >=14.2,<15 + - vc14_runtime >=14.29.30139 + license: Apache-2.0 + license_family: APACHE + purls: [] + size: 46768 + timestamp: 1732916943523 +- conda: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.44-h1aa0949_5.conda + sha256: dab1fbf65abb05d3f2ee49dff90d60eeb2e02039fcb561343c7cea5dea523585 + md5: 511ed8935448c1875776b60ad3daf3a1 + depends: + - __glibc >=2.17,<3.0.a0 + - zstd >=1.5.7,<1.6.0a0 + constrains: + - binutils_impl_linux-64 2.44 + license: GPL-3.0-only + purls: [] + size: 741516 + timestamp: 1762674665675 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-38_h4a7cf45_openblas.conda + build_number: 38 + sha256: b26a32302194e05fa395d5135699fd04a905c6ad71f24333f97c64874e053623 + md5: 3509b5e2aaa5f119013c8969fdd9a905 + depends: + - libopenblas >=0.3.30,<0.3.31.0a0 + - libopenblas >=0.3.30,<1.0a0 + constrains: + - libcblas 3.9.0 38*_openblas + - blas 2.138 openblas + - liblapacke 3.9.0 38*_openblas + - mkl <2026 + - liblapack 3.9.0 38*_openblas + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 17522 + timestamp: 1761680084434 +- conda: https://conda.anaconda.org/conda-forge/osx-64/libblas-3.9.0-38_he492b99_openblas.conda + build_number: 38 + sha256: 7005975d45fc0538d539f01760cba9132b8b341d4ee833dd2d3133ef6c19d7a9 + md5: 96fcc4cb2feb80ab291bab0316ef3cbc + depends: + - libopenblas >=0.3.30,<0.3.31.0a0 + - libopenblas >=0.3.30,<1.0a0 + constrains: + - mkl <2026 + - libcblas 3.9.0 38*_openblas + - blas 2.138 openblas + - liblapack 3.9.0 38*_openblas + - liblapacke 3.9.0 38*_openblas + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 17666 + timestamp: 1761680501294 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libblas-3.9.0-38_h51639a9_openblas.conda + build_number: 38 + sha256: 1850e189ca9b623497b857cf905bb2c8d57c8a42de5aed63a9b0bd857a1af2ae + md5: 90a49011b477170c063b385cbacf9138 + depends: + - libopenblas >=0.3.30,<0.3.31.0a0 + - libopenblas >=0.3.30,<1.0a0 + constrains: + - liblapack 3.9.0 38*_openblas + - libcblas 3.9.0 38*_openblas + - mkl <2026 + - liblapacke 3.9.0 38*_openblas + - blas 2.138 openblas + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 17695 + timestamp: 1761680554564 +- conda: https://conda.anaconda.org/conda-forge/win-64/libblas-3.9.0-38_hf2e6a31_mkl.conda + build_number: 38 + sha256: 363920dbd6a4c09f419a4e032568d5468dc9196e8c9e401af4e8026ecf88f2b7 + md5: dcee15907da751895e20b4d1ac94568d + depends: + - mkl >=2025.3.0,<2026.0a0 + constrains: + - blas 2.138 mkl + - liblapacke 3.9.0 38*_mkl + - libcblas 3.9.0 38*_mkl + - liblapack 3.9.0 38*_mkl + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 66706 + timestamp: 1761680784374 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libboost-1.88.0-hed09d94_5.conda + sha256: b3815809af2439731caac4c373e3d7e41992ec6be5ad4627096fc438d82502dc + md5: f0cb6133ea736a8aa0feca310894caf0 + depends: + - __glibc >=2.17,<3.0.a0 + - bzip2 >=1.0.8,<2.0a0 + - icu >=75.1,<76.0a0 + - libgcc >=14 + - liblzma >=5.8.1,<6.0a0 + - libstdcxx >=14 + - libzlib >=1.3.1,<2.0a0 + - zstd >=1.5.7,<1.6.0a0 + constrains: + - boost-cpp <0.0a0 + license: BSL-1.0 + purls: [] + size: 3004589 + timestamp: 1757631816458 +- conda: https://conda.anaconda.org/conda-forge/osx-64/libboost-1.88.0-hf9ddd82_5.conda + sha256: 561277d5f5027de42cf92c5076b2c277ffbebb6b79654d9668274c8f436b0f64 + md5: 62c63bf6ef824ccb6da39c3497b05c19 + depends: + - __osx >=10.13 + - bzip2 >=1.0.8,<2.0a0 + - icu >=75.1,<76.0a0 + - libcxx >=19 + - liblzma >=5.8.1,<6.0a0 + - libzlib >=1.3.1,<2.0a0 + - zstd >=1.5.7,<1.6.0a0 + constrains: + - boost-cpp <0.0a0 + license: BSL-1.0 + purls: [] + size: 2096876 + timestamp: 1757633877280 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libboost-1.88.0-h18cd856_5.conda + sha256: 35b3e913a12fd5543c292d4b93fb82d3086a2ba168a46e2bfa2d2289c6ec48cc + md5: 1b79b84af7abf43af340149865f0b5bf + depends: + - __osx >=11.0 + - bzip2 >=1.0.8,<2.0a0 + - icu >=75.1,<76.0a0 + - libcxx >=19 + - liblzma >=5.8.1,<6.0a0 + - libzlib >=1.3.1,<2.0a0 + - zstd >=1.5.7,<1.6.0a0 + constrains: + - boost-cpp <0.0a0 + license: BSL-1.0 + purls: [] + size: 1935054 + timestamp: 1757633825077 +- conda: https://conda.anaconda.org/conda-forge/win-64/libboost-1.88.0-h9dfe17d_5.conda + sha256: 0388914c9437d33819a913ad78a89e50e84826a4f649d683e059346005ef27e9 + md5: 7ce4d7f044bbeb871f111ae857acafa0 + depends: + - bzip2 >=1.0.8,<2.0a0 + - libiconv >=1.18,<2.0a0 + - liblzma >=5.8.1,<6.0a0 + - libzlib >=1.3.1,<2.0a0 + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + - zstd >=1.5.7,<1.6.0a0 + constrains: + - boost-cpp <0.0a0 + - __win ==0|>=10 + license: BSL-1.0 + purls: [] + size: 2517038 + timestamp: 1757633308758 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-38_h0358290_openblas.conda + build_number: 38 + sha256: 7fe653f45c01eb16d7b48ad934b068dad2885d6f4a7c41512b6a5f1f522bffe9 + md5: bcd928a9376a215cd9164a4312dd5e98 + depends: + - libblas 3.9.0 38_h4a7cf45_openblas + constrains: + - blas 2.138 openblas + - liblapack 3.9.0 38*_openblas + - liblapacke 3.9.0 38*_openblas + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 17503 + timestamp: 1761680091587 +- conda: https://conda.anaconda.org/conda-forge/osx-64/libcblas-3.9.0-38_h9b27e0a_openblas.conda + build_number: 38 + sha256: b7c393080aea5518cb87a1f1e44fd1b29f1564cf5f2610a2ddb575e582396779 + md5: 3fd79655bb102d44663e5b6c84a526a8 + depends: + - libblas 3.9.0 38_he492b99_openblas + constrains: + - blas 2.138 openblas + - liblapack 3.9.0 38*_openblas + - liblapacke 3.9.0 38*_openblas + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 17667 + timestamp: 1761680519380 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcblas-3.9.0-38_hb0561ab_openblas.conda + build_number: 38 + sha256: 5ab5a9aa350a5838d91f0e4feed30f765cbea461ee9515bf214d459c3378a531 + md5: eab61fcb277d6fa9f059bba437fd3612 + depends: + - libblas 3.9.0 38_h51639a9_openblas + constrains: + - liblapack 3.9.0 38*_openblas + - liblapacke 3.9.0 38*_openblas + - blas 2.138 openblas + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 17685 + timestamp: 1761680563279 +- conda: https://conda.anaconda.org/conda-forge/win-64/libcblas-3.9.0-38_h2a3cdd5_mkl.conda + build_number: 38 + sha256: f2bec12b960877387e5e8f84af5a50e19e97f52ddb1bed6b93ea38c4fb18ab62 + md5: 0c1602b1d15eb3d4da15bad122740df8 + depends: + - libblas 3.9.0 38_hf2e6a31_mkl + constrains: + - blas 2.138 mkl + - liblapacke 3.9.0 38*_mkl + - liblapack 3.9.0 38*_mkl + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 67055 + timestamp: 1761680819734 +- conda: https://conda.anaconda.org/conda-forge/osx-64/libcxx-21.1.5-h3d58e20_0.conda + sha256: 2471cbb0741494aeb1706ad4593a9b993bbcb9c874518833c08073623b958359 + md5: d76e25c022d8dddc2055b981fa78a7e7 + depends: + - __osx >=10.13 + license: Apache-2.0 WITH LLVM-exception + license_family: Apache + purls: [] + size: 569679 + timestamp: 1762257632306 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-21.1.5-hf598326_0.conda + sha256: cb441b85669eec99a593f59e6bb18c1d8a46d13eebadfc6a55f0b298109bf510 + md5: fbfdbf6e554275d2661c4541f45fed53 + depends: + - __osx >=11.0 + license: Apache-2.0 WITH LLVM-exception + license_family: Apache + purls: [] + size: 569449 + timestamp: 1762258167196 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.7.1-hecca717_0.conda + sha256: da2080da8f0288b95dd86765c801c6e166c4619b910b11f9a8446fb852438dc2 + md5: 4211416ecba1866fab0c6470986c22d6 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + constrains: + - expat 2.7.1.* + license: MIT + license_family: MIT + purls: [] + size: 74811 + timestamp: 1752719572741 +- conda: https://conda.anaconda.org/conda-forge/osx-64/libexpat-2.7.1-h21dd04a_0.conda + sha256: 689862313571b62ee77ee01729dc093f2bf25a2f99415fcfe51d3a6cd31cce7b + md5: 9fdeae0b7edda62e989557d645769515 + depends: + - __osx >=10.13 + constrains: + - expat 2.7.1.* + license: MIT + license_family: MIT + purls: [] + size: 72450 + timestamp: 1752719744781 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libexpat-2.7.1-hec049ff_0.conda + sha256: 8fbb17a56f51e7113ed511c5787e0dec0d4b10ef9df921c4fd1cccca0458f648 + md5: b1ca5f21335782f71a8bd69bdc093f67 + depends: + - __osx >=11.0 + constrains: + - expat 2.7.1.* + license: MIT + license_family: MIT + purls: [] + size: 65971 + timestamp: 1752719657566 +- conda: https://conda.anaconda.org/conda-forge/win-64/libexpat-2.7.1-hac47afa_0.conda + sha256: 8432ca842bdf8073ccecf016ccc9140c41c7114dc4ec77ca754551c01f780845 + md5: 3608ffde260281fa641e70d6e34b1b96 + depends: + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + constrains: + - expat 2.7.1.* + license: MIT + license_family: MIT + purls: [] + size: 141322 + timestamp: 1752719767870 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.5.2-h9ec8514_0.conda + sha256: 25cbdfa65580cfab1b8d15ee90b4c9f1e0d72128f1661449c9a999d341377d54 + md5: 35f29eec58405aaf55e01cb470d8c26a + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + license: MIT + license_family: MIT + purls: [] + size: 57821 + timestamp: 1760295480630 +- conda: https://conda.anaconda.org/conda-forge/osx-64/libffi-3.5.2-h750e83c_0.conda + sha256: 277dc89950f5d97f1683f26e362d6dca3c2efa16cb2f6fdb73d109effa1cd3d0 + md5: d214916b24c625bcc459b245d509f22e + depends: + - __osx >=10.13 + license: MIT + license_family: MIT + purls: [] + size: 52573 + timestamp: 1760295626449 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libffi-3.5.2-he5f378a_0.conda + sha256: 9b8acdf42df61b7bfe8bdc545c016c29e61985e79748c64ad66df47dbc2e295f + md5: 411ff7cd5d1472bba0f55c0faf04453b + depends: + - __osx >=11.0 + license: MIT + license_family: MIT + purls: [] + size: 40251 + timestamp: 1760295839166 +- conda: https://conda.anaconda.org/conda-forge/win-64/libffi-3.5.2-h52bdfb6_0.conda + sha256: ddff25aaa4f0aa535413f5d831b04073789522890a4d8626366e43ecde1534a3 + md5: ba4ad812d2afc22b9a34ce8327a0930f + depends: + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + license: MIT + license_family: MIT + purls: [] + size: 44866 + timestamp: 1760295760649 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-15.2.0-h767d61c_7.conda + sha256: 08f9b87578ab981c7713e4e6a7d935e40766e10691732bba376d4964562bcb45 + md5: c0374badb3a5d4b1372db28d19462c53 + depends: + - __glibc >=2.17,<3.0.a0 + - _openmp_mutex >=4.5 + constrains: + - libgomp 15.2.0 h767d61c_7 + - libgcc-ng ==15.2.0=*_7 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 822552 + timestamp: 1759968052178 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-15.2.0-h69a702a_7.conda + sha256: 2045066dd8e6e58aaf5ae2b722fb6dfdbb57c862b5f34ac7bfb58c40ef39b6ad + md5: 280ea6eee9e2ddefde25ff799c4f0363 + depends: + - libgcc 15.2.0 h767d61c_7 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 29313 + timestamp: 1759968065504 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-15.2.0-h69a702a_7.conda + sha256: 9ca24328e31c8ef44a77f53104773b9fe50ea8533f4c74baa8489a12de916f02 + md5: 8621a450add4e231f676646880703f49 + depends: + - libgfortran5 15.2.0 hcd61629_7 + constrains: + - libgfortran-ng ==15.2.0=*_7 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 29275 + timestamp: 1759968110483 +- conda: https://conda.anaconda.org/conda-forge/osx-64/libgfortran-15.2.0-h306097a_1.conda + sha256: 97551952312cf4954a7ad6ba3fd63c739eac65774fe96ddd121c67b5196a8689 + md5: cd5393330bff47a00d37a117c65b65d0 + depends: + - libgfortran5 15.2.0 h336fb69_1 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 134506 + timestamp: 1759710031253 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libgfortran-15.2.0-hfcf01ff_1.conda + sha256: e9a5d1208b9dc0b576b35a484d527d9b746c4e65620e0d77c44636033b2245f0 + md5: f699348e3f4f924728e33551b1920f79 + depends: + - libgfortran5 15.2.0 h742603c_1 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 134016 + timestamp: 1759712902814 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-15.2.0-hcd61629_7.conda + sha256: e93ceda56498d98c9f94fedec3e2d00f717cbedfc97c49be0e5a5828802f2d34 + md5: f116940d825ffc9104400f0d7f1a4551 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=15.2.0 + constrains: + - libgfortran 15.2.0 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 1572758 + timestamp: 1759968082504 +- conda: https://conda.anaconda.org/conda-forge/osx-64/libgfortran5-15.2.0-h336fb69_1.conda + sha256: 1d53bad8634127b3c51281ce6ad3fbf00f7371824187490a36e5182df83d6f37 + md5: b6331e2dcc025fc79cd578f4c181d6f2 + depends: + - llvm-openmp >=8.0.0 + constrains: + - libgfortran 15.2.0 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 1236316 + timestamp: 1759709318982 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libgfortran5-15.2.0-h742603c_1.conda + sha256: 18808697013a625ca876eeee3d86ee5b656f17c391eca4a4bc70867717cc5246 + md5: afccf412b03ce2f309f875ff88419173 + depends: + - llvm-openmp >=8.0.0 + constrains: + - libgfortran 15.2.0 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 764028 + timestamp: 1759712189275 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-15.2.0-h767d61c_7.conda + sha256: e9fb1c258c8e66ee278397b5822692527c5f5786d372fe7a869b900853f3f5ca + md5: f7b4d76975aac7e5d9e6ad13845f92fe + depends: + - __glibc >=2.17,<3.0.a0 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 447919 + timestamp: 1759967942498 +- conda: https://conda.anaconda.org/conda-forge/win-64/libgomp-15.2.0-h1383e82_7.conda + sha256: b8b569a9d3ec8f13531c220d3ad8e1ff35c75902c89144872e7542a77cb8c10d + md5: 7f970a7f9801622add7746aa3cbc24d5 + depends: + - libwinpthread >=12.0.0.r4.gg4f2fc60ca + constrains: + - msys2-conda-epoch <0.0a0 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 535898 + timestamp: 1759975963604 +- conda: https://conda.anaconda.org/conda-forge/win-64/libhwloc-2.12.1-default_h64bd3f2_1002.conda + sha256: 266dfe151066c34695dbdc824ba1246b99f016115ef79339cbcf005ac50527c1 + md5: b0cac6e5b06ca5eeb14b4f7cf908619f + depends: + - libwinpthread >=12.0.0.r4.gg4f2fc60ca + - libxml2 + - libxml2-16 >=2.14.6 + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 2414731 + timestamp: 1757624335056 +- conda: https://conda.anaconda.org/conda-forge/win-64/libiconv-1.18-hc1393d2_2.conda + sha256: 0dcdb1a5f01863ac4e8ba006a8b0dc1a02d2221ec3319b5915a1863254d7efa7 + md5: 64571d1dd6cdcfa25d0664a5950fdaa2 + depends: + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + license: LGPL-2.1-only + purls: [] + size: 696926 + timestamp: 1754909290005 +- conda: https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-38_h47877c9_openblas.conda + build_number: 38 + sha256: 63d6073dd4f82ab46943ad99a22fc4edda83b0f8fe6170bdaba7a43352bed007 + md5: 88f10bff57b423a3fd2d990c6055771e + depends: + - libblas 3.9.0 38_h4a7cf45_openblas + constrains: + - libcblas 3.9.0 38*_openblas + - blas 2.138 openblas + - liblapacke 3.9.0 38*_openblas + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 17501 + timestamp: 1761680098660 +- conda: https://conda.anaconda.org/conda-forge/osx-64/liblapack-3.9.0-38_h859234e_openblas.conda + build_number: 38 + sha256: c94a3411dee3239702d632ff19f6b97b7aba5e51de3bc22caa229fb8d77d2978 + md5: 062a7bd94939084574e2d401f8e0840e + depends: + - libblas 3.9.0 38_he492b99_openblas + constrains: + - blas 2.138 openblas + - libcblas 3.9.0 38*_openblas + - liblapacke 3.9.0 38*_openblas + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 17674 + timestamp: 1761680534375 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblapack-3.9.0-38_hd9741b5_openblas.conda + build_number: 38 + sha256: df4f43d2ba45b7b80a45e8c0e51d3d7675a00047089beea7dc54e685825df9f6 + md5: 4525f30079caf1a2290538c2c531f354 + depends: + - libblas 3.9.0 38_h51639a9_openblas + constrains: + - liblapacke 3.9.0 38*_openblas + - blas 2.138 openblas + - libcblas 3.9.0 38*_openblas + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 17709 + timestamp: 1761680572118 +- conda: https://conda.anaconda.org/conda-forge/win-64/liblapack-3.9.0-38_hf9ab0e9_mkl.conda + build_number: 38 + sha256: 3b8d2d800f48fb9045a976c5a10cefe742142df88decf5a5108fe6b7c8fb5b50 + md5: eb3167046ffba0ceb4a8824fb1b79a69 + depends: + - libblas 3.9.0 38_hf2e6a31_mkl + constrains: + - blas 2.138 mkl + - liblapacke 3.9.0 38*_mkl + - libcblas 3.9.0 38*_mkl + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 79298 + timestamp: 1761680854566 +- conda: https://conda.anaconda.org/conda-forge/linux-64/liblightgbm-4.6.0-cpu_h1ca3010_6.conda + sha256: 4304e1d5b952601b022edf6fd7669f130a9b86226f13c527e2fbfba34beb5cad + md5: 4b0704571742b6d6e110a01662cf0858 + depends: + - __glibc >=2.17,<3.0.a0 + - _openmp_mutex >=4.5 + - libboost >=1.88.0,<1.89.0a0 + - libgcc >=14 + - libstdcxx >=14 + - ocl-icd >=2.3.3,<3.0a0 + constrains: + - lightgbm 4.6.0 cpu_*_6 + license: MIT + license_family: MIT + purls: [] + size: 3174534 + timestamp: 1760993618329 +- conda: https://conda.anaconda.org/conda-forge/osx-64/liblightgbm-4.6.0-cpu_h135fc27_6.conda + sha256: 06c897426e960f6064a8e6b1c51d4a35dfa76935ba6a986b36916e0ed7cc594c + md5: 8c59a7a4f1c6f3b8b672e6756cfbab43 + depends: + - __osx >=10.13 + - khronos-opencl-icd-loader >=2024.10.24 + - libboost >=1.88.0,<1.89.0a0 + - libcxx >=19 + - llvm-openmp >=19.1.7 + constrains: + - lightgbm 4.6.0 cpu_*_6 + license: MIT + license_family: MIT + purls: [] + size: 1680726 + timestamp: 1760993495633 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblightgbm-4.6.0-cpu_h7c95766_6.conda + sha256: f815a8b170d7c17c819827747aad16e67ed803a3495cfb588155be6a9776b765 + md5: 4e52b7221f89b58c6e1e9d79b5c964c0 + depends: + - __osx >=11.0 + - khronos-opencl-icd-loader >=2024.10.24 + - libboost >=1.88.0,<1.89.0a0 + - libcxx >=19 + - llvm-openmp >=19.1.7 + constrains: + - lightgbm 4.6.0 cpu_*_6 + license: MIT + license_family: MIT + purls: [] + size: 1377618 + timestamp: 1760993805509 +- conda: https://conda.anaconda.org/conda-forge/win-64/liblightgbm-4.6.0-cpu_h5d2ca61_6.conda + sha256: a4c71066ef7e1221334609f58384376024b57faa11ff4834b86691cd2706c082 + md5: eee5ae0961f107f3d4757676689533e9 + depends: + - khronos-opencl-icd-loader >=2024.10.24 + - libboost >=1.88.0,<1.89.0a0 + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + constrains: + - lightgbm 4.6.0 cpu_*_6 + license: MIT + license_family: MIT + purls: [] + size: 1264932 + timestamp: 1760993278098 +- conda: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.8.1-hb9d3cd8_2.conda + sha256: f2591c0069447bbe28d4d696b7fcb0c5bd0b4ac582769b89addbcf26fb3430d8 + md5: 1a580f7796c7bf6393fddb8bbbde58dc + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + constrains: + - xz 5.8.1.* + license: 0BSD + purls: [] + size: 112894 + timestamp: 1749230047870 +- conda: https://conda.anaconda.org/conda-forge/osx-64/liblzma-5.8.1-hd471939_2.conda + sha256: 7e22fd1bdb8bf4c2be93de2d4e718db5c548aa082af47a7430eb23192de6bb36 + md5: 8468beea04b9065b9807fc8b9cdc5894 + depends: + - __osx >=10.13 + constrains: + - xz 5.8.1.* + license: 0BSD + purls: [] + size: 104826 + timestamp: 1749230155443 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblzma-5.8.1-h39f12f2_2.conda + sha256: 0cb92a9e026e7bd4842f410a5c5c665c89b2eb97794ffddba519a626b8ce7285 + md5: d6df911d4564d77c4374b02552cb17d1 + depends: + - __osx >=11.0 + constrains: + - xz 5.8.1.* + license: 0BSD + purls: [] + size: 92286 + timestamp: 1749230283517 +- conda: https://conda.anaconda.org/conda-forge/win-64/liblzma-5.8.1-h2466b09_2.conda + sha256: 55764956eb9179b98de7cc0e55696f2eff8f7b83fc3ebff5e696ca358bca28cc + md5: c15148b2e18da456f5108ccb5e411446 + depends: + - ucrt >=10.0.20348.0 + - vc >=14.2,<15 + - vc14_runtime >=14.29.30139 + constrains: + - xz 5.8.1.* + license: 0BSD + purls: [] + size: 104935 + timestamp: 1749230611612 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hb9d3cd8_1.conda + sha256: 927fe72b054277cde6cb82597d0fcf6baf127dcbce2e0a9d8925a68f1265eef5 + md5: d864d34357c3b65a4b731f78c0801dc4 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: LGPL-2.1-only + license_family: GPL + purls: [] + size: 33731 + timestamp: 1750274110928 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.30-pthreads_h94d23a6_3.conda + sha256: 200899e5acc01fa29550d2782258d9cf33e55ce4cbce8faed9c6fe0b774852aa + md5: ac2e4832427d6b159576e8a68305c722 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libgfortran + - libgfortran5 >=14.3.0 + constrains: + - openblas >=0.3.30,<0.3.31.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 5918287 + timestamp: 1761748180250 +- conda: https://conda.anaconda.org/conda-forge/osx-64/libopenblas-0.3.30-openmp_h6006d49_3.conda + sha256: 209812edd396e0f395bee0a5628a8b77501e6671795c081455c27049e9a1c96a + md5: e32aca8f732f7ea1ed876ffbec0d6347 + depends: + - __osx >=10.13 + - libgfortran + - libgfortran5 >=14.3.0 + - llvm-openmp >=19.1.7 + constrains: + - openblas >=0.3.30,<0.3.31.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 6265963 + timestamp: 1761751583325 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libopenblas-0.3.30-openmp_ha158390_3.conda + sha256: dcc626c7103503d1dfc0371687ad553cb948b8ed0249c2a721147bdeb8db4a73 + md5: a18a7f471c517062ee71b843ef95eb8a + depends: + - __osx >=11.0 + - libgfortran + - libgfortran5 >=14.3.0 + - llvm-openmp >=19.1.7 + constrains: + - openblas >=0.3.30,<0.3.31.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 4285762 + timestamp: 1761749506256 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.51.0-hee844dc_0.conda + sha256: 4c992dcd0e34b68f843e75406f7f303b1b97c248d18f3c7c330bdc0bc26ae0b3 + md5: 729a572a3ebb8c43933b30edcc628ceb + depends: + - __glibc >=2.17,<3.0.a0 + - icu >=75.1,<76.0a0 + - libgcc >=14 + - libzlib >=1.3.1,<2.0a0 + license: blessing + purls: [] + size: 945576 + timestamp: 1762299687230 +- conda: https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.51.0-h86bffb9_0.conda + sha256: ad151af8192c17591fad0b68c9ffb7849ad9f4be9da2020b38b8befd2c5f6f02 + md5: 1ee9b74571acd6dd87e6a0f783989426 + depends: + - __osx >=10.13 + - libzlib >=1.3.1,<2.0a0 + license: blessing + purls: [] + size: 986898 + timestamp: 1762300146976 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.51.0-h8adb53f_0.conda + sha256: b43d198f147f46866e5336c4a6b91668beef698bfba69d1706158460eadb2c1b + md5: 5fb1945dbc6380e6fe7e939a62267772 + depends: + - __osx >=11.0 + - icu >=75.1,<76.0a0 + - libzlib >=1.3.1,<2.0a0 + license: blessing + purls: [] + size: 909508 + timestamp: 1762300078624 +- conda: https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.51.0-hf5d6505_0.conda + sha256: 2373bd7450693bd0f624966e1bee2f49b0bf0ffbc114275ed0a43cf35aec5b21 + md5: d2c9300ebd2848862929b18c264d1b1e + depends: + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + license: blessing + purls: [] + size: 1292710 + timestamp: 1762299749044 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-15.2.0-h8f9b012_7.conda + sha256: 1b981647d9775e1cdeb2fab0a4dd9cd75a6b0de2963f6c3953dbd712f78334b3 + md5: 5b767048b1b3ee9a954b06f4084f93dc + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc 15.2.0 h767d61c_7 + constrains: + - libstdcxx-ng ==15.2.0=*_7 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 3898269 + timestamp: 1759968103436 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-15.2.0-h4852527_7.conda + sha256: 024fd46ac3ea8032a5ec3ea7b91c4c235701a8bf0e6520fe5e6539992a6bd05f + md5: f627678cf829bd70bccf141a19c3ad3e + depends: + - libstdcxx 15.2.0 h8f9b012_7 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 29343 + timestamp: 1759968157195 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.41.2-he9a06e4_0.conda + sha256: e5ec6d2ad7eef538ddcb9ea62ad4346fde70a4736342c4ad87bd713641eb9808 + md5: 80c07c68d2f6870250959dcc95b209d1 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 37135 + timestamp: 1758626800002 +- conda: https://conda.anaconda.org/conda-forge/win-64/libwinpthread-12.0.0.r4.gg4f2fc60ca-h57928b3_10.conda + sha256: 0fccf2d17026255b6e10ace1f191d0a2a18f2d65088fd02430be17c701f8ffe0 + md5: 8a86073cf3b343b87d03f41790d8b4e5 + depends: + - ucrt + constrains: + - pthreads-win32 <0.0a0 + - msys2-conda-epoch <0.0a0 + license: MIT AND BSD-3-Clause-Clear + purls: [] + size: 36621 + timestamp: 1759768399557 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda + sha256: 6ae68e0b86423ef188196fff6207ed0c8195dd84273cb5623b85aa08033a410c + md5: 5aa797f8787fe7a17d1b0821485b5adc + depends: + - libgcc-ng >=12 + license: LGPL-2.1-or-later + purls: [] + size: 100393 + timestamp: 1702724383534 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libxgboost-3.1.1-cpu_h2ebb00f_0.conda + sha256: 33f2d14776412c20a5bcedcad76d316113c8d86e3c25721de307a8fff9f10a71 + md5: da650b1f639b98e3a9bd440649fa7ad0 + depends: + - __glibc >=2.17,<3.0.a0 + - _openmp_mutex >=4.5 + - libgcc >=14 + - libstdcxx >=14 + license: Apache-2.0 + license_family: APACHE + purls: [] + size: 3727244 + timestamp: 1762061204782 +- conda: https://conda.anaconda.org/conda-forge/osx-64/libxgboost-3.1.1-cpu_h4e52287_0.conda + sha256: f350a2587c6c13c19168ad2a1c85e16f9e448672cd64965e3c1a6f23006094f4 + md5: 1041b91a8586c4c2a405b57cd21a800f + depends: + - __osx >=10.13 + - libcxx >=19 + - llvm-openmp >=19.1.7 + license: Apache-2.0 + license_family: APACHE + purls: [] + size: 1694351 + timestamp: 1762061007544 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxgboost-3.1.1-cpu_h64a644d_0.conda + sha256: 74d55884d92d928509fabbbeacd9e48fc1ceb789c3bb465d6e04dc0aa4065fac + md5: 2da9e8255deff71ea514c0894d6ed0ab + depends: + - __osx >=11.0 + - libcxx >=19 + - llvm-openmp >=19.1.7 + license: Apache-2.0 + license_family: APACHE + purls: [] + size: 1538987 + timestamp: 1762061280608 +- conda: https://conda.anaconda.org/conda-forge/win-64/libxgboost-3.1.1-cpu_hd161407_0.conda + sha256: 0ee61f4ee85a8a2432468a8196731cf512a6c6ec96fbd647c9f6d39bc706ee22 + md5: 0faad8c0c64d2eaa90d4f24f772c6bed + depends: + - _openmp_mutex >=4.5 + - libgomp >=15.2.0 + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + license: Apache-2.0 + license_family: APACHE + purls: [] + size: 1541471 + timestamp: 1762061113364 +- conda: https://conda.anaconda.org/conda-forge/win-64/libxml2-2.15.1-h5d26750_0.conda + sha256: f507960adf64ee9c9c7b7833d8b11980765ebd2bf5345f73d5a3b21b259eaed5 + md5: 9176ee05643a1bfe7f2e7b4c921d2c3d + depends: + - libiconv >=1.18,<2.0a0 + - liblzma >=5.8.1,<6.0a0 + - libxml2-16 2.15.1 h692994f_0 + - libzlib >=1.3.1,<2.0a0 + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + constrains: + - icu <0.0a0 + license: MIT + license_family: MIT + purls: [] + size: 43209 + timestamp: 1761016354235 +- conda: https://conda.anaconda.org/conda-forge/win-64/libxml2-16-2.15.1-h692994f_0.conda + sha256: 04129dc2df47a01c55e5ccf8a18caefab94caddec41b3b10fbc409e980239eb9 + md5: 70ca4626111579c3cd63a7108fe737f9 + depends: + - libiconv >=1.18,<2.0a0 + - liblzma >=5.8.1,<6.0a0 + - libzlib >=1.3.1,<2.0a0 + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + constrains: + - icu <0.0a0 + - libxml2 2.15.1 + license: MIT + license_family: MIT + purls: [] + size: 518135 + timestamp: 1761016320405 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda + sha256: d4bfe88d7cb447768e31650f06257995601f89076080e76df55e3112d4e47dc4 + md5: edb0dca6bc32e4f4789199455a1dbeb8 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + constrains: + - zlib 1.3.1 *_2 + license: Zlib + license_family: Other + purls: [] + size: 60963 + timestamp: 1727963148474 +- conda: https://conda.anaconda.org/conda-forge/osx-64/libzlib-1.3.1-hd23fc13_2.conda + sha256: 8412f96504fc5993a63edf1e211d042a1fd5b1d51dedec755d2058948fcced09 + md5: 003a54a4e32b02f7355b50a837e699da + depends: + - __osx >=10.13 + constrains: + - zlib 1.3.1 *_2 + license: Zlib + license_family: Other + purls: [] + size: 57133 + timestamp: 1727963183990 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libzlib-1.3.1-h8359307_2.conda + sha256: ce34669eadaba351cd54910743e6a2261b67009624dbc7daeeafdef93616711b + md5: 369964e85dc26bfe78f41399b366c435 + depends: + - __osx >=11.0 + constrains: + - zlib 1.3.1 *_2 + license: Zlib + license_family: Other + purls: [] + size: 46438 + timestamp: 1727963202283 +- conda: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_2.conda + sha256: ba945c6493449bed0e6e29883c4943817f7c79cbff52b83360f7b341277c6402 + md5: 41fbfac52c601159df6c01f875de31b9 + depends: + - ucrt >=10.0.20348.0 + - vc >=14.2,<15 + - vc14_runtime >=14.29.30139 + constrains: + - zlib 1.3.1 *_2 + license: Zlib + license_family: Other + purls: [] + size: 55476 + timestamp: 1727963768015 +- conda: https://conda.anaconda.org/conda-forge/noarch/lightgbm-4.6.0-cpu_py_6.conda + sha256: a270b7a0ea69a21a97afe74dfa0ecc885d81fbe491c5e302531982af090fe595 + md5: 4a80005966212a5cd8ce200c89d05c50 + depends: + - liblightgbm >=4.6.0,<4.6.1.0a0 + - numpy >=1.17.0 + - python >=3.10 + - scipy + constrains: + - pandas >=0.24.0 + - pyarrow >=6.0.1 + - dask >=2.0.0 + - scikit-learn >=0.24.2 + - cffi >=1.15.1 + license: MIT + license_family: MIT + purls: + - pkg:pypi/lightgbm?source=hash-mapping + size: 87925 + timestamp: 1760993310974 +- conda: https://conda.anaconda.org/conda-forge/osx-64/llvm-openmp-21.1.5-h472b3d1_0.conda + sha256: 1139bbc6465515e328f63f6c3ef4c045c3159b8aa5b23050f4360c6f7e128805 + md5: 5e486397a9547fbf4e454450389f7f18 + depends: + - __osx >=10.13 + constrains: + - intel-openmp <0.0a0 + - openmp 21.1.5|21.1.5.