-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjessica.twb
628 lines (627 loc) · 43.6 KB
/
jessica.twb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
<?xml version='1.0' encoding='utf-8' ?>
<!-- build 20231.23.0310.1044 -->
<workbook original-version='18.1' source-build='2023.1.0 (20231.23.0310.1044)' source-platform='mac' version='18.1' xmlns:user='http://www.tableausoftware.com/xml/user'>
<document-format-change-manifest>
<_.fcp.AnimationOnByDefault.true...AnimationOnByDefault />
<_.fcp.MarkAnimation.true...MarkAnimation />
<_.fcp.ObjectModelEncapsulateLegacy.true...ObjectModelEncapsulateLegacy />
<_.fcp.ObjectModelTableType.true...ObjectModelTableType />
<_.fcp.SchemaViewerObjectModel.true...SchemaViewerObjectModel />
<SheetIdentifierTracking />
<WindowsPersistSimpleIdentifiers />
</document-format-change-manifest>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<_.fcp.AnimationOnByDefault.false...style>
<_.fcp.AnimationOnByDefault.false..._.fcp.MarkAnimation.true...style-rule element='animation'>
<_.fcp.AnimationOnByDefault.false...format attr='animation-on' value='ao-on' />
</_.fcp.AnimationOnByDefault.false..._.fcp.MarkAnimation.true...style-rule>
</_.fcp.AnimationOnByDefault.false...style>
<datasources>
<datasource caption='RED_faults' inline='true' name='federated.1giuty41vafjht1dpvck518o284l' version='18.1'>
<connection class='federated'>
<named-connections>
<named-connection caption='RED_faults' name='textscan.0mm2ngz0h08xm312sq4nk18jatl5'>
<connection class='textscan' directory='/Users/gdbr/Hyper Island/DA24STO/Modules/Volvo Project/revolvos' filename='RED_faults.csv' password='' server='' />
</named-connection>
</named-connections>
<_.fcp.ObjectModelEncapsulateLegacy.false...relation connection='textscan.0mm2ngz0h08xm312sq4nk18jatl5' name='RED_faults.csv' table='[RED_faults#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en' separator=','>
<column datatype='datetime' name='message_date_time' ordinal='0' />
<column datatype='datetime' name='in_service_dt' ordinal='1' />
<column datatype='string' name='vehicle_make' ordinal='2' />
<column datatype='real' name='engine_hours' ordinal='3' />
<column datatype='real' name='idle_engine_hours' ordinal='4' />
<column datatype='real' name='gross_combined_weight' ordinal='5' />
<column datatype='real' name='odometer_reading' ordinal='6' />
</columns>
</_.fcp.ObjectModelEncapsulateLegacy.false...relation>
<_.fcp.ObjectModelEncapsulateLegacy.true...relation connection='textscan.0mm2ngz0h08xm312sq4nk18jatl5' name='RED_faults.csv' table='[RED_faults#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en' separator=','>
<column datatype='datetime' name='message_date_time' ordinal='0' />
<column datatype='datetime' name='in_service_dt' ordinal='1' />
<column datatype='string' name='vehicle_make' ordinal='2' />
<column datatype='real' name='engine_hours' ordinal='3' />
<column datatype='real' name='idle_engine_hours' ordinal='4' />
<column datatype='real' name='gross_combined_weight' ordinal='5' />
<column datatype='real' name='odometer_reading' ordinal='6' />
</columns>
</_.fcp.ObjectModelEncapsulateLegacy.true...relation>
<metadata-records>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[RED_faults.csv]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='character-set'>"UTF-8"</attribute>
<attribute datatype='string' name='collation'>"en_GB"</attribute>
<attribute datatype='string' name='currency'>"¤"</attribute>
<attribute datatype='string' name='field-delimiter'>","</attribute>
<attribute datatype='string' name='header-row'>"true"</attribute>
<attribute datatype='string' name='locale'>"en"</attribute>
<attribute datatype='string' name='single-char'>""</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>message_date_time</remote-name>
<remote-type>135</remote-type>
<local-name>[message_date_time]</local-name>
<parent-name>[RED_faults.csv]</parent-name>
<remote-alias>message_date_time</remote-alias>
<ordinal>0</ordinal>
<local-type>datetime</local-type>
<aggregation>Year</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[RED_faults.csv_EA0D7242ABD4413BB2E49F6C8BC3FFBD]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>in_service_dt</remote-name>
<remote-type>135</remote-type>
<local-name>[in_service_dt]</local-name>
<parent-name>[RED_faults.csv]</parent-name>
<remote-alias>in_service_dt</remote-alias>
<ordinal>1</ordinal>
<local-type>datetime</local-type>
