-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathipu_inference.py
206 lines (168 loc) · 7.67 KB
/
ipu_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright (c) 2022 Graphcore Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import time
from typing import Iterable
import libpvti as pvti
import tensorflow as tf
import tensorflow.keras.backend as K
from absl import logging
from tensorflow.keras import layers
from tensorflow.python import ipu
import hparams_config
from ipu_automl_io import (
postprocess_predictions,
preprocess_normalize_image,
visualise_detections,
)
from ipu_nms import (
ipu_postprocessing,
postprocess_onchip_nms_outputs,
)
from ipu_utils import (
create_app_json,
preload_fp32_weights,
load_weights_into_model,
set_or_add_env,
)
from ipu_utils.arguments import parse_args
from ipu_utils.benchmark import BenchmarkResult
from ipu_utils.config import (
ipu_configure,
ipu_engine_options,
)
from ipu_utils.dataset import (
get_dataset,
input_tensor_shape,
)
from tf2 import efficientdet_keras
import popdist
channel = pvti.createTraceChannel("StepTraceChannel")
@tf.function(experimental_compile=True)
def predict_loop(
iterator: Iterable, steps_per_execution: int, outfeed: ipu.ipu_outfeed_queue.IPUOutfeedQueue, model: tf.keras.Model
):
for _ in tf.range(steps_per_execution):
features = next(iterator)
predictions = model(features, training=False)
outfeed.enqueue(predictions)
def create_config(args: argparse.Namespace):
config = hparams_config.get_efficientdet_config(args.model_name)
config.is_training_bn = False
config.nms_configs.score_thresh = 0.4
config.nms_configs.max_output_size = 100
config.nms_configs.method = "hard"
config.override(args.hparams)
config.strategy = "ipu"
if args.image_size is not None:
config.image_size = args.image_size
return config
def main(args: argparse.Namespace):
config = create_config(args)
create_app_json(args, config)
popdist.init()
ipu_configure(args)
in_shape = (args.micro_batch_size,) + input_tensor_shape(args, config.image_size)
strategy = ipu.ipu_strategy.IPUStrategy()
with strategy.scope():
# If the model precision != FP32, we need to load the FP32 weights before we set the Keras backend precision
# so we can cast them (otherwise we can't load all weights from the checkpoint)
# This initial load must be done outside of the IPU strategy.
fp32_weights = None
if args.model_precision != tf.float32 and not args.random_weights:
logging.info("Loading FP32 weights")
fp32_weights = preload_fp32_weights(config, in_shape, args.model_dir)
logging.info("Creating the dataset...")
dataset, scales, raw_imgs = get_dataset(args, config.image_size)
if args.model_precision == tf.float16:
K.set_floatx("float16")
logging.info("Created")
iterator = iter(dataset)
def model_fn(in_shape, training=False):
inputs = layers.Input(in_shape[1:], batch_size=args.micro_batch_size, dtype=args.io_precision)
cast_input = preprocess_normalize_image(inputs, args.model_precision)
detnet = efficientdet_keras.EfficientDetNet(config=config)
outputs = detnet(cast_input, training=training)
# If we need FP16 weights, we'll take the FP32 weights loaded earlier and cast
# them, then set the weights here. Otherwise we'll just load as usual.
if not args.random_weights:
logging.info("Loading weights into model")
load_weights_into_model(args, detnet, fp32_weights)
logging.info("Done")
if args.onchip_nms:
outputs = ipu_postprocessing(config, outputs, scales)
return inputs, outputs
model = tf.keras.Model(*model_fn(in_shape, False))
model.build(in_shape)
model.compile(steps_per_execution=args.benchmark_repeats)
model.summary(line_length=160)
outfeed_queue = ipu.ipu_outfeed_queue.IPUOutfeedQueue(buffer_depth=3)
all_results = []
logging.info("Running prediction")
for i in range(args.num_repeats):
outputs = []
with pvti.Tracepoint(channel, f"ipu_step_{i}"):
st = time.perf_counter()
strategy.run(predict_loop, args=(iterator, args.benchmark_repeats, outfeed_queue, model))
pre_dequeue = time.perf_counter()
if args.benchmark_host_postprocessing:
# Time with host-processing
with pvti.Tracepoint(channel, f"post_processing_step_{i}"):
for class_outputs, box_outputs in outfeed_queue:
outputs.append(
postprocess_predictions(config, class_outputs, box_outputs, scales, mode="global")
)
else:
# At a minimum we should include time to dequeue the results
with pvti.Tracepoint(channel, f"dequeing_outputs_{i}"):
for step_output in outfeed_queue:
outputs.append(step_output)
end_time = time.perf_counter()
step_time_ms = 1000 * (end_time - st)
dequeue_time = 1000 * (end_time - pre_dequeue)
logging.debug(
f"Time taken: {step_time_ms:.2f} | Dequeue time: {dequeue_time:.2f} "
f"| Num samples: {args.micro_batch_size} | Repeats: {args.benchmark_repeats}"
)
fps = 1000 * args.micro_batch_size * args.benchmark_repeats / step_time_ms
latency = step_time_ms / (args.micro_batch_size * args.benchmark_repeats)
# Don't include the first repeat in timings as it includes compilation
if i > 0:
result = BenchmarkResult()
result.add_step(fps, latency)
result.set_total_time(step_time_ms)
all_results.append(result)
print(f"Step {i} | Time: {step_time_ms:.3f}ms | img/sec: {fps:.2f} | sec/img {latency:.3f}ms")
BenchmarkResult.print_report(all_results)
if args.output_predictions:
# If we haven't benchmarked the post-processing, we won't have the info we need to visualise the detections yet.
# In that case, capture it here (won't be timed in the latency figures)
for i, step_output in enumerate(outputs):
if not args.benchmark_host_postprocessing and not args.onchip_nms:
class_outputs, box_outputs = step_output
logging.debug("Host-Processing output: ", i)
det_outputs = postprocess_predictions(config, class_outputs, box_outputs, scales, mode="global")
elif args.onchip_nms:
det_outputs = postprocess_onchip_nms_outputs(config, step_output)
visualise_detections(args, config, raw_imgs, None, det_outputs)
if __name__ == "__main__":
args = parse_args()
logging.info(args)
ipu_engine_options(args)
if args.synthetic:
set_or_add_env("TF_POPLAR_FLAGS", " --use_synthetic_data --synthetic_data_initializer=random")
if args.debug:
tf.debugging.set_log_device_placement(True)
logging.set_verbosity(args.log_level)
main(args)