* + license: Apache-2.0 WITH LLVM-exception + license_family: APACHE + purls: [] + size: 310792 + timestamp: 1762315894069 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-21.1.5-h4a912ad_0.conda + sha256: a9707045db6a1b9dc2b196f02c3e31d72fe3dbab4ebc4976f3b913c26394dca0 + md5: 9ae7847a3bef5e050f3921260032033c + depends: + - __osx >=11.0 + constrains: + - intel-openmp <0.0a0 + - openmp 21.1.5|21.1.5.* + license: Apache-2.0 WITH LLVM-exception + license_family: APACHE + purls: [] + size: 285516 + timestamp: 1762315951771 +- conda: https://conda.anaconda.org/conda-forge/win-64/llvm-openmp-21.1.5-hfa2b4ca_0.conda + sha256: 8c5106720e5414f48344fd28eae4db4f1a382336d8a0f30f71d41d8ae730fbb6 + md5: 3bd3154b24a1b9489d4ab04d62ffcc86 + depends: + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + constrains: + - openmp 21.1.5|21.1.5.* + - intel-openmp <0.0a0 + license: Apache-2.0 WITH LLVM-exception + license_family: APACHE + purls: [] + size: 347688 + timestamp: 1762315988146 +- conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-4.0.0-pyhd8ed1ab_0.conda + sha256: 7b1da4b5c40385791dbc3cc85ceea9fad5da680a27d5d3cb8bfaa185e304a89e + md5: 5b5203189eb668f042ac2b0826244964 + depends: + - mdurl >=0.1,<1 + - python >=3.10 + license: MIT + license_family: MIT + purls: + - pkg:pypi/markdown-it-py?source=hash-mapping + size: 64736 + timestamp: 1754951288511 +- conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda + sha256: 78c1bbe1723449c52b7a9df1af2ee5f005209f67e40b6e1d3c7619127c43b1c7 + md5: 592132998493b3ff25fd7479396e8351 + depends: + - python >=3.9 + license: MIT + license_family: MIT + purls: + - pkg:pypi/mdurl?source=hash-mapping + size: 14465 + timestamp: 1733255681319 +- conda: https://conda.anaconda.org/conda-forge/win-64/mkl-2025.3.0-hac47afa_454.conda + sha256: 3c432e77720726c6bd83e9ee37ac8d0e3dd7c4cf9b4c5805e1d384025f9e9ab6 + md5: c83ec81713512467dfe1b496a8292544 + depends: + - llvm-openmp >=21.1.4 + - tbb >=2022.2.0 + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + license: LicenseRef-IntelSimplifiedSoftwareOct2022 + license_family: Proprietary + purls: [] + size: 99909095 + timestamp: 1761668703167 +- pypi: ./ + name: moe-stabl-baseline + version: 0.1.0 + sha256: 44c4ccd95945703b2393cc0e766fc1272890fa3dece3bfcd013549c97af7ba88 + requires_dist: + - numpy + - pandas + - scikit-learn + - joblib + - xgboost + - tqdm + - scipy + requires_python: '>=3.9' + editable: true +- conda: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-h2d0b736_3.conda + sha256: 3fde293232fa3fca98635e1167de6b7c7fda83caf24b9d6c91ec9eefb4f4d586 + md5: 47e340acb35de30501a76c7c799c41d7 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: X11 AND BSD-3-Clause + purls: [] + size: 891641 + timestamp: 1738195959188 +- conda: https://conda.anaconda.org/conda-forge/osx-64/ncurses-6.5-h0622a9a_3.conda + sha256: ea4a5d27ded18443749aefa49dc79f6356da8506d508b5296f60b8d51e0c4bd9 + md5: ced34dd9929f491ca6dab6a2927aff25 + depends: + - __osx >=10.13 + license: X11 AND BSD-3-Clause + purls: [] + size: 822259 + timestamp: 1738196181298 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/ncurses-6.5-h5e97a16_3.conda + sha256: 2827ada40e8d9ca69a153a45f7fd14f32b2ead7045d3bbb5d10964898fe65733 + md5: 068d497125e4bf8a66bf707254fff5ae + depends: + - __osx >=11.0 + license: X11 AND BSD-3-Clause + purls: [] + size: 797030 + timestamp: 1738196177597 +- conda: https://conda.anaconda.org/conda-forge/linux-64/numpy-2.3.4-py311h2e04523_0.conda + sha256: 67cc072b8f5c157df4228a1a2291628e5ca2360f48ef572a64e2cf2bf55d2e25 + md5: d84afde5a6f028204f24180ff87cf429 + depends: + - python + - libstdcxx >=14 + - libgcc >=14 + - __glibc >=2.17,<3.0.a0 + - python_abi 3.11.* *_cp311 + - liblapack >=3.9.0,<4.0a0 + - libcblas >=3.9.0,<4.0a0 + - libblas >=3.9.0,<4.0a0 + constrains: + - numpy-base <0a0 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/numpy?source=hash-mapping + size: 9418119 + timestamp: 1761162089374 +- conda: https://conda.anaconda.org/conda-forge/osx-64/numpy-2.3.4-py311hf157cb9_0.conda + sha256: f32239cd5e674c9162864391ba52136ba623c4b1aa7c6778498a869de030c1ac + md5: 5ccc71cd384e4acec7d6b398d6bf3a70 + depends: + - python + - libcxx >=19 + - __osx >=10.13 + - libblas >=3.9.0,<4.0a0 + - liblapack >=3.9.0,<4.0a0 + - libcblas >=3.9.0,<4.0a0 + - python_abi 3.11.* *_cp311 + constrains: + - numpy-base <0a0 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/numpy?source=hash-mapping + size: 8551200 + timestamp: 1761161638673 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/numpy-2.3.4-py311h8685306_0.conda + sha256: 218062c97ec67991972d99dcdd2ff5fa6e596095b316496911d3cd2f0f3e0eaf + md5: c72f70484e64c8106d560f60963b354a + depends: + - python + - python 3.11.* *_cpython + - __osx >=11.0 + - libcxx >=19 + - liblapack >=3.9.0,<4.0a0 + - libcblas >=3.9.0,<4.0a0 + - libblas >=3.9.0,<4.0a0 + - python_abi 3.11.* *_cp311 + constrains: + - numpy-base <0a0 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/numpy?source=hash-mapping + size: 7278993 + timestamp: 1761161589274 +- conda: https://conda.anaconda.org/conda-forge/win-64/numpy-2.3.4-py311h80b3fa1_0.conda + sha256: 5bc3b46ff4f79f1bbbca70eabb2e8aac2246d581d0d09cf8a6c750115c50e6f3 + md5: 2a2512cb64a16301c59c6b828398ce0b + depends: + - python + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + - ucrt >=10.0.20348.0 + - libcblas >=3.9.0,<4.0a0 + - python_abi 3.11.* *_cp311 + - libblas >=3.9.0,<4.0a0 + - liblapack >=3.9.0,<4.0a0 + constrains: + - numpy-base <0a0 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/numpy?source=hash-mapping + size: 8017751 + timestamp: 1761161589970 +- conda: https://conda.anaconda.org/conda-forge/linux-64/ocl-icd-2.3.3-hb9d3cd8_0.conda + sha256: 2254dae821b286fb57c61895f2b40e3571a070910fdab79a948ff703e1ea807b + md5: 56f8947aa9d5cf37b0b3d43b83f34192 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - opencl-headers >=2024.10.24 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 106742 + timestamp: 1743700382939 +- conda: https://conda.anaconda.org/conda-forge/linux-64/opencl-headers-2025.06.13-h5888daf_0.conda + sha256: 2b6ce54174ec19110e1b3c37455f7cd138d0e228a75727a9bba443427da30a36 + md5: 45c3d2c224002d6d0d7769142b29f986 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libstdcxx >=13 + license: Apache-2.0 + license_family: APACHE + purls: [] + size: 55357 + timestamp: 1749853464518 +- conda: https://conda.anaconda.org/conda-forge/osx-64/opencl-headers-2025.06.13-h240833e_0.conda + sha256: 31bfb14d3d269f21c7449df065eca024a89ca98ec69bf12c9c3f2cd6913c7e04 + md5: 520120c68d69c548981ea92668f428a5 + depends: + - __osx >=10.13 + - libcxx >=18 + license: Apache-2.0 + license_family: APACHE + purls: [] + size: 55624 + timestamp: 1749853573437 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/opencl-headers-2025.06.13-h286801f_0.conda + sha256: 5c6269546780749ad5f4e780f0c7d7dcaaf6c20961ebd4588d82fdcda6cdf386 + md5: f4d4d97714ae85265e4299b8e56ca6eb + depends: + - __osx >=11.0 + - libcxx >=18 + license: Apache-2.0 + license_family: APACHE + purls: [] + size: 55476 + timestamp: 1749853726041 +- conda: https://conda.anaconda.org/conda-forge/win-64/opencl-headers-2025.06.13-he0c23c2_0.conda + sha256: 1958dd489d32c3635e411e1802607e04a42ec685f1b2d63292211383447cecd3 + md5: 25b288eda332180bba67ef785a20ae45 + depends: + - ucrt >=10.0.20348.0 + - vc >=14.2,<15 + - vc14_runtime >=14.29.30139 + license: Apache-2.0 + license_family: APACHE + purls: [] + size: 55411 + timestamp: 1749853655608 +- conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.5.4-h26f9b46_0.conda + sha256: e807f3bad09bdf4075dbb4168619e14b0c0360bacb2e12ef18641a834c8c5549 + md5: 14edad12b59ccbfa3910d42c72adc2a0 + depends: + - __glibc >=2.17,<3.0.a0 + - ca-certificates + - libgcc >=14 + license: Apache-2.0 + license_family: Apache + purls: [] + size: 3119624 + timestamp: 1759324353651 +- conda: https://conda.anaconda.org/conda-forge/osx-64/openssl-3.5.4-h230baf5_0.conda + sha256: 3ce8467773b2472b2919412fd936413f05a9b10c42e52c27bbddc923ef5da78a + md5: 075eaad78f96bbf5835952afbe44466e + depends: + - __osx >=10.13 + - ca-certificates + license: Apache-2.0 + license_family: Apache + purls: [] + size: 2747108 + timestamp: 1759326402264 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.5.4-h5503f6c_0.conda + sha256: f0512629f9589392c2fb9733d11e753d0eab8fc7602f96e4d7f3bd95c783eb07 + md5: 71118318f37f717eefe55841adb172fd + depends: + - __osx >=11.0 + - ca-certificates + license: Apache-2.0 + license_family: Apache + purls: [] + size: 3067808 + timestamp: 1759324763146 +- conda: https://conda.anaconda.org/conda-forge/win-64/openssl-3.5.4-h725018a_0.conda + sha256: 5ddc1e39e2a8b72db2431620ad1124016f3df135f87ebde450d235c212a61994 + md5: f28ffa510fe055ab518cbd9d6ddfea23 + depends: + - ca-certificates + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + license: Apache-2.0 + license_family: Apache + purls: [] + size: 9218823 + timestamp: 1759326176247 +- conda: https://conda.anaconda.org/conda-forge/linux-64/pandas-2.3.3-py311hed34c8f_1.conda + sha256: c97f796345f5b9756e4404bbb4ee049afd5ea1762be6ee37ce99162cbee3b1d3 + md5: 72e3452bf0ff08132e86de0272f2fbb0 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libstdcxx >=14 + - numpy >=1.22.4 + - numpy >=1.23,<3 + - python >=3.11,<3.12.0a0 + - python-dateutil >=2.8.2 + - python-tzdata >=2022.7 + - python_abi 3.11.* *_cp311 + - pytz >=2020.1 + constrains: + - beautifulsoup4 >=4.11.2 + - scipy >=1.10.0 + - pytables >=3.8.0 + - gcsfs >=2022.11.0 + - odfpy >=1.4.1 + - xlsxwriter >=3.0.5 + - openpyxl >=3.1.0 + - html5lib >=1.1 + - python-calamine >=0.1.7 + - qtpy >=2.3.0 + - pyxlsb >=1.0.10 + - xarray >=2022.12.0 + - pandas-gbq >=0.19.0 + - numexpr >=2.8.4 + - tzdata >=2022.7 + - pyreadstat >=1.2.0 + - lxml >=4.9.2 + - pyqt5 >=5.15.9 + - s3fs >=2022.11.0 + - fastparquet >=2022.12.0 + - psycopg2 >=2.9.6 + - xlrd >=2.0.1 + - matplotlib >=3.6.3 + - blosc >=1.21.3 + - numba >=0.56.4 + - sqlalchemy >=2.0.0 + - fsspec >=2022.11.0 + - pyarrow >=10.0.1 + - zstandard >=0.19.0 + - bottleneck >=1.3.6 + - tabulate >=0.9.0 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/pandas?source=hash-mapping + size: 15337715 + timestamp: 1759266002530 +- conda: https://conda.anaconda.org/conda-forge/osx-64/pandas-2.3.3-py311hca9a5ca_1.conda + sha256: 31542a3bd44f3d7f410382afd2b5fe80dcba1aaa6a9bdde9531ec24acf4be809 + md5: 3f44aba598f79565d9090a5c1762cea3 + depends: + - __osx >=10.13 + - libcxx >=19 + - numpy >=1.22.4 + - numpy >=1.23,<3 + - python >=3.11,<3.12.0a0 + - python-dateutil >=2.8.2 + - python-tzdata >=2022.7 + - python_abi 3.11.* *_cp311 + - pytz >=2020.1 + constrains: + - html5lib >=1.1 + - lxml >=4.9.2 + - pyreadstat >=1.2.0 + - scipy >=1.10.0 + - numba >=0.56.4 + - tabulate >=0.9.0 + - xlsxwriter >=3.0.5 + - pandas-gbq >=0.19.0 + - odfpy >=1.4.1 + - tzdata >=2022.7 + - pyqt5 >=5.15.9 + - fastparquet >=2022.12.0 + - psycopg2 >=2.9.6 + - pyarrow >=10.0.1 + - beautifulsoup4 >=4.11.2 + - pyxlsb >=1.0.10 + - numexpr >=2.8.4 + - xlrd >=2.0.1 + - zstandard >=0.19.0 + - pytables >=3.8.0 + - openpyxl >=3.1.0 + - s3fs >=2022.11.0 + - sqlalchemy >=2.0.0 + - matplotlib >=3.6.3 + - blosc >=1.21.3 + - python-calamine >=0.1.7 + - xarray >=2022.12.0 + - fsspec >=2022.11.0 + - bottleneck >=1.3.6 + - gcsfs >=2022.11.0 + - qtpy >=2.3.0 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/pandas?source=hash-mapping + size: 14519607 + timestamp: 1759266357305 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/pandas-2.3.3-py311hdb8e4fa_1.conda + sha256: 2d9350d3d16d3626fe30930026d527e3d3af4fa1ec3e6b9d4791cbb49bb186f3 + md5: ea737715ac61b431bfd5adbcd9ea0cae + depends: + - __osx >=11.0 + - libcxx >=19 + - numpy >=1.22.4 + - numpy >=1.23,<3 + - python >=3.11,<3.12.0a0 + - python >=3.11,<3.12.0a0 *_cpython + - python-dateutil >=2.8.2 + - python-tzdata >=2022.7 + - python_abi 3.11.* *_cp311 + - pytz >=2020.1 + constrains: + - tabulate >=0.9.0 + - xlrd >=2.0.1 + - html5lib >=1.1 + - pyqt5 >=5.15.9 + - psycopg2 >=2.9.6 + - gcsfs >=2022.11.0 + - lxml >=4.9.2 + - pytables >=3.8.0 + - pyxlsb >=1.0.10 + - sqlalchemy >=2.0.0 + - openpyxl >=3.1.0 + - pandas-gbq >=0.19.0 + - matplotlib >=3.6.3 + - python-calamine >=0.1.7 + - numba >=0.56.4 + - beautifulsoup4 >=4.11.2 + - pyreadstat >=1.2.0 + - xlsxwriter >=3.0.5 + - fsspec >=2022.11.0 + - blosc >=1.21.3 + - odfpy >=1.4.1 + - pyarrow >=10.0.1 + - numexpr >=2.8.4 + - bottleneck >=1.3.6 + - tzdata >=2022.7 + - xarray >=2022.12.0 + - s3fs >=2022.11.0 + - zstandard >=0.19.0 + - scipy >=1.10.0 + - qtpy >=2.3.0 + - fastparquet >=2022.12.0 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/pandas?source=hash-mapping + size: 14389534 + timestamp: 1759266253108 +- conda: https://conda.anaconda.org/conda-forge/win-64/pandas-2.3.3-py311h11fd7f3_1.conda + sha256: da07f88dfd7ee94330f25acd12af2c4974d4cb48030e568a61fbab5c036470b1 + md5: 638efaab6727c18c6ade0488b72bdfe4 + depends: + - numpy >=1.22.4 + - numpy >=1.23,<3 + - python >=3.11,<3.12.0a0 + - python-dateutil >=2.8.2 + - python-tzdata >=2022.7 + - python_abi 3.11.* *_cp311 + - pytz >=2020.1 + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + constrains: + - html5lib >=1.1 + - pyreadstat >=1.2.0 + - psycopg2 >=2.9.6 + - zstandard >=0.19.0 + - tzdata >=2022.7 + - s3fs >=2022.11.0 + - numexpr >=2.8.4 + - tabulate >=0.9.0 + - sqlalchemy >=2.0.0 + - pyqt5 >=5.15.9 + - scipy >=1.10.0 + - gcsfs >=2022.11.0 + - odfpy >=1.4.1 + - bottleneck >=1.3.6 + - numba >=0.56.4 + - openpyxl >=3.1.0 + - python-calamine >=0.1.7 + - lxml >=4.9.2 + - pyxlsb >=1.0.10 + - xarray >=2022.12.0 + - xlsxwriter >=3.0.5 + - pytables >=3.8.0 + - xlrd >=2.0.1 + - pandas-gbq >=0.19.0 + - fsspec >=2022.11.0 + - qtpy >=2.3.0 + - matplotlib >=3.6.3 + - blosc >=1.21.3 + - beautifulsoup4 >=4.11.2 + - fastparquet >=2022.12.0 + - pyarrow >=10.0.1 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/pandas?source=hash-mapping + size: 14345521 + timestamp: 1759266399831 +- conda: https://conda.anaconda.org/conda-forge/noarch/py-xgboost-3.1.1-cpu_pyh35227d3_0.conda + sha256: 144e3f5a3fc4137437af3acc936e210729a9f864cf61b3ee6174f711f5a3f61f + md5: 6eb3e87935d43f635c12afebee264a7f + depends: + - libxgboost * cpu_h*_0 + - libxgboost >=3.1.1,<3.1.2.0a0 + - numpy + - python >=3.10 + - scikit-learn + - scipy + license: Apache-2.0 + license_family: APACHE + purls: + - pkg:pypi/xgboost?source=hash-mapping + size: 166999 + timestamp: 1762061129662 +- conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.19.2-pyhd8ed1ab_0.conda + sha256: 5577623b9f6685ece2697c6eb7511b4c9ac5fb607c9babc2646c811b428fd46a + md5: 6b6ece66ebcae2d5f326c77ef2c5a066 + depends: + - python >=3.9 + license: BSD-2-Clause + license_family: BSD + purls: + - pkg:pypi/pygments?source=hash-mapping + size: 889287 + timestamp: 1750615908735 +- conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.11.14-hd63d673_2_cpython.conda + build_number: 2 + sha256: 5b872f7747891e50e990a96d2b235236a5c66cc9f8c9dcb7149aee674ea8145a + md5: c4202a55b4486314fbb8c11bc43a29a0 + depends: + - __glibc >=2.17,<3.0.a0 + - bzip2 >=1.0.8,<2.0a0 + - ld_impl_linux-64 >=2.36.1 + - libexpat >=2.7.1,<3.0a0 + - libffi >=3.5.2,<3.6.0a0 + - libgcc >=14 + - liblzma >=5.8.1,<6.0a0 + - libnsl >=2.0.1,<2.1.0a0 + - libsqlite >=3.50.4,<4.0a0 + - libuuid >=2.41.2,<3.0a0 + - libxcrypt >=4.4.36 + - libzlib >=1.3.1,<2.0a0 + - ncurses >=6.5,<7.0a0 + - openssl >=3.5.4,<4.0a0 + - readline >=8.2,<9.0a0 + - tk >=8.6.13,<8.7.0a0 + - tzdata + constrains: + - python_abi 3.11.* *_cp311 + license: Python-2.0 + purls: [] + size: 30874708 + timestamp: 1761174520369 +- conda: https://conda.anaconda.org/conda-forge/osx-64/python-3.11.14-h74c2667_2_cpython.conda + build_number: 2 + sha256: 0a17479efb8df514c3777c015ffe430d38a3a59c01dc46358e87d7ff459c9aeb + md5: 37ac5f13a245f08746e0d658b245d670 + depends: + - __osx >=10.13 + - bzip2 >=1.0.8,<2.0a0 + - libexpat >=2.7.1,<3.0a0 + - libffi >=3.5.2,<3.6.0a0 + - liblzma >=5.8.1,<6.0a0 + - libsqlite >=3.50.4,<4.0a0 + - libzlib >=1.3.1,<2.0a0 + - ncurses >=6.5,<7.0a0 + - openssl >=3.5.4,<4.0a0 + - readline >=8.2,<9.0a0 + - tk >=8.6.13,<8.7.0a0 + - tzdata + constrains: + - python_abi 3.11.* *_cp311 + license: Python-2.0 + purls: [] + size: 15697126 + timestamp: 1761174493171 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.11.14-h18782d2_2_cpython.conda + build_number: 2 + sha256: 64a2bc6be8582fae75f1f2da7bdc49afd81c2793f65bb843fc37f53c99734063 + md5: da948e6cd735249ab4cfbb3fdede785e + depends: + - __osx >=11.0 + - bzip2 >=1.0.8,<2.0a0 + - libexpat >=2.7.1,<3.0a0 + - libffi >=3.5.2,<3.6.0a0 + - liblzma >=5.8.1,<6.0a0 + - libsqlite >=3.50.4,<4.0a0 + - libzlib >=1.3.1,<2.0a0 + - ncurses >=6.5,<7.0a0 + - openssl >=3.5.4,<4.0a0 + - readline >=8.2,<9.0a0 + - tk >=8.6.13,<8.7.0a0 + - tzdata + constrains: + - python_abi 3.11.* *_cp311 + license: Python-2.0 + purls: [] + size: 14788204 + timestamp: 1761174033541 +- conda: https://conda.anaconda.org/conda-forge/win-64/python-3.11.14-h0159041_2_cpython.conda + build_number: 2 + sha256: d5f455472597aefcdde1bc39bca313fcb40bf084f3ad987da0441f2a2ec242e4 + md5: 02a9ba5950d8b78e6c9862d6ba7a5045 + depends: + - bzip2 >=1.0.8,<2.0a0 + - libexpat >=2.7.1,<3.0a0 + - libffi >=3.5.2,<3.6.0a0 + - liblzma >=5.8.1,<6.0a0 + - libsqlite >=3.50.4,<4.0a0 + - libzlib >=1.3.1,<2.0a0 + - openssl >=3.5.4,<4.0a0 + - tk >=8.6.13,<8.7.0a0 + - tzdata + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + constrains: + - python_abi 3.11.* *_cp311 + license: Python-2.0 + purls: [] + size: 18514691 + timestamp: 1761172844103 +- conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhe01879c_2.conda + sha256: d6a17ece93bbd5139e02d2bd7dbfa80bee1a4261dced63f65f679121686bf664 + md5: 5b8d21249ff20967101ffa321cab24e8 + depends: + - python >=3.9 + - six >=1.5 + - python + license: Apache-2.0 + license_family: APACHE + purls: + - pkg:pypi/python-dateutil?source=hash-mapping + size: 233310 + timestamp: 1751104122689 +- conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2025.2-pyhd8ed1ab_0.conda + sha256: e8392a8044d56ad017c08fec2b0eb10ae3d1235ac967d0aab8bd7b41c4a5eaf0 + md5: 88476ae6ebd24f39261e0854ac244f33 + depends: + - python >=3.9 + license: Apache-2.0 + license_family: APACHE + purls: + - pkg:pypi/tzdata?source=hash-mapping + size: 144160 + timestamp: 1742745254292 +- conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda + build_number: 8 + sha256: fddf123692aa4b1fc48f0471e346400d9852d96eeed77dbfdd746fa50a8ff894 + md5: 8fcb6b0e2161850556231336dae58358 + constrains: + - python 3.11.* *_cpython + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 7003 + timestamp: 1752805919375 +- conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2025.2-pyhd8ed1ab_0.conda + sha256: 8d2a8bf110cc1fc3df6904091dead158ba3e614d8402a83e51ed3a8aa93cdeb0 + md5: bc8e3267d44011051f2eb14d22fb0960 + depends: + - python >=3.9 + license: MIT + license_family: MIT + purls: + - pkg:pypi/pytz?source=hash-mapping + size: 189015 + timestamp: 1742920947249 +- conda: https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8c095d6_2.conda + sha256: 2d6d0c026902561ed77cd646b5021aef2d4db22e57a5b0178dfc669231e06d2c + md5: 283b96675859b20a825f8fa30f311446 + depends: + - libgcc >=13 + - ncurses >=6.5,<7.0a0 + license: GPL-3.0-only + license_family: GPL + purls: [] + size: 282480 + timestamp: 1740379431762 +- conda: https://conda.anaconda.org/conda-forge/osx-64/readline-8.2-h7cca4af_2.conda + sha256: 53017e80453c4c1d97aaf78369040418dea14cf8f46a2fa999f31bd70b36c877 + md5: 342570f8e02f2f022147a7f841475784 + depends: + - ncurses >=6.5,<7.0a0 + license: GPL-3.0-only + license_family: GPL + purls: [] + size: 256712 + timestamp: 1740379577668 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/readline-8.2-h1d1bf99_2.conda + sha256: 7db04684d3904f6151eff8673270922d31da1eea7fa73254d01c437f49702e34 + md5: 63ef3f6e6d6d5c589e64f11263dc5676 + depends: + - ncurses >=6.5,<7.0a0 + license: GPL-3.0-only + license_family: GPL + purls: [] + size: 252359 + timestamp: 1740379663071 +- conda: https://conda.anaconda.org/conda-forge/noarch/rich-14.2.0-pyhcf101f3_0.conda + sha256: edfb44d0b6468a8dfced728534c755101f06f1a9870a7ad329ec51389f16b086 + md5: a247579d8a59931091b16a1e932bbed6 + depends: + - markdown-it-py >=2.2.0 + - pygments >=2.13.0,<3.0.0 + - python >=3.10 + - typing_extensions >=4.0.0,<5.0.0 + - python + license: MIT + license_family: MIT + purls: + - pkg:pypi/rich?source=compressed-mapping + size: 200840 + timestamp: 1760026188268 +- conda: https://conda.anaconda.org/conda-forge/linux-64/scikit-learn-1.7.2-py311hc3e1efb_0.conda + sha256: c10973e92f71d6a1277a29d3abffefc9ed4b27854b1e3144e505844d7e0a3fe7 + md5: 3f5b4f552d1ef2a5fdc2a4e25db2ee9a + depends: + - __glibc >=2.17,<3.0.a0 + - _openmp_mutex >=4.5 + - joblib >=1.2.0 + - libgcc >=14 + - libstdcxx >=14 + - numpy >=1.22.0 + - numpy >=1.23,<3 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 + - scipy >=1.8.0 + - threadpoolctl >=3.1.0 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/scikit-learn?source=hash-mapping + size: 9785405 + timestamp: 1757406401803 +- conda: https://conda.anaconda.org/conda-forge/osx-64/scikit-learn-1.7.2-py311had5a2ce_0.conda + sha256: 7adab19ad8211ab267366046c199bda63b85a11833d73901cd8137cf555ddf51 + md5: 35e84df764fb918f99c17602376d6a84 + depends: + - __osx >=10.13 + - joblib >=1.2.0 + - libcxx >=19 + - llvm-openmp >=19.1.7 + - numpy >=1.22.0 + - numpy >=1.23,<3 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 + - scipy >=1.8.0 + - threadpoolctl >=3.1.0 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/scikit-learn?source=hash-mapping + size: 9157602 + timestamp: 1757407090554 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/scikit-learn-1.7.2-py311h0f965f6_0.conda + sha256: ef398e0e3e57680fe0422ba56245c54b3d7114c7a6e31ff0367bfbd7c553c05b + md5: 5d571c9769910a3377d13230be348f47 + depends: + - __osx >=11.0 + - joblib >=1.2.0 + - libcxx >=19 + - llvm-openmp >=19.1.7 + - numpy >=1.22.0 + - numpy >=1.23,<3 + - python >=3.11,<3.12.0a0 + - python >=3.11,<3.12.0a0 *_cpython + - python_abi 3.11.