<aggregation>Year</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[RED_faults.csv_EA0D7242ABD4413BB2E49F6C8BC3FFBD]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>vehicle_make</remote-name>
<remote-type>129</remote-type>
<local-name>[vehicle_make]</local-name>
<parent-name>[RED_faults.csv]</parent-name>
<remote-alias>vehicle_make</remote-alias>
<ordinal>2</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RGB' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[RED_faults.csv_EA0D7242ABD4413BB2E49F6C8BC3FFBD]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>engine_hours</remote-name>
<remote-type>5</remote-type>
<local-name>[engine_hours]</local-name>
<parent-name>[RED_faults.csv]</parent-name>
<remote-alias>engine_hours</remote-alias>
<ordinal>3</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[RED_faults.csv_EA0D7242ABD4413BB2E49F6C8BC3FFBD]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>idle_engine_hours</remote-name>
<remote-type>5</remote-type>
<local-name>[idle_engine_hours]</local-name>
<parent-name>[RED_faults.csv]</parent-name>
<remote-alias>idle_engine_hours</remote-alias>
<ordinal>4</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[RED_faults.csv_EA0D7242ABD4413BB2E49F6C8BC3FFBD]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>gross_combined_weight</remote-name>
<remote-type>5</remote-type>
<local-name>[gross_combined_weight]</local-name>
<parent-name>[RED_faults.csv]</parent-name>
<remote-alias>gross_combined_weight</remote-alias>
<ordinal>5</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[RED_faults.csv_EA0D7242ABD4413BB2E49F6C8BC3FFBD]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>odometer_reading</remote-name>
<remote-type>5</remote-type>
<local-name>[odometer_reading]</local-name>
<parent-name>[RED_faults.csv]</parent-name>
<remote-alias>odometer_reading</remote-alias>
<ordinal>6</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[RED_faults.csv_EA0D7242ABD4413BB2E49F6C8BC3FFBD]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
</metadata-records>
</connection>
<aliases enabled='yes' />
<column caption='Vehicle Service Age' datatype='real' name='[Calculation_5611977741496430592]' role='measure' type='quantitative'>
<calculation class='tableau' formula='[message_date_time] - [in_service_dt]' />
</column>
<column datatype='integer' name='[Vehicle Service Age (bin)]' role='dimension' type='quantitative'>
<calculation class='bin' decimals='1' formula='[Calculation_5611977741496430592]' peg='0' size='13' />
</column>
<_.fcp.ObjectModelTableType.true...column caption='RED_faults.csv' datatype='table' name='[__tableau_internal_object_id__].[RED_faults.csv_EA0D7242ABD4413BB2E49F6C8BC3FFBD]' role='measure' type='quantitative' />
<column caption='Engine Hours' datatype='real' name='[engine_hours]' role='measure' type='quantitative' />
<column caption='Gross Combined Weight' datatype='real' name='[gross_combined_weight]' role='measure' type='quantitative' />
<column caption='Idle Engine Hours' datatype='real' name='[idle_engine_hours]' role='measure' type='quantitative' />
<column caption='In Service Dt' datatype='datetime' name='[in_service_dt]' role='dimension' type='ordinal' />
<column caption='Message Date Time' datatype='datetime' name='[message_date_time]' role='dimension' type='ordinal' />
<column caption='Odometer Reading' datatype='real' name='[odometer_reading]' role='measure' type='quantitative' />
<column caption='Vehicle Make' datatype='string' name='[vehicle_make]' role='dimension' type='nominal' />
<layout _.fcp.SchemaViewerObjectModel.false...dim-percentage='0.5' _.fcp.SchemaViewerObjectModel.false...measure-percentage='0.4' dim-ordering='alphabetic' measure-ordering='alphabetic' show-structure='true' />
<semantic-values>
<semantic-value key='[Country].[Name]' value='"United States"' />
</semantic-values>
<date-options start-of-week='monday' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
<objects>
<object caption='RED_faults.csv' id='RED_faults.csv_EA0D7242ABD4413BB2E49F6C8BC3FFBD'>
<properties context=''>
<relation connection='textscan.0mm2ngz0h08xm312sq4nk18jatl5' name='RED_faults.csv' table='[RED_faults#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en' separator=','>
<column datatype='datetime' name='message_date_time' ordinal='0' />
<column datatype='datetime' name='in_service_dt' ordinal='1' />
<column datatype='string' name='vehicle_make' ordinal='2' />
<column datatype='real' name='engine_hours' ordinal='3' />
<column datatype='real' name='idle_engine_hours' ordinal='4' />
