-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathBasicExample.java
103 lines (88 loc) · 3.56 KB
/
BasicExample.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
// Copyright 2010-2025 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Minimal example to call the GLOP solver.
// [START program]
package com.google.ortools.linearsolver.samples;
// [START import]
import com.google.ortools.Loader;
import com.google.ortools.init.OrToolsVersion;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
// [END import]
/** Minimal Linear Programming example to showcase calling the solver. */
public final class BasicExample {
public static void main(String[] args) {
// [START loader]
Loader.loadNativeLibraries();
// [END loader]
System.out.println("Google OR-Tools version: " + OrToolsVersion.getVersionString());
// [START solver]
// Create the linear solver with the GLOP backend.
MPSolver solver = MPSolver.createSolver("GLOP");
if (solver == null) {
System.out.println("Could not create solver GLOP");
return;
}
// [END solver]
// [START variables]
// Create the variables x and y.
MPVariable x = solver.makeNumVar(0.0, 1.0, "x");
MPVariable y = solver.makeNumVar(0.0, 2.0, "y");
System.out.println("Number of variables = " + solver.numVariables());
// [END variables]
// [START constraints]
double infinity = Double.POSITIVE_INFINITY;
// Create a linear constraint, x + y <= 2.
MPConstraint ct = solver.makeConstraint(-infinity, 2.0, "ct");
ct.setCoefficient(x, 1);
ct.setCoefficient(y, 1);
System.out.println("Number of constraints = " + solver.numConstraints());
// [END constraints]
// [START objective]
// Create the objective function, 3 * x + y.
MPObjective objective = solver.objective();
objective.setCoefficient(x, 3);
objective.setCoefficient(y, 1);
objective.setMaximization();
// [END objective]
// [START solve]
System.out.println("Solving with " + solver.solverVersion());
final MPSolver.ResultStatus resultStatus = solver.solve();
// [END solve]
// [START print_solution]
System.out.println("Status: " + resultStatus);
if (resultStatus != MPSolver.ResultStatus.OPTIMAL) {
System.out.println("The problem does not have an optimal solution!");
if (resultStatus == MPSolver.ResultStatus.FEASIBLE) {
System.out.println("A potentially suboptimal solution was found");
} else {
System.out.println("The solver could not solve the problem.");
return;
}
}
System.out.println("Solution:");
System.out.println("Objective value = " + objective.value());
System.out.println("x = " + x.solutionValue());
System.out.println("y = " + y.solutionValue());
// [END print_solution]
// [START advanced]
System.out.println("Advanced usage:");
System.out.println("Problem solved in " + solver.wallTime() + " milliseconds");
System.out.println("Problem solved in " + solver.iterations() + " iterations");
// [END advanced]
}
private BasicExample() {}
}
// [END program]