-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathdataset.py
55 lines (45 loc) · 1.69 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Copyright (c) 2021 Graphcore Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch.utils.data.dataset import Dataset
import os
import numpy as np
class CachedDataset(Dataset):
def __init__(self, folder="cached_data"):
super().__init__()
self.folder = folder
self.file_list = [os.path.join(self.folder, i) for i in os.listdir(folder)]
self.length = len(self.file_list)
def __len__(self):
return self.length
def __getitem__(self, index):
sample = np.load(self.file_list[index], allow_pickle=True)
ret = []
for i in sample:
try:
tensor = torch.from_numpy(i)
except:
tensor = i
ret.append(tensor)
return ret
class GenCachedDataset(Dataset):
def __init__(self):
super().__init__()
self.generated_sample = [torch.zeros(189), torch.zeros(80, 870), 0, torch.zeros(189), torch.zeros(189), 0]
def __len__(self):
return 50000
def __getitem__(self, index):
# Leaving index as a placeholder input for compatibility
# Exact dimensions of a single sample
return self.generated_sample