<column datatype='real' name='gross_combined_weight' ordinal='5' />
<column datatype='real' name='odometer_reading' ordinal='6' />
</columns>
</relation>
</properties>
</object>
</objects>
</_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
</datasource>
</datasources>
<worksheets>
<worksheet name='Sheet 1'>
<table>
<view>
<datasources>
<datasource caption='RED_faults' name='federated.1giuty41vafjht1dpvck518o284l' />
</datasources>
<datasource-dependencies datasource='federated.1giuty41vafjht1dpvck518o284l'>
<column caption='Vehicle Service Age' datatype='real' name='[Calculation_5611977741496430592]' role='measure' type='quantitative'>
<calculation class='tableau' formula='[message_date_time] - [in_service_dt]' />
</column>
<column datatype='integer' name='[Vehicle Service Age (bin)]' role='dimension' type='quantitative'>
<calculation class='bin' decimals='1' formula='[Calculation_5611977741496430592]' peg='0' size='13' />
</column>
<column-instance column='[Calculation_5611977741496430592]' derivation='Count' name='[cnt:Calculation_5611977741496430592:qk]' pivot='key' type='quantitative' />
<column caption='In Service Dt' datatype='datetime' name='[in_service_dt]' role='dimension' type='ordinal' />
<column caption='Message Date Time' datatype='datetime' name='[message_date_time]' role='dimension' type='ordinal' />
<column-instance column='[Vehicle Service Age (bin)]' derivation='None' name='[none:Vehicle Service Age (bin):qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style />
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<mark-sizing custom-mark-size-in-axis-units='1.0' mark-alignment='mark-alignment-left' mark-sizing-setting='marks-scaling-on' use-custom-mark-size='false' />
</pane>
</panes>
<rows>[federated.1giuty41vafjht1dpvck518o284l].[cnt:Calculation_5611977741496430592:qk]</rows>
<cols>[federated.1giuty41vafjht1dpvck518o284l].[none:Vehicle Service Age (bin):qk]</cols>
<show-full-range>
<column>[federated.1giuty41vafjht1dpvck518o284l].[Vehicle Service Age (bin)]</column>
</show-full-range>
</table>
<simple-id uuid='{432C01AF-2734-4842-A5FB-B8C6C0AA750E}' />
</worksheet>
</worksheets>
<windows source-height='30'>
<window class='worksheet' maximized='true' name='Sheet 1'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
</cards>
<simple-id uuid='{59A797E5-BEC2-41AC-9A38-AFC05F8488B3}' />
</window>
</windows>
<thumbnails>
<thumbnail height='384' name='Sheet 1' width='384'>
iVBORw0KGgoAAAANSUhEUgAAAYAAAAGACAYAAACkx7W/AAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nOzdaXAc13kv/H/3LFhmsBEguACEuABcRHAR91WkSFncRMqSU3bZjpN7E6dc
qVQ5+pCUKx+uK/H7IZVybMfLrZuKnXiRS7JlSVzFBRQXkOIGggQIEAAJEDsBYhnMgll7ejnv
B3jGBAcYYpaDGTSfX5WqhCZw5unTPf10n3P6HIExxkAIIeSFI6Y6AEIIIalBCYAQQl5QlAAI
IeQFlfYJQNO0uP7O4XAkOZLxZFnmWr6qqnHv+1RomgZVVbmVD/CtI1VVucY/HfWvKAq38gH+
5yjv8hVFAc8uSt7HmDGW9sc47RNAvCeA0WhMciTj8b54aprG9eRnjHHfB57lM8a41g/v+g99
Bk8z+fhOR/mMMe4JIN3rKO0TQLzcbneqQyCEkLSm2wSQlZWV6hAIISSt6TYBCIKQ6hAIISSt
6TYBeL3eVIdACCFpTbcJIDc3N9UhEEJIWtNtAvB4PKkOgRBC0ppuE0BGRkaqQyCEkLSm2wRg
MBhSHQIhhKQ13SYAeg+AEEKi020CyMvLS3UIhBCS1nSbAHw+X6pDIISQtMYlAWiahsePH6On
pyc86VVHRwf6+/vDc7h0dXVhaGgIwFhzTWjeDJfLlZQYeM8FRAghMx2Xq2RdXR0AwO/3Y3h4
GA6HA8XFxejq6oLL5YLH44GmaRgaGsKmTZtQX1+PvXv34urVq1i8eHFSmm9MJlPCZRBCiJ5x
SQDr1q0DANy9excmkwlZWVkQRRFGoxFmsxkDAwN488034XK50NDQAE3T8PDhQ4iiiLKysnEz
PTLGEAwGY47B4XAgMzMzqfv1NE3T4oprqlRVhSAI3GYTDM2EyHMfeJYfmsWR12yOVP+pL19V
VQSDQW7TuvA+h0KtGul8DLgkAE3TcO7cORQXF2PVqlWoqamBw+GAz+eDwWCAKIoQBAFGozFc
Qffu3cPmzZshCMK4aVo1TYurOaegoIBrM1C8ccVCFEWIIp9uGk3TwseAF551FLow8xzuy7v+
Ab5NlbzP0ekon+eTPO9zKHQTm87HgEtkV69exfLly7F48WIAQF9fH44cOYLR0VHU1dVBEAR4
vV709PSguLgYwWAQ+/fvx4kTJ1BcXIycnJzwTqmqGteXMBAIcJ8OgtfFARibzE4QBG6fETo5
ee4Dz/JDF1Be5fOuf2BsH2Zq/U9H+aFjwPsJYKaeoyGJlM8lAZjNZrS2tqK1tRUVFRXYvHkz
zp07B1EUsXPnTgDAxYsXYbFYsGvXrvCd6IEDB9De3o41a9YkHAPvSieEkJlOYLyXPUqQqqpx
PaK53W7k5ORwiGhMIBDg2scgyzJEUeT2eBpaUtFsNnMpH+BbR6Gl9ng9XvOu/9DouJla/9NR
viRJMJvN3J4AeJ9DmqZBlmWu09Ikegx0e5vsdDpTHQIhhKQ13SaA/Pz8VIdACCFpTbcJIBAI
pDoEQghJa7pNAIQQQqLTbQLg2TlFCCF6oNsEQJ3AhBASnW4TAHUCE0JIdLpNAJIkpToEQghJ
a7pNALwm8SKEEL3QbQLIzs5OdQiEEJLWdJsAqBOYEEKi020CoDWBCSEkOt0mAFmWUx0CIYSk
NUoAhBDygtJtArBYLKkOgRBC0ppuE8Do6GiqQyCEkLSm2wRgtVpTHQIhhKQ1bglAkqRxUzLL
sgyPxwPGGBhj8Pv94XZ6VVXD20Or9CSKXgQjhJDouKyFVl9fj4GBAQQCAVRWViIvLw/Xrl1D
fn4+Vq5cidHRUTQ1NYUXg6+trcWOHTvQ0tICo9GIFStWJBwDTQVBCCHRcUkAK1euxNq1a9Hb
24ve3l50dHRg9+7dMJvNyM7Oxo0bN3D48GEMDQ2hsbERkiTB4XCgs7MThw8fjigvnrv57Oxs
rk8BjDGu5Wuaxq3sUPm894Fn+aH64V0+LzO9/qezfF5rAvM+h0KtGul8DLgkAKPRiPr6ejx+
/Bj79u3DH/7wB9TV1cHj8WDJkiUwGAwQBAFWqxWBQAA+nw8fffQRvvjFL0IQBDDGws1DjDGI
YuwtVW63m+t0EIwxrheJ6Sh/Ju8DYwwAvwv1dNXNTK3/6So/9B8PmqZBEASu51C6HwMuCeD+
/ftwu904dOgQBEHArFmzsHXrVoiiiIsXL0JVVWiaBqfTCavVimAwiK997Ws4e/YsvvSlL8Fo
NMJsNgMYy84GgyHmGKxWK0wmU7J3LUxVVa7lA4AoinHt+1SE7hpmah2F+oqMRi6nMAC+9R/6
0s7U+p+O8jVNg9Fo5PYEECqX1zkUespL52PAZc87OzthNptx7tw5VFRUYP369Th9+jQMBgM2
bNgAQRBw9OhRAMChQ4dw584dWCwW7Ny5E7W1tdiyZQuPsAghhDxFYLyer54RyoahO6pQ297z
mnfifQLo7+/H/Pnz44p1KgKBANdlJ2VZ5v4EoKpq+EmLB551xPsJgHf9a5oGRVFmbP1PR/mS
JMFsNnN7AuB9DmmaBlmWkZGRwaV8IPFjwO/5+RnPXuh5fbFCcnJyuJZPCCEznW5fBPN4PKkO
gRBC0ppuEwDPR1NCCNED3SaAeIaOEkLIi0S3V0lqAiKEkOh0mwByc3NTHQIhhKQ13SYAr9eb
6hAIISSt6TYB8H5LlxBCZjpKAIQQ8oLSbQKgFcEIISQ63SaAvLy8VIdACCFpTbcJwOfzpToE
QghJa7pNALznGiKEkJlOtwmA5wx8hBCiB7pNAE6nM9UhEEJIWtNtAsjPz091CIQQktZ0mwD8
fn+qQyCEkLTGJQEoioLW1lY8ePAgvPaspmlob28PL4Td1NSEnp4eAIDdbg8vBG+z2ZISA69V
hAghRC+4JICGhgaoqgqv14s7d+4AAOrr6/HZZ59BVVXcvHkTmqahpaUFfX19uH37NhRFweXL
lxEMBpMSA60HQAgh0XFZEnLdunVgjOHGjRsoKCiAy+XC8PAwFi1aBAAYGRnBtm3bUFZWhnv3
7kFVVTQ0NMBisWDevHlgjEHTNAB/Wjs1ViMjI1zXW1VVFZIkcS1fFMW49n0qQnXMc0lonnUU
Oj9CT5g8yhcEgeo/xeUn64ZwIrzPodAxTudjwCUByLKMTz/9FOXl5Vi+fDk++ugjrF+/HnV1
dXA4HOHFWgwGQ/gC39XVhZUrV0IQBDDGwl8MxlhcF/JZs2ZxTQDxxjVVsizDYDBwW9hG0zSo
qsp1ziSedaQoCgRB4Pa+h6IoEEWR6j+F5QeDQZhMJq6LwvM8h0LN2ul8DLgkgOrqaqxduxal
paVgjKGyshJerxderxdutxsGgwFOpxPd3d2YO3cuJEnC/v37cerUKcydOxf5+fkwGsdCU1U1
rhMgGAxy7wfgWX6o7Jm8DzzLn+n1M9Pjn87yZ+oxCN3EpvMx4JIA8vPz0dbWhra2NixZsgQr
VqwAMNYuv3DhQsyfPx/V1dWwWq1YtWoVDAYDDAYDDhw4gI6OjqQM4Qw93hFCCJmYwHg2QiaB
qqpxPaK53W7k5ORwiGhMIBDg2tEsyzJEUeT2eKqqKlRV5fp4yrOOQm3zoSfFZONd/6Gmz5la
/9NRviRJMJvNXJuAAH7nkKZpkGWZ66wEiR4D3b4HQG8CE0JIdLpNAPQmMCGERKfbBMBz+Bgh
hOiBbhMAr/HbhBCiF7pNANnZ2akOgRBC0ppuE4DL5Up1CIQQktZ0mwB4DgElhBA90G0C4DW/
ByGE6IVuEwDPCZgIIUQPdJsArFZrqkMghJC0ptsEMDo6muoQCCEkrek2AVgsllSHQAghaU23
CSDN57gjhJCU020CoEXhCSEkOt0mAHoPgBBCotNtAnC73akOgRBC0ppuE0BWVlaqQyCEkLTG
LQH4fD54PB4AYx2yz/7sdrsRCAQAjK2+FFoIPlnTOPNeh5MQQmY6Lmuh1dXVwWazIRAIoKKi
Aj6fDyMjI/D5fFixYgU0TUNHRwe8Xi/eeOMN1NbWYteuXbh37x4sFguWL1+ecAxer5cWhSGE
kCi4JIBVq1bBaDSis7MTg4OD2LBhA4xGI9ra2uByudDf34/Dhw/DZrOhqakJiqLAZrNhYGAA
Bw8ejCgvnrn9rVYr1zUBGGNcy1dVNfxUxIOmaeF1aXnhWUeqqkIQBG7la5rGtf4ZYzO6/qej
fE3TuM7pxfscCp0/6XwMuDQBMcZw584dtLa2YtOmTeGfOzs7sW7dOoiiCEEQkJWVBUmS4PP5
cOrUKVRWVkIQhHBTUDAYjHvnvF5vkveKpBt610P/eB/jmV5+org8AVy6dAlLly5FZWUlNE1D
dXU1Fi1aFP7ZbDbDZrOhu7sbJSUlCAaDOHToEE6fPg2r1YrCwkKYzWYAY1naYDDEFYfRyGX3
AIw9lfAsnzEGURTj3vfnCd1ZzeQ6AvjFz7v+Q08YM7n+eZevqiqMRiP3/jxe+xB6yk7nY8Al
suLiYnR2dqKzsxOLFi1CUVERenp60NPTg8WLF+PVV1/F559/DqvVivLychgMBhiNRuzfvx+d
nZ0oLCxMOAZ6D4AQQqLjkgDWrl373N95/fXXw/+/ZMkSAEBmZiZWrFiRlBg8Hg8lAUIIiUK3
7wFkZmamOgRCCElruk0AoqjbXSOEkKTQ7VUy9NIZIYSQiek2AeTm5qY6BEIISWu6TQD0HgAh
hESn2wQQeo+AEELIxHSbAHi/gEQIITOdbhMALQpPCCHR6TYB5OXlpToEQghJa7pNAD6fL9Uh
EEJIWtNtAuA1iRchhOiFbhNARkZGqkMghJC0ptsE4HQ6Ux0CIYSkNd0mAFoOkhBCotNtAvD7
/akOgRBC0ppuEwDvVYQIIWSm020CoPUACCEkOm4JwOPxjHsb1+VyhZtlGGNwOp3hn2VZBmMM
jDFIkpSUz6dOYEIIiY7LhDl3796Fw+FAIBDAwoULIQgCenp64Ha78frrr6O/vx+PHz/G6Ogo
Xn/9ddTW1uK1117D3bt3kZeXh2XLliUcA3UCE0JIdFwSwJo1ayCKItrb22G32zE0NIQDBw7A
brejpaUFNpsNhw8fxsjICJqbm6FpGgYGBjAyMoKNGzeCMTauPEVRYo7B6/UiKysrWbsUgTEW
V1xTpapq+KmIB03ToGka133gWUeqqnIp9+nyqf5TW36ofnj15/E+hxhjaX+MuTQBiaKIa9eu
oaurCxs2bIAgCDAYDMjOzoYkSTAYDBAEAVlZWQgGg/D7/fj000+xevXq8MGWZRmyLMe9c7y+
uNNFEASuHdl66CSfyfWjh/qfDjP9OKT7cebyBHD79m1YLBZs3749fPH3+XwYHBxEQUEBvF4v
gsEgBgcHkZ+fj2AwiD//8z/HqVOn8MUvfhEZGRnh+fxVVY1rWger1cp1SmhFUbiWzxiDKIrc
prQI3eHO5DoC+E37zbv+NU2b8fXPu/zQd5/3RZTXPoSe8tL5GHCJzOVyQVVVnDt3DhUVFdiw
YQPOnTsHo9GIffv2obS0FKdOnYLZbMYbb7wBVVWRmZmJvXv3orGxERs2bEg4BqfTiZycnCTs
DSGE6JPApqmtJPQxoWz+7M+TifcJwO12c00AgUCA61BTWZa5PwGoqsp15TSedRRqGuR1d8W7
/kNtwzO1/qejfEmSYDabuT0B8D6HNE2DLMtc5yVL9BhM27JZzx5E3o91wWCQa/mEEDLT6fZF
MJ4974QQoge6TQDZ2dmpDoEQQtKabhOAy+VKdQiEEJLWdJsAcnNzUx0CIYSkNd0mAOoDIISQ
6HSbAGgUECGERKfbBGCxWFIdAiGEpDXdJoCnp6ImhBASSbcJgJ4ACCEkOt0mgJk+GyghhPCm
2wRAi8ITQkh0uk0ANBMoIYREp9sE4Ha7Ux0CIYSkNd0mAJ7LQRJCiB7EnAA8Hg/q6+vhcDjg
8Xh4xJQU6b4UGyGEpFpMCcDr9eLHP/4xPvnkE9jtdpw7d45XXAnzer2pDoEQQtJazAlgzpw5
WLFiBbxeb9SRNgMDAxgeHgYwNiLn2rVruHv3LjRNg6qquH79OpqbmwEAT548gaZpkCQJfX19
CezOn9BkcIQQEl1MCWD27NkoKytDQ0MDzp07hzfffHPC32ttbcX169fR3d0NALhw4QKWLVsG
k8mE+vp6VFdXY8GCBbDZbOjq6kJDQwNUVUVVVVXSlpijJwBCCIkupiUhFUWBLMvYtGkTAODG
jRvYsWNHxJDLiooK5OXlobe3FwBQUlKCe/fuwePxYOPGjejv78eCBQuQn5+Pu3fvQpZlXLt2
DSUlJZg1axYYY1BVFcCf1tWMlcFgQCAQiPnvpkpVVa7la5oGQRC49WUwxsAYg6ZpXMoH+NZR
6EU/XrO+8q7/0GfM1PqfrvJ5vtDJ+xwCxo5xOh+DmBKAJEl4+PAh9uzZg9u3byMvLw///d//
jXfffXfc7z37pXE6nSgrK4PT6YTD4Rj376GDIEkSRFGEIAhgjIV/RxCEuJ4KgsHgjF4QmxaF
j44WhX8+WhQ+OloUPs5RQCUlJcjKysKiRYsmDcrn8yEQCCAQCMDpdKKoqAiFhYUYGRlBZmYm
+vr60NjYiLKyMphMJuzZswePHz/GwMAABEGAwWCAwWCAKMY3UpUmgyOEkOhiSn1WqxVvvvkm
3nvvPSxYsACrVq2a8A6pv78fg4ODEAQBT548wZ49e9DQ0ACz2YytW7cCAG7evImcnBwsWrQI
RqMRBoMBb7zxBnp6epKyY3l5eUkphxBC9EpgMTayBYNBNDc34/PPP8crr7yC7du384oNwFhT
RTyP4YODg5gzZw6HiMZQE9DzURPQ5KgJ6PmoCej5Ej0GU97zgYEBfPDBB3C73fD7/di3bx+2
bNkS9wfzxuugEkKIXkz5KulwONDb24sdO3bA4/EgPz+f291RMvC8syKEED2Ycg/rihUr8P3v
fx/l5eVwOp346KOPUFtbyzO2hDidzlSHQAghaS2mdhKDwYDVq1dj9erVkGWZ6/jZROXn56c6
BEIISWtxzwZqMpnSesZNWhCGEEKiiykBqKqKX//613j33XfDI4HSVbzvDxBCyIsipqvk4OAg
jEYjNm/ejNzcXLS3t/OKK2E8h14RQogexNQHUFRUhIGBATx69AiNjY348pe/zCuuhDmdTloW
khBCoogpARiNRrz99tvIy8uDLMtpPQyUOoEJISS6mJqAhoeHceXKFRQWFkIQBJw+fZpXXAnj
OQMfIYToQUxPAAUFBeju7sbRo0fR2tqKPXv28IorYTynkSWEED2IKQGYzWb84z/+I+7fv4/1
69djwYIFvOJKWDoPUSWEkHQw5QRw+/ZtKIqCy5cvh5tX9u3bh23btnELLhHUCUwIIdFNOQFs
2LABiqKgtLQU8+bNCy/ekq6oE5gQQqKbcgIIrdR1/vx5PH78GBUVFdi7dy+Ki4t5xhc3SZLo
CYAQQqKIaRSQ2WzGX/7lX+Kdd95BQ0MDLl68yCuuhIXWFCaEEDKxmDqBfT4ffvSjH2HJkiX4
9re/zXXBlURlZ2enOgRCCElrMT0BaJqGefPm4Stf+Uq4H2AysiyHO4sZYxgdHcXjx4+haRoY
YxgaGgqv2xsIBMAYg6ZpSZvEzeVyJaUcQgjRq5gSQGZmJux2O44ePYr6+noMDQ1N+HudnZ34
4IMP0NjYCADo7u7G1atXMTIyAofDgXv37qGpqQnnz5+HzWZDdXU1VFXF9evX0dfXl/heAcjN
zU1KOYQQolcxNQFpmobly5dDlmV0dnbCYrFM2AlcUlKCN954A48fPwYANDc3Y9WqVRBFEQUF
Bbh27RoOHz4Mh8OB5uZmMMbQ3d2NQCCAJUuWjHuJizEGWZZj3jG/38/1XYDQep+8qKoKTdOg
aRqX8kNl89wHnuWrqhoemMCrfJ71zxiDqqoztv6ns3xeow15n0OhVo10PgYxJQCTyQSj0Yja
2lp8/etfhyRJE/7esws5j46OwuFwYHR0FE+ePIHBYIAgCMjIyIAsy5AkCVeuXMHevXvDByS0
2IymaXGt76uqKtcpoQVB4Fq+pmkQRZH7tNYztY5CX1pe5fOuf8YYGGMztv6nq3ye843xPodC
CSCdj0FMV9bBwUH09fVh2bJlsFgsuHHjBiorK5/7d0VFRSgrK0NGRkZ4DQG/34++vj4UFhYi
GAziq1/9Ko4fP46ioiJkZ2fDZDIBGLuQx3MS5OTkcD15eJ+coROH9xdgptZR6MvLq3ze9R96
upip9T8d5SuKwvV9o+k4h9L9GMSUAHJzczE4OAi/34/+/n6sX79+wt9raWlBV1cXgsEgLBYL
tmzZgurqamiahh07dkAQBJw7dw5ZWVnYu3cvGGMwmUzYt28fHj58iFdeeSXuHQoZHR2l9wAI
ISQKgcXYAObxeNDc3Iy8vDwsXbqU+9vA8T4BuFwu5OXlcYhoTCAQQGZmJrfyZVnmegeqqipU
VYXZbOZSPsC3jkJNhPE0D04F7/rXNA2KoszY+p+O8iVJimhOTibe51CofZ7n4lSJHoMpNx4N
Dg7i/fffR0ZGBk6ePIlf/OIXaGtri/uDeePVeUcIIXox5QTQ3t6OuXPnor6+HuXl5fj7v/97
XL9+nWdsCaH1AAghJLopJ4Bly5ahqqoK7733Hg4cOIDu7m4UFhbyjC0hVqs11SEQQkham3Lj
V2FhIb773e+CMQaLxQKTyQSLxcIztoS43W7qBCaEkChi6v14en6dgoKCpAeTTDQXECGERBdT
AmCM4bPPPsPt27fx5S9/GZIkYeXKlbxiI4QQwlFMr5ANDQ2hu7sbpaWlyMrKwp07d3jFlTCf
z5fqEAghJK3F9ASQk5ODwcFBSJIEm82WlBe2eKH2f0IIiS7mPoB3330XDQ0NKCwsREVFBa+4
EubxeCgJEEJIFFNOAJcvX8aFCxfGbdu/fz+2b9+e9KCSgefbd4QQogdTTgC7d+/Grl27YLfb
UVhYCL/fn9bLLvKcgIkQQvQgpk5gm82GkydPAhiba+fYsWNcgkoGt9ud6hAIISStxdQHYLVa
0d7ejlu3buHevXtp3QfAcyI4QgjRg5ieALKysvDuu+/iyZMn2LhxI3bv3s0prMR5vd5Uh0AI
IWltyk8ADQ0NUBQF165dgyRJePToERRFwcaNG3nGF7fQgjKEEEImNuUEsHTpUgBAeXl5eCUd
nnOBJ4oSACGERDflBJCZmQm/348f/OAH4bn203kYqMvlQm5ubqrDIISQtBVTJ7Df78f8+fPx
rW99K+rvMcbQ1dWFzMxMzJs3D8DY6js1NTXYvHkzNE3DtWvXkJeXh7Vr16K3txelpaUIBAKw
2WwoKyuLf4/+KD8/P+EyCCFEz6acAD7//HNcvXoVDx8+hN1uBwDs2bMHmzdvjvjdtrY2PHr0
CMXFxeEEcO3aNfT09GDjxo24fPkyVq1aha6uLrS3t4cXm6mqqsJrr72WlB3z+/30JjAhhEQx
5QSwZcsWbNiwAaqqwul0wmq1Tvq2bUVFBfLy8tDb2wsAePLkCURRxJw5cwCMrfU5d+5cWK1W
1NbWIhgM4sKFCygvL0dubi4YY+H1OhljkGU55h1jjHFdFUxVVa7la5oGQRC4rYfKGANjjOvS
mTzrKNQPFTpPko13/Yc+Y6bW/3SVH+OS5THhfQ4BY8c4nY/BlBOA0WiEpmn42c9+hr6+Pnzr
W99CR0cHDh48GPG7z35pzp49i8rKSrS3t6OzszO8nTEGQRAgiiIsFsu4GTxDb/JqmhbXwtmy
LM/oBbFpUfjoaFH456NF4aOjReHjeBN4/vz52LRpE8xmM4aHhyf8PY/HA6fTCY/HA4/HgyNH
jmDhwoXIy8tDYWFh+IWy2tpaLFy4EEajEVu3boXD4UBfX184KYiiGPfBdzqdcf0dIYS8KGJK
fXPnzoUsy7h16xbu378/aWew3W6H1+tFTk4O7HZ7uFN3y5YtKCgowM6dO3H37l3Mnz8fZWVl
MJvNMBgM2Lt3L/r6+hLfK1AnMCGEPI/AptjI1t/fj4cPH2Lz5s3Iysoa+2OO7aMhqqrG9Rg+
PDyM2bNnc4hoDDUBPR81AU2OmoCej5qAni/RYzDlPS8oKIAkSfjhD38Ig8GAlStXYseOHZg1
a1bcH04IISR1ppwAsrKysH//fuzduxetra345S9/CZfLhW984xs844tbOr+lTAgh6WDKCcBm
s+FXv/oVnE4nFi5ciG9+85tpPRuo0+mk9wAIISSKmIaBfu1rX8PcuXMhijENHkoJ6gQmhJDo
pnwlz8nJwbx587i+mJFMkiSlOgRCCElrU04Av/nNbzA4OIjf/e53PONJGp5vWBJCiB5MuQlo
x44d+PGPf4zu7m48ePAAQHrPBhoaqkoIIWRiU04AFRUV+Jd/+Rd0dnaiuLgYFoslrefcp05g
QgiJLqY3IARBwLFjxyCKIpxOJ7761a+isrKSV2wJoTWBCSEkupgSwNDQEIqKivDXf/3XGBoa
wrFjx9I2AcQzgyghhLxIYkoAc+bMgd1ux7/927/B5XLh61//Oq+4EkYJgBBCoospARiNRvzD
P/wDRkdHkZWVldZ9ABaLJdUhEEJIWovpja7QAiJ5eXkwmUxp/U6Ay+VKdQiEEJLWYkoAHo8H
n3zyCYCxKZ+PHj3KJahkoBFAhBAS3ZSbgBhj+I//+A+0t7ejo6MDbrcb+/bt4xlbQlRVTXUI
hBCS1mLqA/i7v/s7NDU1Yd26dTAajVznMk8UTQVBCCHRTTkBCIKA7OxsVFdX49KlSwCAL3zh
C9i6dSu34BJhtVpTHQIhhKS1mJ4AvF4vCgsL8Td/8zcAEHVWUK/XC8YYrFYrVFXFkydPoGka
SktLIQgCuru7kZ2djeLiYrjdblitVmiaBo/Hk5SXuNxuN/UDEEJIFDElgOzsbNTX1+NHP/oR
AGD37t3YuHFjxO+1tbWhpqYGy5Ytw4YNG1BfXw9grBPZ4XAgGAxC0zQMDQ1h06ZNqK+vx969
e3H16lUsXrw4KQkgOzs74TIIIUTPprwmMDDWEez1esM/m83mCfsBNE3D8PAwekdcysIAACAA
SURBVHt7sWHDhvBw0du3b8NisaCjowNvvvkmXC4XGhoa4PV6UVZWBpvNhldffTX8WaGy4pnZ
0+l0cl0TQFEUbmuJAmOd2IIgcFt7ITSkl9eatwDfOgqdE7zqh+o/Pco3GAzc1gTmfQ4xxqCq
alofg5j+0u/346c//SkCgQA8Hg8OHTqEPXv2RPzesxWqqiqqqqowZ84cvPzyy+jq6oIgCDAa
jVBVFcFgEPfu3cPmzZshCEL4ywGMHaR4dlCWZa4VH29csRBFkdvJqWla+BjwwrOOQqO8eF5A
edc/wG9B8tBnzPTyeb5syvscCt3EpvMxiLkJ6J/+6Z8AAN3d3aipqZnS312/fh1Lly5FeXk5
gLEOZa/Xi56eHhQXFyMYDGL//v04ceIEiouLkZOTE94pVVXj+hLm5uZyX7mMZ/mCIHC/AwX4
7gPP8nnfvfGuf2BsH2Zq/U9H+aFjMFOfAHiXH5JI+TE/Afz85z+HJElwu91Yv379hL/X0tKC
np4eyLKMlpYWmEwmPHr0CI8ePUJFRQVeffVVXLx4ERaLBbt27QrfiR44cADt7e1Ys2ZN3DsU
4vF4qBOYEEKiiLkPwOVy4fHjx5g1axbmzZvHLTuHqKoa1yOaw+FAQUEBh4jGBAIBZGZmcitf
lmWIosjt8VRVVaiqyvVdDp51pCgKAH6P17zrX9M0KIoyY+t/OsqXJAlms5nbNYb3OaRpGmRZ
RkZGBpfygcSPQUx7Lssyfvazn2H27Nl48uQJjhw5gnXr1sX94TzNhIXrCSEklWK6StpsNsyb
Nw/f+ta38Ld/+7eora3lFVfCPB5PqkMghJC0FvN6AF6vF9/97ncRDAbxzW9+k1dcCcvNzU11
CIQQktamnAACgQCGhobw7W9/G4qiwOl0cm//T4TX66VOYEIIiWLKTUB1dXVobm4GMNZp4vF4
cPLkSW6BJSqdJ6ojhJB0MOUEUFRUhIaGBiiKAsYY6uvrUVhYyDO2hPB+SYsQQma6KV8ly8vL
UVlZie985zsAgJdffhl/8Rd/wS2wRI2OjlI/ACGERBHTdNAHDx7EwYMHecaTNMmYUI4QQvRM
t4PlfT5fqkMghJC0ptsEwHOSMEII0QPdJgCer18TQoge6DYBOJ3OVIdACCFpTbcJgOdiMIQQ
oge6TQB+vz/VIRBCSFrTbQJI52kqCCEkHeg2AfCcp5wQQvRAtwmAOoEJISQ6LglA0zQ0NTXh
8ePHAMba4y9cuIAbN25A0zQEAgGcP38eN2/ehKZpaG9vh6ZpcLvd6OjoSEoM1AlMCCHRcUkA
7e3tGBwcxMDAAICxReErKythNpvR1taG6upqrFu3DiaTCW1tbXj06BEURcH58+dRXFyclBgk
SUpKOYQQoldcpsysqKhAbm4uent7AYytJTBnzhxYLBbU1tZCURQUFhYiIyMDtbW1kCQJp06d
wsqVK2G1WsEYC6/XGVpXM1ayLCMQCCR1v56mqirX8jVNgyAI3DqzGWNgjEHTNC7lA3zrKLSU
deg8STbe9R/6jJla/9NVfgxLlseM9zkEINziwUuix2Ba5kwOXWwURYHBYAhXvKqqEEURRqMR
8+fPx/DwMJYuXToW2B+nc1ZVNa6pna1W64xeEJsWhY+OFoV/PloUPjpaFJ5TE5DT6cTw8DAc
DgecTicKCwvR2NiIW7duYdGiRcjLy0NzczNu3ryJxYsXw2AwYM2aNZAkCV1dXeE7r0TuwKgT
mBBCouOSAHw+HwRBwPz58+Hz+bB582aIoohly5ahpKQEO3bsgKIoWL58OUpKSrB+/XoYDAa8
9tprScuW1AlMCCHRcXn2mT9/PubPnz9uW2Vl5bifV69eHf7/oqKicX+bDMFgMCnlEEKIXun2
PQCeHTuEEKIHuk0A2dnZqQ6BEELSmm4TgMvlSnUIhBCS1nSbAGhBeEIIiU63CYD6AAghJDrd
JgAaBUQIIdHpNgFYLJZUh0AIIWlNtwlgdHQ01SEQQkha020CoCcAQgiJTrcJgOcsgoQQoge6
TQC0KDwhhESn2wSQk5OT6hAIISSt6TYBuN3uVIdACCFpTbcJICsrK9UhEEJIWtNtAuC5lB8h
hOiBbhOA1+tNdQiEEJLWdJsAaDI4QgiJbloSQDAYxP3799He3g7GGDRNQ1NTE3p6egAAdrsd
jDHIsgybzZaUz6QnAEIIiW5aEsClS5eQmZmJwcFBNDU14ebNm9A0DS0tLejv78ft27ehKAou
X76ctEnczGZzUsohhBC94rIm8LPy8/PhcDjg8/lQUlKCzs5ObNu2DWVlZbh37x5UVUVDQwMs
FgvmzZsXfkoAAE3T4praWVVVSJKU7F2Z1vJFUeQ2rXWojnm+Mc2zjkLnh6qq3MoXBIHqP8Xl
85zVl/c5FDrG6XwMpiUBKIqCzMxMGAwGBINBiOLYg4fBYAhf4Lu6urBy5UoIggDGWPiLwRiL
625ekiSuTwHxxjVVsizDYDCE6yrZNE2DqqowmUxcygf41pGiKBAEAQaDgVv5oihS/aew/GAw
CJPJxG1EH+9zKNSsnc7HYFoSwODgIA4dOgSn04mmpiYYDAY4nU50d3dj7ty5kCQJ+/fvx6lT
pzB37lzk5+fDaBwLTVXVuE6AvLw87kNBeZYfKnsm7wPP8md6/cz0+Kez/Jl6DEI3sel8DKYl
AezcuROXL1+G0WjE9u3bwRhDdXU1rFYrVq1aBYPBAIPBgAMHDqCjowP5+fkJf6bP56PpIMhz
NT1sh8Md+QidaRZRuXQht7tDQtLBtCSA2bNnY9++feO27d+/P/z/FRUVAMbe3l25cmVSPjP0
BEFINLcfPMHRW48jtq9ZmIeVFS+lICJCpo9u3wOgUUCEEBKdbhOA0+lMdQiEEJLWdJsAktGP
QAgheqbbBEALwhBCSHS6TQC8xm8TQohe6PYqmZGRkeoQCCEkrek2Afh8vlSHQAghaU23CYBe
4CGEkOh0mwCoCYgQQqLTbQKg9wAIISQ63SYAeg+AEEKi020CoPcACCEkOt0mAN5TsBJCyEyn
2wSQmZmZ6hAIISSt6TYBUCcwIYREp9sEQJ3AhBAS3bQlAMYYVFUNr/f79ILYoW1PrwWcqEAg
kJRyCCFEr6Zl2Syn04nLly8jIyMDGzZsgCRJuHXrFgRBwIEDB3D37l1s3rwZXV1dkCQpKauC
JSuREEKIXk1LAqitrcXu3bthsVhgMplw4sQJfPGLX8STJ09w//59eDweeDweNDQ04K233or4
e03TYv7MzMzMuP4uFjzLf/pJiVf5AN994Fn+dMTPu/55lh8yk8tPdqvAROUDM/scTbT8aUkA
Q0NDuH37NtxuN9auXRteBL6goABtbW3w+Xx4//338c4778BgMIAxBlmWAYxVYjxDOu12O9eR
QJqmQVEUbuWrqgpN07hNa/10ExwvPOsodNLz3AdFUbjFH7r48zyH9FC+LMvchnTzPodCzd48
h6QnegymJQEUFBRg165dEAQBFy5cCF/c3G43srKyEAwG8ZWvfAWXLl3C22+/DYPBEF7TV1XV
uCZ2Kyws5LousKZpXMuXZRmiKHKb1E5VVaiqOmPrKHTSG438TmGTycQt/tAXd6bW/3SUzxiD
2WzmdgHlfQ6FEkw6H4NpSQCrVq3CqVOnYDQaUVlZCQA4fvw4ZFnGwYMHUVNTg7y8PKxduxY1
NTXYunVrwp8ZDAYTLoMQQvRsWhJAaWkp5s6dOy5blZaWhpuC9uzZAwAoLy9HeXl5Uj6T56Mp
IYTowbQkACDyMYvnYxEAZGdncy2fEEJmOt2+COZyuVIdAiGEpDXdJoDc3NxUh0AIIWlNtwmA
+gAIISQ63SYAGgVECCHRTVsn8HSzWCypDoEQXRkZGUFb73D456dfVCxfMBtFhYWpCo3ESbcJ
YHR0FDk5OakOgxDdCAQk/OuH9RP+20//didA1/8ZR7dNQPQEQAgh0ek2AdBsoIQQEp1uEwCt
B0AIIdHptg/AarWmOgRCCIkwbLOhuWMgYnuexYw1L1dwnT30WbpNAG63mzqBCSFpJxCQ8MNj
9yO2v7FmDlavKJ/WBKDbJqCsrKxUh0AIIWlNt08A05lFCSHkWR6PBz6fL2JND38a9U/qNgF4
vV7k5+enOgxCyAtqwObAP79XE7F97+o5KYhmYrpNADQZHCEklRgDvJIasV1W+a4RHAvdJgCP
x0OdwDMAY2zSeZsMBgPXJR8JedHp9tuVkZGR6hDIFDDGcPLyXbQ8Ho34t28eXI158+alICpC