* *_cp311 + - scipy >=1.8.0 + - threadpoolctl >=3.1.0 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/scikit-learn?source=hash-mapping + size: 9169335 + timestamp: 1757407114262 +- conda: https://conda.anaconda.org/conda-forge/win-64/scikit-learn-1.7.2-py311h8a15ebc_0.conda + sha256: 6b7db7a33e44b2ef36b77054f3f939a6bb7722e5a1e9a1b55bfe022eda0045a8 + md5: f4ca4045c4da60540399bd67b4e1490f + depends: + - joblib >=1.2.0 + - numpy >=1.22.0 + - numpy >=1.23,<3 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 + - scipy >=1.8.0 + - threadpoolctl >=3.1.0 + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/scikit-learn?source=hash-mapping + size: 9040416 + timestamp: 1757433538935 +- conda: https://conda.anaconda.org/conda-forge/linux-64/scipy-1.16.3-py311h1e13796_0.conda + sha256: 3027e8d71a7b7e6b0d14af8f9729ee3923421ff5ee6557f7c7a943786985e524 + md5: 64a45020cd5a51f02fea17ad4dc76535 + depends: + - __glibc >=2.17,<3.0.a0 + - libblas >=3.9.0,<4.0a0 + - libcblas >=3.9.0,<4.0a0 + - libgcc >=14 + - libgfortran + - libgfortran5 >=14.3.0 + - liblapack >=3.9.0,<4.0a0 + - libstdcxx >=14 + - numpy <2.6 + - numpy >=1.23,<3 + - numpy >=1.25.2 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/scipy?source=hash-mapping + size: 17213197 + timestamp: 1761691072055 +- conda: https://conda.anaconda.org/conda-forge/osx-64/scipy-1.16.3-py311h32c7e5c_0.conda + sha256: 3826be2d21f60772064440815fa327565933136a639b7d3ad0096e67dd48f25d + md5: 2a79d2a78d0a078310619641a3eec5c9 + depends: + - __osx >=10.13 + - libblas >=3.9.0,<4.0a0 + - libcblas >=3.9.0,<4.0a0 + - libcxx >=19 + - libgfortran + - libgfortran5 >=14.3.0 + - libgfortran5 >=15.2.0 + - liblapack >=3.9.0,<4.0a0 + - numpy <2.6 + - numpy >=1.23,<3 + - numpy >=1.25.2 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/scipy?source=hash-mapping + size: 15405378 + timestamp: 1761691654385 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/scipy-1.16.3-py311h2734c94_0.conda + sha256: 28d4084fb2b63229125cabcff50eb6d889114d65b7880e6d61139a949fb06a10 + md5: a9073cb3bd8dc7313ab544dd0e700f48 + depends: + - __osx >=11.0 + - libblas >=3.9.0,<4.0a0 + - libcblas >=3.9.0,<4.0a0 + - libcxx >=19 + - libgfortran + - libgfortran5 >=14.3.0 + - libgfortran5 >=15.2.0 + - liblapack >=3.9.0,<4.0a0 + - numpy <2.6 + - numpy >=1.23,<3 + - numpy >=1.25.2 + - python >=3.11,<3.12.0a0 + - python >=3.11,<3.12.0a0 *_cpython + - python_abi 3.11.* *_cp311 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/scipy?source=hash-mapping + size: 14069869 + timestamp: 1761692732521 +- conda: https://conda.anaconda.org/conda-forge/win-64/scipy-1.16.3-py311h9a1c30b_0.conda + sha256: aba697a3df4ebdc40704969127fc73a40be04fb985ab2151392c175cba39835d + md5: a280362c2bb3d0b66e67c73ab8c5d8d3 + depends: + - libblas >=3.9.0,<4.0a0 + - libcblas >=3.9.0,<4.0a0 + - liblapack >=3.9.0,<4.0a0 + - numpy <2.6 + - numpy >=1.23,<3 + - numpy >=1.25.2 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/scipy?source=hash-mapping + size: 15257170 + timestamp: 1761692020280 +- conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-80.9.0-pyhff2d567_0.conda + sha256: 972560fcf9657058e3e1f97186cc94389144b46dbdf58c807ce62e83f977e863 + md5: 4de79c071274a53dcaf2a8c749d1499e + depends: + - python >=3.9 + license: MIT + license_family: MIT + purls: + - pkg:pypi/setuptools?source=hash-mapping + size: 748788 + timestamp: 1748804951958 +- conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda + sha256: 0557c090913aa63cdbe821dbdfa038a321b488e22bc80196c4b3b1aace4914ef + md5: 7c3c2a0f3ebdea2bbc35538d162b43bf + depends: + - python >=3.9 + license: MIT + license_family: MIT + purls: + - pkg:pypi/shellingham?source=hash-mapping + size: 14462 + timestamp: 1733301007770 +- conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhe01879c_1.conda + sha256: 458227f759d5e3fcec5d9b7acce54e10c9e1f4f4b7ec978f3bfd54ce4ee9853d + md5: 3339e3b65d58accf4ca4fb8748ab16b3 + depends: + - python >=3.9 + - python + license: MIT + license_family: MIT + purls: + - pkg:pypi/six?source=hash-mapping + size: 18455 + timestamp: 1753199211006 +- conda: https://conda.anaconda.org/conda-forge/win-64/tbb-2022.3.0-hd094cb3_1.conda + sha256: c31cac57913a699745d124cdc016a63e31c5749f16f60b3202414d071fc50573 + md5: 17c38aaf14c640b85c4617ccb59c1146 + depends: + - libhwloc >=2.12.1,<2.12.2.0a0 + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + license: Apache-2.0 + purls: [] + size: 155714 + timestamp: 1762510341121 +- conda: https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.6.0-pyhecae5ae_0.conda + sha256: 6016672e0e72c4cf23c0cf7b1986283bd86a9c17e8d319212d78d8e9ae42fdfd + md5: 9d64911b31d57ca443e9f1e36b04385f + depends: + - python >=3.9 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/threadpoolctl?source=hash-mapping + size: 23869 + timestamp: 1741878358548 +- conda: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_hd72426e_102.conda + sha256: a84ff687119e6d8752346d1d408d5cf360dee0badd487a472aa8ddedfdc219e1 + md5: a0116df4f4ed05c303811a837d5b39d8 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libzlib >=1.3.1,<2.0a0 + license: TCL + license_family: BSD + purls: [] + size: 3285204 + timestamp: 1748387766691 +- conda: https://conda.anaconda.org/conda-forge/osx-64/tk-8.6.13-hf689a15_2.conda + sha256: b24468006a96b71a5f4372205ea7ec4b399b0f2a543541e86f883de54cd623fc + md5: 9864891a6946c2fe037c02fca7392ab4 + depends: + - __osx >=10.13 + - libzlib >=1.3.1,<2.0a0 + license: TCL + license_family: BSD + purls: [] + size: 3259809 + timestamp: 1748387843735 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/tk-8.6.13-h892fb3f_2.conda + sha256: cb86c522576fa95c6db4c878849af0bccfd3264daf0cc40dd18e7f4a7bfced0e + md5: 7362396c170252e7b7b0c8fb37fe9c78 + depends: + - __osx >=11.0 + - libzlib >=1.3.1,<2.0a0 + license: TCL + license_family: BSD + purls: [] + size: 3125538 + timestamp: 1748388189063 +- conda: https://conda.anaconda.org/conda-forge/win-64/tk-8.6.13-h2c6b04d_2.conda + sha256: e3614b0eb4abcc70d98eae159db59d9b4059ed743ef402081151a948dce95896 + md5: ebd0e761de9aa879a51d22cc721bd095 + depends: + - ucrt >=10.0.20348.0 + - vc >=14.2,<15 + - vc14_runtime >=14.29.30139 + license: TCL + license_family: BSD + purls: [] + size: 3466348 + timestamp: 1748388121356 +- pypi: https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl + name: tqdm + version: 4.67.1 + sha256: 26445eca388f82e72884e0d580d5464cd801a3ea01e63e5601bdff9ba6a48de2 + requires_dist: + - colorama ; sys_platform == 'win32' + - pytest>=6 ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - pytest-timeout ; extra == 'dev' + - pytest-asyncio>=0.24 ; extra == 'dev' + - nbval ; extra == 'dev' + - requests ; extra == 'discord' + - slack-sdk ; extra == 'slack' + - requests ; extra == 'telegram' + - ipywidgets>=6 ; extra == 'notebook' + requires_python: '>=3.7' +- conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.20.0-pyhdb1f59b_0.conda + sha256: e4708f3f7f72e92511b1f6defca8cac520cef1af3cda92c3b7901731f7ddcb75 + md5: 27ec7c3f99366fa64228c3ee4ab49cbc + depends: + - typer-slim-standard ==0.20.0 h65a100f_0 + - python >=3.10 + - python + license: MIT + license_family: MIT + purls: + - pkg:pypi/typer?source=hash-mapping + size: 79367 + timestamp: 1760982314002 +- conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.20.0-pyhcf101f3_0.conda + sha256: 08904a433b7ab6b2e0267576043a8397bb3ce7296d71aef34ae7d2506b2c192a + md5: d8ad446a00bbd434d6d03cdcc9b46524 + depends: + - python >=3.10 + - click >=8.0.0 + - typing_extensions >=3.7.4.3 + - python + constrains: + - typer 0.20.0.* + - rich >=10.11.0 + - shellingham >=1.3.0 + license: MIT + license_family: MIT + purls: + - pkg:pypi/typer-slim?source=hash-mapping + size: 47419 + timestamp: 1760982313997 +- conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.20.0-h65a100f_0.conda + sha256: a4726dec9ec806757f5f0fee65f54f790d3f4854a869bd4cd2c2805c54b52d37 + md5: cfd4be2a44e441b12b58a7d04c9434e9 + depends: + - typer-slim ==0.20.0 pyhcf101f3_0 + - rich + - shellingham + license: MIT + license_family: MIT + purls: [] + size: 5294 + timestamp: 1760982314002 +- conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.15.0-pyhcf101f3_0.conda + sha256: 032271135bca55aeb156cee361c81350c6f3fb203f57d024d7e5a1fc9ef18731 + md5: 0caa1af407ecff61170c9437a808404d + depends: + - python >=3.10 + - python + license: PSF-2.0 + license_family: PSF + purls: + - pkg:pypi/typing-extensions?source=hash-mapping + size: 51692 + timestamp: 1756220668932 +- conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda + sha256: 5aaa366385d716557e365f0a4e9c3fca43ba196872abbbe3d56bb610d131e192 + md5: 4222072737ccff51314b5ece9c7d6f5a + license: LicenseRef-Public-Domain + purls: [] + size: 122968 + timestamp: 1742727099393 +- conda: https://conda.anaconda.org/conda-forge/win-64/ucrt-10.0.26100.0-h57928b3_0.conda + sha256: 3005729dce6f3d3f5ec91dfc49fc75a0095f9cd23bab49efb899657297ac91a5 + md5: 71b24316859acd00bdb8b38f5e2ce328 + constrains: + - vc14_runtime >=14.29.30037 + - vs2015_runtime >=14.29.30037 + license: LicenseRef-MicrosoftWindowsSDK10 + purls: [] + size: 694692 + timestamp: 1756385147981 +- conda: https://conda.anaconda.org/conda-forge/win-64/vc-14.3-h2b53caa_32.conda + sha256: 82250af59af9ff3c6a635dd4c4764c631d854feb334d6747d356d949af44d7cf + md5: ef02bbe151253a72b8eda264a935db66 + depends: + - vc14_runtime >=14.42.34433 + track_features: + - vc14 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 18861 + timestamp: 1760418772353 +- conda: https://conda.anaconda.org/conda-forge/win-64/vc14_runtime-14.44.35208-h818238b_32.conda + sha256: e3a3656b70d1202e0d042811ceb743bd0d9f7e00e2acdf824d231b044ef6c0fd + md5: 378d5dcec45eaea8d303da6f00447ac0 + depends: + - ucrt >=10.0.20348.0 + - vcomp14 14.44.35208 h818238b_32 + constrains: + - vs2015_runtime 14.44.35208.* *_32 + license: LicenseRef-MicrosoftVisualCpp2015-2022Runtime + license_family: Proprietary + purls: [] + size: 682706 + timestamp: 1760418629729 +- conda: https://conda.anaconda.org/conda-forge/win-64/vcomp14-14.44.35208-h818238b_32.conda + sha256: f3790c88fbbdc55874f41de81a4237b1b91eab75e05d0e58661518ff04d2a8a1 + md5: 58f67b437acbf2764317ba273d731f1d + depends: + - ucrt >=10.0.20348.0 + constrains: + - vs2015_runtime 14.44.35208.* *_32 + license: LicenseRef-MicrosoftVisualCpp2015-2022Runtime + license_family: Proprietary + purls: [] + size: 114846 + timestamp: 1760418593847 +- conda: https://conda.anaconda.org/conda-forge/noarch/xgboost-3.1.1-cpu_pyhb39878e_0.conda + sha256: 555beb744fad061fff41529f93049d5a5e234394df16f011b41c9b119a70fe8f + md5: c0d5da3c627340955226b7e4aa6fab3c + depends: + - py-xgboost 3.1.1 cpu_pyh35227d3_0 + - python >=3.10 + license: Apache-2.0 + license_family: APACHE + purls: [] + size: 16310 + timestamp: 1762062507387 +- conda: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.7-hb8e6e7a_2.conda + sha256: a4166e3d8ff4e35932510aaff7aa90772f84b4d07e9f6f83c614cba7ceefe0eb + md5: 6432cb5d4ac0046c3ac0a8a0f95842f9 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libstdcxx >=13 + - libzlib >=1.3.1,<2.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 567578 + timestamp: 1742433379869 +- conda: https://conda.anaconda.org/conda-forge/osx-64/zstd-1.5.7-h8210216_2.conda + sha256: c171c43d0c47eed45085112cb00c8c7d4f0caa5a32d47f2daca727e45fb98dca + md5: cd60a4a5a8d6a476b30d8aa4bb49251a + depends: + - __osx >=10.13 + - libzlib >=1.3.1,<2.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 485754 + timestamp: 1742433356230 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstd-1.5.7-h6491c7d_2.conda + sha256: 0d02046f57f7a1a3feae3e9d1aa2113788311f3cf37a3244c71e61a93177ba67 + md5: e6f69c7bcccdefa417f056fa593b40f0 + depends: + - __osx >=11.0 + - libzlib >=1.3.1,<2.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 399979 + timestamp: 1742433432699 +- conda: https://conda.anaconda.org/conda-forge/win-64/zstd-1.5.7-hbeecb71_2.conda + sha256: bc64864377d809b904e877a98d0584f43836c9f2ef27d3d2a1421fa6eae7ca04 + md5: 21f56217d6125fb30c3c3f10c786d751 + depends: + - libzlib >=1.3.1,<2.0a0 + - ucrt >=10.0.20348.0 + - vc >=14.2,<15 + - vc14_runtime >=14.29.30139 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 354697 + timestamp: 1742433568506 diff --git a/models/moe_stabl_baseline/pixi.toml b/models/moe_stabl_baseline/pixi.toml new file mode 100644 index 0000000..2214d84 --- /dev/null +++ b/models/moe_stabl_baseline/pixi.toml @@ -0,0 +1,20 @@ +[workspace] +name = "moe-stabl-baseline" +version = "0.1.0" +channels = ["conda-forge"] +platforms = ["linux-64", "osx-64", "osx-arm64", "win-64"] + +[dependencies] +python = "3.11.*" +pandas = ">=2.0" +typer = ">=0.9" +numpy = ">=1.24" +scikit-learn = ">=1.3" +scipy = ">=1.11" +xgboost = ">=2.0" +lightgbm = ">=4.0" +joblib = ">=1.3" + +[pypi-dependencies] +abdev-core = { path = "../../libs/abdev_core", editable = true } +moe-stabl-baseline = { path = ".", editable = true } diff --git a/models/moe_stabl_baseline/pyproject.toml b/models/moe_stabl_baseline/pyproject.toml new file mode 100644 index 0000000..2140011 --- /dev/null +++ b/models/moe_stabl_baseline/pyproject.toml @@ -0,0 +1,18 @@ +[project] +name = "moe-stabl-baseline" +version = "0.1.0" +description = "Baseline model using MOE features and Stabl feature selection" +requires-python = ">=3.9" +dependencies = [ + "numpy", + "pandas", + "scikit-learn", + "joblib", + "xgboost", + "tqdm", + "scipy" +] + +[build-system] +requires = ["hatchling"] +build-backend = "hatchling.build" diff --git a/models/moe_stabl_baseline/src/moe_stabl_baseline/__init__.py b/models/moe_stabl_baseline/src/moe_stabl_baseline/__init__.py new file mode 100644 index 0000000..cc515bd --- /dev/null +++ b/models/moe_stabl_baseline/src/moe_stabl_baseline/__init__.py @@ -0,0 +1,3 @@ +"""MOE molecular descriptors with Stabl feature selection.""" + +__version__ = "0.1.0" \ No newline at end of file diff --git a/models/moe_stabl_baseline/src/moe_stabl_baseline/__main__.py b/models/moe_stabl_baseline/src/moe_stabl_baseline/__main__.py new file mode 100644 index 0000000..23ce152 --- /dev/null +++ b/models/moe_stabl_baseline/src/moe_stabl_baseline/__main__.py @@ -0,0 +1,4 @@ +from .run import app + +if __name__ == "__main__": + app() \ No newline at end of file diff --git a/models/moe_stabl_baseline/src/moe_stabl_baseline/model.py b/models/moe_stabl_baseline/src/moe_stabl_baseline/model.py new file mode 100644 index 0000000..fb1bab2 --- /dev/null +++ b/models/moe_stabl_baseline/src/moe_stabl_baseline/model.py @@ -0,0 +1,231 @@ +"""MOE molecular descriptors with Stabl feature selection.""" + +from pathlib import Path +import pickle +import numpy as np +import pandas as pd +from sklearn.linear_model import RidgeCV +from sklearn.pipeline import Pipeline +from sklearn.preprocessing import StandardScaler +from sklearn.feature_selection import VarianceThreshold +from sklearn.pipeline import Pipeline +from sklearn.neural_network import MLPRegressor +from sklearn.model_selection import RandomizedSearchCV +from scipy.stats import uniform, randint +import lightgbm as lgb +from xgboost import XGBRegressor +from sklearn.linear_model import LinearRegression +import warnings + +from abdev_core import BaseModel, PROPERTY_LIST, load_features + +warnings.filterwarnings('ignore') + +PER_TARGET_MODEL_CONFIG = { + "HIC": { + "model": RidgeCV(alphas=np.logspace(-3, 3, 10)), + "preprocess": Pipeline([("var", VarianceThreshold()), ("scaler", StandardScaler())]), + "params": {} + }, + "PR_CHO": { + "model": XGBRegressor(objective='reg:squarederror', eval_metric='rmse', use_label_encoder=False), + "preprocess": Pipeline([("var", VarianceThreshold()), ("scaler", StandardScaler())]), + "params": { + 'n_estimators': randint(50, 200), + 'max_depth': randint(3, 10), + 'learning_rate': uniform(0.01, 0.29), + 'subsample': uniform(0.6, 0.4), + 'colsample_bytree': uniform(0.6, 0.4), + 'min_child_weight': randint(1, 10) + } + }, + "AC-SINS_pH7.4": { + "model": lgb.LGBMRegressor(), + "preprocess": Pipeline([("var", VarianceThreshold()), ("scaler", StandardScaler())]), + "params": { + 'num_leaves': randint(20, 150), + 'learning_rate': uniform(0.01, 0.29), + 'n_estimators': randint(50, 200), + 'subsample': uniform(0.6, 0.4), + 'colsample_bytree': uniform(0.6, 0.4), + 'min_child_samples': randint(5, 50) + } + }, + "Tm2": { + "model": MLPRegressor(max_iter=500, early_stopping=True), + "preprocess": Pipeline([("var", VarianceThreshold()), ("scaler", StandardScaler())]), + "params": { + 'hidden_layer_sizes': [(16,), (32,), (64,), (16, 16), (32, 16), (64, 32)], + 'learning_rate_init': uniform(0.0001, 0.01), + 'alpha': uniform(0.0001, 0.1), + 'batch_size': [16, 32, 64], + 'activation': ['relu', 'tanh'] + } + }, + "Titer":{ + "model": lgb.LGBMRegressor(), + "preprocess": Pipeline([("var", VarianceThreshold()), ("scaler", StandardScaler())]), + "params": { + 'num_leaves': randint(20, 150), + 'learning_rate': uniform(0.01, 0.29), + 'n_estimators': randint(50, 200), + 'subsample': uniform(0.6, 0.4), + 'colsample_bytree': uniform(0.6, 0.4), + 'min_child_samples': randint(5, 50) + } + } +} + +class MoeStablBaselineModel(BaseModel): + """ MOE molecular descriptors with Stabl feature selection.""" + + def train(self, df: pd.DataFrame, run_dir: Path, *, seed: int = 42) -> None: + """Train MOE Stabl Baseline model.""" + print("Training MOE Stabl Baseline model") + np.random.seed(seed) + run_dir.mkdir(parents=True, exist_ok=True) + + models = {} + preprocessors = {} + selected_features = {} + fdp_infos = {} + merged_freqs_all = {} + + # does_stabl_selection_exist = "stabl_selection.pkl" in run_dir.iterdir() + stabl_selection_file = Path(__file__).parent.parent.parent / "stabl_feature_selection_results.pkl" + does_stabl_selection_exist = stabl_selection_file.exists() + if not does_stabl_selection_exist: + # raise error + print("STABL selection file not found") + raise FileNotFoundError("STABL selection file not found") + else: + with open(stabl_selection_file, "rb") as f: + stabl_data = pickle.load(f) + + fold_col = 'hierarchical_cluster_IgG_isotype_stratified_fold' + if fold_col in df.columns: + all_folds = set(range(5)) # Folds 0-4 + present_folds = set(df[fold_col].unique()) + missing_folds = all_folds - present_folds + if len(missing_folds) == 1: + fold_id = list(missing_folds)[0] + else: + fold_id = "all" + else: + fold_id = "all" + + moe_features = load_features("MOE_properties") + df_target = df[PROPERTY_LIST] + df_merged = df.merge(moe_features.reset_index(), on="antibody_name", how="left") + ab_cols = [col for col in df_merged.columns if 'antibody_id' in col] + ["mseq"] + df_merged = df_merged.drop(columns=ab_cols, errors="ignore") + moe_features_intersect_merged = [col for col in moe_features.columns if col in df_merged.columns] + df_merged = df_merged[moe_features_intersect_merged] + + print("Training data shape after filtering MOE features:", df_merged.shape) + print() + for target in PROPERTY_LIST: + if target not in df.columns: + print(f"Skipping target {target}, not in dataframe") + continue + + # Filter samples with non-null target values + not_na_mask = df_target[target].notna() + y_train = df_target.loc[not_na_mask, target].values + df_non_na = df_merged.loc[not_na_mask].copy() + + + if len(df_non_na) < 10: + print(f"Skipping target {target}, not enough data") + continue + + print(f"Loading Stabl selection from file for target: {target}") + sel_features = stabl_data[target][fold_id]["selected_features"] + if target in ["Titer"]: + # for Titer, keep all features as the optimal threshold is close to 1.0 + sel_features = [f for f in sel_features if f in df_non_na.columns] + merged_freq = stabl_data[target][fold_id]["merged_freq"] + fdp_info = stabl_data[target][fold_id]["fdp_info"] + + selected_features[target] = sel_features + merged_freqs_all[target] = merged_freq + fdp_infos[target] = fdp_info + + if len(sel_features) == 0: + print("No features selected in this fold. Skipping model training.") + continue + + df_tr_sel = df_non_na[sel_features] + base_model_config = PER_TARGET_MODEL_CONFIG[target] + base_model = base_model_config["model"] + param_dist = base_model_config["params"] + preproc = base_model_config["preprocess"] + X_tr_sel = preproc.fit_transform(df_tr_sel) + + if param_dist: + search = RandomizedSearchCV( + base_model, + param_distributions=param_dist, + n_iter=25, + scoring='neg_mean_squared_error', + cv=5, + random_state=seed, + n_jobs=-1 + ) + search.fit(X_tr_sel, y_train) + best_model = search.best_estimator_ + else: + best_model = base_model + best_model.fit(X_tr_sel, y_train) + models[target] = best_model + preprocessors[target] = preproc + + print("Summary for target:", target) + + print("Number of selected features:", len(sel_features)) + print("Selected features:", [f for f in sel_features if f in df_non_na.columns]) + print("Model: ", type(best_model).__name__) + print() + + artifacts = { + "selected_features": selected_features, + "models": models, + "preprocessors": preprocessors, + "fdp_infos": fdp_infos, + "merged_freqs_all": merged_freqs_all + } + + artifacts_path = run_dir / "model_artifacts.pkl" + with open(artifacts_path, "wb") as f: + pickle.dump(artifacts, f) + + def predict(self, df: pd.DataFrame, run_dir: Path) -> pd.DataFrame: + """Predict using trained MOE Stabl Baseline model.""" + print("Predicting with MOE Stabl Baseline model") + with open(run_dir / "model_artifacts.pkl", "rb") as f: + artifacts = pickle.load(f) + + selected_features = artifacts["selected_features"] + models = artifacts["models"] + preprocessors = artifacts["preprocessors"] + + moe_features = load_features("MOE_properties") + + df_merged = df.merge(moe_features.reset_index(), on="antibody_name", how="left") + + output_cols = ["antibody_name", "vh_protein_sequence", "vl_protein_sequence"] + if "antibody_id" in df.columns: + output_cols.insert(0, "antibody_id") + df_output = df[output_cols].copy() + + for target, model in models.items(): + preproc = preprocessors[target] + + sel_features = selected_features[target] + + X_proc = preproc.transform(df_merged[sel_features]) + + preds = model.predict(X_proc) + df_output[target] = preds + + return df_output \ No newline at end of file diff --git a/models/moe_stabl_baseline/src/moe_stabl_baseline/run.py b/models/moe_stabl_baseline/src/moe_stabl_baseline/run.py new file mode 100644 index 0000000..1f9a8f4 --- /dev/null +++ b/models/moe_stabl_baseline/src/moe_stabl_baseline/run.py @@ -0,0 +1,9 @@ +"""CLI entry point for MOE Stabl baseline model.""" + +from abdev_core import create_cli_app +from .model import MoeStablBaselineModel + +app = create_cli_app(MoeStablBaselineModel, "MOE Stabl Baseline") + +if __name__ == "__main__": + app() \ No newline at end of file diff --git a/models/moe_stabl_baseline/src/moe_stabl_baseline/stabl_proxy.py b/models/moe_stabl_baseline/src/moe_stabl_baseline/stabl_proxy.py new file mode 100644 index 0000000..66482fb --- /dev/null +++ b/models/moe_stabl_baseline/src/moe_stabl_baseline/stabl_proxy.py @@ -0,0 +1,219 @@ +""" +STABL Proxy Feature Selection +----------------------------- + +This module implements the STABL (Stable Feature Selection via Bootstrapping and Artificial Features) +algorithm for robust feature selection using Lasso regressions on bootstrapped datasets. + +Algorithmic logic identical to the reference notebook version. +Optimized for speed (vectorized bootstrapping, parallel Lasso fits) but without changing semantics. + +Author: +""" + +import numpy as np +import pandas as pd +from sklearn.linear_model import Lasso +from joblib import Parallel, delayed +from tqdm import tqdm +from sklearn.pipeline import Pipeline +from sklearn.preprocessing import StandardScaler +from sklearn.feature_selection import VarianceThreshold +import warnings + +warnings.filterwarnings('ignore') + +# --------------------------------------------------------------------- +# Preprocessing pipeline +# --------------------------------------------------------------------- +def stabl_preprocessor(variance_threshold: float = 0.0, scale: bool = True) -> Pipeline: + """Build preprocessing pipeline without imputation.""" + steps = [] + if variance_threshold and variance_threshold > 0.0: + steps.append(("var", VarianceThreshold(threshold=variance_threshold))) + if scale: + steps.append(("scaler", StandardScaler(with_mean=True, with_std=True))) + return Pipeline(steps) + +# --------------------------------------------------------------------- +# Core bootstrapping and artificial feature generation +# --------------------------------------------------------------------- +def generate_bootstrap_from_dataset(df_main_dataset: pd.DataFrame, + df_target: pd.DataFrame, + n_bootstraps: int): + """Generate concatenated bootstrapped dataset (rows only).""" + df_merged = pd.concat( + [df_main_dataset.reset_index(drop=True), + df_target.reset_index(drop=True)], axis=1 + ) + + n = len(df_merged) + # Each row in idx is a bootstrap of length n + idx = np.random.randint(0, n, size=(n_bootstraps, n)) + bootstraps = [df_merged.iloc[idx[i]] for i in range(n_bootstraps)] + df_bootstrapped = pd.concat(bootstraps, ignore_index=True) + + df_target_bootstrapped = df_bootstrapped[df_target.columns] + df_bootstrapped = df_bootstrapped.drop(columns=df_target.columns) + return df_bootstrapped, df_target_bootstrapped + + +def generate_artificial_permuted_features(df_bootstrapped: pd.DataFrame, + fraction: float = 1.0) -> pd.DataFrame: + """ + Add artificial permuted features to the bootstrapped dataset. + Each artificial column is a row-permuted copy of a real feature. + """ + cols = df_bootstrapped.columns + n_cols = len(cols) + k = int(np.ceil(fraction * n_cols)) + sampled_cols = np.random.choice(cols, size=k, replace=False) + d_old_sampled = df_bootstrapped[sampled_cols] + + # Shuffle rows (permute each selected column) + perm_idx = np.random.permutation(len(df_bootstrapped)) + df_artificial_shuffled = d_old_sampled.iloc[perm_idx].reset_index(drop=True) + df_artificial_shuffled.columns = [f"{c}_artificial" for c in df_artificial_shuffled.columns] + + return pd.concat([df_bootstrapped.reset_index(drop=True), + df_artificial_shuffled], axis=1) + + +# --------------------------------------------------------------------- +# Lasso