|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "1404febd-e901-4848-bcfd-ec8fbce5d8af", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Requirements" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "code", |
| 13 | + "execution_count": 1, |
| 14 | + "id": "a30061dd-7f54-4460-8275-cf1308d91298", |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [], |
| 17 | + "source": [ |
| 18 | + "import numpy as np\n", |
| 19 | + "import pandas as pd" |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "markdown", |
| 24 | + "id": "261228ea-1a51-4b6b-ad04-f7fd65a0e6b2", |
| 25 | + "metadata": {}, |
| 26 | + "source": [ |
| 27 | + "# Data set" |
| 28 | + ] |
| 29 | + }, |
| 30 | + { |
| 31 | + "cell_type": "markdown", |
| 32 | + "id": "34919a23-95f8-4457-adb6-c5704b1a3dfc", |
| 33 | + "metadata": {}, |
| 34 | + "source": [ |
| 35 | + "For benchmarking, we create a dataaframe with a size of the order of several 100 MB." |
| 36 | + ] |
| 37 | + }, |
| 38 | + { |
| 39 | + "cell_type": "code", |
| 40 | + "execution_count": 5, |
| 41 | + "id": "4345388c-14a8-4877-ae42-80ae4d7256d1", |
| 42 | + "metadata": {}, |
| 43 | + "outputs": [], |
| 44 | + "source": [ |
| 45 | + "nr_rows = 10_000_000\n", |
| 46 | + "df = pd.DataFrame({\n", |
| 47 | + " 'A': np.random.normal(size=(nr_rows, )),\n", |
| 48 | + " 'B': np.random.randint(1, high=5, size=(nr_rows, )),\n", |
| 49 | + " 'C': np.random.normal(size=(nr_rows, )),\n", |
| 50 | + "})" |
| 51 | + ] |
| 52 | + }, |
| 53 | + { |
| 54 | + "cell_type": "code", |
| 55 | + "execution_count": 6, |
| 56 | + "id": "4c56752e-4d0b-4ca1-ad5a-917a8473921d", |
| 57 | + "metadata": {}, |
| 58 | + "outputs": [ |
| 59 | + { |
| 60 | + "name": "stdout", |
| 61 | + "output_type": "stream", |
| 62 | + "text": [ |
| 63 | + "<class 'pandas.core.frame.DataFrame'>\n", |
| 64 | + "RangeIndex: 10000000 entries, 0 to 9999999\n", |
| 65 | + "Data columns (total 3 columns):\n", |
| 66 | + " # Column Dtype \n", |
| 67 | + "--- ------ ----- \n", |
| 68 | + " 0 A float64\n", |
| 69 | + " 1 B int64 \n", |
| 70 | + " 2 C float64\n", |
| 71 | + "dtypes: float64(2), int64(1)\n", |
| 72 | + "memory usage: 228.9 MB\n" |
| 73 | + ] |
| 74 | + } |
| 75 | + ], |
| 76 | + "source": [ |
| 77 | + "df.info()" |
| 78 | + ] |
| 79 | + }, |
| 80 | + { |
| 81 | + "cell_type": "markdown", |
| 82 | + "id": "dac76fc6-96cb-48b0-86b6-a778bd84f9c7", |
| 83 | + "metadata": {}, |
| 84 | + "source": [ |
| 85 | + "# Formats" |
| 86 | + ] |
| 87 | + }, |
| 88 | + { |
| 89 | + "cell_type": "markdown", |
| 90 | + "id": "d0d27f4e-dcfa-4304-9f04-8a973ecb0cd5", |
| 91 | + "metadata": {}, |
| 92 | + "source": [ |
| 93 | + "## CSV" |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "cell_type": "markdown", |
| 98 | + "id": "b79fa01d-98e2-4ce5-bf92-75b392844499", |
| 99 | + "metadata": {}, |
| 100 | + "source": [ |
| 101 | + "CSV has the advantage that it is human-readable, but it is neither fast, nor compact." |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "code", |
| 106 | + "execution_count": 14, |
| 107 | + "id": "c4e517a3-40e3-4024-870b-328f61418113", |
