Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

TypeError: RandomNumberGenerator._generator_ctor() takes from 0 to 1 positional arguments but 2 were given #506

Open
dmitryponv opened this issue Jul 17, 2024 · 0 comments
Assignees

Comments

@dmitryponv
Copy link

dmitryponv commented Jul 17, 2024

Currently throwing error in Training_torch collab notebook
on Line train(progress_fn=progress)

"TypeError: RandomNumberGenerator._generator_ctor() takes from 0 to 1 positional arguments but 2 were given"


TypeError Traceback (most recent call last)
in <cell line: 24>()
22 plt.show()
23
---> 24 train(progress_fn=progress)
25
26 print(f'time to jit: {times[1] - times[0]}')

5 frames
in train(env_name, num_envs, episode_length, device, num_timesteps, eval_frequency, unroll_length, batch_size, num_minibatches, num_update_epochs, reward_scaling, entropy_cost, discounting, learning_rate, progress_fn)
67 episode_length=episode_length,
68 backend='spring')
---> 69 env = gym_wrapper.VectorGymWrapper(env)
70 # automatically convert between jax ndarrays and torch tensors:
71 env = torch_wrapper.TorchWrapper(env, device=device)

/usr/local/lib/python3.10/dist-packages/brax/envs/wrappers/gym.py in init(self, env, seed, backend)
114 obs = np.inf * np.ones(self._env.observation_size, dtype='float32')
115 obs_space = spaces.Box(-obs, obs, dtype='float32')
--> 116 self.observation_space = utils.batch_space(obs_space, self.num_envs)
117
118 action = jax.tree.map(np.array, self._env.sys.actuator.ctrl_range)

/usr/lib/python3.10/functools.py in wrapper(*args, **kw)
887 '1 positional argument')
888
--> 889 return dispatch(args[0].class)(*args, **kw)
890
891 funcname = getattr(func, 'name', 'singledispatch function')

/usr/local/lib/python3.10/dist-packages/gym/vector/utils/spaces.py in _batch_space_box(space, n)
48 repeats = tuple([n] + [1] * space.low.ndim)
49 low, high = np.tile(space.low, repeats), np.tile(space.high, repeats)
---> 50 return Box(low=low, high=high, dtype=space.dtype, seed=deepcopy(space.np_random))
51
52

/usr/lib/python3.10/copy.py in deepcopy(x, memo, _nil)
170 y = x
171 else:
--> 172 y = _reconstruct(x, memo, *rv)
173
174 # If is its own copy, don't memoize.

/usr/lib/python3.10/copy.py in _reconstruct(x, memo, func, args, state, listiter, dictiter, deepcopy)
263 if deep and args:
264 args = (deepcopy(arg, memo) for arg in args)
--> 265 y = func(*args)
266 if deep:
267 memo[id(x)] = y

TypeError: RandomNumberGenerator._generator_ctor() takes from 0 to 1 positional arguments but 2 were given

@dmitryponv dmitryponv closed this as not planned Won't fix, can't repro, duplicate, stale Jul 17, 2024
@dmitryponv dmitryponv reopened this Jul 17, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants