-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathtext_generate_gpt2.py
383 lines (346 loc) · 17.1 KB
/
text_generate_gpt2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
# Copyright (c) 2022 Graphcore Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import ctypes
import logging
import argparse
from datetime import datetime
import torch
import torch.nn as nn
import torch.nn.functional as F
import poptorch
import numpy as np
from transformers import GPT2Tokenizer, GPT2Model
from transformers.models.gpt2.modeling_gpt2 import GPT2MLP
from ipu_options import load_custom_ops
from tools import _get_layer_ipu, str_to_bool
from model.optimized_gpt2_attn import OptimizedGPT2AttentionBuffer, OptimizedGPT2AttentionCache
MODEL_CONFIG = {
"gpt2": "config/config.json",
"gpt2-medium": "config/config_medium.json",
"gpt2-large": "config/config_large.json",
"gpt2-xl": "config/config_xl.json",
}
logging.basicConfig(level=logging.INFO, format="%(message)s")
def set_args():
"""
Sets up the arguments.
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--model-name-or-path",
type=str,
default="gpt2",
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(MODEL_CONFIG.keys()),
)
parser.add_argument(
"--tokenizer-type", type=int, default=0, help="0: transformers.tokenizer, 1: Megatron.tokenizer"
)
parser.add_argument("--temperature", default=1.2, type=float, required=False, help="temperature")
parser.add_argument("--repetition-penalty", default=2.0, type=float, required=False, help="repetition_penalty")
parser.add_argument("--topk", default=4, type=int, required=False, help="topk to choice")
parser.add_argument(
"--save-samples-path", type=str, default=None, required=False, help="path to save generated text"
)
parser.add_argument("--prompt", type=str, default=None, help="Prompt as input")
parser.add_argument("--input-len", type=int, default=64, help="Maximum input length")
parser.add_argument("--output-len", type=int, default=128, help="Maximum length of generated text")
parser.add_argument("--batch-size", type=int, default=1, help="batch size (default = 1)")
parser.add_argument("--device-iterations", type=int, default=1, help="device iterations (default = 1)")
parser.add_argument(
"--single-ipu", type=str_to_bool, nargs="?", const=True, default=False, help="single ipu or not"
)
parser.add_argument(
"--layers-per-ipu", type=int, default=3, nargs="+", help="Number of decoder layers per pipeline stage."
)
parser.add_argument(
"--matmul-proportion", type=float, nargs="+", help="Relative IPU memory proportion size allocated for matmul"
)
parser.add_argument("--fp16", type=str_to_bool, nargs="?", const=True, default=False, help="run model in fp16")
parser.add_argument(
"--stop-token", type=str, default="<|endoftext|>", help="Token at which text generation is stopped"
)
parser.add_argument(
"--poptorch-loop",
type=str_to_bool,
nargs="?",
const=True,
default=False,
help="using poptorch_loop to avoid too much streamcopy",
)
return parser.parse_args()
class GPT2Wrapper(torch.nn.Module):
def __init__(self, args):
super().__init__()
self.count = args.output_len
self.args = args
if args.model_name_or_path:
self.model = GPT2Model.from_pretrained(args.model_name_or_path)
else:
raise RuntimeError("--model-name-or-path must be set.")
self.nop = poptorch.nop
self.optimize()
if not args.single_ipu:
self.sharding_mapping()
def optimize(self):
self.model.config.batch = self.args.batch_size
self.model.config.seq = self.args.input_len + self.args.output_len
self.model.config.input_len = self.args.input_len
self.model.config.output_len = self.args.output_len
self.model.config.activation_function = "gelu"
inner_dim = (
self.model.config.n_inner if self.model.config.n_inner is not None else 4 * self.model.config.hidden_size
)
for layer in self.model.h:
if self.args.poptorch_loop:
GPT2Attn = OptimizedGPT2AttentionCache(self.model.config)
else:
GPT2Attn = OptimizedGPT2AttentionBuffer(self.model.config)
MLP = GPT2MLP(inner_dim, self.model.config)
GPT2Attn.load_state_dict(layer.attn.state_dict(), strict=False)
MLP.load_state_dict(layer.mlp.state_dict(), strict=False)
layer.attn = GPT2Attn
layer.mlp = MLP
def forward(self, context, dynamic_mask, position_ids):
if self.args.poptorch_loop:
# 1 stage
kv_size = (
self.model.config.batch,
self.model.config.n_head,
self.model.config.seq,
int(self.model.config.n_embd / self.model.config.n_head),
)
# past key value
past_key_values = [[torch.zeros(kv_size), torch.zeros(kv_size)] for _ in range(self.model.config.n_layer)]
new_past_keys = []
new_past_values = []
position_ids_stage_1 = torch.arange(0, self.args.input_len, dtype=torch.long).unsqueeze(0)
hidden_states = self.model(
context, position_ids=position_ids_stage_1, past_key_values=None, return_dict=False
)
presents = hidden_states[1]
for ((past_key, past_value), (present_key, present_value)) in zip(past_key_values, presents):
past_key = torch.cat((present_key, past_key[:, :, : -self.model.config.input_len, :]), dim=-2)
past_value = torch.cat((present_value, past_value[:, :, : -self.model.config.input_len, :]), dim=-2)
new_past_keys.append(past_key)
new_past_values.append(past_value)
new_past_keys_tensor = torch.stack(new_past_keys, dim=0)
new_past_values_tensor = torch.stack(new_past_values, dim=0)
index_one_hot = torch.nn.functional.one_hot(position_ids, num_classes=self.args.input_len).to(torch.float)
last_hidden = torch.matmul(index_one_hot, hidden_states[0]).view(self.args.batch_size, -1)
next_token_logits = torch.matmul(last_hidden, self.model.wte.weight.T)
(next_token_value, next_token) = torch.topk(next_token_logits, 1)
new_context = next_token
new_position_ids = position_ids + 1
record = torch.ones(self.args.batch_size, self.count).to(torch.int64) * (0)
new_record = torch.cat((next_token.to(torch.int64), record[:, :-1]), dim=-1)
# 2 stage
def body(context, dynamic_mask, position_ids, record, past_keys, past_values):
past_key_values = []
for index in range(self.model.config.n_layer):
key_ = past_keys[index, :, :, :, :]
value_ = past_values[index, :, :, :, :]
past_key_values.append([key_, value_])
hidden_states = self.model(
context,
attention_mask=dynamic_mask,
position_ids=position_ids,
past_key_values=past_key_values,
return_dict=False,
)
presents = hidden_states[1]
present_keys = torch.stack([k for (k, v) in presents], dim=0)
present_values = torch.stack([v for (k, v) in presents], dim=0)
next_token_logits = torch.matmul(hidden_states[0], self.model.wte.weight.T).view(
self.args.batch_size, -1
)
(next_token_value, next_token) = torch.topk(next_token_logits, self.args.topk)
# We simply do a random selection after topk to avoid repetitions
# Notice: Here we use 'argmax' + 'randn' instead of 'randint' which is unsupported.
random_choice_idx = torch.argmax(torch.randn((1, self.args.topk)), axis=1)
next_token = next_token[:, random_choice_idx]
next_dynamic_mask = torch.cat(
(torch.ones(self.args.batch_size, 1).to(torch.int64), dynamic_mask[:, :-1]), dim=-1
)
next_id = next_token
next_position_ids = position_ids + 1
next_record = torch.cat((next_token.to(torch.int64), record[:, :-1]), dim=-1)
return next_id, next_dynamic_mask, next_position_ids, next_record, present_keys, present_values
(
new_context,
dynamic_mask,
new_position_ids,
new_record,
new_past_keys_tensor,
new_past_values_tensor,
) = poptorch.for_loop(
self.count - 1,
body,
[new_context, dynamic_mask, new_position_ids, new_record, new_past_keys_tensor, new_past_values_tensor],
)
return new_record
else:
hidden_states = self.model(
context, attention_mask=dynamic_mask, position_ids=position_ids, past_key_values=None, return_dict=False
)
hidden_states_ = self.nop(hidden_states[0])
next_token_logits = torch.matmul(hidden_states_, self.model.wte.weight.T).view(self.args.batch_size, -1)
(next_token_value, next_token) = torch.topk(next_token_logits, self.args.topk)