| 108 | + "metadata": {}, |
| 109 | + "outputs": [ |
| 110 | + { |
| 111 | + "name": "stdout", |
| 112 | + "output_type": "stream", |
| 113 | + "text": [ |
| 114 | + "27.3 s ± 197 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" |
| 115 | + ] |
| 116 | + } |
| 117 | + ], |
| 118 | + "source": [ |
| 119 | + "%timeit df.to_csv('data.csv')" |
| 120 | + ] |
| 121 | + }, |
| 122 | + { |
| 123 | + "cell_type": "code", |
| 124 | + "execution_count": 12, |
| 125 | + "id": "fca2b3cd-6876-490f-a05a-8532428cb9fe", |
| 126 | + "metadata": {}, |
| 127 | + "outputs": [ |
| 128 | + { |
| 129 | + "name": "stdout", |
| 130 | + "output_type": "stream", |
| 131 | + "text": [ |
| 132 | + "2.71 s ± 14.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" |
| 133 | + ] |
| 134 | + } |
| 135 | + ], |
| 136 | + "source": [ |
| 137 | + "%timeit pd.read_csv('data.csv')" |
| 138 | + ] |
| 139 | + }, |
| 140 | + { |
| 141 | + "cell_type": "code", |
| 142 | + "execution_count": 15, |
| 143 | + "id": "b5848d82-0e90-415f-b8cb-a30d014dd0b1", |
| 144 | + "metadata": {}, |
| 145 | + "outputs": [ |
| 146 | + { |
| 147 | + "name": "stdout", |
| 148 | + "output_type": "stream", |
| 149 | + "text": [ |
| 150 | + "-rw-r--r-- 1 gjb gjb 469M Sep 14 14:44 data.csv\n" |
| 151 | + ] |
| 152 | + } |
| 153 | + ], |
| 154 | + "source": [ |
| 155 | + "!ls -hl data.csv" |
| 156 | + ] |
| 157 | + }, |
| 158 | + { |
| 159 | + "cell_type": "markdown", |
| 160 | + "id": "e95718de-703c-475d-8253-2f95b77eeae0", |
| 161 | + "metadata": {}, |
| 162 | + "source": [ |
| 163 | + "## Parquet" |
| 164 | + ] |
| 165 | + }, |
| 166 | + { |
| 167 | + "cell_type": "markdown", |
| 168 | + "id": "e8498aa0-c1d4-4d58-99f8-8a7e98d73240", |
| 169 | + "metadata": {}, |
| 170 | + "source": [ |
| 171 | + "Parquet is a binary column-store format that has significantly better performance than CSV." |
| 172 | + ] |
| 173 | + }, |
| 174 | + { |
| 175 | + "cell_type": "code", |
| 176 | + "execution_count": 9, |
| 177 | + "id": "52480aeb-46bb-499e-8168-13113e9e1b6f", |
| 178 | + "metadata": {}, |
| 179 | + "outputs": [ |
| 180 | + { |
| 181 | + "name": "stdout", |
| 182 | + "output_type": "stream", |
| 183 | + "text": [ |
| 184 | + "477 ms ± 19.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" |
| 185 | + ] |
| 186 | + } |
| 187 | + ], |
| 188 | + "source": [ |
| 189 | + "%timeit df.to_parquet('data.parquet')" |
| 190 | + ] |
| 191 | + }, |
| 192 | + { |
| 193 | + "cell_type": "code", |
| 194 | + "execution_count": 13, |
| 195 | + "id": "f5602f34-a762-4ba9-b42c-1b8525d55ab4", |
| 196 | + "metadata": {}, |
| 197 | + "outputs": [ |
| 198 | + { |
| 199 | + "name": "stdout", |
| 200 | + "output_type": "stream", |
| 201 | + "text": [ |
| 202 | + "162 ms ± 8.13 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" |
| 203 | + ] |
| 204 | + } |
| 205 | + ], |
| 206 | + "source": [ |
| 207 | + "%timeit pd.read_parquet('data.parquet')" |
| 208 | + ] |
| 209 | + }, |
| 210 | + { |
| 211 | + "cell_type": "code", |
| 212 | + "execution_count": 16, |
| 213 | + "id": "2887b86c-cbe5-4b9e-a1aa-4d9bcb36533b", |