XgzTlgD8fj+qqqpw6NAh+P1+VFdXIysrC7t378bDhw+xbNkyOJ1OjIyMYOnSpQl/Hq/F1Eny
9dv9qG13RGz/ZgpiIeRFMi3DQBljqK6uhqIoYIzhypUreO211zB//ny0tLSgt7cXsizj4sWL
KCsrS8pnut3upJRDCCF6NS1PAO3t7SguLobNZgtvs1gsKCsrQ01NDfx+Pz788EO8+uqryMzM
BGMMsiwDwLj/j0VGRgbX6SBUVeVavqZpEASB23BWxhgYY9A0fh1SU6mjaHM2KVH+PvR3PBf+
CQaDXIcTa5qW8vqPhaJGdmjy+qxQmTzn9OJ9DmlR6msykiTFdM4lWu/TkgCqq6uxZMkSdHR0
YM6cOeGTPhgMwmg0IjMzEytWrEBbWxteeuklCIIQXjReVdW4mnNcLhcyMzOTuh9PCwQCXMuX
ZRmiKHJrylJVFaqqhuuZh6nUUbQLoNFgmPTvQ19anp3EZrOZ2zHWNA2KoqS8/mNhjHIuGqIc
q3hJkgSz2cwtCfM+h8Q4vrsZGRnhNRamItFjPC0J4Bvf+AYYY/D7/Vi6dClkWcaNGzcwPDyM
LVu2oK6uDosXL4bdbkdLSwtefvnlhD+TRo8QQkh003KVDN3l7NixA5mZmVi/fj26u7tRXl6O
2bNnY9u2bTAajdiyZQucTmdSP5MQQsjEpvU2+elx+QsXLpxwe0FBQVI+y+l00nsAhExClmW4
XK4J/00URcyaNWuaIyKpoNt2EpoGgjzN6/VO2NnH8GIuHCTLMv7f8Tt42B85Wu7wxhLs3xrZ
DCtN8sIembl0mwD8fj89AZCwqpo2nL/THbF9zcIX90bBH1Th9kcmRZc3iH/6+eWI7duW06K/
eqPbBBBLTzrRP7dfRp/dH7F99cK8FESTfKqqRjzhyLIMQRBgMpli+j5ojE1YV54AvyG3JDV0
mwBoKgjyIvF4PHi/qg52z/hmmuK8DHz1jfW0Qh6ZkG4TAHUCkxdNU48LvSPj79wr5tGFn0xO
twmAOoEJITPNB2duQptgXMKuNS+hbEFJ0j9PtwkgEAjQEwAhZEb5+EYv1AkywOYVyb/4AzpO
ADznECGETE1rexdGRiPnqsk0iVhRXsZ1OhXyfLpNALQoPCGpd7d1AB9c7YrYvqI0B/9nEZ+7
WjJ1uk0A1AmcXlRVHTcbbAg9qRGSOrpNANQJnF40TcN75xtxrWV8EjAbRWxfXpSiqKI7dqkO
3mfGvhdYzdi/fRUsFkvC5Xu93knXrcjMzEzKZ5DYXL/TiObuyMWJCqxm7NtWqbvhtLpNAJIk
0RNAmmEMESMcJhrxkC6uNA2h3zG+/Xp5SQ4smQ/gC46fxtqSYcT2VypiukCMOJz4/z64O+G/
/ev/3kYJIAX6Rvw4WdsfsX3pfCv2bUtBQJzpNgGocSzGQMhUnL3bj84h77hti4ot2LpmSUzl
MAY4vbEvdkRIsuh2voTs7OxUh0AIIWlNtwkgWesKEEKej4GFlxl9+j+S3nTbBJSXp49JvgiZ
CZra+/HpjbaI7ZlmPkuakuSYlgTAGIOiKGCMwWw2gzGGYDAIg8EAo9EYXgAdGBstkox1cONZ
SJ4QHrp7+3C9sWfcNgagOFc/q9b12Hw4Vz8Ysf3AurkpiOb5XC4XFEWBIAjjZkplUdao1qNp
SQD37t1Df38//H4/NmzYAMYY6uvroSgKDhw4gDt37mDbtm1obW0FgKSsCUwJ4MXj8XhQ29QJ
SY4cAGB3elIQ0RhfQMbvPo9ciyBdL44vgvO3WnC+fiBi+4YlyVmRcKaYlgTw8ssvY82aNejt
7UV/fz+Ghobw1ltvYXBwEI2NjfD7/XC5XGhtbcVbb70V8ffxjOjJzs7mOhKIMca1fI3znUio
jXa66iie/YkWX+ip8el/VxQFf/i8A49HIueyL5+GWTEnjzf2tvDJygo9SU+0fTKapkWUxfv8
mornnX+MMW5x+iQVA87IKSrUKP0WMX9fktgHwjDxZ8caU6g1JmRaEoDJZEJTUxM6Ojqwf/9+
nD9/HoIgICcnB36/Hz6fD7///e/xzjvvQBAEMMbCd/CMsXDzUCycTifXeUamKwHw6kgLfbnS
OQFok9Sxz+fD4LA9om6Yltqhv5PVZzzHcLJ9v3irEbfbRiK2l86afOqTdE0AqqpGPf8SPT9H
R0dhs0+87nFc5+Mk8UxWVjLreLLrjaqqk7Z2TLQIUCAQwEcX6vH4jwv+TEsCaG5uhs1mw+HD
h8N3bZqmweVywWKxIBgM4mtf+xqqqqrwpS99CQaDAWbzWPuoqqpx9Qnk5eWFy+BB0zSu5cuy
DFEUk9IfMpHQl2+66iieJjmDKE4Yn9frxfc/vofhUWnc9lVlqe34f/q8fZogxD7YbrJ9HxkN
4k575JuqEzV7hRiNxoiyoj0xTJeJ4noaYwwmkymuG0BgbB+/86vbE/5bPM1vEx1fr9eL45fr
MeSKfJpYWJy8F/lEYeLzoebeQ9S2DUVsn2XNwNuvrYl4GVZRFHQMetHYM5YYpyUBPHr0CEaj
EefOnUNFRQVeeeUVHD16FIwxHDx4EHfu3IHVasWWLVtw+/ZtbNmyJeHPTIc7nJlOkiR4vd4J
/81gMNBIK44CgQDsdnvEdr0PrZRlOTw9hqIoMBr/dIkSRTEtp3hp7Hah+fFoxPYD65J38/ao
dwjX7vdGbDeKwKX7wxHbl8y14O0plDstCWCidv158+ZBFEWIooidO3cCAMrKylBWVpaUzwwE
IjMyiY3f78e/fXADQy4p4t/+1+tLsWsTJQBerjY+xuWmuojtW5bqe2F2SZLwf4/eRsdg5I3H
F7eU4a09G1IQVer12Lw4czey0zrRgQQpew/g6czOg94mbUoVl0+OWGcWABSVnrCe1dLei6Aa
2VzB1Nibv/yyOmG9szg6lCVJimhKlKTIpJ4u3H5lwn2frJkrGAxO2mFOotPti2But5smgyPT
6pPrXXjQFzm7Z6qHe/7us4aIES+FORkpiib5ngwO4RenGyO2r12Ufs1F6Ua3CYDmAiJkTMeg
F48Gxr8HUVaUjZwsfXz9NY2hoTtytE9JlJFRZIw+zgCiS35/YMJFZPz+yHH+hPA2Ojoa0bc4
01841W0C8Pl8aTligEzd5YZeXGyMHOK2ZiEdVzL9/u+Je+geHt85XVqYjfgGqaYH3SYAav+f
+YKKBrc/siMvEKS1Hl5EQVnBZzcaIrZnGqZnaKxfUiLOR5+kwJKRnpdRSZIiXgZ7tvM/PSNP
Ao/HQ0mAkDTW1vkY2jMz0ouYfHSZJyDjpyebI7anupM9Xb1/vgF99vHNpUW54zv/dZsAMjL0
M8qBED365fmH6Br2jdu2eI4FJoNulymZVr02H1qfjO/8Lw0oKLD86Y1i3dY0rykUCCFEL3T7
BODxeGiqghRo6+jCzaY+AGNzYIY6yExG3d5rEDJj6TYB5ObmpjqEF9KoN4iPbkTOWZKTZaTR
O4SkGd0mAK/XS53AHHl8Adyoa4nY7vXRGH1CZgrdJgCTyZTqEGYMTdMmnD012oyqTxw+/M+F
jojtNCKDkJkjJQlgdHQUly9fRlZWFl577TU8ePAAK1asgMPhgM1mw/LlyxP+DL0nAKfTOemE
XhaLJabJ8JxOJ35/oQE+afwY5/kF9Co9IXqWkgRw9epVfOELX0BPTw9aWlrQ39+PJUuW4NKl
SxNOHR0Pl8ul636A3oERfPe9yMUusswGfGPXwvCKPyECgMPbl2HOnDkTllfTZo+YgXEttdkT
omspawLKyspCaWkpampq4Pf78eGHH2L37t1JW6FK79NAMADaBC9Aagx40DeKy03jF4kQBODN
bUunJzhCyIyQkgQQalsOBoMwGo3IzMzEypUr8fDhQ5SVlcW9BNzTfD5fyjqBZVmOeZKo/sFh
9A79aSrhsbWQgZJCK0rnR961q0rs0yH0PrGhpTs0uRoDY4AgCMjSd2sZIWQSKUkAJSUl+Pzz
z2Gz2bB9+3bcvXsXCxcuhN1ux/3797Fq1aqEPyOVL4KNjo7i/x2/E9GmvniOFSNuCS5fZHJY
XpKDj2/2RWx/e3MJWs9HjrapjGP929ttNpyrj1xVaHPFrJjLIoTMfClJAK+88gr6+vrw8ssv
Y9asWdixYweMRiM2bdoUXg80UdMxFcRko2QYY2jtd0dc6DNMBjwe8U24xGLZ7InXLwjIKpp6
I9cbnez3CSFkqlKSAARBQGlpafhni8US/v9kddw6nc6YmoBcLheCwchl6ICx+J5dYIYxhrNX
atE5wdqlJYU0eoYQkv4Extj0zKUaA8ZYwgstqKoaUzOQpmmYrCoEQYiYVpUxhkBQgTzB2rgm
gwhVY9CeKc8oitBY5HYAMBtFBJVnymKA2TTB9sl+H2OjfYwGMSIu4Y9xBZ/e/se5GiaPV4DG