# We simply do a random selection after topk to avoid repetitions
# Notice: Here we use 'argmax' + 'randn' instead of 'randint' which is unsupported.
random_choice_idx = torch.argmax(torch.randn((1, self.args.topk)), axis=1)
next_token = next_token[:, random_choice_idx]
next_dynamic_mask = torch.cat(
(torch.ones(self.args.batch_size, 1).to(torch.int64), dynamic_mask[:, :-1]), dim=-1
)
return next_token, next_dynamic_mask
def sharding_mapping(self):
print("-------------------- Device Allocation --------------------")
print("Embedding --> IPU 0")
self.model.wte = poptorch.BeginBlock(self.model.wte, "emb", ipu_id=0)
layer_ipu = _get_layer_ipu(self.args.layers_per_ipu)
for index, layer in enumerate(self.model.h):
ipu = layer_ipu[index]
self.model.h[index] = poptorch.BeginBlock(layer, f"Encoder{index}", ipu_id=ipu)
print(f"Layer {index:<2} --> IPU {ipu}")
self.nop = poptorch.BeginBlock(self.nop, ipu_id=0)
def main():
# custom op
load_custom_ops()
args = set_args()
if args.poptorch_loop and not args.single_ipu:
raise ("poptorch_loop did not support multi IPUs")
model = GPT2Wrapper(args)
if args.single_ipu:
mem_prop = {"IPU0": 0.2}
else:
mem_prop = {f"IPU{i}": args.matmul_proportion[i] for i in range(len(args.matmul_proportion))}
# Set poptorch options
opts = poptorch.Options().deviceIterations(args.device_iterations)
opts.autoRoundNumIPUs(True)
opts.setAvailableMemoryProportion(mem_prop)
opts._Popart.set("saveInitializersToFile", "weights.bin")
if not args.single_ipu:
opts.setExecutionStrategy(poptorch.ShardedExecution())
if args.fp16:
model.half()
model = poptorch.inferenceModel(model.eval(), opts)
if args.tokenizer_type == 0:
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
else:
from tokenizer import build_megatron_tokenizer
tokenizer = build_megatron_tokenizer(
vocab_file="./tokenizer/gpt2-vocab-50256.json", merge_file="./tokenizer/gpt2-merges-50256.txt"
)
if args.save_samples_path:
if not os.path.exists(args.save_samples_path):
os.makedirs(args.save_samples_path)
samples_file = open(args.save_samples_path + "/samples.txt", "a", encoding="utf8")
samples_file.write("Text generator record{}:\n".format(datetime.now()))
while True:
try:
if args.prompt is not None:
text = args.prompt
else:
text = input("Input: ")
text_ids = tokenizer.encode(text, add_special_tokens=False)
txt_len = len(text_ids)
if args.input_len < txt_len:
print("Input text length {0} larger than limit {1}".format(txt_len, args.input_len))
continue
if args.save_samples_path:
samples_file.write("Input: {}\n".format(text))
input_ids_all = torch.tensor(text_ids).long()
all_ids = np.array([[text_ids[0]] for _ in range(args.batch_size)])
input_ids = torch.ones(args.batch_size, 1).to(torch.int64) * text_ids.pop(0)
position_ids = torch.zeros(args.batch_size, 1).to(torch.int64)
dynamic_mask = torch.zeros(args.batch_size, args.input_len + args.output_len).to(torch.int64)
dynamic_mask[:, 0] = 1
model_time = []
if args.poptorch_loop:
padding_size = args.input_len - txt_len
padding = torch.ones(args.batch_size, padding_size) * (0)
input_ids_all = input_ids_all.repeat(args.batch_size, 1)
input_ids_all_pad = torch.concat([input_ids_all.view(args.batch_size, -1), padding], axis=-1).to(
torch.int64
)
dynamic_mask[:, : txt_len + 1] = 1
position_ids += txt_len - 1
# compile
start_time = time.time()
in1_ = input_ids_all_pad.clone()
in2_ = dynamic_mask.clone()
in3_ = position_ids.clone()
_ = model(in1_, in2_, in3_)
end_time = time.time()
model_time.append(end_time - start_time)
start_time = time.time()
record = model(input_ids_all_pad, dynamic_mask, position_ids)
end_time = time.time()
model_time.append(end_time - start_time)
output_tokens = torch.flip(record, dims=[1]).to(torch.int64)
all_ids = torch.concat(
[input_ids_all.view(args.batch_size, -1).to(torch.int64), output_tokens], axis=-1
)
logging.info(
"latency avg per sentence: {0} ms/sentence_({1})".format(
np.mean(model_time[1:]) * 1000, args.output_len
)
)
logging.info(
"Per-token latency avg: {} ms/token".format(np.mean(model_time[1:]) * 1000 / args.output_len)
)
logging.info(
"Batch size: {0}; Input length {1}; Output length {2}, throughput: {3} samples/sec \n".format(
args.batch_size, txt_len, args.output_len, args.batch_size / np.mean(model_time[1:])
)
)
else:
for _ in range(args.input_len + args.output_len):
start_time = time.time()
input_ids, dynamic_mask = model(
input_ids.to(torch.int64), dynamic_mask.to(torch.int64), position_ids
)
end_time = time.time()
model_time.append(end_time - start_time)
position_ids += 1
if len(text_ids) > 0:
input_ids = torch.ones(args.batch_size, 1).to(torch.int64) * text_ids.pop(0)
all_ids = np.concatenate((all_ids, input_ids.view(args.batch_size, -1).numpy()), axis=1)
logging.info(
"latency avg per sentence: {0} ms/sentence_({1})".format(
np.sum(model_time[1:]) * 1000, args.output_len
)
)
logging.info("Per-token latency avg: {} ms/token".format(np.mean(model_time[1:]) * 1000))
logging.info(
"Batch size: {0}; Input length {1}; Output length {2}, throughput: {3} samples/sec \n".format(
args.batch_size, txt_len, args.output_len, args.batch_size / np.sum(model_time[1:])
)
)
for batch in all_ids.tolist():
text = tokenizer.decode(batch, clean_up_tokenization_spaces=True)
text = text[: text.find(args.stop_token) if args.stop_token else None]
logging.info(text)
if args.save_samples_path:
samples_file.write("Output: {}\n".format("".join(text)))
if args.prompt is not None:
break
except KeyboardInterrupt:
if args.save_samples_path:
samples_file.close()
break
if __name__ == "__main__":
main()