| 214 | + "metadata": {}, |
| 215 | + "outputs": [ |
| 216 | + { |
| 217 | + "name": "stdout", |
| 218 | + "output_type": "stream", |
| 219 | + "text": [ |
| 220 | + "-rw-r--r-- 1 gjb gjb 156M Sep 14 14:37 data.parquet\n" |
| 221 | + ] |
| 222 | + } |
| 223 | + ], |
| 224 | + "source": [ |
| 225 | + "!ls data.parquet -lh" |
| 226 | + ] |
| 227 | + }, |
| 228 | + { |
| 229 | + "cell_type": "markdown", |
| 230 | + "id": "24195119-7729-4e78-8825-464cb29d5b91", |
| 231 | + "metadata": {}, |
| 232 | + "source": [ |
| 233 | + "Parquet files are also more compact than their CSV counterparts." |
| 234 | + ] |
| 235 | + }, |
| 236 | + { |
| 237 | + "cell_type": "markdown", |
| 238 | + "id": "25b751c0-9041-4fd5-aadb-ab4f28f3164d", |
| 239 | + "metadata": {}, |
| 240 | + "source": [ |
| 241 | + "## Feather" |
| 242 | + ] |
| 243 | + }, |
| 244 | + { |
| 245 | + "cell_type": "code", |
| 246 | + "execution_count": 17, |
| 247 | + "id": "0993c371-7f68-4f9f-94ea-d8bfce8ff8bd", |
| 248 | + "metadata": {}, |
| 249 | + "outputs": [ |
| 250 | + { |
| 251 | + "name": "stdout", |
| 252 | + "output_type": "stream", |
| 253 | + "text": [ |
| 254 | + "473 ms ± 6.88 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" |
| 255 | + ] |
| 256 | + } |
| 257 | + ], |
| 258 | + "source": [ |
| 259 | + "%timeit df.to_feather('data.feather')" |
| 260 | + ] |
| 261 | + }, |
| 262 | + { |
| 263 | + "cell_type": "code", |
| 264 | + "execution_count": 18, |
| 265 | + "id": "a88829b3-dcf0-4cd8-a99c-beaf14b0c6de", |
| 266 | + "metadata": {}, |
| 267 | + "outputs": [ |
| 268 | + { |
| 269 | + "name": "stdout", |
| 270 | + "output_type": "stream", |
| 271 | + "text": [ |
| 272 | + "201 ms ± 16.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" |
| 273 | + ] |
| 274 | + } |
| 275 | + ], |
| 276 | + "source": [ |
| 277 | + "%timeit pd.read_feather('data.feather')" |
| 278 | + ] |
| 279 | + }, |
| 280 | + { |
| 281 | + "cell_type": "code", |
| 282 | + "execution_count": 19, |
| 283 | + "id": "57311621-fed5-4947-af2d-5c5fec5f207c", |
| 284 | + "metadata": {}, |
| 285 | + "outputs": [ |
| 286 | + { |
| 287 | + "name": "stdout", |
| 288 | + "output_type": "stream", |
| 289 | + "text": [ |
| 290 | + "-rw-r--r-- 1 gjb gjb 175M Sep 14 14:56 data.feather\n" |
| 291 | + ] |
| 292 | + } |
| 293 | + ], |
| 294 | + "source": [ |
| 295 | + "!ls -hl data.feather" |
| 296 | + ] |
| 297 | + } |
| 298 | + ], |
| 299 | + "metadata": { |
| 300 | + "kernelspec": { |
| 301 | + "display_name": "Python 3 (ipykernel)", |
| 302 | + "language": "python", |
| 303 | + "name": "python3" |
| 304 | + }, |
| 305 | + "language_info": { |
| 306 | + "codemirror_mode": { |
| 307 | + "name": "ipython", |
| 308 | + "version": 3 |
| 309 | + }, |
| 310 | + "file_extension": ".py", |
| 311 | + "mimetype": "text/x-python", |
| 312 | + "name": "python", |
| 313 | + "nbconvert_exporter": "python", |
| 314 | + "pygments_lexer": "ipython3", |
| 315 | + "version": "3.8.11" |
| 316 | + } |
| 317 | + }, |
| 318 | + "nbformat": 4, |
| 319 | + "nbformat_minor": 5 |
| 320 | +} |
0 commit comments