fitting and per-bootstrap feature selection +# --------------------------------------------------------------------- +def fit_lasso_on_one_bootstrap(Xb: np.ndarray, + yb: np.ndarray, + columns: np.ndarray, + alpha_param: float, + max_iter: int = 1000): + """Fit Lasso on one bootstrap and return selected feature names.""" + model = Lasso(alpha=alpha_param, max_iter=max_iter) + model.fit(Xb, yb) + return columns[model.coef_ != 0] + + +def train_stabl_proxy_one_alpha(df_main_dataset: pd.DataFrame, + df_target: pd.DataFrame, + n_bootstraps: int, + alpha_param: float, + fraction: float = 1.0, + max_iter: int = 1000, + n_jobs: int = -1): + """ + Train STABL proxy for one alpha parameter. + Performs Lasso selection across n_bootstraps on the augmented dataset. + """ + df_bootstrapped, df_target_bootstrapped = generate_bootstrap_from_dataset( + df_main_dataset, df_target, n_bootstraps + ) + df_artificial = generate_artificial_permuted_features(df_bootstrapped, fraction) + n_main = df_main_dataset.shape[0] + + X_all = df_artificial.values + y_all = df_target_bootstrapped.values.ravel() + cols = np.array(df_artificial.columns) + + def one_bootstrap(i: int): + start, end = n_main * i, n_main * (i + 1) + Xb = X_all[start:end] + yb = y_all[start:end] + return fit_lasso_on_one_bootstrap(Xb, yb, cols, alpha_param, max_iter) + + results = Parallel(n_jobs=n_jobs, prefer="threads")( + delayed(one_bootstrap)(i) for i in range(n_bootstraps) + ) + + return {f"bootstrap_{i}": res for i, res in enumerate(results)} + + +# --------------------------------------------------------------------- +# Frequency aggregation and FDP computation +# --------------------------------------------------------------------- +def compute_fdr_and_feature_freq(all_selected_features: dict, + n_bootstraps: int) -> dict: + """Compute selection frequency per feature.""" + feature_occ = {} + for features in all_selected_features.values(): + for f in features: + feature_occ[f] = feature_occ.get(f, 0) + 1 + return {f: c / n_bootstraps for f, c in feature_occ.items()} + + +def merge_all_feature_freq(every_feature_freq: dict) -> dict: + """Aggregate per-alpha frequency dictionaries.""" + merged = {} + for alpha, freq_dict in every_feature_freq.items(): + inva = 1 / alpha + for f, v in freq_dict.items(): + d = merged.setdefault(f, {"1/alpha": [], "freq": []}) + d["1/alpha"].append(inva) + d["freq"].append(v) + return merged + + +def get_fdp_curve(merged_feature_freq: dict, n: int = 1000): + """ + Compute the empirical FDP(t) curve. + FDP(t) = (1 + # artificial features >= t) / max(# total features >= t, 1) + """ + t = np.linspace(0, 1, n) + max_freqs = {f: np.max(v["freq"]) for f, v in merged_feature_freq.items()} + + arr_freq_all = np.array(list(max_freqs.values())) + arr_freq_artif = np.array( + [v for f, v in max_freqs.items() if "artificial" in f], + dtype=float + ) + + selected_all = arr_freq_all[:, None] >= t + count_all = selected_all.sum(axis=0) + if len(arr_freq_artif) > 0: + selected_art = arr_freq_artif[:, None] >= t + count_art = selected_art.sum(axis=0) + else: + count_art = np.zeros_like(count_all) + + fdp = (1 + count_art) / np.maximum(count_all, 1) + return fdp, t + + +# --------------------------------------------------------------------- +# Main entry point +# --------------------------------------------------------------------- +def select_stabl_features(df_x_train: pd.DataFrame, + df_y_train: pd.DataFrame, + n_bootstraps: int = 500, + fraction: float = 1.0, + alpha_grid: np.ndarray = np.linspace(0.01, 1.0, 100), + max_iter: int = 1000, + fdp_grid_size: int = 1000, + n_jobs: int = -1 # no seed + ) -> dict: + """ + Run full STABL proxy feature selection. + Returns selected features, merged frequency table, and FDP info. + """ + every_feature_freq = {} + for alpha in tqdm(alpha_grid, desc="STABL α-grid"): + all_selected_features = train_stabl_proxy_one_alpha( + df_x_train, df_y_train, n_bootstraps, alpha, + fraction=fraction, max_iter=max_iter, n_jobs=n_jobs + ) + feature_freq = compute_fdr_and_feature_freq(all_selected_features, n_bootstraps) + every_feature_freq[alpha] = feature_freq + + merged_feature_freq = merge_all_feature_freq(every_feature_freq) + fdp, t = get_fdp_curve(merged_feature_freq, n=fdp_grid_size) + thr_opt = t[np.argmin(fdp)] + + selected_features = [ + f for f, v in merged_feature_freq.items() + if np.max(v["freq"]) >= thr_opt and "artificial" not in f + ] + + return { + "selected_features": selected_features, + "merged_freq": merged_feature_freq, + "fdp_info": {"fdp": fdp, "t": t, "thr_opt": thr_opt}, + } diff --git a/models/moe_stabl_baseline/stabl_feature_selection_results.pkl b/models/moe_stabl_baseline/stabl_feature_selection_results.pkl new file mode 100644 index 0000000..32c5668 Binary files /dev/null and b/models/moe_stabl_baseline/stabl_feature_selection_results.pkl differ diff --git a/outputs/evaluation/moe_stabl_baseline_cv.csv b/outputs/evaluation/moe_stabl_baseline_cv.csv new file mode 100644 index 0000000..436205e --- /dev/null +++ b/outputs/evaluation/moe_stabl_baseline_cv.csv @@ -0,0 +1,71 @@ +spearman,top_10_recall,fold,dataset,assay,model,split +0.6613030367217758,0.6,0,GDPa1_cross_validation,HIC,moe_stabl_baseline,test +0.4856413939870579,0.25,1,GDPa1_cross_validation,HIC,moe_stabl_baseline,test +0.6346879779133153,0.75,2,GDPa1_cross_validation,HIC,moe_stabl_baseline,test +0.7925991312480217,0.5,3,GDPa1_cross_validation,HIC,moe_stabl_baseline,test +0.6524989176444611,0.0,4,GDPa1_cross_validation,HIC,moe_stabl_baseline,test +0.6393418301596056,0.4583333333333333,aggregated,GDPa1_cross_validation,HIC,moe_stabl_baseline,test +0.6453460915029264,0.42000000000000004,average,GDPa1_cross_validation,HIC,moe_stabl_baseline,test +0.043379790940766556,0.0,0,GDPa1_cross_validation,Tm2,moe_stabl_baseline,test +-0.05613305613305613,0.0,1,GDPa1_cross_validation,Tm2,moe_stabl_baseline,test +0.45163584637268844,0.6666666666666666,2,GDPa1_cross_validation,Tm2,moe_stabl_baseline,test +0.1469978071457841,0.0,3,GDPa1_cross_validation,Tm2,moe_stabl_baseline,test +0.07617260787992497,0.0,4,GDPa1_cross_validation,Tm2,moe_stabl_baseline,test +-0.06494992023110842,0.0,aggregated,GDPa1_cross_validation,Tm2,moe_stabl_baseline,test +0.1324105992412216,0.13333333333333333,average,GDPa1_cross_validation,Tm2,moe_stabl_baseline,test +0.10004032388189808,0.4,0,GDPa1_cross_validation,Titer,moe_stabl_baseline,test +0.09450913421992835,0.0,1,GDPa1_cross_validation,Titer,moe_stabl_baseline,test +-0.0008095761412518726,0.0,2,GDPa1_cross_validation,Titer,moe_stabl_baseline,test +0.3018043446957715,0.25,3,GDPa1_cross_validation,Titer,moe_stabl_baseline,test +0.4497065418373176,0.0,4,GDPa1_cross_validation,Titer,moe_stabl_baseline,test +0.20366500513323588,0.17391304347826086,aggregated,GDPa1_cross_validation,Titer,moe_stabl_baseline,test +0.18905015369873274,0.13,average,GDPa1_cross_validation,Titer,moe_stabl_baseline,test +0.40057228813007684,0.25,0,GDPa1_cross_validation,PR_CHO,moe_stabl_baseline,test +0.5869187763154634,0.0,1,GDPa1_cross_validation,PR_CHO,moe_stabl_baseline,test +0.5005738096874425,0.3333333333333333,2,GDPa1_cross_validation,PR_CHO,moe_stabl_baseline,test +0.30763847777999426,0.3333333333333333,3,GDPa1_cross_validation,PR_CHO,moe_stabl_baseline,test +0.4675179883936993,0.0,4,GDPa1_cross_validation,PR_CHO,moe_stabl_baseline,test +0.47639578741950556,0.3157894736842105,aggregated,GDPa1_cross_validation,PR_CHO,moe_stabl_baseline,test +0.4526442680613353,0.1833333333333333,average,GDPa1_cross_validation,PR_CHO,moe_stabl_baseline,test +0.5062957917306149,0.4,0,GDPa1_cross_validation,AC-SINS_pH7.4,moe_stabl_baseline,test +0.3805230985354489,0.0,1,GDPa1_cross_validation,AC-SINS_pH7.4,moe_stabl_baseline,test +0.3876398964140596,0.25,2,GDPa1_cross_validation,AC-SINS_pH7.4,moe_stabl_baseline,test +0.34985225982143603,0.0,3,GDPa1_cross_validation,AC-SINS_pH7.4,moe_stabl_baseline,test +0.348816597481194,0.0,4,GDPa1_cross_validation,AC-SINS_pH7.4,moe_stabl_baseline,test +0.408867577284992,0.20833333333333334,aggregated,GDPa1_cross_validation,AC-SINS_pH7.4,moe_stabl_baseline,test +0.39462552879655066,0.13,average,GDPa1_cross_validation,AC-SINS_pH7.4,moe_stabl_baseline,test +0.7234944954770308,0.8095238095238095,0,GDPa1_cross_validation,HIC,moe_stabl_baseline,train +0.5680776239785403,0.3684210526315789,1,GDPa1_cross_validation,HIC,moe_stabl_baseline,train +0.7156428591463434,0.5789473684210527,2,GDPa1_cross_validation,HIC,moe_stabl_baseline,train +0.7987801011868834,0.6470588235294118,3,GDPa1_cross_validation,HIC,moe_stabl_baseline,train +0.6518486166814587,0.3157894736842105,4,GDPa1_cross_validation,HIC,moe_stabl_baseline,train +0.7136174087244747,0.5,aggregated,GDPa1_cross_validation,HIC,moe_stabl_baseline,train +0.6915687392940513,0.5439481055580127,average,GDPa1_cross_validation,HIC,moe_stabl_baseline,train +0.24622921664119002,0.1875,0,GDPa1_cross_validation,Tm2,moe_stabl_baseline,train +-0.022861597620322634,0.0,1,GDPa1_cross_validation,Tm2,moe_stabl_baseline,train +0.1676760780403756,0.21428571428571427,2,GDPa1_cross_validation,Tm2,moe_stabl_baseline,train +0.19259450094418298,0.14285714285714285,3,GDPa1_cross_validation,Tm2,moe_stabl_baseline,train +0.131879731353595,0.125,4,GDPa1_cross_validation,Tm2,moe_stabl_baseline,train +0.18652178995508176,0.15584415584415584,aggregated,GDPa1_cross_validation,Tm2,moe_stabl_baseline,train +0.1431035858718042,0.13392857142857145,average,GDPa1_cross_validation,Tm2,moe_stabl_baseline,train +0.6197327518931902,0.6190476190476191,0,GDPa1_cross_validation,Titer,moe_stabl_baseline,train +0.5463291178748327,0.47368421052631576,1,GDPa1_cross_validation,Titer,moe_stabl_baseline,train +0.5987718445223711,0.3333333333333333,2,GDPa1_cross_validation,Titer,moe_stabl_baseline,train +0.7780088035796833,0.5882352941176471,3,GDPa1_cross_validation,Titer,moe_stabl_baseline,train +0.7548416542031229,0.6111111111111112,4,GDPa1_cross_validation,Titer,moe_stabl_baseline,train +0.6762726492273999,0.5368421052631579,aggregated,GDPa1_cross_validation,Titer,moe_stabl_baseline,train +0.6595368344146401,0.5250823136272053,average,GDPa1_cross_validation,Titer,moe_stabl_baseline,train +0.9417678891712654,0.3333333333333333,0,GDPa1_cross_validation,PR_CHO,moe_stabl_baseline,train +0.9588589155867313,0.4375,1,GDPa1_cross_validation,PR_CHO,moe_stabl_baseline,train +0.9752535261738745,0.21428571428571427,2,GDPa1_cross_validation,PR_CHO,moe_stabl_baseline,train +0.9931378486874636,0.8571428571428571,3,GDPa1_cross_validation,PR_CHO,moe_stabl_baseline,train +0.9850254716629915,0.5625,4,GDPa1_cross_validation,PR_CHO,moe_stabl_baseline,train +0.9800736761872345,0.358974358974359,aggregated,GDPa1_cross_validation,PR_CHO,moe_stabl_baseline,train +0.9708087302564653,0.4809523809523809,average,GDPa1_cross_validation,PR_CHO,moe_stabl_baseline,train +0.670281454946046,0.23809523809523808,0,GDPa1_cross_validation,AC-SINS_pH7.4,moe_stabl_baseline,train +0.6078930173365368,0.10526315789473684,1,GDPa1_cross_validation,AC-SINS_pH7.4,moe_stabl_baseline,train +0.6915734928788292,0.3157894736842105,2,GDPa1_cross_validation,AC-SINS_pH7.4,moe_stabl_baseline,train +0.6453871000119956,0.17647058823529413,3,GDPa1_cross_validation,AC-SINS_pH7.4,moe_stabl_baseline,train +0.7080507050847469,0.15789473684210525,4,GDPa1_cross_validation,AC-SINS_pH7.4,moe_stabl_baseline,train +0.698703249059422,0.22916666666666666,aggregated,GDPa1_cross_validation,AC-SINS_pH7.4,moe_stabl_baseline,train +0.6646371540516309,0.19870263895031698,average,GDPa1_cross_validation,AC-SINS_pH7.4,moe_stabl_baseline,train diff --git a/outputs/predictions/GDPa1_cross_validation/moe_stabl_baseline/predictions.csv b/outputs/predictions/GDPa1_cross_validation/moe_stabl_baseline/predictions.csv new file mode 100644 index 0000000..05243fd --- /dev/null +++ b/outputs/predictions/GDPa1_cross_validation/moe_stabl_baseline/predictions.csv @@ -0,0 +1,247 @@ +antibody_name,hierarchical_cluster_IgG_isotype_stratified_fold,antibody_id,vh_protein_sequence,vl_protein_sequence,HIC,Tm2,Titer,PR_CHO,AC-SINS_pH7.4 +abagovomab,2,GDPa1-001,QVKLQESGAELARPGASVKLSCKASGYTFTNYWMQWVKQRPGQGLDWIGAIYPGDGNTRYTHKFKGKATLTADKSSSTAYMQLSSLASEDSGVYYCARGEGNYAWFAYWGQGTTVTVSS,DIELTQSPASLSASVGETVTITCQASENIYSYLAWHQQKQGKSPQLLVYNAKTLAGGVSSRFSGSGSGTHFSLKIKSLQPEDFGIYYCQHHYGILPTFGGGTKLEIK,2.8835775639236947,80.43502857928432,272.5118003454969,0.31713572,12.32870772540966 +abituzumab,0,GDPa1-002,QVQLQQSGGELAKPGASVKVSCKASGYTFSSFWMHWVRQAPGQGLEWIGYINPRSGYTEYNEIFRDKATMTTDTSTSTAYMELSSLRSEDTAVYYCASFLGRGAMDYWGQGTTVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQDISNYLAWYQQKPGKAPKLLIYYTSKIHSGVPSRFSGSGSGTDYTFTISSLQPEDIATYYCQQGNTFPYTFGQGTKVEIK,3.0346468858424283,81.78398339001377,243.28297593000613,0.0882074,6.535603726337725 +abrezekimab,2,GDPa1-003,QVTLKESGPVLVKPTETLTLTCTVSGFSLTNYHVQWIRQPPGKALEWLGVMWSDGDTSFNSVLKSRLTISRDTSKSQVVLTMTNMDPVDTATYYCARDGTIAAMDYFDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCLASEDISNYLAWYQQKPGKAPKLLIYHTSRLQDGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGYRFPLTFGGGTKVEIK,2.701184893682765,82.1490919180973,187.1861596837093,0.13272548,-5.084473098744578 +abrilumab,0,GDPa1-004,QVQLVQSGAEVKKPGASVKVSCKVSGYTLSDLSIHWVRQAPGKGLEWMGGFDPQDGETIYAQKFQGRVTMTEDTSTDTAYMELSSLKSEDTAVYYCATGSSSSWFDPWGQGTLVTVSS,DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQKPGKAPKLLIYGASNLESGVPSRFSGSGSGTDFTLTISSLQPEDFANYYCQQANSFPWTFGQGTKVEIK,2.8279316381511985,81.76993288972595,287.59834660280666,0.32830086,4.054768720028539 +adalimumab,0,GDPa1-005,EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSAITWNSGHIDYADSVEGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAKVSYLSTASSLDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQGIRNYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQRYNRAPYTFGQGTKVEIK,2.7457098372287385,81.78304580296263,183.18602850949208,0.10057151,2.94256501399799 +aducanumab,0,GDPa1-006,QVQLVESGGGVVQPGRSLRLSCAASGFAFSSYGMHWVRQAPGKGLEWVAVIWFDGTKKYYTDSVKGRFTISRDNSKNTLYLQMNTLRAEDTAVYYCARDRGIGARRGPYYMDVWGKGTTVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIK,2.4051117426198902,81.78327234299367,269.3610016083369,0.28224042,11.716230832371068 +alemtuzumab,3,GDPa1-007,QVQLQESGPGLVRPSQTLSLTCTVSGFTFTDFYMNWVRQPPGRGLEWIGFIRDKAKGYTTEYNPSVKGRVTMLVDTSKNQFSLRLSSVTAADTAVYYCAREGHTAAPFDYWGQGSLVTVSS,DIQMTQSPSSLSASVGDRVTITCKASQNIDKYLNWYQQKPGKAPKLLIYNTNNLQTGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCLQHISRPRTFGQGTKVEIK,2.304935591938999,81.53842791638614,241.77057403133813,0.31028405,12.7753047599811 +alirocumab,2,GDPa1-008,EVQLVESGGGLVQPGGSLRLSCAASGFTFNNYAMNWVRQAPGKGLDWVSTISGSGGTTNYADSVKGRFIISRDSSKHTLYLQMNSLRAEDTAVYYCAKDSNWGNFDLWGRGTLVTVSS,DIVMTQSPDSLAVSLGERATINCKSSQSVLYRSNNRNFLGWYQQKPGQPPNLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYTTPYTFGQGTKLEIK,2.7370752626446664,80.85685429345803,223.2543231347658,0.011389063,3.706414913965775 +amatuximab,2,GDPa1-009,QVQLQQSGPELEKPGASVKISCKASGYSFTGYTMNWVKQSHGKSLEWIGLITPYNGASSYNQKFRGKATLTVDKSSSTAYMDLLSLTSEDSAVYFCARGGYDGRGFDYWGSGTPVTVSS,DIELTQSPAIMSASPGEKVTMTCSASSSVSYMHWYQQKSGTSPKRWIYDTSKLASGVPGRFSGSGSGNSYSLTISSVEAEDDATYYCQQWSKHPLTFGSGTKVEIK,2.761826676538768,81.2061720067836,261.464094024335,0.17509395,11.455893884104444 +andecaliximab,3,GDPa1-010,QVQLQESGPGLVKPSETLSLTCTVSGFSLLSYGVHWVRQPPGKGLEWLGVIWTGGTTNYNSALMSRFTISKDDSKNTVYLKMNSLKTEDTAIYYCARYYYGMDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCKASQDVRNTVAWYQQKPGKAPKLLIYSSSYRNTGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQHYITPYTFGGGTKVEIK,2.9304234273846976,81.53900972405519,254.1070401051734,0.17390774,9.543312058771637 +anetumab,4,GDPa1-011,QVELVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQAPGKGLEWMGIIDPGDSRTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARGQLYGGTYMDGWGQGTLVTVSS,DIALTQPASVSGSPGQSITISCTGTSSDIGGYNSVSWYQQHPGKAPKLMIYGVNNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYDIESATPVFGGGTKLTVL,2.8935096722626974,82.27152335156158,225.54048195299583,0.123583734,10.2576218194241 +anifrolumab,3,GDPa1-012,EVQLVQSGAEVKKPGESLKISCKGSGYIFTNYWIAWVRQMPGKGLESMGIIYPGDSDIRYSPSFQGQVTISADKSITTAYLQWSSLKASDTAMYYCARHDIEGFDYWGRGTLVTVSS,EIVLTQSPGTLSLSPGERATLSCRASQSVSSSFFAWYQQKPGQAPRLLIYGASSRATGIPDRLSGSGSGTDFTLTITRLEPEDFAVYYCQQYDSSAITFGQGTRLEIK,2.658148317616751,81.53854998589415,242.58966618536616,0.03428004,2.43424486558405 +anrukinzumab,0,GDPa1-013,EVQLVESGGGLVQPGGSLRLSCAASGFTFISYAMSWVRQAPGKGLEWVASISSGGNTYYPDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARLDGYYFGFAYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCKASESVDNYGKSLMHWYQQKPGKAPKLLIYRASNLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSNEDPWTFGGGTKVEIK,2.802710759971462,81.7844418409948,218.81129320664084,0.08009673,3.0408195141109067 +atezolizumab,0,GDPa1-014,EVQLVESGGGLVQPGGSLRLSCAASGFTFSDSWIHWVRQAPGKGLEWVAWISPYGGSTYYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARRHWPGGFDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQDVSTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYLYHPATFGQGTKVEIK,3.168685209296984,81.7840001120671,216.68858892614085,0.16039391,9.294878438868205 +avelumab,4,GDPa1-015,EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYIMMWVRQAPGKGLEWVSSIYPSGGITFYADTVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARIKLGTVTTVDYWGQGTLVTVSS,QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTRVFGTGTKVTVL,2.8778843725053878,82.2723413833934,358.4278775480499,0.09720923,6.174244252276492 +bapineuzumab,1,GDPa1-016,EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYGMSWVRQAPGKGLEWVASIRSGGGRTYYSDNVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRYDHYSGSSDYWGQGTLVTVSS,DVVMTQSPLSLPVTPGEPASISCKSSQSLLDSDGKTYLNWLLQKPGQSPQRLIYLVSKLDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCWQGTHFPRTFGQGTKVEIK,2.55177004565854,81.88078683347555,269.60646345972634,0.20977572,-1.0292684038352136 +basiliximab,2,GDPa1-017,QVQLQQSGTVLARPGASVKMSCKASGYSFTRYWMHWIKQRPGQGLEWIGAIYPGNSDTSYNQKFEGKAKLTAVTSASTAYMELSSLTHEDSAVYYCSRDYGYYFDFWGQGTTLTVSS,QIVSTQSPAIMSASPGEKVTMTCSASSSRSYMQWYQQKPGTSPKRWIYDTSKLASGVPARFSGSGSGTSYSLTISSMEAEDAATYYCHQRSSYTFGGGTKLEIK,2.657973586089352,81.21789750272966,242.81123711610343,0.2676248,12.337583631487457 +bavituximab,2,GDPa1-018,EVQLQQSGPELEKPGASVKLSCKASGYSFTGYNMNWVKQSHGKSLEWIGHIDPYYGDTSYNQKFRGKATLTVDKSSSTAYMQLKSLTSEDSAVYYCVKGGYYGHWYFDVWGAGTTVTVSS,DIQMTQSPSSLSASLGERVSLTCRASQDIGSSLNWLQQGPDGTIKRLIYATSSLDSGVPKRFSGSRSGSDYSLTISSLESEDFVDYYCLQYVSSPPTFGAGTKLELK,3.011925172853265,80.62884915826018,235.0054545208844,-0.01168494,7.81477977779156 +belantamab,1,GDPa1-019,QVQLVQSGAEVKKPGSSVKVSCKASGGTFSNYWMHWVRQAPGQGLEWMGATYRGHSDTYYNQKFKGRVTITADKSTSTAYMELSSLRSEDTAVYYCARGAIYDGYDVLDNWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCSASQDISNYLNWYQQKPGKAPKLLIYYTSNLHSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYRKLPWTFGQGTKLEIK,2.761772562914751,80.77286925132665,282.0169132359314,0.25141612,13.36985322438525 +belimumab,4,GDPa1-020,QVQLQQSGAEVKKPGSSVRVSCKASGGTFNNNAINWVRQAPGQGLEWMGGIIPMFGTAKYSQNFQGRVAITADESTGTASMELSSLRSEDTAVYYCARSRDLLLFPHHALSPWGRGTMVTVSS,SSELTQDPAVSVALGQTVRVTCQGDSLRSYYASWYQQKPGQAPVLVIYGKNNRPSGIPDRFSGSSSGNTASLTITGAQAEDEADYYCSSRDSSGNHWVFGGGTELTVL,2.791699552835129,82.26828366729589,286.3970380072664,0.1678739,3.851229118029512 +bemarituzumab,1,GDPa1-021,QVQLVQSGAEVKKPGSSVKVSCKASGYIFTTYNVHWVRQAPGQGLEWIGSIYPDNGDTSYNQNFKGRATITADKSTSTAYMELSSLRSEDTAVYYCARGDFAYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCKASQGVSNDVAWYQQKPGKAPKLLIYSASYRYTGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQHSTTPYTFGQGTKLEIK,2.3996122337958528,80.14667675169096,292.5444219841802,0.17894676,0.5446620871943543 +benralizumab,1,GDPa1-022,EVQLVQSGAEVKKPGASVKVSCKASGYTFTSYVIHWVRQRPGQGLAWMGYINPYNDGTKYNERFKGKVTITSDRSTSTVYMELSSLRSEDTAVYLCGREGIRYYGLLGDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCGTSEDIINYLNWYQQKPGKAPKLLIYHTSRLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGYTLPYTFGQGTKVEIK,2.901741077357664,79.39664183941875,287.5714495950796,0.32224113,11.885454854218768 +bevacizumab,0,GDPa1-023,EVQLVESGGGLVQPGGSLRLSCAASGYTFTNYGMNWVRQAPGKGLEWVGWINTYTGEPTYAADFKRRFTFSLDTSKSTAYLQMNSLRAEDTAVYYCAKYPHYYGSSHWYFDVWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCSASQDISNYLNWYQQKPGKAPKVLIYFTSSLHSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYSTVPWTFGQGTKVEIK,3.111734748981809,81.78423166860115,208.21426889637317,0.14927918,3.1763066411974985 +bezlotoxumab,3,GDPa1-024,EVQLVQSGAEVKKSGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIFYPGDSSTRYSPSFQGQVTISADKSVNTAYLQWSSLKASDTAMYYCARRRNWGNAFDIWGQGTMVTVSS,EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSTWTFGQGTKVEIK,2.516832039616359,81.5387129658399,260.5191776546689,0.17094973,9.59197433058103 +bimagrumab,4,GDPa1-025,QVQLVQSGAEVKKPGASVKVSCKASGYTFTSSYINWVRQAPGQGLEWMGTINPVSGSTSYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCARGGWFDYWGQGTLVTVSS,QSALTQPASVSGSPGQSITISCTGTSSDVGSYNYVNWYQQHPGKAPKLMIYGVSKRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCGTFAGGSYYGVFGGGTKLTVL,2.692647711933424,82.26623783274206,314.16116920424696,0.37708753,14.006904636063092 +bimekizumab,0,GDPa1-026,EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYNMAWVRQAPGKGLEWVATITYEGRNTYYRDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCASPPQYYEGSIYRLWFAHWGQGTLVTVSS,AIQLTQSPSSLSASVGDRVTITCRADESVRTLMHWYQQKPGKAPKLLIYLVSNSEIGVPDRFSGSGSGTDFRLTISSLQPEDFATYYCQQTWSDPWTFGQGTKVEIK,2.75822693394787,81.78363913684011,198.3964533251086,0.08083455,3.982567414476711 +bleselumab,2,GDPa1-027,QLQLQESGPGLLKPSETLSLTCTVSGGSISSPGYYGGWIRQPPGKGLEWIGSIYKSGSTYHNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCTRPVVRYFGWFDPWGQGTLVTVSS,AIQLTQSPSSLSASVGDRVTITCRASQGISSALAWYQQKPGKAPKLLIYDASNLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFNSYPTFGQGTKVEIK,2.6129923709235685,81.8741164400016,269.0099798688181,0.24713144,12.904739158864984 +blosozumab,0,GDPa1-028,QVQLVQSGAEVKKPGASVKVSCKVSGFPIKDTFQHWVRQAPGKGLEWMGWSDPEIGDTEYASKFQGRVTMTEDTSTDTAYMELSSLRSEDTAVYYCATGDTTYKFDFWGQGTTVTVSS,DIQMTQSPSSLSASVGDRVTITCKASQDVHTAVAWYQQKPGKAPKLLIYWASTRWTGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYSDYPWTFGGGTKVEIK,2.8612962209821355,81.78321137535688,248.58323567123665,0.14728421,3.304344527027429 +bococizumab,0,GDPa1-029,QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWMGEISPFGGRTNYNEKFKSRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARERPLYASDLWGQGTTVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQGISSALAWYQQKPGKAPKLLIYSASYRYTGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQRYSLWRTFGQGTKLEIK,2.9254281109588933,81.7821496676654,268.29594803008973,0.21243444,12.987962196981252 +brazikumab,4,GDPa1-030,QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNEYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRGYTSSWYPDAFDIWGQGTMVTVSS,QSVLTQPPSVSGAPGQRVTISCTGSSSNTGAGYDVHWYQQVPGTAPKLLIYGSGNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSSLSGWVFGGGTRLTVL,3.0269225178811565,82.25173668153508,265.8778365631087,0.1788213,5.252019655949849 +brentuximab,4,GDPa1-031,QIQLQQSGPEVVKPGASVKISCKASGYTFTDYYITWVKQKPGQGLEWIGWIYPGSGNTKYNEKFKGKATLTVDTSSSTAFMQLSSLTSEDTAVYFCANYGNYWFAYWGQGTQVTVSA,DIVLTQSPASLAVSLGQRATISCKASQSVDFDGDSYMNWYQQKPGQPPKVLIYAASNLESGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQSNEDPWTFGGGTKLEIK,2.8615788010020484,82.27001077020438,262.5379281910388,0.100631505,6.212668480352829 +briakinumab,4,GDPa1-032,QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS,QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTKVTVL,2.351277389101409,82.23483771401108,317.9529380166565,0.25806665,11.82657552220152 +brodalumab,2,GDPa1-033,QVQLVQSGAEVKKPGASVKVSCKASGYTFTRYGISWVRQAPGQGLEWMGWISTYSGNTNYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARRQLYFDYWGQGTLVTVSS,EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWFQQKPGQAPRPLIYDASTRATGVPARFSGSGSGTDFTLTISSLQSEDFAVYYCQQYDNWPLTFGGGTKVEIK,2.454493316496902,81.08124417770023,229.9664433076936,0.33155417,20.95880989209189 +brontictuzumab,4,GDPa1-034,QVQLVQSGAEVKKPGASVKISCKVSGYTLRGYWIEWVRQAPGKGLEWIGQILPGTGRTNYNEKFKGRVTMTADTSTDTAYMELSSLRSEDTAVYYCARFDGNYGYYAMDYWGQGTTVTVSS,QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWFQQKPGQAPRTLIGGTNNRAPGVPARFSGSLLGGKAALTLSGAQPEDEAEYYCALWYSNHWVFGGGTKLTVL,2.7018362648144305,82.2600940039412,350.47406820033825,0.36290228,4.168422208781083 +budigalimab,4,GDPa1-035,EIQLVQSGAEVKKPGSSVKVSCKASGYTFTHYGMNWVRQAPGQGLEWVGWVNTYTGEPTYADDFKGRLTFTLDTSTSTAYMELSSLRSEDTAVYYCTREGEGLGFGDWGQGTTVTVSS,DVVMTQSPLSLPVTPGEPASISCRSSQSIVHSHGDTYLEWYLQKPGQSPQLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHIPVTFGQGTKLEIK,2.777194866385318,82.2714022839478,189.18707452527337,0.1750447,4.410200022601752 +burosumab,1,GDPa1-036,QVQLVQSGAEVKKPGASVKVSCKASGYTFTNHYMHWVRQAPGQGLEWMGIINPISGSTSNAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARDIVDAFDFWGQGTMVTVSS,AIQLTQSPSSLSASVGDRVTITCRASQGISSALVWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFNDYFTFGPGTKVDIK,2.6593633591987187,81.80062655244755,319.2937678354782,0.14530289,5.064182696886548 +cabiralizumab,3,GDPa1-037,QVQLVQSGAEVKKPGSSVKVSCKASGYTFTDNYMIWVRQAPGQGLEWMGDINPYNGGTTFNQKFKGRVTITADKSTSTAYMELSSLRSEDTAVYYCARESPYFSNLYVMDYWGQGTLVTVSS,EIVLTQSPATLSLSPGERATLSCKASQSVDYDGDNYMNWYQQKPGQAPRLLIYAASNLESGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCHLSNEDLSTFGGGTKVEIK,2.694293575887961,81.53869762859671,220.42244699281997,0.17727558,2.5627330608161647 +camidanlumab,3,GDPa1-038,QVQLVQSGAEVKKPGSSVKVSCKASGGTFSRYIINWVRQAPGQGLEWMGRIIPILGVENYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCARKDWFDYWGQGTLVTVSS,EIVLTQSPGTLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTFGGGTKVEIK,2.60576224332794,81.53798956085402,243.82242246305347,0.35702273,14.82756573057767 +camrelizumab,1,GDPa1-039,EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYMMSWVRQAPGKGLEWVATISGGGANTYYPDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARQLYYFDYWGQGTTVTVSS,DIQMTQSPSSLSASVGDRVTITCLASQTIGTWLTWYQQKPGKAPKLLIYTATSLADGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQVYSIPWTFGGGTKVEIK,3.2029011292695357,79.72442155015176,290.6972901992603,0.059858717,8.439013214102218 +carlumab,3,GDPa1-040,QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYGISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARYDGIYGELDFWGQGTLVTVSS,EIVLTQSPATLSLSPGERATLSCRASQSVSDAYLAWYQQKPGQAPRLLIYDASSRATGVPARFSGSGSGTDFTLTISSLEPEDFAVYYCHQYIQLHSFTFGQGTKVEIK,2.8977805725419263,81.53847948971264,255.52247860193452,0.05002576,1.6221857174022958 +cemiplimab,1,GDPa1-041,EVQLLESGGVLVQPGGSLRLSCAASGFTFSNFGMTWVRQAPGKGLEWVSGISGGGRDTYFADSVKGRFTISRDNSKNTLYLQMNSLKGEDTAVYYCVKWGNIYFDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDSITITCRASLSINTFLNWYQQKPGKAPNLLIYAASSLHGGVPSRFSGSGSGTDFTLTIRTLQPEDFATYYCQQSSNTPFTFGPGTVVDFR,2.8430854058422943,83.23201245423805,253.87647316978703,0.11951441,6.413762817971712 +certolizumab,0,GDPa1-042,EVQLVESGGGLVQPGGSLRLSCAASGYVFTDYGMNWVRQAPGKGLEWMGWINTYIGEPIYADSVKGRFTFSLDTSKSTAYLQMNSLRAEDTAVYYCARGYRSYAMDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCKASQNVGTNVAWYQQKPGKAPKALIYSASFLYSGVPYRFSGSGSGTDFTLTISSLQPEDFATYYCQQYNIYPLTFGQGTKVEIK,3.258517325405929,81.77958800019168,195.79432159685317,0.12265786,5.637554223929342 +cetrelimab,3,GDPa1-043,QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFDTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARPGLAAAYDTGSLDYWGQGTLVTVSS,EIVLTQSPATLSLSPGERATLSCRASQSVRSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRNYWPLTFGQGTKVEIK,2.8874792742518056,81.53898635231123,246.80151754494707,0.28065184,4.148731504509524 +cetuximab,1,GDPa1-044,QVQLKQSGPGLVQPSQSLSITCTVSGFSLTNYGVHWVRQSPGKGLEWLGVIWSGGNTDYNTPFTSRLSINKDNSKSQVFFKMNSLQSNDTAIYYCARALTYYDYEFAYWGQGTLVTVSA,DILLTQSPVILSVSPGERVSFSCRASQSIGTNIHWYQQRTNGSPRLLIKYASESISGIPSRFSGSGSGTDFTLSINSVESEDIADYYCQQNNNWPTTFGAGTKLELK,2.806563385579789,82.25266951912016,190.0626999878148,0.04976034,9.087277690514124 +cixutumumab,4,GDPa1-045,EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCARAPLRFLEWSTQDHYYYYYMDVWGKGTTVTVSS,SSELTQDPAVSVALGQTVRITCQGDSLRSYYATWYQQKPGQAPILVIYGENKRPSGIPDRFSGSSSGNTASLTITGAQAEDEADYYCKSRDGSGQHLVFGGGTKLTVL,3.190975231765087,82.2566063893079,265.72533751811284,0.26007208,5.035744716217965 +clazakizumab,0,GDPa1-046,EVQLVESGGGLVQPGGSLRLSCAASGFSLSNYYVTWVRQAPGKGLEWVGIIYGSDETAYATSAIGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDDSSDWDAKFNLWGQGTLVTVSS,AIQMTQSPSSLSASVGDRVTITCQASQSINNELSWYQQKPGKAPKLLIYRASTLASGVPSRFSGSGSGTDFTLTISSLQPDDFATYYCQQGYSLRNIDNAFGGGTKVEIK,2.792505735245332,81.78304410975791,219.9033936277912,0.046265233,4.605164318735291 +codrituzumab,4,GDPa1-047,QVQLVQSGAEVKKPGASVKVSCKASGYTFTDYEMHWVRQAPGQGLEWMGALDPKTGDTAYSQKFKGRVTLTADKSTSTAYMELSSLTSEDTAVYYCTRFYSYTYWGQGTLVTVSS,DVVMTQSPLSLPVTPGEPASISCRSSQSLVHSNRNTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCSQNTHVPPTFGQGTKLEIK,2.621510003476466,82.2691354197105,282.80021836018415,0.3554999,3.395010866905205 +coltuximab,2,GDPa1-048,QVQLVQPGAEVVKPGASVKLSCKTSGYTFTSNWMHWVKQAPGQGLEWIGEIDPSDSYTNYNQNFQGKAKLTVDKSTSTAYMEVSSLRSDDTAVYYCARGSNPYYYAMDYWGQGTSVTVSS,EIVLTQSPAIMSASPGERVTMTCSASSGVNYMHWYQQKPGTSPRRWIYDTSKLASGVPARFSGSGSGTDYSLTISSMEPEDAATYYCHQRGSYTFGGGTKLEIK,2.900620327460879,81.24102471179009,246.86082980516963,0.07584758,2.405290764447539 +concizumab,4,GDPa1-049,EVQLVESGGGLVKPGGSLRLSCAASGFTFSNYAMSWVRQTPEKRLEWVATISRSGSYSYFPDSVQGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARLGGYDEGDAMDSWGQGTTVTVSS,DIVMTQTPLSLSVTPGQPASISCKSSQSLLESDGKTYLNWYLQKPGQSPQLLIYLVSILDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCLQATHFPQTFGGGTKVEIK,2.849279033993844,82.27080966604056,211.47460740295992,0.059690606,-0.1967453566977366 +crenezumab,4,GDPa1-050,EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYGMSWVRQAPGKGLELVASINSNGGSTYYPDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCASGDYWGQGTTVTVSS,DIVMTQSPLSLPVTPGEPASISCRSSQSLVYSNGDTYLHWYLQKPGQSPQLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCSQSTHVPWTFGQGTKVEIK,2.68403820912559,82.27122206521625,225.7846064723917,0.039320007,4.195924397894548 +crizanlizumab,0,GDPa1-051,QVQLVQSGAEVKKPGASVKVSCKVSGYTFTSYDINWVRQAPGKGLEWMGWIYPGDGSIKYNEKFKGRVTMTVDKSTDTAYMELSSLRSEDTAVYYCARRGEYGNYEGAMDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCKASQSVDYDGHSYMNWYQQKPGKAPKLLIYAASNLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSDENPLTFGGGTKVEIK,2.597015706621872,81.77765821779951,233.33054284451015,0.20046793,3.313455335827584 +cusatuzumab,4,GDPa1-052,EVQLVESGGGLVQPGGSLRLSCAASGFTFSVYYMNWVRQAPGKGLEWVSDINNEGGTTYYADSVKGRFTISRDNSKNSLYLQMNSLRAEDTAVYYCARDAGYSNHVPIFDSWGQGTLVTVSS,QAVVTQEPSLTVSPGGTVTLTCGLKSGSVTSDNFPTWYQQTPGQAPRLLIYNTNTRHSGVPDRFSGSILGNKAALTITGAQADDEAEYFCALFISNPSVEFGGGTQLTVL,2.772450201284321,82.25065364674154,330.686156644628,0.14141199,5.393803410302631 +dacetuzumab,0,GDPa1-053,EVQLVESGGGLVQPGGSLRLSCAASGYSFTGYYIHWVRQAPGKGLEWVARVIPNAGGTSYNQKFKGRFTLSVDNSKNTAYLQMNSLRAEDTAVYYCAREGIYWWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRSSQSLVHSNGNTFLHWYQQKPGKAPKLLIYTVSNRFSGVPSRFSGSGSGTDFTLTISSLQPEDFATYFCSQTTHVPWTFGQGTKVEIK,2.487322171955125,81.78374823245811,230.81389083335787,0.21588187,12.354972077546869 +daclizumab,1,GDPa1-054,QVQLVQSGAEVKKPGSSVKVSCKASGYTFTSYRMHWVRQAPGQGLEWIGYINPSTGYTEYNQKFKDKATITADESTNTAYMELSSLRSEDTAVYYCARGGGVFDYWGQGTLVTVSS,DIQMTQSPSTLSASVGDRVTITCSASSSISYMHWYQQKPGKAPKLLIYTTSNLASGVPARFSGSGSGTEFTLTISSLQPDDFATYYCHQRSTYPLTFGQGTKVEVK,2.5915431657611507,80.50313784508882,271.1483132470616,0.1074268,-0.5719863583199555 +dalotuzumab,3,GDPa1-055,QVQLQESGPGLVKPSETLSLTCTVSGYSITGGYLWNWIRQPPGKGLEWIGYISYDGTNNYKPSLKDRVTISRDTSKNQFSLKLSSVTAADTAVYYCARYGRVFFDYWGQGTLVTVSS,DIVMTQSPLSLPVTPGEPASISCRSSQSIVHSNGNTYLQWYLQKPGQSPQLLIYKVSNRLYGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPWTFGQGTKVEIK,2.7150442380857887,81.53864816054109,253.3157820261098,0.26329273,7.157557351783538 +daratumumab,2,GDPa1-056,EVQLLESGGGLVQPGGSLRLSCAVSGFTFNSFAMSWVRQAPGKGLEWVSAISGSGGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYFCAKDKILWFGEPVFDYWGQGTLVTVSS,EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPTFGQGTKVEIK,3.046174008718881,81.48943620462508,183.49704272964277,0.04251376,-1.438903297988948 +denosumab,4,GDPa1-057,EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSGITGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDPGTTVIMSWFDPWGQGTLVTVSS,EIVLTQSPGTLSLSPGERATLSCRASQSVRGRYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVFYCQQYGSSPRTFGQGTKVEIK,2.65878988304108,82.2730189489566,228.00144961420943,0.09744206,11.0537224169394 +depatuxizumab,3,GDPa1-058,QVQLQESGPGLVKPSQTLSLTCTVSGYSISSDFAWNWIRQPPGKGLEWMGYISYSGNTRYQPSLKSRITISRDTSKNQFFLKLNSVTAADTATYYCVTAGRGFPYWGQGTLVTVSS,DIQMTQSPSSMSVSVGDRVTITCHSSQDINSNIGWLQQKPGKSFKGLIYHGTNLDDGVPSRFSGSGSGTDYTLTISSLQPEDFATYYCVQYAQFPWTFGGGTKLEIK,2.5701140917248697,81.53893090947925,325.88098076053814,0.19566093,5.9087831704984906 +dinutuximab,4,GDPa1-059,EVQLLQSGPELEKPGASVMISCKASGSSFTGYNMNWVRQNIGKSLEWIGAIDPYYGGTSYNQKFKGRATLTVDKSSSTAYMHLKSLTSEDSAVYYCVSGMEYWGQGTSVTVSS,EIVMTQSPATLSVSPGERATLSCRSSQSLVHRNGNTYLHWYLQKPGQSPKLLIHKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYFCSQSTHVPPLTFGAGTKLELK,2.468224230862943,82.2716639100114,210.7544885063573,0.31863904,10.342844698991737 +domagrozumab,0,GDPa1-060,EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSTISSGGSYTSYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKQDYAMNYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCKASQDVSTAVAWYQQKPGKAPKLLIYSASYRYTGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQHYSTPWTFGGGTKVEIK,2.8228828038786857,81.78443522169279,225.04285769224376,0.09134679,8.407456917503902 +dostarlimab,1,GDPa1-061,EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYDMSWVRQAPGKGLEWVSTISGGGSYTYYQDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASPYYAMDYWGQGTTVTVSS,DIQLTQSPSFLSAYVGDRVTITCKASQDVGTAVAWYQQKPGKAPKLLIYWASTLHTGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQHYSSYPWTFGQGTKLEIK,3.134410615856729,82.11596044098768,269.01799716122537,0.07119212,7.412136176621042 +duligotuzumab,0,GDPa1-062,EVQLVESGGGLVQPGGSLRLSCAASGFTLSGDWIHWVRQAPGKGLEWVGEISAAGGYTDYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARESRVSFEAAMDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQNIATDVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSEPEPYTFGQGTKVEIK,2.94439169922017,81.78328987279139,251.991144058173,0.13544075,3.2106031478270194 +dupilumab,4,GDPa1-063,EVQLVESGGGLEQPGGSLRLSCAGSGFTFRDYAMTWVRQAPGKGLEWVSSISGSGGNTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRLSITIRPRYYGLDVWGQGTTVTVSS,DIVMTQSPLSLPVTPGEPASISCRSSQSLLYSIGYNYLDWYLQKSGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGFYYCMQALQTPYTFGQGTKLEIK,2.9889659339709778,82.27218622170825,208.82149078408588,0.086671874,4.4672009174448055 +durvalumab,2,GDPa1-064,EVQLVESGGGLVQPGGSLRLSCAASGFTFSRYWMSWVRQAPGKGLEWVANIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAREGGWFGELAFDYWGQGTLVTVSS,EIVLTQSPGTLSLSPGERATLSCRASQRVSSSYLAWYQQKPGQAPRLLIYDASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSLPWTFGQGTKVEIK,2.908946880044959,81.44951135081291,218.7273178961652,0.1099311,5.09537473813806 +eculizumab,0,GDPa1-065,QVQLVQSGAEVKKPGASVKVSCKASGYIFSNYWIQWVRQAPGQGLEWMGEILPGSGSTEYTENFKDRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARYFFGSSPNWYFDVWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCGASENIYGALNWYQQKPGKAPKLLIYGATNLADGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQNVLNTPLTFGQGTKVEIK,3.309748199571854,81.77757772508342,243.58801177268535,0.21557608,4.94165305277899 +efalizumab,0,GDPa1-066,EVQLVESGGGLVQPGGSLRLSCAASGYSFTGHWMNWVRQAPGKGLEWVGMIHPSDSETRYNQKFKDRFTISVDKSKNTLYLQMNSLRAEDTAVYYCARGIYFYGTTYFDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASKTISKYLAWYQQKPGKAPKLLIYSGSTLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQHNEYPLTFGQGTKVEIK,2.671913318469902,81.78142604311343,251.96185888992449,0.20280859,6.673819709738871 +eldelumab,2,GDPa1-067,QMQLVESGGGVVQPGRSLRLSCTASGFTFSNNGMHWVRQAPGKGLEWVAVIWFDGMNKFYVDSVKGRFTISRDNSKNTLYLEMNSLRAEDTAIYYCAREGDGSGIYYYYGMDVWGQGTTVTVSS,EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPIFTFGPGTKVDIK,3.106932738329317,80.85515467401227,196.32162193058457,0.04910262,0.4556999683110994 +elezanumab,4,GDPa1-068,EVQLVQSGAEVKKPGASVKVSCKASGYTFTSHGISWVRQAPGQGLDWMGWISPYSGNTNYAQKLQGRVTMTTDTSTSTAYMELSSLRSEDTAVYYCARVGSGPYYYMDVWGQGTLVTVSS,QSALTQPRSVSGSPGQSVTISCTGTSSSVGDSIYVSWYQQHPGKAPKLMLYDVTKRPSGVPDRFSGSKSGNTASLTISGLQAEDEADYYCYSYAGTDTLFGGGTKVTVL,2.904288131622029,82.26822891995073,211.4088026723656,0.14007908,8.883732576694335 +elotuzumab,0,GDPa1-069,EVQLVESGGGLVQPGGSLRLSCAASGFDFSRYWMSWVRQAPGKGLEWIGEINPDSSTINYAPSLKDKFIISRDNAKNSLYLQMNSLRAEDTAVYYCARPDGNYWYFDVWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCKASQDVGIAVAWYQQKPGKVPKLLIYWASTRHTGVPDRFSGSGSGTDFTLTISSLQPEDVATYYCQQYSSYPYTFGQGTKVEIK,3.053625637578932,81.78484174682319,198.00704611359512,0.12357003,4.499509430659368 +emactuzumab,1,GDPa1-070,QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDISWVRQAPGQGLEWMGVIWTDGGTNYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARDQRLYFDVWGQGTTVTVSS,DIQMTQSPSSLSASVGDRVTITCRASEDVNTYVSWYQQKPGKAPKLLIYAASNRYTGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFSYPTFGQGTKLEIK,2.5111080062375204,82.5457982707769,302.54991578156285,0.084082484,0.9523657985238464 +emapalumab,4,GDPa1-071,EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDGSSGWYVPHWFDPWGQGTLVTVSS,NFMLTQPHSVSESPGKTVTISCTRSSGSIASNYVQWYQQRPGSSPTTVIYEDNQRPSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDGSNRWMFGGGTKLTVL,2.847578697930705,82.26612527651217,339.5415695515816,0.061091952,4.05365077010858 +emibetuzumab,0,GDPa1-072,QVQLVQSGAEVKKPGASVKVSCKASGYTFTDYYMHWVRQAPGQGLEWMGRVNPNRRGTTYNQKFEGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARANWLDYWGQGTTVTVSS,DIQMTQSPSSLSASVGDRVTITCSVSSSVSSIYLHWYQQKPGKAPKLLIYSTSNLASGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQVYSGYPLTFGGGTKVEIK,2.6617612689521697,81.78376637081665,284.05146689846964,0.24636419,11.99217396009125 +enavatuzumab,0,GDPa1-073,EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMSWVRQAPGKGLEWVAEIRLKSDNYATHYAESVKGRFTISRDDSKNSLYLQMNSLRAEDTAVYYCTGYYADAMDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQSVSTSSYSYMHWYQQKPGKAPKLLIKYASNLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQHSWEIPYTFGGGTKVEIK,2.784076485425993,81.78436486294558,198.19768415188628,0.09072057,3.1038758658014585 +enokizumab,1,GDPa1-074,QVQLVQSGAEVKKPGSSVKVSCKASGGTFSYYWIEWVRQAPGQGLEWMGEILPGSGTTNPNEKFKGRVTITADESTSTAYMELSSLRSEDTAVYYCARADYYGSDYVKFDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCKASQHVITHVTWYQQKPGKAPKLLIYGTSYSYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFYEYPLTFGGGTKVEIK,3.032239820542959,79.84160247224507,217.2266125081508,0.18896246,2.9171467529004973 +epratuzumab,1,GDPa1-075,QVQLVQSGAEVKKPGSSVKVSCKASGYTFTSYWLHWVRQAPGQGLEWIGYINPRNDYTEYNQNFKDKATITADESTNTAYMELSSLRSEDTAFYFCARRDITTFYWGQGTTVTVSS,DIQLTQSPSSLSASVGDRVTMSCKSSQSVLYSANHKNYLAWYQQKPGKAPKLLIYWASTRESGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCHQYLSSWTFGGGTKLEIK,2.686094488830766,80.80859068123671,249.477550123806,0.1710401,5.596985231773237 +eptinezumab,0,GDPa1-076,EVQLVESGGGLVQPGGSLRLSCAVSGIDLSGYYMNWVRQAPGKGLEWVGVIGINGATYYASWAKGRFTISRDNSKTTVYLQMNSLRAEDTAVYFCARGDIWGQGTLVTVSS,QVLTQSPSSLSASVGDRVTINCQASQSVYHNTYLAWYQQKPGKVPKQLIYDASTLASGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCLGSYDCTNGDCFVFGGGTKVEIK,3.117372336852999,81.78421999348947,221.27912273333945,0.1750053,7.321373944143737 +erenumab,3,GDPa1-077,QVQLVESGGGVVQPGRSLRLSCAASGFTFSSFGMHWVRQAPGKGLEWVAVISFDGSIKYSVDSVKGRFTISRDNSKNTLFLQMNSLRAEDTAVYYCARDRLNYYDSSGYYHYKYYGMAVWGQGTTVTVSS,QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSTTLGITGLQTGDEADYYCGTWDSRLSAVVFGGGTKLTVL,3.3918391693331493,81.53694576090867,256.8182425853975,0.3272726,12.279730564493128 +etaracizumab,2,GDPa1-078,QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYDMSWVRQAPGKGLEWVAKVSSGGGSTYYLDTVQGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHLHGSFASWGQGTTVTVSS,EIVLTQSPATLSLSPGERATLSCQASQSISNFLHWYQQRPGQAPRLLIRYRSQSISGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQSGSWPLTFGGGTKVEIK,2.64418198449833,81.73507964768743,245.56493302572963,0.21897607,5.021288183700446 +etrolizumab,0,GDPa1-079,EVQLVESGGGLVQPGGSLRLSCAASGFFITNNYWGWVRQAPGKGLEWVGYISYSGSTSYNPSLKSRFTISRDTSKNTFYLQMNSLRAEDTAVYYCARTGSSGYFDFWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASESVDDLLHWYQQKPGKAPKLLIKYASQSISGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGNSLPNTFGQGTKVEIK,2.7061038450826893,81.78423328640552,232.33344940263387,0.06918688,3.5454531219683325 +evinacumab,1,GDPa1-080,EVQLVESGGGVIQPGGSLRLSCAASGFTFDDYAMNWVRQGPGKGLEWVSAISGDGGSTYYADSVKGRFTISRDNSKNSLYLQMNSLRAEDTAFFYCAKDLRNTIFGVVIPDAFDIWGQGTMVTVSS,DIQMTQSPSTLSASVGDRVTITCRASQSIRSWLAWYQQKPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSYTFGQGTKLEIK,2.8350807021062665,82.10772483226474,211.5155464644135,0.052237857,1.6784553364350814 +evolocumab,3,GDPa1-081,EVQLVQSGAEVKKPGASVKVSCKASGYTLTSYGISWVRQAPGQGLEWMGWVSFYNGNTNYAQKLQGRGTMTTDPSTSTAYMELRSLRSDDTAVYYCARGYGMDVWGQGTTVTVSS,ESALTQPASVSGSPGQSITISCTGTSSDVGGYNSVSWYQQHPGKAPKLMIYEVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCNSYTSTSMVFGGGTKLTVL,3.019482821874947,81.5326660272803,243.350945294992,0.04431866,9.915213355266449 +farletuzumab,1,GDPa1-082,EVQLVESGGGVVQPGRSLRLSCSASGFTFSGYGLSWVRQAPGKGLEWVAMISSGGSYTYYADSVKGRFAISRDNAKNTLFLQMDSLRPEDTGVYFCARHGDDPAWFAYWGQGTPVTVSS,DIQLTQSPSSLSASVGDRVTITCSVSSSISSNNLHWYQQKPGKAPKPWIYGTSNLASGVPSRFSGSGSGTDYTFTISSLQPEDIATYYCQQWSSYPYMYTFGQGTKVEIK,2.9956641217250155,81.70604808259444,207.82551490414244,0.052316155,5.009740497525091 +fasinumab,0,GDPa1-083,QVQLVQSGAEVKKPGASVKVSCKVSGFTLTELSIHWVRQAPGKGLEWMGGFDPEDGETIYAQKFQGRVTMTEDTSTDTAYMELTSLRSEDTAVYYCSTIFGVVTNFDNWGQGTLVTVSS,DIQMTQSPSSLSASAGDRVTITCRASQAIRNDLGWYQQKPGKAPKRLIYAAFNLQSGVPSRFSGSGSGTEFTLTISSLQPEDLASYYCQQYNRYPWTFGQGTKVEIK,2.984984109929181,81.78036908225617,271.8260331844772,0.3293729,4.470341078466996 +fezakinumab,4,GDPa1-084,QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQGLEWVGWINPYTGSAFYAQKFRGRVTMTRDTSISTAYMELSRLRSDDTAVYYCAREPEKFDSDDSDVWGRGTLVTVSS,QAVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYGVHWYQQLPGTAPKLLIYGDSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDNSLSGYVFGGGTQLTVL,2.788180232196714,82.25937671512021,277.37748442992256,0.25327548,4.520677882458783 +ficlatuzumab,4,GDPa1-085,QVQLVQPGAEVKKPGTSVKLSCKASGYTFTTYWMHWVRQAPGQGLEWIGEINPTNGHTNYNQKFQGRATLTVDKSTSTAYMELSSLRSEDTAVYYCARNYVGSIFDYWGQGTLLTVSS,DIVMTQSPDSLAMSLGERVTLNCKASENVVSYVSWYQQKPGQSPKLLIYGASNRESGVPDRFSGSGSATDFTLTISSVQAEDVADYHCGQSYNYPYTFGQGTKLEIK,3.0034724150509584,82.2662217019191,189.1519822056672,0.3097086,4.713231393104404 +figitumumab,2,GDPa1-086,EVQLLESGGGLVQPGGSLRLSCTASGFTFSSYAMNWVRQAPGKGLEWVSAISGSGGTTFYADSVKGRFTISRDNSRTTLYLQMNSLRAEDTAVYYCAKDLGWSDSYYYYYGMDVWGQGTTVTVSS,DIQMTQFPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASRLHRGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPCSFGQGTKLEIK,2.831903379153406,81.15441944520244,202.4840126103546,0.12357336,17.315380492550194 +fletikumab,0,GDPa1-087,QVQLVQSGAEVKRPGASVKVSCKASGYTFTNDIIHWVRQAPGQRLEWMGWINAGYGNTQYSQNFQDRVSITRDTSASTAYMELISLRSEDTAVYYCAREPLWFGESSPHDYYGMDVWGQGTTVTVSS,AIQLTQSPSSLSASVGDRVTITCRASQGISSALAWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFNSYPLTFGGGTKVEIK,2.8914732574363966,81.78314272258493,238.93714091605224,0.16631167,3.0788157164420498 +foralumab,2,GDPa1-088,QVQLVESGGGVVQPGRSLRLSCAASGFKFSGYGMHWVRQAPGKGLEWVAVIWYDGSKKYYVDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARQMGYWHFDLWGRGTLVTVSS,EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPLTFGGGTKVEIK,2.6730617364643483,80.92089838630497,227.7106499988053,0.3046356,20.7416931925771 +fremanezumab,4,GDPa1-089,EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYWISWVRQAPGKGLEWVAEIRSESDASATHYAEAVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCLAYFDYGLAIQNYWGQGTLVTVSS,EIVLTQSPATLSLSPGERATLSCKASKRVTTYVSWYQQKPGQAPRLLIYGASNRYLGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCSQSYNYPYTFGQGTKLEIK,2.841785188744585,82.27136143828864,192.6620300538165,0.119246595,2.384348940354176 +fresolimumab,3,GDPa1-090,QVQLVQSGAEVKKPGSSVKVSCKASGYTFSSNVISWVRQAPGQGLEWMGGVIPIVDIANYAQRFKGRVTITADESTSTTYMELSSLRSEDTAVYYCASTLGLVLDAMDYWGQGTLVTVSS,ETVLTQSPGTLSLSPGERATLSCRASQSLGSSYLAWYQQKPGQAPRLLIYGASSRAPGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYADSPITFGQGTRLEIK,3.207039602019998,81.53183733521713,214.70767442813548,0.09144722,2.28800283858244 +fulranumab,2,GDPa1-091,EVQLVESGGGLVQPGGSLRLSCAASGFTLRSYSMNWVRQAPGKGLEWVSYISRSSHTIFYADSVKGRFTISRDNAKNSLYLQMDSLRDEDTAMYYCARVYSSGWHVSDYFDYWGQGILVTVSS,AIQLTQSPSSLSASVGDRVTITCRASQGISSALAWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFNSYPLTFGGGTKVEIK,2.705157897962585,81.34500633644977,177.5287058134529,0.2058411,-0.4017890265825377 +galcanezumab,0,GDPa1-092,QVQLVQSGAEVKKPGSSVKVSCKASGYTFGNYWMQWVRQAPGQGLEWMGAIYEGTGKTVYIQKFADRVTITADKSTSTAYMELSSLRSEDTAVYYCARLSDYVSGFGYWGQGTTVTVSS,DIQMTQSPSSLSASVGDRVTITCRASKDISKYLNWYQQKPGKAPKLLIYYTSGYHSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGDALPPTFGGGTKVEIK,2.837227001043577,81.78432842662893,273.4053224949186,0.2613831,3.9015143022468286 +galiximab,4,GDPa1-093,QVQLQESGPGLVKPSETLSLTCAVSGGSISGGYGWGWIRQPPGKGLEWIGSFYSSSGNTYYNPSLKSQVTISTDTSKNQFSLKLNSMTAADTAVYYCVRDRLFSVVGMVYNNWFDVWGPGVLVTVSS,ESALTQPPSVSGAPGQKVTISCTGSTSNIGGYDLHWYQQLPGTAPKLLIYDINKRPSGISDRFSGSKSGTAASLAITGLQTEDEADYYCQSYDSSLNAQVFGGGTRLTVL,3.2332322366233424,82.27180491984367,233.95569636568416,0.3619146,7.175377130138685 +ganitumab,3,GDPa1-094,QVQLQESGPGLVKPSGTLSLTCAVSGGSISSSNWWSWVRQPPGKGLEWIGEIYHSGSTNYNPSLKSRVTISVDKSKNQFSLKLSSVTAADTAVYYCARWTGRTDAFDIWGQGTMVTVSS,DVVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPLTFGQGTKVEIK,2.8392678516903507,81.5342519237061,227.69256106134935,0.16117498,7.168220354959731 +gantenerumab,2,GDPa1-095,QVELVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAINASGTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGKGNTHKPYGYVRYFDVWGQGTLVTVSS,DIVLTQSPATLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGVPARFSGSGSGTDFTLTISSLEPEDFATYYCLQIYNMPITFGQGTKVEIK,2.4095343183975286,81.4594094108768,286.7416833315114,0.30195937,19.623577707235864 +gatipotuzumab,1,GDPa1-096,EVQLVESGGGLVQPGGSMRLSCVASGFPFSNYWMNWVRQAPGKGLEWVGEIRLKSNNYTTHYAESVKGRFTISRDDSKNSLYLQMNSLKTEDTAVYYCTRHYYFDYWGQGTLVTVSS,DIVMTQSPLSNPVTPGEPASISCRSSKSLLHSNGITYFFWYLQKPGQSPQLLIYQMSNLASGVPDRFSGSGSGTDFTLRISRVEAEDVGVYYCAQNLELPPTFGQGTKVEIK,2.7187338656647984,80.049760915875,201.82525235626144,0.11167316,6.862492680442158 +gemtuzumab,0,GDPa1-097,EVQLVQSGAEVKKPGSSVKVSCKASGYTITDSNIHWVRQAPGQSLEWIGYIYPYNGGTDYNQKFKNRATLTVDNPTNTAYMELSSLRSEDTAFYYCVNGNPWLAYWGQGTLVTVSS,DIQLTQSPSTLSASVGDRVTITCRASESLDNYGIRFLTWFQQKPGKAPKLLMYAASNQGSGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQTKEVPWSFGQGTKVEVK,2.8215102545908675,81.78421814170049,200.7615708714318,0.031243477,2.889217823032008 +gevokizumab,1,GDPa1-098,QVQLQESGPGLVKPSQTLSLTCSFSGFSLSTSGMGVGWIRQPSGKGLEWLAHIWWDGDESYNPSLKSRLTISKDTSKNQVSLKITSVTAADTAVYFCARNRYDPPWFVDWGQGTLVTVSS,DIQMTQSTSSLSASVGDRVTITCRASQDISNYLSWYQQKPGKAVKLLIYYTSKLHSGVPSRFSGSGSGTDYTLTISSLQQEDFATYFCLQGKMLPWTFGQGTKLEIK,2.7844319858542077,82.45177437427907,262.44564997998543,0.20570377,7.54658884794139 +gimsilumab,2,GDPa1-099,EVQLVESGGGLVQPGGSLRLSCAASGFTFSRHWMHWLRQVPGKGPVWVSRINGAGTSITYADSVRGRFTISRDNANNTLFLQMNSLRADDTALYFCARANSVWFRGLFDYWGQGTPVTVSS,EIVLTQSPVTLSVSPGERVTLSCRASQSVSTNLAWYQQKLGQGPRLLIYGASTRATDIPARFSGSGSETEFTLTISSLQSEDFAVYYCQQYDKWPDTFGQGTKLEIK,2.886594991775596,81.69053477613987,220.7921502300184,0.07738079,15.217577142958998 +girentuximab,3,GDPa1-100,DVKLVESGGGLVKLGGSLKLSCAASGFTFSNYYMSWVRQTPEKRLELVAAINSDGGITYYLDTVKGRFTISRDNAKNTLYLQMSSLKSEDTALFYCARHRSGYFSMDYWGQGTSVTVSS,DIVMTQSQRFMSTTVGDRVSITCKASQNVVSAVAWYQQKPGQSPKLLIYSASNRYTGVPDRFTGSGSGTDFTLTISNMQSEDLADFFCQQYSNYPWTFGGGTKLEIK,2.7203581871847797,81.5377043899906,245.015294219956,0.025316989,9.222237603234854 +glembatumumab,1,GDPa1-101,QVQLQESGPGLVKPSQTLSLTCTVSGGSISSFNYYWSWIRHHPGKGLEWIGYIYYSGSTYSNPSLKSRVTISVDTSKNQFSLTLSSVTAADTAVYYCARGYNWNYFDYWGQGTLVTVSS,EIVMTQSPATLSVSPGERATLSCRASQSVDNNLVWYQQKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWPPWTFGQGTKVEIK,3.126774921184229,81.11799713361147,260.43085532359646,0.34093666,2.287623402882784 +golimumab,2,GDPa1-102,QVQLVESGGGVVQPGRSLRLSCAASGFIFSSYAMHWVRQAPGNGLEWVAFMSYDGSNKKYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDRGIAAGGNYYYYGMDVWGQGTTVTVSS,EIVLTQSPATLSLSPGERATLSCRASQSVYSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPFTFGPGTKVDIK,2.7837068592636216,81.56991575176052,228.2013202523969,0.26387048,5.1252479565370095 +guselkumab,4,GDPa1-103,EVQLVQSGAEVKKPGESLKISCKGSGYSFSNYWIGWVRQMPGKGLEWMGIIDPSNSYTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARWYYKPFDVWGQGTLVTVSS,QSVLTQPPSVSGAPGQRVTISCTGSSSNIGSGYDVHWYQQLPGTAPKLLIYGNSKRPSGVPDRFSGSKSGTSASLAITGLQSEDEADYYCASWTDGLSLVVFGGGTKLTVL,3.05772790163758,82.2685881698043,251.07586443799644,0.39674866,7.696585338712953 +ianalumab,3,GDPa1-104,QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWGWIRQSPGRGLEWLGRIYYRSKWYNSYAVSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARYQWVPKIGVFDSWGQGTLVTVSS,DIVLTQSPATLSLSPGERATLSCRASQFILPEYLSWYQQKPGQAPRLLIYGSSSRATGVPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQFYSSPLTFGQGTKVEIK,3.0634376408819617,81.53725009953588,267.81783291344703,0.3084954,12.384037912847196 +ibalizumab,4,GDPa1-105,QVQLQQSGPEVVKPGASVKMSCKASGYTFTSYVIHWVRQKPGQGLDWIGYINPYNDGTDYDEKFKGKATLTSDTSTSTAYMELSSLRSEDTAVYYCAREKDNYATGAWFAYWGQGTLVTVSS,DIVMTQSPDSLAVSLGERVTMNCKSSQSLLYSTNQKNYLAWYQQKPGQSPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSVQAEDVAVYYCQQYYSYRTFGGGTKLEIK,2.854862169490024,82.270764654942,199.23676251590152,0.10894598,1.8432759755564 +icrucumab,2,GDPa1-106,QAQVVESGGGVVQSGRSLRLSCAASGFAFSSYGMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVRGRFTISRDNSENTLYLQMNSLRAEDTAVYYCARDHYGSGVHHYFYYGLDVWGQGTTVTVSS,EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTFGGGTKVEIK,2.748230523819436,81.41297137422698,192.60702471764031,0.0033085071,2.9945422783048823 +imgatuzumab,1,GDPa1-107,QVQLVQSGAEVKKPGSSVKVSCKASGFTFTDYKIHWVRQAPGQGLEWMGYFNPNSGYSTYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCARLSPGGYYVMDAWGQGTTVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQGINNYLNWYQQKPGKAPKRLIYNTNNLQTGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSFPTFGQGTKLEIK,2.465293517382101,82.64912326746895,232.12021872201396,0.17746483,9.475632720316217 +inclacumab,3,GDPa1-108,EVQLVESGGGLVRPGGSLRLSCAASGFTFSNYDMHWVRQATGKGLEWVSAITAAGDIYYPGSVKGRFTISRENAKNSLYLQMNSLRAGDTAVYYCARGRYSGSGSYYNDWFDPWGQGTLVTVSS,EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPLTFGGGTKVEIK,2.8251266979708567,81.53871864591339,270.5223245164952,0.2458313,9.202369659440706 +inebilizumab,3,GDPa1-109,EVQLVESGGGLVQPGGSLRLSCAASGFTFSSSWMNWVRQAPGKGLEWVGRIYPGDGDTNYNVKFKGRFTISRDDSKNSLYLQMNSLKTEDTAVYYCARSGFITTVRDFDYWGQGTLVTVSS,EIVLTQSPDFQSVTPKEKVTITCRASESVDTFGISFMNWFQQKPDQSPKLLIHEASNQGSGVPSRFSGSGSGTDFTLTINSLEAEDAATYYCQQSKEVPFTFGGGTKVEIK,2.6526319021130207,81.5370532164615,218.67611324889324,0.12535694,1.6007536307042425 +infliximab,1,GDPa1-110,EVKLEESGGGLVQPGGSMKLSCVASGFIFSNHWMNWVRQSPEKGLEWVAEIRSKSINSATHYAESVKGRFTISRDDSKSAVYLQMTDLRTEDTGVYYCSRNYYGSTYDYWGQGTTLTVSS,DILLTQSPAILSVSPGERVSFSCRASQFVGSSIHWYQQRTNGSPRLLIKYASESMSGIPSRFSGSGSGTDFTLSINTVESEDIADYYCQQSHSWPFTFGSGTNLEVK,2.827340131988888,81.93056852691396,206.87687985859864,0.0041682287,4.454885905199449 +inotuzumab,0,GDPa1-111,EVQLVQSGAEVKKPGASVKVSCKASGYRFTNYWIHWVRQAPGQGLEWIGGINPGNNYATYRRKFQGRVTMTADTSTSTVYMELSSLRSEDTAVYYCTREGYGNYGAWFAYWGQGTLVTVSS,DVQVTQSPSSLSASVGDRVTITCRSSQSLANSYGNTFLSWYLHKPGKAPQLLIYGISNRFSGVPDRFSGSGSGTDFTLTISSLQPEDFATYYCLQGTHQPYTFGQGTKVEIK,2.879795166355342,81.78403532694507,274.9863635957249,0.25480756,12.080399518885828 +intetumumab,2,GDPa1-112,QVQLVESGGGVVQPGRSRRLSCAASGFTFSRYTMHWVRQAPGKGLEWVAVISFDGSNKYYVDSVKGRFTISRDNSENTLYLQVNILRAEDTAVYYCAREARGSYAFDIWGQGTMVTVSS,EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPFTFGPGTKVDIK,2.5777085211961204,81.75275261669164,210.8457231239152,0.28899693,11.24277414508687 +ipilimumab,2,GDPa1-113,QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYTMHWVRQAPGKGLEWVTFISYDGNNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAIYYCARTGWLGPFDYWGQGTLVTVSS,EIVLTQSPGTLSLSPGERATLSCRASQSVGSSYLAWYQQKPGQAPRLLIYGAFSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPWTFGQGTKVEIK,2.883535446006202,81.0942396865917,253.042881829939,0.19674577,7.381407749788322 +isatuximab,2,GDPa1-114,QVQLVQSGAEVAKPGTSVKLSCKASGYTFTDYWMQWVKQRPGQGLEWIGTIYPGDGDTGYAQKFQGKATLTADKSSKTVYMHLSSLASEDSAVYYCARGDYYGSNSLDYWGQGTSVTVSS,DIVMTQSHLSMSTSLGDPVSITCKASQDVSTVVAWYQQKPGQSPRRLIYSASYRYIGVPDRFTGSGAGTDFTFTISSVQAEDLAVYYCQQHYSPPYTFGGGTKLEIK,3.1178114785410505,80.73334420862768,246.7077290077184,0.05116485,2.4263227526097983 +iscalimab,1,GDPa1-115,QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYEESNRYHADSVKGRFTISRDNSKITLYLQMNSLRTEDTAVYYCARDGGIAAPGPDYWGQGTLVTVSS,DIVMTQSPLSLTVTPGEPASISCRSSQSLLYSNGYNYLDWYLQKPGQSPQVLISLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQARQTPFTFGPGTKVDIR,2.690449094880217,82.55425420757723,165.7130211526493,0.10333773,0.7268422084343659 +itolizumab,3,GDPa1-116,EVQLVESGGGLVKPGGSLKLSCAASGFKFSRYAMSWVRQAPGKRLEWVATISSGGSYIYYPDSVKGRFTISRDNVKNTLYLQMSSLRSEDTAMYYCARRDYDLDYFDSWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCKASRDIRSYLTWYQQKPGKAPKTLIYYATSLADGVPSRFSGSGSGQDYSLTISSLESDDTATYYCLQHGESPFTLGSGTKLEIK,2.4516166542156395,81.53912129663769,258.4541180921595,0.14615154,2.551403342865465 +ixekizumab,4,GDPa1-117,QVQLVQSGAEVKKPGSSVKVSCKASGYSFTDYHIHWVRQAPGQGLEWMGVINPMYGTTDYNQRFKGRVTITADESTSTAYMELSSLRSEDTAVYYCARYDYFTGTGVYWGQGTLVTVSS,DIVMTQTPLSLSVTPGQPASISCRSSRSLVHSRGNTYLHWYLQKPGQSPQLLIYKVSNRFIGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCSQSTHLPFTFGQGTKLEIK,2.92651000000911,82.27259827325145,203.93683331309276,0.26944864,6.1502573717349085 +ladiratuzumab,4,GDPa1-118,QVQLVQSGAEVKKPGASVKVSCKASGLTIEDYYMHWVRQAPGQGLEWMGWIDPENGDTEYGPKFQGRVTMTRDTSINTAYMELSRLRSDDTAVYYCAVHNAHYGTWFAYWGQGTLVTVSS,DVVMTQSPLSLPVTLGQPASISCRSSQSLLHSSGNTYLEWYQQRPGQSPRPLIYKISTRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGGGTKVEIK,2.5859876169217797,82.26760520478496,200.0188865305313,0.039746977,1.2905525603722694 +lampalizumab,1,GDPa1-119,EVQLVQSGPELKKPGASVKVSCKASGYTFTNYGMNWVRQAPGQGLEWMGWINTYTGETTYADDFKGRFVFSLDTSVSTAYLQISSLKAEDTAVYYCEREGGVNNWGQGTLVTVSS,DIQVTQSPSSLSASVGDRVTITCITSTDIDDDMNWYQQKPGKVPKLLISGGNTLRPGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCLQSDSLPYTFGQGTKVEIK,2.5809471200511336,82.7235952123836,300.5513415783405,0.122207575,-0.9989749886505452 +lanadelumab,0,GDPa1-120,EVQLLESGGGLVQPGGSLRLSCAASGFTFSHYIMMWVRQAPGKGLEWVSGIYSSGGITVYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAYRRIGVPRRDEFDIWGQGTMVTVSS,DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASTLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNTYWTFGQGTKVEIK,3.0249166771946547,81.78185922965275,240.88577916262716,0.23108181,11.46056077097066 +landogrozumab,2,GDPa1-121,EVQLVESGGGLVQPGGSLRLSCAASGLTFSRYPMSWVRQAPGKGLVWVSAITSSGGSTYYSDTVKGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCARLPDYWGQGTLVTVSS,EIVLTQSPGTLSLSPGERATLSCRASSSVSSSYLHWYQQKPGQAPRLLIYSTSNLVAGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQHHSGYHFTFGGGTKVEIK,2.653065788218677,81.8756753726585,295.1260104681576,0.0599147,0.9889191735550524 +lebrikizumab,2,GDPa1-122,QVTLRESGPALVKPTQTLTLTCTVSGFSLSAYSVNWIRQPPGKALEWLAMIWGDGKIVYNSALKSRLTISKDTSKNQVVLTMTNMDPVDTATYYCAGDGYYPYAMDNWGQGSLVTVSS,DIVMTQSPDSLSVSLGERATINCRASKSVDSYGNSFMHWYQQKPGQPPKLLIYLASNLESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQNNEDPRTFGGGTKVEIK,3.0626072677422997,81.92478903086821,211.3122243030201,0.13006996,0.8449446644587457 +lenzilumab,3,GDPa1-123,QVQLVQSGAEVKKPGASVKVSCKASGYSFTNYYIHWVRQAPGQRLEWMGWINAGNGNTKYSQKFQGRVTITRDTSASTAYMELSSLRSEDTAVYYCVRRQRFPYYFDYWGQGTLVTVSS,EIVLTQSPATLSVSPGERATLSCRASQSVGTNVAWYQQKPGQAPRVLIYSTSSRATGITDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQFNKSPLTFGGGTKVEIK,2.384702232236844,81.53929557061726,263.2115667816865,0.26026434,14.188265445632975 +lexatumumab,4,GDPa1-124,EVQLVQSGGGVERPGGSLRLSCAASGFTFDDYGMSWVRQAPGKGLEWVSGINWNGGSTGYADSVKGRVTISRDNAKNSLYLQMNSLRAEDTAVYYCAKILGAGRGWYFDLWGKGTTVTVSS,SSELTQDPAVSVALGQTVRITCQGDSLRSYYASWYQQKPGQAPVLVIYGKNNRPSGIPDRFSGSSSGNTASLTITGAQAEDEADYYCNSRDSSGNHVVFGGGTKLTVL,2.712664937370876,82.2347184376213,282.1247798654842,0.13656788,8.02158649151559 +ligelizumab,3,GDPa1-125,QVQLVQSGAEVMKPGSSVKVSCKASGYTFSWYWLEWVRQAPGHGLEWMGEIDPGTFTTNYNEKFKARVTFTADTSTSTAYMELSSLRSEDTAVYYCARFSHFSGSNYDYFDYWGQGTLVTVSS,EIVMTQSPATLSVSPGERATLSCRASQSIGTNIHWYQQKPGQAPRLLIYYASESISGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQSWSWPTTFGGGTKVEIK,3.419935715609776,81.53316991765764,191.25457800561503,0.15261085,5.417420140943111 +lintuzumab,1,GDPa1-126,QVQLVQSGAEVKKPGSSVKVSCKASGYTFTDYNMHWVRQAPGQGLEWIGYIYPYNGGTGYNQKFKSKATITADESTNTAYMELSSLRSEDTAVYYCARGRPAMDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASESVDNYGISFMNWFQQKPGKAPKLLIYAASNQGSGVPSRFSGSGSGTDFTLTISSLQPDDFATYYCQQSKEVPWTFGQGTKVEIK,2.670008444620006,81.60629568314155,250.9280434204291,0.17284644,2.421481789449342 +lirilumab,3,GDPa1-127,QVQLVQSGAEVKKPGSSVKVSCKASGGTFSFYAISWVRQAPGQGLEWMGGFIPIFGAANYAQKFQGRVTITADESTSTAYMELSSLRSDDTAVYYCARIPSGSYYYDYDMDVWGQGTTVTVSS,EIVLTQSPVTLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWMYTFGQGTKLEIK,3.110639704705286,81.53866763453364,189.45298606684744,0.13525872,7.272649068184173 +loncastuximab,2,GDPa1-128,QVQLVQPGAEVVKPGASVKLSCKTSGYTFTSNWMHWVKQAPGQGLEWIGEIDPSDSYTNYNQNFQGKAKLTVDKSTSTAYMEVSSLRSDDTAVYYCARGSNPYYYAMDYWGQGTSVTVSS,EIVLTQSPAIMSASPGERVTMTCSASSGVNYMHWYQQKPGTSPRRWIYDTSKLASGVPARFSGSGSGTSYSLTISSMEPEDAATYYCHQRGSYTFGGGTKLEIK,2.898453055761393,81.32077993707111,249.5507675019668,0.111098036,3.522462150513475 +lorvotuzumab,1,GDPa1-129,QVQLVESGGGVVQPGRSLRLSCAASGFTFSSFGMHWVRQAPGKGLEWVAYISSGSFTIYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARMRKGYAMDYWGQGTLVTVSS,DVVMTQSPLSLPVTLGQPASISCRSSQIIIHSDGNTYLEWFQQRPGQSPRRLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPHTFGQGTKVEIK,2.5604942772562924,82.29631515022524,243.29257846977987,0.27315488,15.205099229019837 +lucatumumab,1,GDPa1-130,QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYEESNRYHADSVKGRFTISRDNSKITLYLQMNSLRTEDTAVYYCARDGGIAAPGPDYWGQGTLVTVSS,DIVMTQSPLSLTVTPGEPASISCRSSQSLLYSNGYNYLDWYLQKPGQSPQVLISLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQARQTPFTFGPGTKVDIR,2.7135463924791474,82.66076273452607,169.98765696998387,0.09753113,0.971418183778115 +lumiliximab,0,GDPa1-131,EVQLVESGGGLAKPGGSLRLSCAASGFRFTFNNYYMDWVRQAPGQGLEWVSRISSSGDPTWYADSVKGRFTISRENANNTLFLQMNSLRAEDTAVYYCASLTTGSDSWGQGVLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQDIRYYLNWYQQKPGKAPKLLIYVASSLQSGVPSRFSGSGSGTEFTLTVSSLQPEDFATYYCLQVYSTPRTFGQGTKVEIK,2.618132606037246,81.78412660965235,229.1275865534486,0.06974609,5.315023227444796 +lumretuzumab,4,GDPa1-132,QVQLVQSGAEVKKPGASVKVSCKASGYTFRSSYISWVRQAPGQGLEWMGWIYAGTGSPSYNQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARHRDYYSNSLTYWGQGTLVTVSS,DIVMTQSPDSLAVSLGERATINCKSSQSVLNSGNQKNYLTWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQSDYSYPYTFGQGTKLEIK,2.73682838488612,82.26835792689934,364.6057474809684,0.30270848,5.974529708250509 +margetuximab,2,GDPa1-133,QVQLQQSGPELVKPGASLKLSCTASGFNIKDTYIHWVKQRPEQGLEWIGRIYPTNGYTRYDPKFQDKATITADTSSNTAYLQVSRLTSEDTAVYYCSRWGGDGFYAMDYWGQGASVTVSS,DIVMTQSHKFMSTSVGDRVSITCKASQDVNTAVAWYQQKPGHSPKLLIYSASFRYTGVPDRFTGSRSGTDFTFTISSVQAEDLAVYYCQQHYTTPPTFGGGTKVEIK,2.805901473474723,80.97934564072911,214.76863994926111,0.18764709,5.564716259166565 +matuzumab,1,GDPa1-134,QVQLVQSGAEVKKPGASVKVSCKASGYTFTSHWMHWVRQAPGQGLEWIGEFNPSNGRTNYNEKFKSKATMTVDTSTNTAYMELSSLRSEDTAVYYCASRDYDYDGRYFDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCSASSSVTYMYWYQQKPGKAPKLLIYDTSNLASGVPSRFSGSGSGTDYTFTISSLQPEDIATYYCQQWSSHIFTFGQGTKVEIK,2.723154091208762,82.25847779799287,220.0410051002961,0.17835756,4.404291386655595 +mavrilimumab,2,GDPa1-135,QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSIHWVRQAPGKGLEWMGGFDPEENEIVYAQRFQGRVTMTEDTSTDTAYMELSSLRSEDTAVYYCAIVGSFSPLTLGLWGQGTMVTVSS,QSVLTQPPSVSGAPGQRVTISCTGSGSNIGAPYDVSWYQQLPGTAPKLLIYHNNKRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCATVEAGLSGSVFGGGTKLTVL,2.8473433491271805,81.88636286052052,270.1763162443132,0.109037824,-3.74781093365368 +mepolizumab,3,GDPa1-136,QVTLRESGPALVKPTQTLTLTCTVSGFSLTSYSVHWVRQPPGKGLEWLGVIWASGGTDYNSALMSRLSISKDTSRNQVVLTMTNMDPVDTATYYCARDPPSSLLRLDYWGRGTPVTVSS,DIVMTQSPDSLAVSLGERATINCKSSQSLLNSGNQKNYLAWYQQKPGQPPKLLIYGASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQNVHSFPFTFGGGTKLEIK,2.757198935147097,81.53800719930592,202.2167963179133,0.14374755,5.057510691923034 +milatuzumab,4,GDPa1-137,QVQLQQSGSELKKPGASVKVSCKASGYTFTNYGVNWIKQAPGQGLQWMGWINPNTGEPTFDDDFKGRFAFSLDTSVSTAYLQISSLKADDTAVYFCSRSRGKNEAWFAYWGQGTLVTVSS,DIQLTQSPLSLPVTLGQPASISCRSSQSLVHRNGNTYLHWFQQRPGQSPRLLIYTVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYFCSQSSHVPPTFGAGTRLEIK,2.5097624034755173,82.26364229239992,241.0996071574508,0.2588936,11.531738765329832 +mirikizumab,0,GDPa1-138,QVQLVQSGAEVKKPGSSVKVSCKASGYKFTRYVMHWVRQAPGQGLEWMGYINPYNDGTNYNEKFKGRVTITADKSTSTAYMELSSLRSEDTAVYYCARNWDTGLWGQGTTVTVSS,DIQMTQSPSSLSASVGDRVTITCKASDHILKFLTWYQQKPGKAPKLLIYGATSLETGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQMYWSTPFTFGGGTKVEIK,2.593078097303193,81.78434572580603,248.6380234254514,0.39542207,8.660047571412637 +mirvetuximab,4,GDPa1-139,QVQLVQSGAEVVKPGASVKISCKASGYTFTGYFMNWVKQSPGQSLEWIGRIHPYDGDTFYNQKFQGKATLTVDKSSNTAHMELLSLTSEDFAVYYCTRYDGSRAMDYWGQGTTVTVSS,DIVLTQSPLSLAVSLGQPAIISCKASQSVSFAGTSLMHWYHQKPGQQPRLLIYRASNLEAGVPDRFSGSGSKTDFTLTISPVEAEDAATYYCQQSREYPYTFGGGTKLEIK,2.766463901832912,82.26697883164536,189.8642165440108,0.20497988,1.952138813328269 +mitazalimab,4,GDPa1-140,EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYGMHWVRQAPGKGLEWLSYISGGSSYIFYADSVRGRFTISRDNSENALYLQMNSLRAEDTAVYYCARILRGGSGMDLWGQGTLVTVSS,QSVLTQPPSASGTPGQRVTISCTGSSSNIGAGYNVYWYQQLPGTAPKLLIYGNINRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAAWDKSISGLVFGGGTKLTVL,2.745121519985769,82.27049070185312,250.9916643553725,0.11194,5.688115284875045 +mogamulizumab,1,GDPa1-141,EVQLVESGGDLVQPGRSLRLSCAASGFIFSNYGMSWVRQAPGKGLEWVATISSASTYSYYPDSVKGRFTISRDNAKNSLYLQMNSLRVEDTALYYCGRHSDGNFAFGYWGQGTLVTVSS,DVLMTQSPLSLPVTPGEPASISCRSSRNIVHINGDTYLEWYLQKPGQSPQLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSLLPWTFGQGTKVEIK,2.947202127398963,81.80217375175013,182.06744168868323,0.15046974,8.14695734542367 +monalizumab,0,GDPa1-142,QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYWMNWVRQAPGQGLEWMGRIDPYDSETHYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARGGYDFDVGTLYWFFDVWGQGTTVTVSS,DIQMTQSPSSLSASVGDRVTITCRASENIYSYLAWYQQKPGKAPKLLIYNAKTLAEGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQHHYGTPRTFGGGTKVEIK,3.0630294057539844,81.7823762052465,239.35281353496325,0.18054709,3.058317312094197 +mosunetuzumab,4,GDPa1-143,EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYIHWVRQAPGQGLEWIGWIYPGDGNTKYNEKFKGRATLTADTSTSTAYLELSSLRSEDTAVYYCARDSYSNYYFDYWGQGTLVTVSS,DIVMTQSPDSLAVSLGERATINCKSSQSLLNSRTRKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCTQSFILRTFGQGTKVEIK,2.6890806926596325,82.26869532896588,237.3523926093718,0.062020615,2.065465625019714 +motavizumab,3,GDPa1-144,QVTLRESGPALVKPTQTLTLTCTFSGFSLSTAGMSVGWIRQPPGKALEWLADIWWDDKKHYNPSLKDRLTISKDTSKNQVVLKVTNMDPADTATYYCARDMIFNFYFDVWGQGTTVTVSS,DIQMTQSPSTLSASVGDRVTITCSASSRVGYMHWYQQKPGKAPKLLIYDTSKLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCFQGSGYPFTFGGGTKVEIK,2.8611016732128074,81.5376564689142,264.2983410411456,0.27400923,3.7111426747992695 +muromonab,4,GDPa1-145,QVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSS,QIVLTQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDTSKLASGVPAHFRGSGSGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLEIK,2.4692141995401258,82.26561551088125,266.5237730826409,0.30956805,13.214281646219964 +natalizumab,0,GDPa1-146,QVQLVQSGAEVKKPGASVKVSCKASGFNIKDTYIHWVRQAPGQRLEWMGRIDPANGYTKYDPKFQGRVTITADTSASTAYMELSSLRSEDTAVYYCAREGYYGNYGVYAMDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCKTSQDINKYMAWYQQTPGKAPRLLIHYTSALQPGIPSRFSGSGSGRDYTFTISSLQPEDIATYYCLQYDNLWTFGQGTKVEIK,2.662864004391019,81.78274234385644,232.219046606328,0.34123147,5.330882276319237 +necitumumab,3,GDPa1-147,QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGDYYWSWIRQPPGKGLEWIGYIYYSGSTDYNPSLKSRVTMSVDTSKNQFSLKVNSVTAADTAVYYCARVSIFGVGTFDYWGQGTLVTVSS,EIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCHQYGSTPLTFGGGTKAEIK,2.866620666265076,81.53881158896229,200.7618145834216,0.21835303,5.215957132487612 +nesvacumab,2,GDPa1-148,EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYDIHWVRQATGKGLEWVSAIGPAGDTYYPGSVKGRFTISRENAKNSLYLQMNSLRAGDTAVYYCARGLITFGGLIAPFDYWGQGTLVTVSS,EIVLTQSPGTLSLSPGERATLSCRASQSVSSTYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQHYDNSQTFGQGTKVEIK,2.9054402053969155,80.77470011146745,237.49135303907784,0.03151497,1.2630610046010906 +nimotuzumab,1,GDPa1-149,QVQLQQSGAEVKKPGSSVKVSCKASGYTFTNYYIYWVRQAPGQGLEWIGGINPTSGGSNFNEKFKTRVTITADESSTTAYMELSSLRSEDTAFYFCTRQGLWFDSDGRGFDFWGQGTTVTVSS,DIQMTQSPSSLSASVGDRVTITCRSSQNIVHSNGNTYLDWYQQTPGKAPKLLIYKVSNRFSGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCFQYSHVPWTFGQGTKLQIT,2.937570461133929,80.75743423677108,193.08090761722087,0.15580298,1.5091706820428452 +nivolumab,3,GDPa1-150,QVQLVESGGGVVQPGRSLRLDCKASGITFSNSGMHWVRQAPGKGLEWVAVIWYDGSKRYYADSVKGRFTISRDNSKNTLFLQMNSLRAEDTAVYYCATNDDYWGQGTLVTVSS,EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQSSNWPRTFGQGTKVEIK,2.4191937358789497,81.53739365591672,293.4074193105193,0.15006085,3.2592268275572467 +obexelimab,4,GDPa1-151,EVQLVESGGGLVKPGGSLKLSCAASGYTFTSYVMHWVRQAPGKGLEWIGYINPYNDGTKYNEKFQGRVTISSDKSISTAYMELSSLRSEDTAMYYCARGTYYYGTRVFDYWGQGTLVTVSS,DIVMTQSPATLSLSPGERATLSCRSSKSLQNVNGNTYLYWFQQKPGQSPQLLIYRMSNLNSGVPDRFSGSGSGTEFTLTISSLEPEDFAVYYCMQHLEYPITFGAGTKLEIK,2.8576466438271058,82.27007663192435,212.5111069916284,0.107156835,1.0797998668353583 +obiltoxaximab,1,GDPa1-152,QVQLQQSGPELKKPGASVKVSCKDSGYAFSSSWMNWVRQAPGQGLEWIGRIYPGDGDTNYNGKFQGRVTITADKSSSTAYMELSSLRSEDTAVYFCARSGLLRYAMDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQDIRNYLNWYQQKPGKAVKLLIYYTSRLLPGVPSRFSGSGSGTDYSLTISSQEQEDIGTYFCQQGNTLPWTFGQGTKVEIR,2.758100867157919,79.75664922004532,222.7173217581669,0.3691947,6.210105662787477 +obinutuzumab,4,GDPa1-153,QVQLVQSGAEVKKPGSSVKVSCKASGYAFSYSWINWVRQAPGQGLEWMGRIFPGDGDTDYNGKFKGRVTITADKSTSTAYMELSSLRSEDTAVYYCARNVFDGYWLVYWGQGTLVTVSS,DIVMTQTPLSLPVTPGEPASISCRSSKSLLHSNGITYLYWYLQKPGQSPQLLIYQMSNLVSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCAQNLELPYTFGGGTKVEIK,3.022478774929172,82.27035225439329,197.61100375443084,0.08914979,2.638850041722038 +ocrelizumab,0,GDPa1-154,EVQLVESGGGLVQPGGSLRLSCAASGYTFTSYNMHWVRQAPGKGLEWVGAIYPGNGDTSYNQKFKGRFTISVDKSKNTLYLQMNSLRAEDTAVYYCARVVYYSNSYWYFDVWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASSSVSYMHWYQQKPGKAPKPLIYAPSNLASGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQWSFNPPTFGQGTKVEIK,3.0961218775754284,81.78439428733016,257.5685729367361,0.21502897,10.817670203220043 +ofatumumab,2,GDPa1-155,EVQLVESGGGLVQPGRSLRLSCAASGFTFNDYAMHWVRQAPGKGLEWVSTISWNSGSIGYADSVKGRFTISRDNAKKSLYLQMNSLRAEDTALYYCAKDIQYGNYYYGMDVWGQGTTVTVSS,EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPITFGQGTRLEIK,2.88442725414923,81.46286694938998,200.34103743322083,-0.00958923,5.231000100539673 +olaratumab,3,GDPa1-156,QLQLQESGPGLVKPSETLSLTCTVSGGSINSSSYYWGWLRQSPGKGLEWIGSFFYTGSTYYNPSLRSRLTISVDTSKNQFSLMLSSVTAADTAVYYCARQSTYYYGSGNYYGWFDRWDQGTLVTVSS,EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPAFGQGTKVEIK,3.225136643349737,81.53784403165965,255.74756882436932,0.20091222,6.502681653322751 +oleclumab,4,GDPa1-157,EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAYSWVRQAPGKGLEWVSAISGSGGRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLGYGRVDEWGRGTLVTVSS,QSVLTQPPSASGTPGQRVTISCSGSLSNIGRNPVNWYQQLPGTAPKLLIYLDNLRLSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCATWDDSHPGWTFGGGTKLTVL,2.658075036534528,82.26678186792924,293.0431012671964,0.14917949,8.686171080301346 +olokizumab,1,GDPa1-158,EVQLVESGGGLVQPGGSLRLSCAASGFNFNDYFMNWVRQAPGKGLEWVAQMRNKNYQYGTYYAESLEGRFTISRDDSKNSLYLQMNSLKTEDTAVYYCARESYYGFTSYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCQASQDIGISLSWYQQKPGKAPKLLIYNANNLADGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCLQHNSAPYTFGQGTKLEIK,2.8849494988316686,80.89259135318609,210.65477776298997,0.027343143,2.747906735901626 +omalizumab,0,GDPa1-159,EVQLVESGGGLVQPGGSLRLSCAVSGYSITSGYSWNWIRQAPGKGLEWVASITYDGSTNYNPSLKGRITISRDDSKNTFYLQMNSLRAEDTAVYYCARGSHYFGHWHFAVWGQGTLVTVSS,DIQLTQSPSSLSASVGDRVTITCRASQSVDYDGDSYMNWYQQKPGKAPKLLIYAASYLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSHEDPYTFGQGTKVEIK,2.798076540642905,81.78405802196538,227.48672487383536,0.08792178,1.5563435464497424 +omburtamab,2,GDPa1-160,QVQLQQSGAELVKPGASVKLSCKASGYTFTNYDINWVRQRPEQGLEWIGWIFPGDGSTQYNEKFKGKATLTTDTSSSTAYMQLSRLTSEDSAVYFCARQTTATWFAYWGQGTLVTVSA,DIVMTQSPATLSVTPGDRVSLSCRASQSISDYLHWYQQKSHESPRLLIKYASQSISGIPSRFSGSGSGSDFTLSINSVEPEDVGVYYCQNGHSFPLTFGAGTKLELK,2.7190447338833263,80.9481036839381,187.5248451293216,0.09343489,5.595053932934693 +onartuzumab,0,GDPa1-161,EVQLVESGGGLVQPGGSLRLSCAASGYTFTSYWLHWVRQAPGKGLEWVGMIDPSNSDTRFNPNFKDRFTISADTSKNTAYLQMNSLRAEDTAVYYCATYRSYVTPLDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCKSSQSLLYTSSQKNYLAWYQQKPGKAPKLLIYWASTRESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYAYPWTFGQGTKVEIK,2.96588531788133,81.78458548028672,198.08643337757547,0.1275306,5.174981983537834 +opicinumab,2,GDPa1-162,EVQLLESGGGLVQPGGSLRLSCAASGFTFSAYEMKWVRQAPGKGLEWVSVIGPSGGFTFYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATEGDNDAFDIWGQGTTVTVSS,DIQMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPMYTFGQGTKLEIK,2.723497232125172,81.33950648881914,210.6884125532289,-0.01779536,1.9660029689285736 +orticumab,3,GDPa1-163,EVQLLESGGGLVQPGGSLRLSCAASGFTFSNAWMSWVRQAPGKGLEWVSSISVGGHRTYYADSVKGRSTISRDNSKNTLYLQMNSLRAEDTAVYYCARIRVGPSGGAFDYWGQGTLVTVSS,QSVLTQPPSASGTPGQRVTISCSGSNTNIGKNYVSWYQQLPGTAPKLLIYANSNRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCASWDASLNGWVFGGGTKLTVL,2.8188742861913387,81.53883254698157,296.5756793232886,0.2719628,15.502369208228435 +osocimab,1,GDPa1-164,EVQLLESGGGLVQPGGSLRLSCAASGFTFSQYGMDWVRQAPGKGLEWVSGIGPSGGSTVYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRGGPYYYYGMDVWGQGTTVTVSS,DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQADSFPVTFGGGTKVEIK,2.863097606516253,81.90064906329047,311.1960714523695,0.1558535,3.659795933014202 +otelixizumab,1,GDPa1-165,EVQLLESGGGLVQPGGSLRLSCAASGFTFSSFPMAWVRQAPGKGLEWVSTISTSGGRTYYRDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKFRQYSGGFDYWGQGTLVTVSS,DIQLTQPNSVSTSLGSTVKLSCTLSSGNIENNYVHWYQLYEGRSPTTMIYDDDKRPDGVPDRFSGSIDRSSNSAFLTIHNVAIEDEAIYFCHSYVSSFNVFGGGTKLTVL,2.7931752672552523,79.30170038565913,263.47764721206306,0.050427265,-1.3020441151237527 +otlertuzumab,3,GDPa1-166,EVQLVQSGAEVKKPGESLKISCKGSGYSFTGYNMNWVRQMPGKGLEWMGNIDPYYGGTTYNRKFKGQVTISADKSISTAYLQWSSLKASDTAMYYCARSVGPFDSWGQGTLVTVSS,EIVLTQSPATLSLSPGERATLSCRASENVYSYLAWYQQKPGQAPRLLIYFAKTLAEGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQHHSDNPWTFGQGTKVEIK,2.9629039100982277,81.53812635752074,279.8512705771567,0.29292238,3.647630429603092 +ozanezumab,4,GDPa1-167,QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYWMHWVRQAPGQGLEWIGNINPSNGGTNYNEKFKSKATMTRDTSTSTAYMELSSLRSEDTAVYYCELMQGYWGQGTLVTVSS,DIVMTQSPLSNPVTLGQPVSISCRSSKSLLYKDGKTYLNWFLQRPGQSPQLLIYLMSTRASGVPDRFSGGGSGTDFTLKISRVEAEDVGVYYCQQLVEYPLTFGQGTKLEIK,2.929924699379699,82.26695409464064,248.3267293603421,0.3978713,4.441185952876396 +palivizumab,3,GDPa1-168,QVTLRESGPALVKPTQTLTLTCTFSGFSLSTSGMSVGWIRQPPGKALEWLADIWWDDKKDYNPSLKSRLTISKDTSKNQVVLKVTNMDPADTATYYCARSMITNWYFDVWGAGTTVTVSS,DIQMTQSPSTLSASVGDRVTITCKCQLSVGYMHWYQQKPGKAPKLLIYDTSKLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCFQGSGYPFTFGGGTKLEIK,2.824515529727781,81.53844342510898,299.7827757871833,0.26583084,7.990303151799807 +pamrevlumab,1,GDPa1-169,EGQLVQSGGGLVHPGGSLRLSCAGSGFTFSSYGMHWVRQAPGKGLEWVSGIGTGGGTYSTDSVKGRFTISRDNAKNSLYLQMNSLRAEDMAVYYCARGDYYGSGSFFDCWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQGISSWLAWYQQKPEKAPKSLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYNSYPPTFGQGTKLEIK,2.73599452724322,82.2894789222185,275.8994373888995,0.0631935,0.9074977368187392 +panitumumab,1,GDPa1-170,QVQLQESGPGLVKPSETLSLTCTVSGGSVSSGDYYWTWIRQSPGKGLEWIGHIYYSGNTNYNPSLKSRLTISIDTSKTQFSLKLSSVTAADTAIYYCVRDRVTGAFDIWGQGTMVTVSS,DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATYFCQHFDHLPLAFGGGTKVEIK,2.481227038100092,83.32313435074136,197.0348297841925,0.16009629,4.396436252197918 +panobacumab,1,GDPa1-171,EEQVVESGGGFVQPGGSLRLSCAASGFTFSPYWMHWVRQAPGKGLVWVSRINSDGSTYYADSVKGRFTISRDNARNTLYLQMNSLRAEDTAVYYCARDRYYGPEMWGQGTMVTVSS,DVVMTQSPLSLPVTLGQPASISCRSSQSLVYSDGNTYLNWFQQRPGQSPRRLIYKVSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPLTFGGGTKVEIK,2.640570768780648,78.6512096851928,260.91285104104423,0.08884953,3.1049163763465755 +parsatuzumab,0,GDPa1-172,EVQLVESGGGLVQPGGSLRLSCAASGYTFIDYYMNWVRQAPGKGLEWVGDINLDNSGTHYNQKFKGRFTISRDKSKNTAYLQMNSLRAEDTAVYYCAREGVYHDYDDYAMDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRTSQSLVHINAITYLHWYQQKPGKAPKLLIYRVSNRFSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCGQSTHVPLTFGQGTKVEIK,2.8294345736174917,81.78363609449393,176.86042458215113,0.16072379,1.551502098141692 +patritumab,3,GDPa1-173,QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWIGEINHSGSTNYNPSLKSRVTISVETSKNQFSLKLSSVTAADTAVYYCARDKWTWYFDLWGRGTLVTVSS,DIEMTQSPDSLAVSLGERATINCRSSQSVLYSSSNRNYLAWYQQNPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSTPRTFGQGTKVEIK,2.8541454781885145,81.53260538601417,227.7854956552453,0.2846026,6.546014002288259 +pembrolizumab,3,GDPa1-174,QVQLVQSGVEVKKPGASVKVSCKASGYTFTNYYMYWVRQAPGQGLEWMGGINPSNGGTNFNEKFKNRVTLTTDSSTTTAYMELKSLQFDDTAVYYCARRDYRFDMGFDYWGQGTTVTVSS,EIVLTQSPATLSLSPGERATLSCRASKGVSTSGYSYLHWYQQKPGQAPRLLIYLASYLESGVPARFSGSGSGTDFTLTISSLEPEDFAVYYCQHSRDLPLTFGGGTKVEIK,2.8566108979699143,81.53864353739453,211.6624034612039,0.18455032,3.2355945668407067 +pertuzumab,0,GDPa1-175,EVQLVESGGGLVQPGGSLRLSCAASGFTFTDYTMDWVRQAPGKGLEWVADVNPNSGGSIYNQRFKGRFTLSVDRSKNTLYLQMNSLRAEDTAVYYCARNLGPSFYFDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCKASQDVSIGVAWYQQKPGKAPKLLIYSASYRYTGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYIYPYTFGQGTKVEIK,2.972086575410257,81.78364780340654,221.35397402444315,0.24134585,4.189920407488471 +pidilizumab,1,GDPa1-176,QVQLVQSGSELKKPGASVKISCKASGYTFTNYGMNWVRQAPGQGLQWMGWINTDSGESTYAEEFKGRFVFSLDTSVNTAYLQITSLTAEDTGMYFCVRVGYDALDYWGQGTLVTVSS,EIVLTQSPSSLSASVGDRVTITCSARSSVSYMHWFQQKPGKAPKLWIYRTSNLASGVPSRFSGSGSGTSYCLTINSLQPEDFATYYCQQRSSFPLTFGGGTKLEIK,2.9535437174932944,83.61057029470066,282.2625589942268,0.24247845,2.0231253604541712 +pinatuzumab,0,GDPa1-177,EVQLVESGGGLVQPGGSLRLSCAASGYEFSRSWMNWVRQAPGKGLEWVGRIYPGDGDTNYSGKFKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARDGSSWDWYFDVWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRSSQSIVHSVGNTFLEWYQQKPGKAPKLLIYKVSNRFSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCFQGSQFPYTFGQGTKVEIK,2.7676272469096324,81.78430636565291,199.5341637323021,0.09968499,4.1988561632850185 +plozalizumab,4,GDPa1-178,EVQLVESGGGLVKPGGSLRLSCAASGFTFSAYAMNWVRQAPGKGLEWVGRIRTKNNNYATYYADSVKDRFTISRDDSKNTLYLQMNSLKTEDTAVYYCTTFYGNGVWGQGTLVTVSS,DVVMTQSPLSLPVTLGQPASISCKSSQSLLDSDGKTFLNWFQQRPGQSPRRLIYLVSKLDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCWQGTHFPYTFGQGTRLEIK,2.650516991823665,82.26806005944844,268.9678839891306,0.1372009,11.643171942723882 +polatuzumab,0,GDPa1-179,EVQLVESGGGLVQPGGSLRLSCAASGYTFSSYWIEWVRQAPGKGLEWIGEILPGGGDTNYNEIFKGRATFSADTSKNTAYLQMNSLRAEDTAVYYCTRRVPIRLDYWGQGTLVTVSS,DIQLTQSPSSLSASVGDRVTITCKASQSVDYEGDSFLNWYQQKPGKAPKLLIYAASNLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSNEDPLTFGQGTKVEIK,2.687390418823225,81.78316224888358,234.2196099650224,0.10156755,4.099760276185549 +ponezumab,4,GDPa1-180,QVQLVQSGAEVKKPGASVKVSCKASGYYTEAYYIHWVRQAPGQGLEWMGRIDPATGNTKYAPRLQDRVTMTRDTSTSTVYMELSSLRSEDTAVYYCASLYSLPVYWGQGTTVTVSS,DVVMTQSPLSLPVTLGQPASISCKSSQSLLYSDAKTYLNWFQQRPGQSPRRLIYQISRLDPGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCLQGTHYPVLFGQGTRLEIK,2.90524367502439,82.2719377739415,214.5383117279973,0.29229483,3.021662121330634 +prasinezumab,0,GDPa1-181,EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGMSWVRQAPGKGLEWVASISSGGGSTYYPDNVKGRFTISRDDAKNSLYLQMNSLRAEDTAVYYCARGGAGIDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCKSIQTLLYSSNQKNYLAWFQQKPGKAPKLLIYWASIRKSGVPSRFSGSGSGTDFTLTISSLQPEDLATYYCQQYYSYPLTFGGGTKLEIK,2.8756621290049824,81.78400581736457,245.6593113802664,0.2999149,12.005472746965497 +prezalumab,0,GDPa1-182,EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMSWVRQAPGKGLEWVAYIKQDGNEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAREGILWFGDLPTFWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQGISNWLAWYQQKPEKAPKSLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYDSYPRTFGQGTKVEIK,3.074156792748786,81.78375769604607,191.97201399421692,0.017957997,3.4092421998526863 +prolgolimab,4,GDPa1-183,QVQLVQSGGGLVQPGGSLRLSCAASGFTFSSYWMYWVRQVPGKGLEWVSAIDTGGGRTYYADSVKGRFAISRVNAKNTMYLQMNSLRAEDTAVYYCARDEGGGTGWGVLKDWPYGLDAWGQGTLVTVSS,QPVLTQPLSVSVALGQTARITCGGNNIGSKNVHWYQQKPGQAPVLVIYRDSNRPSGIPERFSGSNSGNTATLTISRAQAGDEADYYCQVWDSSTAVFGTGTKLTVL,2.9077229581013126,82.25598200208628,315.6798358859672,0.21159549,7.071117947887808 +quilizumab,2,GDPa1-184,EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGIAWVRQAPGKGLEWVAFISDLAYTIYYADTVTGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDNWDAMDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRSSQSLVHNNANTYLHWYQQKPGKAPKLLIYKVSNRFSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCSQNTLVPWTFGQGTKVEIK,2.9241159700190456,80.97708872599871,192.78938207035893,-0.0010131544,5.661571084286763 +racotumomab,1,GDPa1-185,QVQLQQSGAELVKPGASVKLSCKASGYTFTSYDINWVRQRPEQGLEWIGWIFPGDGSTKYNEKFKGKATLTTDKSSSTAYMQLSRLTSEDSAVYFCAREDYYDNSYYFDYWGQGTTLTVSS,DIQMTQTTSSLSASLGDRVTISCRASQDISNYLNWYQQKPDGTVKLLIYYTSRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPWTFGGGTKLEIK,2.7186702586327502,80.76505754539826,191.31953287943207,0.089792036,3.564782357316824 +radretumab,2,GDPa1-186,EVQLLESGGGLVQPGGSLRLSCAASGFTFSSFSMSWVRQAPGKGLEWVSSISGSSGTTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKPFPYFDYWGQGTLVTVSS,EIVLTQSPGTLSLSPGERATLSCRASQSVSSSFLAWYQQKPGQAPRLLIYYASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQTGRIPPTFGQGTKVEIK,2.77069313631803,81.10119957912768,247.3950588347141,0.07284244,-0.0567386554053595 +ramucirumab,0,GDPa1-187,EVQLVQSGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSSISSSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARVTDAFDIWGQGTMVTVSS,DIQMTQSPSSVSASIGDRVTITCRASQGIDNWLGWYQQKPGKAPKLLIYDASNLDTGVPSRFSGSGSGTYFTLTISSLQAEDFAVYFCQQAKAFPPTFGGGTKVDIK,2.684269434815443,81.78483566473189,294.56539644247283,0.20183955,4.379163756414045 +ranibizumab,0,GDPa1-188,EVQLVESGGGLVQPGGSLRLSCAASGYDFTHYGMNWVRQAPGKGLEWVGWINTYTGEPTYAADFKRRFTFSLDTSKSTAYLQMNSLRAEDTAVYYCAKYPYYYGTSHWYFDVWGQGTLVTVSS,DIQLTQSPSSLSASVGDRVTITCSASQDISNYLNWYQQKPGKAPKVLIYFTSSLHSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYSTVPWTFGQGTKVEIK,3.34501446009439,81.78325538527925,191.61130529596417,0.24066183,3.651129734303842 +relatlimab,2,GDPa1-189,QVQLQQWGAGLLKPSETLSLTCAVYGGSFSDYYWNWIRQPPGKGLEWIGEINHRGSTNSNPSLKSRVTLSLDTSKNQFSLKLRSVTAADTAVYYCAFGYSDYEYNWFDPWGQGTLVTVSS,EIVLTQSPATLSLSPGERATLSCRASQSISSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPLTFGQGTNLEIK,2.7513039031053745,81.39285910817186,180.64564591937147,0.1471136,2.548688768566972 +reslizumab,1,GDPa1-190,EVQLVESGGGLVQPGGSLRLSCAVSGLSLTSNSVNWIRQAPGKGLEWVGLIWSNGDTDYNSAIKSRFTISRDTSKSTVYLQMNSLRAEDTAVYYCAREYYGYFDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCLASEGISSYLAWYQQKPGKAPKLLIYGANSLQTGVPSRFSGSGSATDYTLTISSLQPEDFATYYCQQSYKFPNTFGQGTKVEVK,2.9302441644106803,83.37326126285619,259.09981797060686,0.05939489,10.299414013084006 +rilotumumab,1,GDPa1-191,QVQLQESGPGLVKPSETLSLTCTVSGGSISIYYWSWIRQPPGKGLEWIGYVYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLNSVTAADTAVYYCARGGYDFWSGYFDYWGQGTLVTVSS,EIVMTQSPATLSVSPGERATLSCRASQSVDSNLAWYRQKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYINWPPITFGQGTRLEIK,3.168836707152701,82.03742943098175,267.8935377399,0.17431848,4.797753336024199 +rinucumab,3,GDPa1-192,QLQLQESGPGLVKPSETLSLTCTVSGGSITSSSYYWGWIRQPPGKGLEWIGSIYYRGSTNYNPSLKSRVTISVDSSKNQFYLKVSSVTAVDTAVYYCARQNGAARPSWFDPWGQGTLVTVSS,EIVLTQSPDTISLSPGERATLSCRASQSISSIYLAWYQQKPGQAPRLLIYGASSRVTGIPDRFSVSGSGTDFTLTISRLEPEDFAVYYCQHYGISPFTFGPGTKVDIR,2.715857491933812,81.53872679293663,264.19811172848193,0.27860844,11.53806531667216 +risankizumab,1,GDPa1-193,QVQLVQSGAEVKKPGSSVKVSCKASGYTFTDQTIHWMRQAPGQGLEWIGYIYPRDDSPKYNENFKGKVTITADKSTSTAYMELSSLRSEDTAVYYCAIPDRSGYAWFIYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCKASRDVAIAVAWYQQKPGKVPKLLIYWASTRHTGVPSRFSGSGSRTDFTLTISSLQPEDVADYFCHQYSSYPFTFGSGTKLEIK,2.566326541805425,80.12245098879373,244.2690144383457,0.32177985,11.236031326011917 +rituximab,2,GDPa1-194,QVQLQQPGAELVKPGASVKMSCKASGYTFTSYNMHWVKQTPGRGLEWIGAIYPGNGDTSYNQKFKGKATLTADKSSSTAYMQLSSLTSEDSAVYYCARSTYYGGDWYFNVWGAGTTVTVSA,QIVLSQSPAILSASPGEKVTMTCRASSSVSYIHWFQQKPGSSPKPWIYATSNLASGVPVRFSGSGSGTSYSLTISRVEAEDAATYYCQQWTSNPPTFGGGTKLEIK,2.9057288041814173,80.71112498442282,269.3640484422074,0.30319795,11.382977204356177 +robatumumab,2,GDPa1-195,EVQLVQSGGGLVKPGGSLRLSCAASGFTFSSFAMHWVRQAPGKGLEWISVIDTRGATYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARLGNFYYGMDVWGQGTTVTVSS,EIVLTQSPGTLSVSPGERATLSCRASQSIGSSLHWYQQKPGQAPRLLIKYASQSLSGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCHQSSRLPHTFGQGTKVEIK,2.624022493325401,81.32328465557194,228.1306417674009,0.25311795,11.199716875589656 +romosozumab,0,GDPa1-196,EVQLVQSGAEVKKPGASVKVSCKASGYTFTDYNMHWVRQAPGQGLEWMGEINPNSGGAGYNQKFKGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARLGYDDIYDDWYFDVWGQGTTVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLLSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGDTLPYTFGGGTKVEIK,2.8498041638510654,81.78320614297625,207.53235430760077,0.06578397,2.237648553987192 +rontalizumab,0,GDPa1-197,EVQLVESGGGLVQPGGSLRLSCATSGYTFTEYIIHWVRQAPGKGLEWVASINPDYDITNYNQRFKGRFTISLDKSKRTAYLQMNSLRAEDTAVYYCASWISDFFDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQSVSTSSYSYMHWYQQKPGKAPKVLISYASNLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQHSWGIPRTFGQGTKVEIK,2.917631220339348,81.7849226845129,226.88670068465663,0.1341718,2.4362198286718395 +rovalpituzumab,3,GDPa1-198,QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQAPGQGLEWMGWINTYTGEPTYADDFKGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARIGDSSPSDYWGQGTLVTVSS,EIVMTQSPATLSVSPGERATLSCKASQSVSNDVVWYQQKPGQAPRLLIYYASNRYTGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQDYTSPWTFGQGTKLEIK,2.713398312574674,81.53710767265059,234.63385240759013,0.09917083,2.224421583915462 +rozanolixizumab,1,GDPa1-199,EVPLVESGGGLVQPGGSLRLSCAVSGFTFSNYGMVWVRQAPGKGLEWVAYIDSDGDNTYYRDSVKGRFTISRDNAKSSLYLQMNSLRAEDTAVYYCTTGIVRPFLYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCKSSQSLVGASGKTYLYWLFQKPGKAPKRLIYLVSTLDSGIPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQGTHFPHTFGQGTKLEIK,2.871438616046943,80.91896604574441,316.4497802983054,0.16177736,6.984091737873104 +sarilumab,0,GDPa1-200,EVQLVESGGGLVQPGRSLRLSCAASRFTFDDYAMHWVRQAPGKGLEWVSGISWNSGRIGYADSVKGRFTISRDNAENSLFLQMNGLRAEDTALYYCAKGRDSFDIWGQGTMVTVSS,DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQKPGKAPKLLIYGASSLESGVPSRFSGSGSGTDFTLTISSLQPEDFASYYCQQANSFPYTFGQGTKLEIK,2.637881519156328,81.78324654591937,252.8770814553413,0.051961552,6.425367969068078 +satralizumab,1,GDPa1-201,QVQLQESGPGLVKPSETLSLTCAVSGHSISHDHAWSWVRQPPGEGLEWIGFISYSGITNYNPSLQGRVTISRDNSKNTLYLQMNSLRAEDTAVYYCARSLARTTAMDYWGEGTLVTVSS,DIQMTQSPSSLSASVGDSVTITCQASTDISSHLNWYQQKPGKAPELLIYYGSHLLSGVPSRFSGSGSGTDFTFTISSLEAEDAATYYCGQGNRLPYTFGQGTKVEIE,2.585939226858,80.64687734062316,298.37701232250964,0.10209585,8.830752661469086 +secukinumab,2,GDPa1-202,EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYWMNWVRQAPGKGLEWVAAINQDGSEKYYVGSVKGRFTISRDNAKNSLYLQMNSLRVEDTAVYYCVRDYYDILTDYYIHYWYFDLWGRGTLVTVSS,EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPCTFGQGTRLEIK,3.0120248006756363,80.83427322011747,208.24830025264933,0.1444387,1.336268507264441 +selicrelumab,1,GDPa1-203,QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINPDSGGTNYAQKFQGRVTMTRDTSISTAYMELNRLRSDDTAVYYCARDQPLGYCTNGVCSYFDYWGQGTLVTVSS,DIQMTQSPSSVSASVGDRVTITCRASQGIYSWLAWYQQKPGKAPNLLIYTASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANIFPLTFGGGTKVEIK,2.9877893616445697,77.85307958655112,324.1471810428888,0.16212739,11.746315275571735 +seribantumab,3,GDPa1-204,EVQLLESGGGLVQPGGSLRLSCAASGFTFSHYVMAWVRQAPGKGLEWVSSISSSGGWTLYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRGLKMATIFDYWGQGTLVTVSS,QSALTQPASVSGSPGQSITISCTGTSSDVGSYNVVSWYQQHPGKAPKLIIYEVSQRPSGVSNRFSGSKSGNTASLTISGLQTEDEADYYCCSYAGSSIFVIFGGGTKVTVL,3.070667525410136,81.53680845822468,286.2985006219466,0.244243,11.722726586932673 +setrusumab,4,GDPa1-205,QVQLVESGGGLVQPGGSLRLSCAASGFTFRSHWLSWVRQAPGKGLEWVSNINYDGSSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDTYLHFDYWGQGTLVTVSS,DIALTQPASVSGSPGQSITISCTGTSSDVGDINDVSWYQQHPGKAPKLMIYDVNNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCQSYAGSYLSEVFGGGTKLTVL,2.733698330090218,82.26255227972568,291.9852788518743,0.06570495,8.406815907902477 +sifalimumab,3,GDPa1-206,QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYSISWVRQAPGQGLEWMGWISVYNGNTNYAQKFQGRVTMTTDTSTSTAYLELRSLRSDDTAVYYCARDPIAAGYWGQGTLVTVSS,EIVLTQSPGTLSLSPGERATLSCRASQSVSSTYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPRTFGQGTKVEIK,2.463473534331941,81.5328425174609,249.65520754699656,0.23631953,14.321641730603506 +siltuximab,3,GDPa1-207,EVQLVESGGKLLKPGGSLKLSCAASGFTFSSFAMSWFRQSPEKRLEWVAEISSGGSYTYYPDTVTGRFTISRDNAKNTLYLEMSSLRSEDTAMYYCARGLWGYYALDYWGQGTSVTVSS,QIVLIQSPAIMSASPGEKVTMTCSASSSVSYMYWYQQKPGSSPRLLIYDTSNLASGVPVRFSGSGSGTSYSLTISRMEAEDAATYYCQQWSGYPYTFGGGTKLEIK,3.3140150434995745,81.5348412563379,258.4796268753674,0.15311877,5.887521850540716 +simtuzumab,4,GDPa1-208,QVQLVQSGAEVKKPGASVKVSCKASGYAFTYYLIEWVRQAPGQGLEWIGVINPGSGGTNYNEKFKGRATITADKSTSTAYMELSSLRSEDTAVYFCARNWMNFDYWGQGTTVTVSS,DIVMTQTPLSLSVTPGQPASISCRSSKSLLHSNGNTYLYWFLQKPGQSPQFLIYRMSNLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPYTFGGGTKVEIK,2.883495478503475,82.27158642238035,187.42161584984976,0.19807047,5.191793005526329 +sintilimab,0,GDPa1-209,QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGLIIPMFDTAGYAQKFQGRVAITVDESTSTAYMELSSLRSEDTAVYYCARAEHSSTGTFDYWGQGTLVTVSS,DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQKPGKAPKLLISAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANHLPFTFGGGTKVEIK,2.9532640145480844,81.78452814900025,274.2841392171733,0.09514616,4.203379621074936 +sirukumab,2,GDPa1-210,EVQLVESGGGLVQPGGSLRLSCAASGFTFSPFAMSWVRQAPGKGLEWVAKISPGGSWTYYSDTVTGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARQLWGYYALDIWGQGTTVTVSS,EIVLTQSPATLSLSPGERATLSCSASISVSYMYWYQQKPGQAPRLLIYDMSNLASGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCMQWSGYPYTFGGGTKVEIK,3.477047855136567,80.4031363243952,276.1952769442709,0.09870243,5.107219901214026 +solanezumab,1,GDPa1-211,EVQLVESGGGLVQPGGSLRLSCAASGFTFSRYSMSWVRQAPGKGLELVAQINSVGNSTYYPDTVKGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCASGDYWGQGTLVTVSS,DVVMTQSPLSLPVTLGQPASISCRSSQSLIYSDGNAYLHWFLQKPGQSPRLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCSQSTHVPWTFGQGTKVEIK,2.596887128297524,82.51584320386726,274.9050695601283,0.056867354,0.9763947987930486 +spartalizumab,3,GDPa1-212,EVQLVQSGAEVKKPGESLRISCKGSGYTFTTYWMHWVRQATGQGLEWMGNIYPGTGGSNFDEKFKNRVTITADKSTSTAYMELSSLRSEDTAVYYCTRWTTGTGAYWGQGTTVTVSS,EIVLTQSPATLSLSPGERATLSCKSSQSLLDSGNQKNFLTWYQQKPGQAPRLLIYWASTRESGVPSRFSGSGSGTDFTFTISSLEAEDAATYYCQNDYSYPYTFGQGTKVEIK,2.674809493368362,81.53942694924874,203.8689472518144,0.051059157,6.046596503910718 +sutimlimab,3,GDPa1-213,EVQLVESGGGLVKPGGSLRLSCAASGFTFSNYAMSWVRQAPGKGLEWVATISSGGSHTYYLDSVKGRFTISRDNSKNTLYLQMNSLRAEDTALYYCARLFTGYAMDYWGQGTLVTVSS,QIVLTQSPATLSLSPGERATMSCTASSSVSSSYLHWYQQKPGKAPKLWIYSTSNLASGVPSRFSGSGSGTDYTLTISSLQPEDFATYYCHQYYRLPPITFGQGTKLEIK,2.831836840644798,81.5384798689433,300.1014744712437,0.18685198,12.484902469850043 +tabalumab,2,GDPa1-214,QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWIGEINHSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARGYYDILTGYYYYFDYWGQGTLVTVSS,EIVLTQSPATLSLSPGERATLSCRASQSVSRYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDSTLTISSLEPEDFAVYYCQQRSNWPRTFGQGTKVEIK,2.957231870774006,81.45913249759847,248.1134893197271,0.24873005,6.008573964513607 +tanezumab,1,GDPa1-215,QVQLQESGPGLVKPSETLSLTCTVSGFSLIGYDLNWIRQPPGKGLEWIGIIWGDGTTDYNSAVKSRVTISKDTSKNQFSLKLSSVTAADTAVYYCARGGYWYATSYYFDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQSISNNLNWYQQKPGKAPKLLIYYTSRFHSGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQEHTLPYTFGQGTKLEIK,3.0184445510189795,82.86487655101475,204.0542843654196,0.2304947,8.742467603743567 +tarextumab,4,GDPa1-216,EVQLVESGGGLVQPGGSLRLSCAASGFTFSSSGMSWVRQAPGKGLEWVSVIASSGSNTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSIFYTTWGQGTLVTVSS,DIVLTQSPATLSLSPGERATLSCRASQSVRSNYLAWYQQKPGQAPRLLIYGASSRATGVPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQYSNFPITFGQGTKVEIK,2.714004691374146,82.27358134169407,233.3819249321868,0.09258596,7.545336980692418 +tavolimab,3,GDPa1-217,QVQLQESGPGLVKPSQTLSLTCAVYGGSFSSGYWNWIRKHPGKGLEYIGYISYNGITYHNPSLKSRITINRDTSKNQYSLQLNSVTPEDTAVYYCARYKYDYDGGHAMDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKAPKLLIYYTSKLHSGVPSRFSGSGSGTDYTLTISSLQPEDFATYYCQQGSALPWTFGQGTKVEIK,3.018200722834521,81.53945880797102,255.0272481020913,0.2660688,6.64411959995512 +telisotuzumab,4,GDPa1-218,QVQLVQSGAEVKKPGASVKVSCKASGYIFTAYTMHWVRQAPGQGLEWMGWIKPNNGLANYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCARSEITTEFDYWGQGTLVTVSS,DIVMTQSPDSLAVSLGERATINCKSSESVDSYANSFLHWYQQKPGQPPKLLIYRASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQSKEDPLTFGGGTKVEIK,2.6636435345181813,82.25790514200723,195.50728506178783,0.06700714,4.077305320675468 +teplizumab,1,GDPa1-219,QVQLVQSGGGVVQPGRSLRLSCKASGYTFTRYTMHWVRQAPGKGLEWIGYINPSRGYTNYNQKVKDRFTISRDNSKNTAFLQMDSLRPEDTGVYFCARYYDDHYCLDYWGQGTPVTVSS,DIQMTQSPSSLSASVGDRVTITCSASSSVSYMNWYQQTPGKAPKRWIYDTSKLASGVPSRFSGSGSGTDYTFTISSLQPEDIATYYCQQWSSNPFTFGQGTKLQIT,2.249552634118247,77.34754317656271,284.4420975845208,0.19723424,17.34293452917334 +teprotumumab,2,GDPa1-220,QVELVESGGGVVQPGRSQRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAIIWFDGSSTYYADSVRGRFTISRDNSKNTLYLQMNSLRAEDTAVYFCARELGRRYFDLWGRGTLVSVSS,EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASKRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSKWPPWTFGQGTKVESK,2.6771242509159263,81.54549717223291,188.55538850131416,0.31998855,9.834746786486647 +tezepelumab,3,GDPa1-221,QMQLVESGGGVVQPGRSLRLSCAASGFTFRTYGMHWVRQAPGKGLEWVAVIWYDGSNKHYADSVKGRFTITRDNSKNTLNLQMNSLRAEDTAVYYCARAPQWELVHEAFDIWGQGTMVTVSS,SYVLTQPPSVSVAPGQTARITCGGNNLGSKSVHWYQQKPGQAPVLVVYDDSDRPSWIPERFSGSNSGNTATLTISRGEAGDEADYYCQVWDSSSDHVVFGGGTKLTVL,2.9505363341560296,81.53774752564732,283.16305166723487,0.042743184,2.0859209432584462 +tigatuzumab,0,GDPa1-222,EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYVMSWVRQAPGKGLEWVATISSGGSYTYYPDSVKGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCARRGDSMITTDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCKASQDVGTAVAWYQQKPGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYSSYRTFGQGTKVEIK,2.774723013949824,81.78392638742731,252.1257390188781,0.09830372,10.766124078802733 +tildrakizumab,1,GDPa1-223,QVQLVQSGAEVKKPGASVKVSCKASGYIFITYWMTWVRQAPGQGLEWMGQIFPASGSADYNEKFEGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARGGGGFAYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRTSENIYSYLAWYQQKPGKAPKLLIYNAKTLAEGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQHHYGIPFTFGQGTKVEIK,3.0532725064144866,78.54303679009625,288.01961320740713,0.14129128,1.1923722996345905 +tislelizumab,2,GDPa1-224,QVQLQESGPGLVKPSETLSLTCTVSGFSLTSYGVHWIRQPPGKGLEWIGVIYADGSTNYNPSLKSRVTISKDTSKNQVSLKLSSVTAADTAVYYCARAYGNYWYIDVWGQGTTVTVSS,DIVMTQSPDSLAVSLGERATINCKSSESVSNDVAWYQQKPGQPPKLLINYAFHRFTGVPDRFSGSGYGTDFTLTISSLQAEDVAVYYCHQAYSSPYTFGQGTKLEIK,2.9485607878037605,81.32470218045451,245.3022431263745,0.0877292,8.498273305610338 +tisotumab,0,GDPa1-225,EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYAMSWVRQAPGKGLEWVSSISGSGDYTYYTDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSPWGYYLDSWGQGTLVTVSS,DIQMTQSPPSLSASAGDRVTITCRASQGISSRLAWYQQKPEKAPKSLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYNSYPYTFGQGTKLEIK,2.819140499672644,81.7845167545167,247.27743545955508,0.03924024,10.22931400654138 +tocilizumab,3,GDPa1-226,QVQLQESGPGLVRPSQTLSLTCTVSGYSITSDHAWSWVRQPPGRGLEWIGYISYSGITTYNPSLKSRVTMLRDTSKNQFSLRLSSVTAADTAVYYCARSLARTTAMDYWGQGSLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQDISSYLNWYQQKPGKAPKLLIYYTSRLHSGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQGNTLPYTFGQGTKVEIK,2.5020752185521355,81.53953513617846,244.37059831170583,0.293598,15.152980662469789 +toripalimab,4,GDPa1-227,QGQLVQSGAEVKKPGASVKVSCKASGYTFTDYEMHWVRQAPIHGLEWIGVIESETGGTAYNQKFKGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREGITTVATTYYWYFDVWGQGTTVTVSS,DVVMTQSPLSLPVTLGQPASISCRSSQSIVHSNGNTYLEWYLQKPGQSPQLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPLTFGQGTKLEIK,2.681777566379177,82.2702470149933,196.6317433585153,0.23473799,2.168837145442311 +tovetumab,2,GDPa1-228,QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMNWIRQAPGKGLEWVSYISSSGSIIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAREGRIAARGMDVWGQGTTVTVSS,DIQMTQSPSSLSASVGDRVSITCRPSQSFSRYINWYQQKPGKAPKLLIHAASSLVGGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQTYSNPPITFGQGTRLEMK,2.6078167823272613,80.74168155437077,243.27929452237572,0.17737336,9.973608939590578 +tralokinumab,2,GDPa1-229,QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGLSWVRQAPGQGLEWMGWISANNGDTNYGQEFQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARDSSSSWARWFFDLWGRGTLVTVSS,SYVLTQPPSVSVAPGKTARITCGGNIIGSKLVHWYQQKPGQAPVLVIYDDGDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDTGSDPVVFGGGTKLTVL,3.1614662500483197,81.54112752836848,234.83022982643303,0.09572595,10.342993647223894 +trastuzumab,0,GDPa1-230,EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEWVARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCSRWGGDGFYAMDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTFGQGTKVEIK,2.8056841446531084,81.7842066061837,225.25787494195413,0.048243452,3.243912805573913 +tregalizumab,2,GDPa1-231,EEQLVESGGGLVKPGGSLRLSCAASGFSFSDCRMYWLRQAPGKGLEWIGVISVKSENYGANYAESVRGRFTISRDDSKNTVYLQMNSLKTEDTAVYYCSASYYRYDVGAWFAYWGQGTLVTVSS,DIVMTQSPDSLAVSLGERATINCRASKSVSTSGYSYIYWYQQKPGQPPKLLIYLASILESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQHSRELPWTFGQGTKVEIK,2.9414961862396387,80.76853864725749,199.4023818581437,0.042155173,-2.202354710622884 +tremelimumab,2,GDPa1-232,QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDPRGATLYYYYYGMDVWGQGTTVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQSINSYLDWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYSTPFTFGPGTKVEIK,2.994360051633071,80.70350063995623,243.36008861483165,0.22551204,-0.8379390194218689 +ublituximab,2,GDPa1-233,QAYLQQSGAELVRPGASVKMSCKASGYTFTSYNMHWVKQTPRQGLEWIGGIYPGNGDTSYNQKFKGKATLTVGKSSSTAYMQLSSLTSEDSAVYFCARYDYNYAMDYWGQGTSVTVSS,QIVLSQSPAILSASPGEKVTMTCRASSSVSYMHWYQQKPGSSPKPWIYATSNLASGVPARFSGSGSGTSYSFTISRVEAEDAATYYCQQWTFNPPTFGGGTRLEIK,2.7149472240521746,81.08452139695031,262.20962309450005,0.27800265,10.223707920725786 +urelumab,2,GDPa1-234,QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQSPEKGLEWIGEINHGGYVTYNPSLESRVTISVDTSKNQFSLKLSSVTAADTAVYYCARDYGPGNYDWYFDLWGRGTLVTVSS,EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPALTFGGGTKVEIK,3.061221876316435,81.22985707294758,237.89494329992525,0.15823172,1.3793691955299878 +ustekinumab,3,GDPa1-235,EVQLVQSGAEVKKPGESLKISCKGSGYSFTTYWLGWVRQMPGKGLDWIGIMSPVDSDIRYSPSFQGQVTMSVDKSITTAYLQWNSLKASDTAMYYCARRRPGQGYFDFWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQGISSWLAWYQQKPEKAPKSLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYNIYPYTFGQGTKLEIK,2.8010768330739264,81.53787794246102,243.586629621903,0.12425251,9.616024264741029 +utomilumab,3,GDPa1-236,EVQLVQSGAEVKKPGESLRISCKGSGYSFSTYWISWVRQMPGKGLEWMGKIYPGDSYTNYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARGYGIFDYWGQGTLVTVSS,SYELTQPPSVSVSPGQTASITCSGDNIGDQYAHWYQQKPGQSPVLVIYQDKNRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCATYTGFGSLAVFGGGTKLTVL,3.385189662598643,81.53805289512678,235.7337049395824,0.15325439,3.611982920798413 +vadastuximab,1,GDPa1-237,QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYDINWVRQAPGQGLEWIGWIYPGDGSTKYNEKFKAKATLTADTSTSTAYMELRSLRSDDTAVYYCASGYEDAMDYWGQGTTVTVSS,DIQMTQSPSSLSASVGDRVTINCKASQDINSYLSWFQQKPGKAPKTLIYRANRLVDGVPSRFSGSGSGQDYTLTISSLQPEDFATYYCLQYDEFPLTFGGGTKVEIK,2.4880135934600665,80.85919820783296,285.52417009019126,0.16439164,1.3068203690740174 +varlilumab,0,GDPa1-238,QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYDMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGSGNWGFFDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQGISRWLAWYQQKPEKAPKSLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYNTYPRTFGQGTKVEIK,2.748998898305013,81.7843321506859,224.109086555574,0.17292954,11.485226667146096 +vatelizumab,3,GDPa1-239,QVQLQESGPGLVKPSETLSLTCTVSGFSLTNYGIHWIRQPPGKGLEWLGVIWARGFTNYNSALMSRLTISKDNSKNQVSLKLSSVTAADTAVYYCARANDGVYYAMDYWGQGTLVTVSS,DFVMTQSPAFLSVTPGEKVTITCSAQSSVNYIHWYQQKPDQAPKKLIYDTSKLASGVPSRFSGSGSGTDYTFTISSLEAEDAATYYCQQWTTNPLTFGQGTKVEIK,3.1079977866080366,81.53687609979157,231.71063653302855,0.24276991,9.485684659435716 +vedolizumab,4,GDPa1-240,QVQLVQSGAEVKKPGASVKVSCKGSGYTFTSYWMHWVRQAPGQRLEWIGEIDPSESNTNYNQKFKGRVTLTVDISASTAYMELSSLRSEDTAVYYCARGGYDGWDYAIDYWGQGTLVTVSS,DVVMTQSPLSLPVTPGEPASISCRSSQSLAKSYGNTYLSWYLQKPGQSPQLLIYGISNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCLQGTHQPYTFGQGTKVEIK,2.801881397408964,82.27004693899795,198.9073519727663,0.017125955,1.858802614798445 +veltuzumab,1,GDPa1-241,QVQLQQSGAEVKKPGSSVKVSCKASGYTFTSYNMHWVKQAPGQGLEWIGAIYPGMGDTSYNQKFKGKATLTADESTNTAYMELSSLRSEDTAFYYCARSTYYGGDWYFDVWGQGTTVTVSS,DIQLTQSPSSLSASVGDRVTMTCRASSSVSYIHWFQQKPGKAPKPWIYATSNLASGVPVRFSGSGSGTDYTFTISSLQPEDIATYYCQQWTSNPPTFGGGTKLEIK,2.99378151996346,79.52126965370954,208.45992784495476,0.16592677,8.953322077306058 +visilizumab,0,GDPa1-242,QVQLVQSGAEVKKPGASVKVSCKASGYTFISYTMHWVRQAPGQGLEWMGYINPRSGYTHYNQKLKDKATLTADKSASTAYMELSSLRSEDTAVYYCARSAYYDYDGFAYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCSASSSVSYMNWYQQKPGKAPKRLIYDTSKLASGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQWSSNPPTFGGGTKVEIK,2.702452729703797,81.78389733286097,270.42279132532724,0.34032777,12.338915246499043 +xentuzumab,4,GDPa1-243,QVELVESGGGLVQPGGSLRLSCAASGFTFTSYWMSWVRQAPGKGLELVSSITSYGSFTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARNMYTHFDSWGQGTLVTVSS,DIVLTQPPSVSGAPGQRVTISCSGSSSNIGSNSVSWYQQLPGTAPKLLIYDNSKRPSGVPDRFSGSKSGTSASLAITGLQSEDEADYYCQSRDTYGYYWVFGGGTKLTVL,2.9446748940319973,82.25866611038799,276.6692677597402,0.21418262,5.959639119412409 +zalutumumab,0,GDPa1-244,QVQLVESGGGVVQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKGLEWVAVIWDDGSYKYYGDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGITMVRGVMKDYFDYWGQGTLVTVSS,AIQLTQSPSSLSASVGDRVTITCRASQDISSALVWYQQKPGKAPKLLIYDASSLESGVPSRFSGSESGTDFTLTISSLQPEDFATYYCQQFNSYPLTFGGGTKVEIK,2.930770458425872,81.78430027081114,260.2544568118163,0.19136398,2.0990720851394657 +zanolimumab,3,GDPa1-245,QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWIGEINHSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARVINWFDPWGQGTLVTVSS,DIQMTQSPSSVSASVGDRVTITCRASQDISSWLAWYQHKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSFPYTFGQGTKLEIK,2.8462708502135308,81.53806222804968,290.6823538605763,0.24991678,11.360224504997072 +zolbetuximab,4,GDPa1-246,QVQLQQPGAELVRPGASVKLSCKASGYTFTSYWINWVKQRPGQGLEWIGNIYPSDSYTNYNQKFKDKATLTVDKSSSTAYMQLSSPTSEDSAVYYCTRSWRGNSFDYWGQGTTLTVSS,DIVMTQSPSSLTVTAGEKVTMSCKSSQSLLNSGNQKNYLTWYQQKPGQPPKLLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCQNDYSYPFTFGSGTKLEIK,2.6912846569290347,82.26854868045535,244.3078532716577,0.25769407,6.465781852033008 diff --git a/outputs/predictions/heldout_test/moe_stabl_baseline/predictions.csv b/outputs/predictions/heldout_test/moe_stabl_baseline/predictions.csv new file mode 100644 index 0000000..179ae3d --- /dev/null +++ b/outputs/predictions/heldout_test/moe_stabl_baseline/predictions.csv @@ -0,0 +1,81 @@ +antibody_name,vh_protein_sequence,vl_protein_sequence,HIC,Tm2,Titer,PR_CHO,AC-SINS_pH7.4 +P907-A14-arid-pond-618a6,QVRLVESGGGVAQPGKSLRLSCAASGFTFSNFGMHWIRQAPGKGLEWVAVISFDGSNKFERDSLKGRFTISRDNSKNTLYLHMNSLRPEDTAVYYCAKEFGGAISGKDAFDAWGQGTMVAVSS,DIQLIQSPSTLSASVGDRVTIACRASQSMGPWLAWYQQKPGKGPKLLIYRTSRLEVGVPSRFSGSGSGTEFTLTISGLQPDDVATYYCQQYDSHLLTFGGGTKLEIK,2.842214251865927,81.22623828506084,223.1331675461043,0.24123146,10.018117088430337 +P907-A14-asphalt-resin-c0dd5,EVQLVESGGGLVKPGGSLTLSCAASGFTFSTYTMNWVRQAPGKGLEWVSSISSSSDDIFYADSLKGRFTVSRDNARNSLYLQMNSLRAEDTAVYYCARDQLTSTIVARALRYYPYMDVWGRGTTVTVSS,SSEVTQDPAVSVALGQAVRITCQGDSLRGYFTNWYQQKPGQAPVLVIFAGNNRPSGIPDRFSGSSSGNTAFLTITGAQAEDEADFYCSSRDRSGNRYVFGPGTKVTVL,3.0062990106174357,80.78354664251883,178.5041201772709,0.14390984,-4.06897379773022 +P907-A14-associative-shrike-139f0,QVQLVASGGGVVQPGRSLRLSCAASGFTFSNYAMHWVRQAPGKGLEWVAFISYDGSNKYYADSVKGRFTISRDNSENTLYLQMNSLIPEDTAVYFCARSGVASTLDYWGQGTLVTVSS,DIQLTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQLNSYPRTFGQGTKVEIK,2.687675864251369,81.32246156760861,210.47565297511508,0.19998595,6.498225566692241 +P907-A14-average-limiter-a125e,QVQLVESGGDLVKPGGSLRLSCAGSGFSFSDYYMNWIRQPPGKGPEWLSYISGSSNLTAYAASVKGRFTISRDNAKNSLYLQMDSLRVDDTAIYYCGTPGIPWGQGTLVTVSS,EILLTQSPGTLSLSPGERATLSCRASQSVTNRFLAWYQQRPGQSPRLLLYRASNRDTGVPDRFSGSGSGSDFTLTISRLEPEDFAVYYCQQYGSLPITFGPGTRLEIK,2.7030920982204534,81.08774016311338,258.0623496826532,0.16253363,7.092217835262007 +P907-A14-broad-vertex-224ba,QVHLQESGPGLVKPSETLSLICSVSGFSISSGYYWGWIRQPPGRALEWVGSMYHDGDAYYSPSLMSRVAMSADTSKNQVSLKLRSVTAADTAVYYCARGLVGGASDYWGQGILVSVSS,EILLTQFPATLSMSPGERATLSCRASQSLSRSVAWYQQKPGQAPRLLIYGASTRATGVPARFSGSGSGTDFTLTITSLQSEDFAVYYCQSHSNRPPWTFGQGTRVDI,2.851501952580173,81.19061539840968,203.9797973438835,0.26970953,8.609285411372944 +P907-A14-celeste-render-c7237,EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYEMNWVRQAPGKGLEWVSYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARGGIEGEILWWRDAGSDDAFDIWGQGTMVTVSS,SSELTQDPAVSVALGQTVRITCQGDSLRSYYASWYQQKPGQAPVLVIYGKNNRPSGIPDRFSGSSSGNTASLTITGAQAEDEADYYCNSRDSSGNHLGVFGGGTKLTVL,3.1015718839938407,81.19695987607106,250.54611225195265,0.14048041,4.0022569062259965 +P907-A14-citric-margarine-1e21c,EVHLVESGGGLVKPGGSLRLSCGASGFTFADYTMRWFRQAPGKGLEWVSFIRSEAYGGTTEYAASVKGRFTILRDDSKSTAYLQMNSLKTDDTAVYYCTRDRSEYSSPSLYWGQGTLVTVSS,DVQMTQSPSTLSASVGDRVTITCRASQSIGYRLTWYQQKPGKAPKLLIYDASSFERGVPSRFSGSGSGTEFTLTINNLQPDDFATYYCQQYHSFPTTFGQGTRLDIK,2.5674649510589322,81.45435032493208,239.34727415481538,0.06221128,-2.3583097696704365 +P907-A14-clever-sub-84f5e,QVQLVQSGTEVKKTGASVRVSCKASGFSFSKYGVSWVRQAPGQGLEWMGYISANDGYREFTQTLQGRVTMTTDTSTNTAYMDVTSLRSDDSAVYYCARDVGHFGDLLNFSAERSSLMDVWGQGTTVTVSS,QAVVTQEPSLTVSPGGTVTLTCGSNTGAVTSGHYPYWFQQKPGQAPRTLIYDTSNKHSWTPARFSGSLLGGKAALTLSGAQAEDEAEYYCLLSYSTTREFGGGTKLTVL,3.054682310349138,80.69681631959574,275.22235368958644,0.1090533,-2.333708767108565 +P907-A14-compact-ginger-fdb61,EVQLVESGGGLVQPGRSLRLSCTASGFTFGDYAMSWVRQAPGKGLEWVGFIRSKAYGGTTEYAASVKGRFTISRDDSKSIAYLQMNSLKTEDTAVYYCTRGVEDIVVVVAATPYYYYYMDVWGKGTTVTVSS,SYELTQPPSVSVSPGQTARITCSGDALPKQYAYWYQQKPGQAPVLVIYKDSERPSGIPERFSGSSSGTTVTLTISGVQAEDEADYYCQSADSSGTYQVVFGGGTKLTVL,3.401250550899694,81.2123871016545,285.0433675844268,0.15902525,3.352994038701541 +P907-A14-concave-pinot-66fc0,EVQLVESGGGLIQPGGSLRLSCAASGFSVSNSYMSWVRQAPGKGLEWVSFIYSGGSTYYADSVKGRFTISRDNSKNTLFIQMNSLRVEDTAVYYCARVSEYDFWTGQRYYFYYMDVWGKGTTVTVSS,QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVTNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSPLGVFGGGTKLTVL,2.9423921561388444,80.32748567415788,280.924736658583,0.12186782,-3.3103590871068422 +P907-A14-coped-modulation-43c25,EVQLLESGGRLVQPGGSLRLSCATSGFTFTSFAMTWVRRAPGKGLEWVSSIGGSGVRTYYADSVKGRFTISRDNSKNTVYLQMNSLRAEDTAIFYCAKFAPFWTTTDYDYYMDVWGKGTTVTVSS,SYVLTQPPSVSMAPGKTAKITCGGNNIGTKTVHWYQQKPGQAPLLVMYYDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYFCQVWDNTSGQPVFGGGTTLTVL,3.2233221907591014,81.10281404299289,284.58158492745895,0.13328075,1.8925160137972439 +P907-A14-crazy-bifocal-7c4f1,QVQLVQSGAEVKKPGASVNISCKASGYTFSDYFIHWVRQAPGQGLEWMGWINPDTGITKYAEKFQGRVSMTRDTSISTAHMALSRLRSDDTAVYYCAKDRVYSLDLWGQGTLVTVSS,NFMLTQPHSVSESPGKTVTIACTRSSGRIASNYVQWYQQRPGSAPTIVIYEDNQRPSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDSSWVFGGGTKLTVL,2.691737415461871,81.46517830397522,227.89292460878798,0.1985414,6.301268162998755 +P907-A14-dark-nucleus-4b90e,EVQLLESGGGLVQPGGSLRLSCAASGFTFSSFAMSWVRQAPGKGLEWVSGISGSGGSTYYADSVKGRFTISRDNSKNTLHLHMNNLRAEDTAVYYCASNWNFQHWGQGTLVTVSS,DVVMTQSPLSLPVTLGQPASISCRSSQSLVHSDGNAYLNWFQQRPGQSPRRLIYMVSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMHGTQLTFGGGTKVEIK,2.594620362440874,81.06079192421677,207.2898433185035,0.06357706,4.963852764754371 +P907-A14-decidable-application-a0de6,QLVESGGGVVRPGSSLRLSCASSGFTLSSYGMHWVRQAPGKGLDWVAVIWYDRSNVYYGDSVKGRFTISRDNSKNTVFLQMNSVRAEDTAVYYCARVKEQWLSRGGNSFDLWGQGTLVTVS,QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQFPGTAPKLLIYNNRNRPSGVPDRFSGSKSGSSASLAITGLQAEDAADYYCQSSDSSLSGSKVVFGGGTKLTVL,2.9756210872227435,80.70816243211662,283.772013983674,0.395652,12.23887691799826 +P907-A14-descriptive-cap-ed267,QLQLQESGPGRWKPSETLALRCSVFGPAIRNPSVYWGWIRQPPGKGLEWIGSIHYTGTTRYNPSLKTRVTISIDTSKNQFSLNLTSVTAADTAVYFCARHSQAVNAFDIWGHGTLV,QSVVTQTPSASGTPGQRVTISCSGSSSNIGDNFVSWYQHVPGTAPRLLVYMNNQRPSGVPDRFSGSKSGTSASLAISGLRAEDEAEYYCETWDDILDVVVFGGGSKVTVL,2.7839383322645714,81.57544312353517,206.32401221624292,0.2196359,13.900881411746346 +P907-A14-desert-purlin-53451,QVQLQQSGPGLVKPSQTLSLTCVISGDSVSSNSAAWNWIRQSPSRGLEWLGRTYDRSKWYNDYAVSVKGRITINPDTSKNQFSLQLTSVTPEDTAVYYCARDRGLAGHYYDSNVYYGAFDIWGQGTMVTVSS,DIQLTQSPSSLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPQLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQLNSYPPITFGQGTRLEIK,2.9300785409264387,80.73672514993268,267.7252609037345,0.31453055,-1.9164676628211716 +P907-A14-dynamic-home-0575d,EVQVVESGGGLVQPGGSLRLSCAVSGLSFSNYWMNWVRQAPGKGLEWVANIKPDGSQKYYVDSVKGRFTISRDDAKYSVYLQMNNLRAEDTAVYYCMTGGGYWGQGTLVTVSS,QAVVTQEPSLTVSPGGTVTLTCGSGTGGVTSGHYPYWFQQMPGQVPRTLIYDTGNKHSWTPARFSGSLLGGKAALTLSGAQPEDEAEYYCLLVYSGVVVFGGGTKLTVL,3.1317682961350033,81.33003487264665,246.89831418261886,0.24327493,10.699720331753607 +P907-A14-ecru-combat-e2619,EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYWMQWVRQDPGKGLVWVSRINSDGSRTNYADSVKGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCARGGYFDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASYLERGVPARFSGSGSGTDFTFTVSGLQPEDIATYYCQQYDNLPPTFGQGTKVEIK,2.6091912615683115,81.39117995330244,195.48037592809953,0.12783365,4.611458948262863 +P907-A14-ecru-deque-ba8c9,QITLKESGPALVKPTQTLTLTCTLSGFSVSTSGVGVGWIRQPPGKALEWLALIYWDDDKRYSPSLKNRLTITKDPSKNQVVLTMTNMDPVDTGTYYCAHRVYYSDRSSYPRRPRIPSAFDYWGQGTLVTVSS,DIQMTQSPSTLSASVGDRVTITCRASQGISEWLAWYQQRPGKAPNLLIYRASTLQSGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYYVYPYTFGQGTKLDIK,2.77557570573471,81.19613158065323,223.97637603895214,0.4215004,15.482979927697482 +P907-A14-faint-click-67ee5,QVQLMESGGGLVKPGGSLRLSCAVSGFTFSDYYMSWIRQAPGKGLEWVSYISIGSADTNYADSVRGRFTISRDDAKNSLYLQMNSLRADDAAVYYCRLYSNYDYYFDYWGQGTLVTVSS,DIQMTQSPSTLSASVGDRVTITCRASQSISSRLAWYQQKPGKAPKLLIYEASSLESGVPSRFSGSGSGTEFTLTITSLQPDDFATYYCQQYNSYSTWTFGQGTKVEIK,2.638739890524411,80.90817777907652,179.1281839033612,0.06672361,4.130289177445869 +P907-A14-fast-poset-8ec15,HVQLVESGGGLVKPGGSLRLSCAVSGFTVSDSYMFWIRQSPGKGLEWVAHISSADWVIYYSDSVKGRFFISKDHANNSLFLQMNSLRDDDTAVYYCARGSGLAGPLDVWGKGTTVTVSS,DVQMTQSPSSLSASVGDRVTITCRASQSISTYLHWYQHRPGKAPKLLIDTASSLHSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTHITFGQGTRLEIK,2.972986503950651,81.21468395086957,197.63174826566015,0.09593326,3.238943331159532 +P907-A14-fermented-cathedral-185ee,EVQLVESGGGLVQPGGPLRLSCVASEFTFSEYWMTWIRQAPGEGLEWVANIKGDGSVKYYVDSVEGRFTISRDNADSSLFLRMNSLRAEDTAMYYCVRDRNYHDRRTYYDVLDVWGPGTMVTVSS,AIQMTQSPSSLSASVGDRVTITCRASQGIRSDLGWYQQKAGKAPKLLIYSASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDFGTYYCLQDYNYPRTFGQGTKVEVK,2.5442964457721473,80.83191834473142,190.1062697446631,0.09976491,3.0338200236829698 +P907-A14-finite-pixel-1f5d2,QVQLHQWGAGLLKPSETLSLTCAVSGGSLSEDFWSWTRQSPGKGLEWLGEINHSGSTNYNASLRSRVTISVDASKNQFSLRLTSVTAADTAVYFCARRLTLVAHSFHNYMDVWGKGTPVTVSS,QSVLTQPPSVSGAPGQRVLISCTGSGSNIGAGYDVHWYQQVPGTAPKLLIYGNNYRPSGVPDRFSGSKSGPSASLAITGLRDEDEADYFCQSYDNKLSGVLFGGGTKLTV,3.2684805264368393,81.1835864103341,246.64217412901596,0.24810508,9.64756237342089 +P907-A14-frayed-particle-5e881,QVQLVQSGTEVKKPGASVIVSCKASGYNFRSFGISWVRQAPGQGLEWMGWISGYSGDTNYIQKLHDRVIMTTDTSTDTAYMELRSLTSDDTAVYFCARDDVGDGRNSDIHLRGDFEYWGQGTLVIVSS,DIQMTQSPSSLSASVGDRVTISCQASHDISDYINWYQQKPGKAPKLLIFDASNLETGVPSRFSGSGSGTDFTLTISSLQPEDIATYYCQQYDNLPLTFGGGTKVDMK,2.5511236620517677,81.19584815604462,246.298822620462,0.061972234,-4.985486985117451 +P907-A14-generous-property-c943a,QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWNWIRQHPGKGLEWIGEINQSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYFCARTLRATFVTGGQVHVWGQGTTVTVSS,EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPKLLIYATSSRATGIPDRFSGGGSGTDFTLTISRLEPEDFAVYYCHQYSGSPPDTFGQGTKLEIK,2.8655982580574473,81.59609536782928,284.99598612028416,0.2545167,10.443651186132184 +P907-A14-gentle-valid-12932,QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSFAISWVRQAPGQGLEWMGGIIPIYGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVFYCAIASMIADWYYGMDVWGQGTTVTVSS,DIQMTQSPSSVSASVGDRVTITCRASQGIASWLAWYQQNPGKAPKLLIYTASNLQGGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQTNSFPLTFGGGTKVEIK,3.2756882822920885,80.2515465089611,250.31162363480348,0.17968616,2.9919388964544975 +P907-A14-humongous-throw-52925,QVHLMQSGPELKKPGASVKVSCKASGYTFTDYGLTWVRQAPGQGLEWMGWISTYKGDTNYEQKFHHRVTLTTDTSTSTAYMELRSLRVDDTAVYYCARGLFGVLISKIRFSYYYMDVWGQGTTVTVSS,QSVVTQPPSASGSPGQRVTISCSGSSSNIGRNAVNWYQQLPGTAPKLLIYNNDQRPSGVPDRFSGSKSDTSASLAISGLQSEDEADYYCAAWDDGLNGRYVFGTGTKVAVL,3.0572959610897152,81.24184072940594,236.9906889048968,0.36542132,7.221060533604808 +P907-A14-icy-butter-8afa4,EVQVVESGGGLVKPGGSLRLSCAASGFTFTNAWVSWVRQAPGKGLEWVGRLRGKTGGGTRDYAAPVKGRFTISSDDSKVTLYLQMNSLKTDDTAVYYCITKNVPDWGQGTLVTVSS,QAVVTQEPSLTVSPGGTVTLTCDSSTGAVTSGHYPYWFQQKPGQAPKTLIYDTSNKHSWTPARFSGSLLGGKAALTLSGAQPEDEAEYYCLLSYSDARVFGGGTKLTVL,2.716463417387894,81.83843821145658,272.71181253478437,0.3344996,12.222394724340614 +P907-A14-immense-cone-377a5,QVQLVESGGGVIQPGRSLRLSCAASGFTFSSHVMQWVRQAPGKGLEWVTVISSDGSKKEYVDSVKGRFTISRDNSKNTVYLQMNSLRAEDTAVYYCARVDILIGFTDYWGQGTQVTVSP,DIQMTQSPSTLSASVGDRVTITCRASQSISHWLAWYQHKAGKAPTLLVYEASYLEGGVPSRFSGSGSGTEFTLTITSLQPDDFATYYCQHYNRHSWTFGQGTKVEIK,2.7384126314617596,81.18752806986387,242.2144715972207,0.19782005,-0.8755806283405957 +P907-A14-inscribed-type-583c0,QVLLEEAGPGLVKPSETLSLTCTVSRGSVSSSSYNWGWIRQTPGKGLEWIGSIYHSGTTYYNPSLRSRVTISADTSNERFSLNLSYVTAADTAVYYCARGTITIFGPFIDRGYYFDYWGQGILVTVPS,QSALTQPASVSGSPGQSITISCTGTSSDVGAYNYVSWYQLHPGKAPKLIIYDVTNRPSGISYRFSGSKSDNTASLTISGLQTEDEADYYCSSYTTGSTLLFGGGTKLTVL,3.467279001776162,81.07170181930174,222.85066752408434,0.28215995,1.8788719457771397 +P907-A14-iron-time-7d5d8,EVQLLESGGGLVQPGGSLRLSCAVSGFTFSNYAMTWVRQAPGKGLEWVSSITNSGGGTYYADSVKGRFTVSRDNSKSTLYLQLDSLRAEDTAVYYCASNLVHWGQGTLVTVSS,DIQMTQSPSSLSASVGDSVTITCRASQGISNFLAWFQQKPGKAPKSLIYAASTLQSGVPSKFSGSGSGTDFTLTISSLQPEDFATYYCQQYSSYPQTFGQGTKVEIK,2.8668290582538476,81.51120841723161,262.9356113394068,0.1292223,8.131274574636366 +P907-A14-khaki-cadet-37ddd,QVRLEQSGAEVKKPGASVKVSCEVFGYTLTKLSIHWVRQSPGKGLEWMGGFDPEDDETVYAQKFQGRVTMTKDTSTDTAYMELSSLRSEDTAVYYCATLTIFHMDVWGKGTTVTVSS,AIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPKLLIYAASNVQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCLQDYSYPWTFGQGTRVEIK,2.5501957233860013,81.10976890402395,247.45178281084821,0.14810732,2.1078540333451037 +P907-A14-khaki-goal-7976c,QLQLQQSGSRLLKPSQTLSVTCTVSGDSVDSGAHSWTWIRQPPGKGLEWIGYVSHSGVTYYVPSLRSRVTMSVDRSKKQVFLKVGSVTAADTAVYYCARGGWDYEDYVPNLDYWGQGTLLTVSS,QSVLTQPPSASGTPGQRVTISCSGSSSNIGNNAVNWYQHLPGTAPKLLIYTNNQRPSGVPDRFSGSKSDTSASLAISGLQSEDEADYYCATWDDSLYVLLFGGGTKLTVL,2.876374035713595,80.87148057597756,306.1734653128436,0.20780368,5.353855583419532 +P907-A14-late-coffee-b8f3d,EVQLVQSGAEVKKPGESLRISCKGSGYSFTSYWISWVRQMPGKGLEWMGRIDPSDSSANYSPSFQGHVTISADKSISTAYLQWSSLKASDTAVYFCMIFGAWGQGTLVTVSS,EIVLTQSPGTLSLSPGERATLSCRASQSVSSIYLAWYQQKPGQAPRLLIYGASSRATGTPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQHGSSPYTFGPGTKLEIK,2.752110212233258,81.70117408751999,187.29327200806577,0.15333582,0.8558034692850205 +P907-A14-linear-hadron-ab9f7,QVQLQQSGPGLVKPSQTLSITCDISGDSVSSNSAAWNWIRQSPSRGLEWLGRTYYKSKWYDDYAVSVKSRITINPDTSMNRFSLHLKSVTPEDAAVYYCARERVSMVRGIIMTYYGMDVWGQGTTVSVSS,QSELTQPPSASGTPGQRVTISCSGSSSNIGSYTVNWYQQLPGTAPKLLIHNDDRRPSGVPDRFSGSKSGTSASLAISGLQSDDEADYYCATWDDSLNGRVFGGGTKLTVL,2.755901839491203,81.27067915784997,243.63790060317967,0.33117762,5.400935596248091 +P907-A14-massive-bocaccio-47a3c,EVQLVQSGAEVKKPGESLRISCQGSGYTFTSYWIGWVRQMPGKGLEWMGITNPDDSDSRYSPSFQGLVTLSVDKSINAAYLQWSRLKASDTAIYYCARAQWDIVSPGNAFDIWGQGTRVTVSS,DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQKPGKAPKLLIYIVSTLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQTNTFPWTFGQGTKVEI,3.0221575821213884,81.20516657529504,212.35960198427605,0.14425175,-1.3390563954590133 +P907-A14-meek-buck-dae99,QVQLQQWGAGLLKASETLSLSCAVYGGSFSGYSWSWIRQPPGKGLEWIGEINDSETTTYDPSLKGRVTMSRDTSTNLFSLKLTSVTAADTAVYYCAITYFWGQGTVVTVSS,NFIMTQPHSVSESPEKTVTISCTRSSGSIASNYVQWYQQRPGSAPTTVIYEDKQRPSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYGRSGWVFGGGTRLTVL,2.8485972739087337,80.86022734843331,262.4769568139701,0.2432291,5.640900930199544 +P907-A14-messy-right-8c58c,EVQLVESGGGLVQPGGSLRLSCATSGFTFNRYWMSWVRQAPGKGLEWVANIDEHGSEKNYADYVKGRFTISRDNATTSLFLQMNSLRVEDSALYYCTLGDYWGQGTLVTVSS,SYELTQPSSVSVSPGQTATITCSGDVLAKRYARWFQQKPGQAPVLVIYKDSERPSGIPERFSGSSSGTTVTLTISGAQVEDEADYYCYSVPDNRWVFGGGTKLTVL,2.8993553155634,81.35195121414554,236.46653738146134,0.18570322,6.333573221059953 +P907-A14-metallic-liquidation-6b34d,EVQLVQSGAEVKKPGESLKISCKGSGYNFATYWIAWVRQMPGKGLEWMGIIYPADSDTTYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARRADYYDSSGDYLDAFDIWGQGTMVTVSS,QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSHTSSSSLGVFGTGTKVAVL,2.9331641537969406,81.23792157489041,210.58684709371693,0.21137983,1.0692526099782653 +P907-A14-metallic-pole-64d63,EVQLLESGGGLVQPGGSLRLSCEASGFTLSDYAMSWVRQTPGTGLVWVSTTGRVGDTYYADSVKGRFSISRDNSKNTMFLQMNGLRAEDTAVYYCARNIVPARSKWFDPWGQGTLVTVSS,ETVLTQSPATLSLSPGERATLSCRASRSVGNYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQHRDNLWTFGQGTNVE,2.6156814411244325,81.63551880165923,215.56291616523168,0.07379657,9.200283268249661 +P907-A14-mild-chick-b8732,EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSSISSSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAREGGSYYDILTGYYNGPPNWFDPWGQGTLVTVSS,EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWPPPITFGQGTRLEIK,3.277594168089729,80.84906310725897,193.96884385877516,0.19141783,0.12639188393534995 +P907-A14-mild-cider-93b9a,QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGTYHWSWIRQPAGKGLEWIGRIYTSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCASSGFYFDFWGQGTLITVSS,DIVLTQSPGTLSLSPGERATLSCRASQYVISSYLTWYQQKPGQAPRLLIYGASNRATGIPDRFSGSGSATDFTLTITRLEPEDFAVYYCQHYGSSAMYTFGQGTKLEIK,2.9195399089315948,80.79846531309843,279.75834418546583,0.22874276,7.841252343624203 +P907-A14-mild-territory-6277f,EVQLVQSGAEVKEPGESLRISCKGSGYSFTKSYITWVRQLPGKGLEWMGEIDPRDSYVNYSPSFQGHVTLSADNFITTAYLQWSSLRASDTAMYYCARRSDDYGDYYGRYFDYWGQGTLVTVSS,QSALTQPASVSGSPGQSITISCIGTSSDVGGYNYVSWYQQHPGKAPKLMIYAVTDRPSGVSDRFSGSRSGDTAHLTISGLQAEDEADYYCSSYVDNSALPLVFGGGTKLTVL,3.121066182002969,81.17732847305118,216.9246726978461,0.10102467,2.3345322032216935 +P907-A14-miniature-hill-eff2e,QVELHQWGAELLKPSETLSLTCAVYGGPLSGYYWSWIRQSPGKGLEWIGEIHHGGSANYNPSLKSRVAISTVTYKNQFSLKLTSVTAADTGVYYCAVGFNFHYYYMDVWGKGTTVIVSS,QSVLTQPPSVSAAPGQKVTISCSGGDSTIGNNYVSWFQLVPGTAPKLLIFDNNKRPSGIPDRFSGSRSGTSATLDITGVQTGDEADYHCGTWDSSLNSFVFGTGTFVTVL,3.180753864458035,80.7692384066562,259.6975823090252,0.25082713,15.14836899612104 +P907-A14-minty-mercury-75369,QGQLVQSASEVKKPGTSVTVSCKASGYSFTSHGVSWVRQAPGQGLEWIGWVSPKNQNTKYSQRFQGRVSMTTDTSATTAYMELRSLTSDDTGVYYCARDSPPMGLGMGEYFGAYYYGMDVWGQGTTVSVSS,LTQSPGTLSLSPGESATLSCRASQRMSSTYLAWYQQRPGQAPRLLMYGSSKRATGVPDRFSGFGSGTDFVLTINNLEPEDSAFYYCQQYGFSPFTHTFGQGTKLEI,3.294901987292149,81.73250311880167,321.3901693401075,0.16637225,1.815162047129428 +P907-A14-national-dataset-d6941,EVQLLESGGDLVHPGGSLRLSCVVSGFTFDTQAFAWIRQAPGKGLEWVSGITGDTGATYYADAVRGRFTLSRDNSKKTLYLQMNDLRVEDTALYYCARYDYIGRLKASFGLWGRGALVTVSS,SYELTQAPSVSVSPGQTANITCSEDTLGDKYVSWYQQKSGQSPILVIFQDSKRPSGISERFSGSNSGNTATLTISGAQAMDEADYSCQVWDNGLVRVVFGGGTKLTVL,3.043338842586183,80.71364458302261,243.3623349341388,0.10433718,5.9492822911224525 +P907-A14-navy-channel-87ace,EVQLVESGGGLVQPGRSLRLSCEASGFSFNDYTMHWVRQAPGKGLEWVSGISWNSGSIGYADSVKGRFIISRDNAKNSLYLHINSLKVEDTAFYYCAKDIPLDSWGQGTLVTVSS,EIVLTQSPATLSLSPGERATLSCRASRSVNDYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISNLEPEDFAVYYCQQRSDWFKFTFGPGTKVDIK,2.738807402737725,81.34878952145019,197.8610861243865,0.06871177,2.4751596226917747 +P907-A14-nearest-interference-9055c,EVQLVQSGAEVKKPGESLRISCKGSGYSFTNYWITWVRQMPGKGLEWMGRIDPSDSYTNYSPTFQGHVTFSADKSNSTAYLQWSSLEASDTAMYYCARQGLDVWGQGTTVTVSS,QSALTQPPSASGSPGQSVTISCTGTSSDVGRSNYVSWYQQHPGKAPKLMIYEVSKRPSGVPDRFSGSKSGNTASLTVSGLQADDEADYYCSSYAGSNKVFETGTKVTVL,2.7296528331837524,81.40253289749117,247.00135803061374,0.066299364,2.6716638703895037 +P907-A14-obvious-character-128dd,EVQLLESGGGLVQPGGSLRLSCAGSGFTFSSYAMNWVRQAPGKGLEWVSAIDNIGSSIYYADSVKGRFTISRDNSKNTLHLQMTSLRAEDTAIYYCGRGGGVGATMVEYWGQGSQVTVSS,SYVLTQPPSVAVAPGKTATITCGGNNIESKSVHWYQQKPGQAPVLVISFDADRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSNSDHRVFGGGTKLTV,3.017294275212508,81.46138318247394,271.4530566182434,0.16857351,5.591902949103844 +P907-A14-plain-trombone-db73c,EVQLMESGGALVQPGGSLRLSCVVSGFTVSTNYMSWVRQARGKGLEWVSAIDVGGSTFYADSVKGRFTISRDNSKNTLYLQMNSLRVEDTAVYYCARDRIAIFSWGKGTTVTVSS,QSVLTQPRSASGTPGQRVTISCSGSSSNIGSNTVHWYQQLPGTAPKLLIYNNDQRPSGVPGRFSGSKSGTSASLAISGLQSEDEADYYCASWDDSLNGLFGGGTKLTVL,2.9398259756468157,81.33457808593467,281.8932319102032,0.1308279,13.224385131767576 +P907-A14-pointed-bud-b2840,EVQLLESGGGLVQPGGSLRLSCAASGFTFSSHAMSWVRQAPGKGLEWVSIISIRGDITYYADSVKGRFTISRDNSKNTLILQMNSLRADDTGVYYCAKPRGENIGRLGVDYWGQGTLVTVSS,AIQLTQSPSSLSASVGDRVTITCRASQGISSALAWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFNTYPITFGQGTRLEIK,2.6008498751247515,81.90482207913958,229.4457140200029,0.0082905125,-1.8775567983075185 +P907-A14-random-borzoi-de6fb,EVQVVESGGGLIQPGGSLRLSCAASGFTVSSSYMGWVRQAPGKGLAWVSLFYSDTTGGATYYADLVKGRFTISRDRSKNTLDLQMNNLRAEDTALYYCAGHSRVYGSPAFDFWGQGTMVTVSS,DIQMTQSPSSLSASVGDRLTITCRASQSIRSYLNWYQQKPGKAPKLLISAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSIPLTFGGGTKVVIK,2.788636680684081,81.29779499012169,263.58641383741383,0.29029799,11.437481054749721 +P907-A14-rectilinear-layout-04495,EVQLVESGGGLVQPGGSLRLSCAGSGFIFSSYEVNWVRQAPGKGLEWISYITESGNVIFYADSVKGRFTISRDNAKSSVYLQMNSLRVDDTAVYFCARMGEWNLRLGDPYYHAMDVWGQGTRVTVSS,DVQMTQSPSSLSASVGDRVTITCRASQSISPYVNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFNKRGFGGGTKVEIK,3.0205575007142986,81.70062709105429,197.57950349443078,0.1542175,-0.10095056730398558 +P907-A14-reduced-withdrawal-f4e86,VQLVESGGGLVEPGGSLRLSCAASGFTFSNSDMNWVRQAPGKGLEWVSGVSWNGSRTHYADSVKGRFIISRDNSRNFLYQQMNSLRPEDMAVYYCVKVVTTEWGQGTLVTVSS,SYMLTQPPSVSVAPGKTARITCGGNNIGSKSVHWYQQKPGQAPVLVIYYDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSNSDHPVFGTGTKVTVL,2.841510817251796,81.03428889380122,214.69514320436718,0.106409654,9.296089936909752 +P907-A14-regional-tray-5f973,QVQLVESGGGLVKPGGSLRLSCTASGFIFGDHYMSWIRQAPGKGLEWVSYITSSSSYTNYADSVKGRFTISRDNAKKSLFLQMNSLRAEDTAVYYCARVESVVVPIAGNWFDSWGQGTLVTVSS,SYELTQPPSVSVSPGQTASITCSGDKLGNKYVSWYQQRPGQSPVLVIYQDDKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSPVVFGGGTKLTVL,3.1533758665467984,81.4543706221372,276.9738583809782,0.29191482,5.944436320278538 +P907-A14-rigid-product-5d155,QLQLQESGPGLVKPSETLSLTCSVSGGSISTSPYYWGWIRQPPGKGMEWIGTINYRGTTFHNPSLTSRVTLSVDPSKNQFSLRLNSVTAADTAVFYCARLAEDYRSSSGFPRGYYFDYWGQGILVTVSS,EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWHQQKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNTWPPVYTFGQGTKLEIK,2.9181681177952603,80.60311805420388,263.1360489237073,0.34541732,1.157593594658969 +P907-A14-rowdy-restaurant-852e1,QVQLQESGPGLVKPSETLSLTCTVSGGSVSSGSYYWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARDNSFDPSDAVRDYYYYYMDVWGKGTTVTVSS,QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAGWVFGGGTKLTVL,3.0932204020187055,80.39789943159735,223.51466272023163,0.39078927,0.6478745160118395 +P907-A14-rubbery-disk-fc338,QVQVVESGGGVVQPGGSLRLSCVASGFTFSTSGMHWVRQAPGKGLEWVAFIHYHGGEIDYVDSVKGRFTISRDNSMNTLYLQMDSLNVEDTAIYSCARDVRGLPFDIWGQGTRVTVSS,DLQMTQSPSSLSASVGDRVSITCRASQGIRNFLAWYQQKPGKVPQLLIYGASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQKYDTAIRTFGQGTKVEIK,2.6617317263445464,81.4365909387509,206.70407170396,0.10187199,5.2899376516598595 +P907-A14-salty-developer-1a97c,LQLQESGPGLVRPSETLSLTCSVSGGSISSSDHLWGWIRQPPGKGLQWVGSIYYTGRTYDNPSLRGRLTISVDTSRNQFSLRLNSVTAADTAVYYCARHDEARPYFYRSSGYFDMWGQGTVLTVSS,QSVLTQPPSVSGAPGQRVTISCAGTSSDIGAGYDVHWYQHLPGTAPKLLIYGDNNRPSGVPDRFSGSKSGASASLAITGLQVEDEAEYYCQSYDSSLSGSWVFGGGTKLTV,2.980045649731173,80.9243169184431,230.8095801841692,0.11532412,14.115974717217219 +P907-A14-salty-flunky-7a230,QVQMVESRGGVVQPGRSLRLSCAASGFTFSSYAIHWVRQAPGKALDWVALISYNGNDKYYADSVKGRFTVSRDNSKNTLYLQMNSLRGEDTAVYYCARGGIQITVTTSLRPAYFYYMDVWGKGTTVTVSS,YELTQPPSVSVSPGQTARITCSGDALSKQYAYWYQQKPGQAPVMVIYKDTERPSGIPERFSGSSSGTTVTLSISGVQAEDEADYYCQSTDSSTIYVLFGGGTKLTVL,2.8032142278381604,81.92274361475133,251.09011887405254,0.16978699,9.403406336140954 +P907-A14-salty-sledder-a9417,QLQLQESGPGLVKASETLSLSCTVSGGSINTASYYWGWIRQPPGKGLEWIGSIFYNGYTQYNPSLKSRVTMSIATSKNQFSLKLTSVTAADTALYYCARSTWYFDSWGQGTLVPVSS,QSVLTQPPSVSAAPGQKVTISCFGGSSNLGKNYVSWYQQFPGMAPKLLMYENNKRPSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLNNFVFGTGSKVTVL,3.198104758855424,80.61390838731572,254.8009923879449,0.35124972,19.126700897090174 +P907-A14-selfish-bungalow-dd3f4,QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWIRQAPGKGLEWVSYISSSSSYTNYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDFTDVWGKGTTVTVSS,DVVMTQSPLSLPVTLGQPASISCRSSQSLVYSDGNTYLNWFQQRPGQSPRRLIYKVSNRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPYTFGQGTKLEIK,2.5797308388457076,81.42438506920345,253.63955828819982,0.2152607,4.2671478968299414 +P907-A14-sharp-quanta-4ca51,HLAQSGGGVVQPGRSLTLSCAASGFTFASSDMHWIRQGPGKGLEWVAVISFTGETKNYADSVRGRFTISRDNSRSTLHLQMYGLRADDTAVYYCASGPHHSGSGTYYPSYLYGWGPGAPVTVSS,EIEMTQSPATLSVSPGETATLSCRASQSIRSNLAWYQQKPGQAPRLLIYGASTRATGIPGRFSGSGSGTEFTLTISSLQSEDFVVYYCQQYDEWPPLTFGGGTKVEIK,2.8168382196612045,80.92212585811339,294.2805328107976,0.14144312,0.2956317493022762 +P907-A14-shrewd-data-9aba8,QVQLQESGPGLVKPSETLSLTCSVSGGSISRSYWSWIRQPPGQGLEWIGYIYDSGSTNYNPSLKSRVTISVDTSKNQFSLKLNSVTAADTAVYYCARRIREAFDIWGQGTMVTVSS,DIQMTQSPSSLSASVGDRVSITCRASQSIRSYLNWYQQKPGKAPKLLMYVASSLQSGVPSRFSGSGSGTDFTLTIRSLQPEDFATYYCQQSYSTPYTFGQGTKLQIK,2.3163920620844234,81.82479026934965,206.51694532042293,0.32275957,16.598497334978056 +P907-A14-skinny-tab-c6558,QAQLVQSGAEVKKPGASVKVSCKASGFIFTMFGISWVRQAPGQGLEWMGWISAYNGDTKYAQKFQGRITVTTDKSTSTAYLHLKSLTRDDTAVYYCARAYDSLDVWGPGTTVTVSS,EIVLTQSPATLSVSPGERVTLSCWASQTVSTNFAWYQQKPGQAPRLLIYGASTRATGIPERFTGSGSGTDFTLTITSLQSEDFAVYYCQQYNDWPALTFGGGTKVEI,2.93026954789388,81.77719653843793,270.6327169649192,0.22958253,9.508087319786117 +P907-A14-speedy-bandwidth-545ec,EVQLVQSGAEVKKPGESLRISCKGSGYSFTSYWISWVRQMPGKGLEWMGKIDPSDSYTNYSPSFQGHVTISADKSISTAYLQWSSLKASDTAMYYCARHSRGGSSYWFDPWGQGTLVTVSS,QTVVTQEPSFSVSPGGTVTLTCGLRSGSVSTSYYPSWYQQTPGQAPRTLIYNTNTRSSGVPDRFSGSILGNKAALTITGVQADDESDYYCVLYMGSGISVFGGGTKLTVL,2.912245352842238,79.76818354464635,253.7852935848141,0.34943253,8.60539169098403 +P907-A14-stone-latency-99dcd,QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWIRQAPGKGLEWVSYISSTSSYTKYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTSVFYCARLLEPTYYDILTGSNGYYFDYWGQGTLVTVSS,QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYENNKRPSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWESSLSAVVFGGGTKLTVL,3.2908822059243255,80.4076573299572,239.9501548093297,0.42010567,-2.4996680912160256 +P907-A14-straight-omelette-3de59,EVQLLESGGGLVQPGGSLRLSCAASGFTFSNSAMSWVRQAPGKGLEWVSGIGGSGRTTYYAESVKGRFTISRDNSNNTLYLQMNSLRAEDTAFYYCAKDGRGLSIFGVLTPYYFDYWGQGALVTVSS,QSALTQPASVAGSPGQSITISCTGTSSDVGGYNYVSWYQHHPGKAPKLIIYDVIYRPSGVSDRFSASKSGNTASLTISGLQTEDEADYYCSSYTSNSTPFVFGTGTKVTVL,3.2492783026379355,81.59250230146851,299.32015501829017,0.17919713,8.048953049452553 +P907-A14-succulent-raisin-910a8,EVHLVESGGGLVKPGGSLRLSCAASGFTFRNYSMNWVRQAPGKGLEWVSSISNSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARTSDTWGQGTLVTVSS,DVVMTQSPLSLPVTLGQPASISCRSSQNLVHRDGNTYLTWLQQRPGQSPRRLIYKVSKRDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQGTQWPPAFGQGTKVEIK,2.3622647214249244,81.11706626723824,238.8910062287723,0.27169368,15.71169814289323 +P907-A14-swarm-arpeggio-73992,QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWIWIRQPPGKGLEWIGEINHSGGTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAMYYCARLKSRSSWAAFDIWGQGTMVSVSS,QAGLTQPPSVSKGLRQTATLTCTGNTNNVGNQGAAWLQQHQGHPPKLLSYRNNNRPSGISERVSASRSGNTASLTITGLQPEDEADYYCSAWDSSLSAWVFGGGTKLTVL,2.654526825034157,81.14903919078004,280.44426151486533,0.3078488,13.226202234124813 +P907-A14-syrupy-pentatonic-39802,QVQLVDSGGGVVQPGRSLRLSCAASGFTFSDYAFHWVRQAPGKGLQWVTFMSYDGSKKFYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCARDNLQMGILTAIGVVDHWGQGTLVTVSS,SYVLTQPPSVSVAPGQTARITCGGNNIRSKSVHWYQQKPGQAPVLVVSDDIARPSGIPDRFSASNSGNTAALTISRVDGGDEADYFCQVWDSNTEHVVFGGGTKLTVL,2.817226565525597,81.3480840649602,259.60445126719793,0.23094717,2.089828685305196 +P907-A14-taxonomic-peninsula-32674,EVQLVESGGGLVQPGRSLRLSCAASGFTFDDSAMHWVRQAPGKGLEWVSGISWNSGSIGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYYCAKDTDFSGYYYYMDVWGKGTTVTVSS,QSALTQPPSVSGSPGQSVTISCTGTSSDVGSYNRVSWYQQPPGTAPKLMIYEVNNRPSGVPDRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTFYVFGTGTKVTVL,2.9974366543876885,81.53825778569269,323.457552276347,0.12982464,-2.1471292674115103 +P907-A14-timid-gang-841a7,QEQLVESGGGVVQPGRSLRLSCAASGFTFRTFAIHWVRQVPGKGLEWVAVISYDGSNEYYSDSVKGRFTISRDNSKNTLYLQMNSLRAEDTALYYCARDWGGYSHFAYYSYMDVWGKGTTVTVSS,QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYVNDKRPSGIPDRFSGSRSGTSATLAITGLQTGDEADYYCGTWDSSLSTGVFGGGTKLTVL,3.182137907272506,80.98318762719396,277.85570191080427,0.14179948,1.6428458929211116 +P907-A14-tiny-cover-b07ec,QVRLVESGGGAVQPGESLRLSCAASGFTFRNYPMQWVRHAPGRGLEWVGYIRSDGSNAYYGDSVKGRFTISRDNSNNIVFLQMDSLRLEDTAIYFCAKEDWGLPRDWGQGTRVTVSS,AIQMTQSPSSLSASVGDRVTITCRASQGVRNTLGWFQQKPGTAPKLLVYEASSLPSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCLQNYNYPYTFGQGTKLEI,2.5921568744893877,81.06271104020729,261.6374121742784,0.17463589,5.073012915666619 +P907-A14-trite-leaf-1fefb,EVKLVESGGGFVQPGGSLRLSCAASGFTFSGYWMTWVRQAPGKGLEWVANIKYDGSEKYYVDSVKGRFTISRDNAENSLYLQVDNLRAEDTAVYSCARGRDIDFWGQGTLVSVSS,SYELTQPSSVSVSPGQTARITCTGDVVAKKFTRWFQQKPGQAPIVLIYRDSERPSGIPDRFSGSSSGTTVTLTISEAQVEDEADYYCYSAAENNIWVFGGGTKLTVL,2.717059269494246,81.28451033295673,230.61247872719306,0.21506494,3.9242509218630564 +P907-A14-unary-estuary-9ae8d,EVQLVESGGGLVQPGGSLRLSCAASGFTFSRYWMSWVRQAPGKGLEWVANIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARASYDFWSGYYEPKKSATYAFDYWGQGTLVTVSS,DIQLTQSPSTLSASVGDRVTITCRAARSINGWVAWYQQKPGKAPKPLIFKASSLGSGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYQSLSVRTFGQGTKVDIK,3.0928219867041484,80.94876638689479,227.88312353256504,0.32579243,14.758424920908936 +P907-A14-undirected-hull-8daff,QMQLVQSGAEVRKPGASVKVSCKASGYTFTGHYIHWVRQAPGRGPEWMGWINPNSGGTNSSQSFQGRVTMTRDTSISTAYMELSRLTSDDTAVYSCARARYGDYYYFDSWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQDISSYLAWYQQKPEKAPKSLIYAASSLQGGVPSRFSGSGSGTHFTLTISSLQPEDFATYYCQQYYSYPVTFGPGTKVDIK,2.7506581662407767,81.17416318567368,276.9351791531165,0.21208258,3.9693053582397715 +P907-A14-vain-bucket-0f231,QVQLQQWGAGLLKPSETLSLTCAVYNGSSSAHYWSWVRQPPGKGLEWIGEISHGGSTTYNPSLKGRVSISVDTPKNQFSLNLSSVTAADTAVYYCATRAIHFRNRNFYSFYVEVWGKGTTVTVSS,EIVLTQSPGTLSLSPGERATLSCRASQSVSSSKLVWYQQRPGQAPRPLIYGASSRATGIPDRFSGSGSETDFTLTISWLEPEDFAVYYCHQYGSSPRTFGQGTKVEIK,2.7020799083086398,80.93544646276328,224.18768698495487,0.4026475,14.099382912060124 +P907-A14-wintry-couple-24188,QVQLQQWGAGLLKPSETLSVTCAVYGGSFIGSSWIWIRQPPEKGLEWIGEINHGGSTTYNPSLKSRVTISLDMSKNQFSLNLTSVTAADTAVYYCATDRGSLAAVDWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQAISSYLAWYQQKPGKVPKLLIYAASTLQSGVASRFTGSGSGTDFTLTISSLQPEDVATYYCQKYNSAPRTFGQGTRVEIK,2.7506458817072037,81.78795311357752,252.61053997297893,0.2604791,5.218066886983008 +P907-A14-witty-fugue-86932,EVQLVESGGGLVQPGRSLRLSCTASGFTFGDYAMNWVRQAPGKGLEWLGFIESKGYGGTTEYAASVKGRFIISRDDSKSIAYLQMNSLKTEDTAVYYCTPGDYWGQGTLVTVSS,SYELTQPPSVSVSPGQTARITCSGDALPKKYAYWYQQKSGQAPVQVIYEDSGRPSGIPERFSGSSSGTMATLTISGAQVEDEADYYCYSIDSSGNHRVFGGGTKLTVL,2.7286908881458114,81.31576612592696,287.6256201017182,0.06598598,2.7477269357990646