-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathnms_np.py
263 lines (209 loc) · 8.68 KB
/
nms_np.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Copyright 2020 Google Research. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Anchor definition."""
import numpy as np
# The minimum score to consider a logit for identifying detections.
MIN_CLASS_SCORE = -5.0
# The score for a dummy detection
_DUMMY_DETECTION_SCORE = -1e5
# The maximum number of (anchor,class) pairs to keep for non-max suppression.
MAX_DETECTION_POINTS = 5000
def diou_nms(dets, iou_thresh=None):
"""DIOU non-maximum suppression.
diou = iou - square of euclidean distance of box centers
/ square of diagonal of smallest enclosing bounding box
Reference: https://arxiv.org/pdf/1911.08287.pdf
Args:
dets: detection with shape (num, 5) and format [x1, y1, x2, y2, score].
iou_thresh: IOU threshold,
Returns:
numpy.array: Retained boxes.
"""
iou_thresh = iou_thresh or 0.5
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
center_x = (x1 + x2) / 2
center_y = (y1 + y2) / 2
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
intersection = w * h
iou = intersection / (areas[i] + areas[order[1:]] - intersection)
smallest_enclosing_box_x1 = np.minimum(x1[i], x1[order[1:]])
smallest_enclosing_box_x2 = np.maximum(x2[i], x2[order[1:]])
smallest_enclosing_box_y1 = np.minimum(y1[i], y1[order[1:]])
smallest_enclosing_box_y2 = np.maximum(y2[i], y2[order[1:]])
square_of_the_diagonal = (smallest_enclosing_box_x2 - smallest_enclosing_box_x1) ** 2 + (
smallest_enclosing_box_y2 - smallest_enclosing_box_y1
) ** 2
square_of_center_distance = (center_x[i] - center_x[order[1:]]) ** 2 + (center_y[i] - center_y[order[1:]]) ** 2
# Add 1e-10 for numerical stability.
diou = iou - square_of_center_distance / (square_of_the_diagonal + 1e-10)
inds = np.where(diou <= iou_thresh)[0]
order = order[inds + 1]
return dets[keep]
def hard_nms(dets, iou_thresh=None):
"""The basic hard non-maximum suppression.
Args:
dets: detection with shape (num, 5) and format [x1, y1, x2, y2, score].
iou_thresh: IOU threshold,
Returns:
numpy.array: Retained boxes.
"""
iou_thresh = iou_thresh or 0.5
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
intersection = w * h
overlap = intersection / (areas[i] + areas[order[1:]] - intersection)
inds = np.where(overlap <= iou_thresh)[0]
order = order[inds + 1]
return dets[keep]
def soft_nms(dets, nms_configs):
"""Soft non-maximum suppression.
[1] Soft-NMS -- Improving Object Detection With One Line of Code.
https://arxiv.org/abs/1704.04503
Args:
dets: detection with shape (num, 5) and format [x1, y1, x2, y2, score].
nms_configs: a dict config that may contain the following members
* method: one of {`linear`, `gaussian`, 'hard'}. Use `gaussian` if None.
* iou_thresh (float): IOU threshold, only for `linear`, `hard`.
* sigma: Gaussian parameter, only for method 'gaussian'.
* score_thresh (float): Box score threshold for final boxes.
Returns:
numpy.array: Retained boxes.
"""
method = nms_configs["method"]
# Default sigma and iou_thresh are from the original soft-nms paper.
sigma = nms_configs["sigma"] or 0.5
iou_thresh = nms_configs["iou_thresh"] or 0.3
score_thresh = nms_configs["score_thresh"] or 0.001
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
# expand dets with areas, and the second dimension is
# x1, y1, x2, y2, score, area
dets = np.concatenate((dets, areas[:, None]), axis=1)
retained_box = []
while dets.size > 0:
max_idx = np.argmax(dets[:, 4], axis=0)
dets[[0, max_idx], :] = dets[[max_idx, 0], :]
retained_box.append(dets[0, :-1])
xx1 = np.maximum(dets[0, 0], dets[1:, 0])
yy1 = np.maximum(dets[0, 1], dets[1:, 1])
xx2 = np.minimum(dets[0, 2], dets[1:, 2])
yy2 = np.minimum(dets[0, 3], dets[1:, 3])
w = np.maximum(xx2 - xx1 + 1, 0.0)
h = np.maximum(yy2 - yy1 + 1, 0.0)
inter = w * h
iou = inter / (dets[0, 5] + dets[1:, 5] - inter)
if method == "linear":
weight = np.ones_like(iou)
weight[iou > iou_thresh] -= iou[iou > iou_thresh]
elif method == "gaussian":
weight = np.exp(-(iou * iou) / sigma)
else: # traditional nms
weight = np.ones_like(iou)
weight[iou > iou_thresh] = 0
dets[1:, 4] *= weight
retained_idx = np.where(dets[1:, 4] >= score_thresh)[0]
dets = dets[retained_idx + 1, :]
return np.vstack(retained_box)
def nms(dets, nms_configs):
"""Non-maximum suppression.
Args:
dets: detection with shape (num, 5) and format [x1, y1, x2, y2, score].
nms_configs: a dict config that may contain parameters.
Returns:
numpy.array: Retained boxes.
"""
nms_configs = nms_configs or {}
method = nms_configs["method"]
if method == "hard" or not method:
return hard_nms(dets, nms_configs["iou_thresh"])
if method == "diou":
return diou_nms(dets, nms_configs["iou_thresh"])
if method in ("linear", "gaussian"):
return soft_nms(dets, nms_configs)
raise ValueError("Unknown NMS method: {}".format(method))
def per_class_nms(boxes, scores, classes, image_id, image_scale, num_classes, max_boxes_to_draw, nms_configs):
"""Perform per class nms."""
boxes = boxes[:, [1, 0, 3, 2]]
detections = []
for c in range(num_classes):
indices = np.where(classes == c)[0]
if indices.shape[0] == 0:
continue
boxes_cls = boxes[indices, :]
scores_cls = scores[indices]
# Select top-scoring boxes in each class and apply non-maximum suppression
# (nms) for boxes in the same class. The selected boxes from each class are
# then concatenated for the final detection outputs.
all_detections_cls = np.column_stack((boxes_cls, scores_cls))
top_detections_cls = nms(all_detections_cls, nms_configs)
top_detections_cls = np.column_stack(
(
np.repeat(image_id, len(top_detections_cls)),
top_detections_cls,
np.repeat(c + 1, len(top_detections_cls)),
)
)
detections.append(top_detections_cls)
def _generate_dummy_detections(number):
detections_dummy = np.zeros((number, 7), dtype=np.float32)
detections_dummy[:, 0] = image_id[0]
detections_dummy[:, 5] = _DUMMY_DETECTION_SCORE
return detections_dummy
if detections:
detections = np.vstack(detections)
# take final 100 detections
indices = np.argsort(-detections[:, -2])
detections = np.array(detections[indices[0:max_boxes_to_draw]], dtype=np.float32)
# Add dummy detections to fill up to 100 detections
n = max(max_boxes_to_draw - len(detections), 0)
detections_dummy = _generate_dummy_detections(n)
detections = np.vstack([detections, detections_dummy])
else:
detections = _generate_dummy_detections(max_boxes_to_draw)
detections[:, 1:5] *= image_scale
return detections