MPV4n93+1FwQAgQYDcLU4nrOZ4TrUWN4ejJ2oyiAMUCdIF6DKECdoNd88s8Q/nisIrdP9BkG
QYAgAEoMn2GeZL+j/k2UeCPiYoDBMFZBz+57XPE+u/2p45uUeDF2nMbFm8BnTLZ93L89PV9J
lL+JiCu0/Xn1KGt4dsGAaOeDrGoTrvoc6zk01XjTMgEkQzAYhMlkSkqH8kQURYEgCNz6Ghhj
UBSF6/sMwWAwaaOuprv80E0Cz/Kp/qOTZRkGgyHi5ihZVFUFYwxGI5+GCt7nEJD+x5hm6CKE
kBeUbqeC4HVXEiIIArenixDe+0DlR0fH9/nl86wj3vUP6OMYJEK3TUCEEEKioyYgQgh5Qemy
CYgxFh4FlMzHSMZYeKRQqFxN05LyKPxsuaqqhkcfMcagadqEo5FijT1U3tOfJwhC+J2GRMp/
us5Do6pCdfPsz7EK/b3BYJgw/qfrK57Yn63fZNZ/6O+BP9XvRPUf2r94hWIUBCH8maH6fvbn
eDx9Dj39DkyojhL5zj3vu5Vo/BOVn8xzKFTeVL4D8R7jUPmiKE56DGKtI90lAMYYzp07B1VV
UVRUhM2bNyet7OvXr8PtdsNgMGDHjh148OAB+vr6wBjDm2++GfcXa3h4GJ999hnWr1+PpUuX
oqOjAw0NDVAUBW+99RZ6enrQ2NgIxhgOHjwY80tuXq8XV65cQWZmJl577TU4HA5UVVVh1qxZ
WLp0KfLy8nDx4kUAwO7du1FYWBhT+aOjo7h06RIMBgNycnKwfft2nDx5EqIoYtmyZViyZAk+
/fRTCIKA5cuXY9myZTGV39LSgkePHkGSJGzYsAGapqG+vh5WqxVr1qyBqqq4efMmGGM4cOBA
xDsbz1NXV4ehoSF4vV7s3LkTPp8P9fX1UBQFR44cQV9fH+rr68P1n5mZGVP5XV1daG5uhqqq
KC8vx7x583Du3DnMmjUL5eXlKCwsxGeffQYAePXVVzF79uyYygfGLpYfffQRKisrsWzZsnD9
l5eXY+nSpeH6r6iowIoVK2IuHwCuXLkCRVGwd+9enDlzBiaTCRkZGdi1axcuXrwISZKQk5OD
HTt2xPxduHXrFux2O4xGI3bu3InW1lb09PRAEAQcOHAAjY2NePz4MTRNw+HDh2Muv6urC3V1
dbBarVi9ejV8Ph/u3bsHi8WCNWvWQFEU3Lp1K+5zSFXVcJ0sXLgQpaWlOHv2LABgy5YtKCgo
wOnTpyGKIjZv3oySkpKYymeM4cqVKwgEAsjPz8fmzZvx8ccfIy8vDwUFBVi3bh3OnDkDxhhe
euklrF69esoF64rNZmPV1dVM0zR24sQJJsty0so+efIkk2WZaZrGVFVlx48fZ5qmsRs3brAn
T57EXe7AwAB7+PAhu3///ri4Hz16xO7du8eOHz/OVFVlbW1trLGxMebyHQ4Hs9vt7MyZM4wx
xpqamlhrayvTNI0xxtilS5eY3W5nHo+HVVVVxVy+JEksGAwyRVHYxx9/zFpbW1ljY2O4jh48
eMCam5uZpmns2LFjMZfv9XqZpmlseHiYXbp0iV2/fp0NDAyE4w/V15MnT9j169djLl9VVaZp
Grt//z5raGhgJ0+eZMFgkHV2drK7d++G67+jo4PV1dXFXf7w8DA7f/48e/DgAWtpaQnHX11d
zWw2G/N6vezcuXMxl88YY3fv3mWXL19mdXV1rL29ndXX1zNVVdmxY8dYW1sba2hoiLv+GWPs
8ePH7MqVK+z06dNMVVV28uRJpigKY4wxn8/Hzpw5wzRNY6dOnWKSJMVc/unTp1kgEGCapjFN
09jRo0eZpmmspqaG9fT0sGPHjoW/a/39/TGXf/XqVWaz2cJ1fu3aNTY4ODjhOXTjxo2Yy29q
amItLS3M7/ePi1OWZXbixInwz4FAgJ0+fTrm8h0OB7t48WK4fFmW2alTp5iqqowxxnp7e1lN
TU247qZKd08AXq8X+fn5EAQBFoslPOFcMhQUFODChQvwer3Yv38/zGYzBEFAUVERnE4n5s6N
bzGUOXPmwO/3h19+E0URRqMRs2fPRl9fX3isdUFBAVpbW2MuPz8/H6r6p8njsrOz8eDBAzQ2
NuKVV16BJEmwWq0wmUyTrjEQjdlshsfjwdmzZ7Fx40bYbDbMnz8//KjqdDqxePHi8HsTjLGY
7uCysrLQ0dGB+vp6HDx4EJ2dnaivr4fb7cauXbsgiiIMBgPy8/Ph9Ua+mf08iqLgxIkTGB4e
xl/91V+hp6cHJpMJhYWF6O7uHlf/fX2R8zVNxcWLF9HY2Iivf/3r8Pv946G2ewAACuxJREFU
aG5uRnNzM9auXYtAIICcnByYzeZJ30aPZnR0FIODg1i1ahWGh4fhcrlQXFwcrhen04nS0tK4
619VVdTW1mL//v24ePEiNE2D2WxGVVUVBEHAunXrMGvWrLGJBbOyoChKzGPT8/LycPnyZbjd
bhw6dCjiuxX6efbs2XA6nZg3b15M5RcUFODOnTsYHR3Fq6++iry8PNTV1UWcQ3l5efB4PDGV
DQCDg4Nwu93o6uqC1WqFLMvIzc2F0WiEIAjweDwoKChARkbGuO/iVNntdvT09EDTNHi9Xnzh
C18AAJw+fRoFBQXIz89HUVERBEGAyWSa8jHWXQLIzs5GT08PAMDv9yf1JYytW7dCFEU0NDSg
v78fsiyDMQa73T5uaotEhNoKVVWF3W5Hbm4unE4nGGNwuVzjps2IV1lZGRYuXIhgMIjz588j
OzsbPp8PZrM5rhefAoEATpw4gSNHjsBqtUKSpHBC1DQNubm5sNvtmD17dridNRbt7e149OgR
3n77bYiiiOXLl+Pll1+Gw+HAvXv3wiuaud1uZGXFPg2H2WzGn/3Zn6G/vz/cDKAoSng6EZfL
BU3TMDo6Glf9i6KIvXv3Yvv27Th79iyOHDmCsrIyKIqCM2fOIDc3F16vF5qmxVX/bW1tUFUV
N27cgN/vx7p16+BwODB//vxx9T937ty46r+/vx+KoqC6uhqPHj3C+vXr8frrr0MURVRVVUEU
RbhcLgCAJEkx33AxxrBlyxaIooj79++jt7c3fDPkcDhQVFSErq6u8Hct1uYTAFixYgVWrlwJ
j8eDGzduYO/evVi5ciXsdjsaGxvHnUOxNv8AY1PYlJeXo7S0FKdOnUJRURG8Xi+ysrLAGIPF
YsHo6Gj4pihWVqsVFRUV2LZtG86ePQtRFHHw4EEAwMmTJ1FSUoKRkREsWrQo/JLqVOguARQW
FsJut+Ps2bPhDJwM7I99C0ajEQ6HA4cPH4bdbseZM2fg9/uxcePGuMtubGxEa2tr+K2+pUuX
4tSpU/D7/XjnnXeQmZmJEydOIBgM4vDhwzGX393djdbWVnR3d+POnTswm83o7e1FMBgMT8hX
VVUFYKwNOlahsj7//HNYLBZs2bIFx44dw6NHj7Bo0SIsWbIEx48fR2trK5YsWRJz+Q0NDcjI
yEBVVRWWLFkCu90Oh8MBj8eDbdu2QZZlHD9+HIqi4MCBAzGXf+nSJaiqCo/Hg7Vr10KWZZw6
dQqSJOGtt95CTk5OQvVfX1+PgYEBMMZQUlKClpYWdHV1QVEULFu2DMXFxTh//jxEUcT27dtj
Ln/9+vUAgCdPnmBkZATLly/HJ598gq6uLpSVlWHRokU4fvw42tvbsWjRopjLX7BgARYsWBDu
4MzNzcXx48dhsVgQCARQWFgIRVFw9uzZuG8izp8/D0EQ4HA4cOTIEYyOjuLTTz+FJElYvXo1
BgYGwt+1DRs2xFz+7du3w+fM1q1bUVNTA6fTCbfbjR07diAYDCZ0DlVWVuL48ePhO/HKykqc
OXMGRqMR69evx6xZs3D69GmYTKbw8YpFUVERampqcOHChXCiunbtGjIyMmC1WlFaWoq7d+9i
YGAgpgSpy/cAGGPhi2myRwHJsjxuiglJkpL+OcCf1koI3S08+3OiFGVsqupQgnz250Rpmjau
KeDZnxMly3L4sX2in2MROl+MRmP475Nd/6E72tDF8dlpDhRFAWMsaVNPaJoGWZbDAwaSXf/P
fsdCPycyC+/T07dM9B1O9Lv2vHMmkXMIGKvjUB2ERhU9/VT37M+xYowhEAggMzMzXEdPT2UR
zzHQZQIghBDyfPQiGCGEvKAoARBCyAuKEgAhhLygKAEQQsgLihIAIYS8oCgBEELSGvvjJGjP
E88btqnmcDjQ398/pdgfPHgQHq6dLJQACCEp9eDBA1y5cgUA0NHRgUuXLo37d5/Ph5/85Cfh
n91u97ifQ/71X/91wvIZYzhx4gS+853v4Be/+MWU4woGg/j3f//3SdcKf5qmafj+97+Pq1ev
Trl8VVXxk5/8BEajEd///vfD2wOBAH7wgx9EfK7L5cIHH3ww5fKnghIAISSl5s6di6NHj4Ix
hqqqKlitVthsNvzmN7/B7du3oWkaOjs78eGHH6K2thZZWVnhWX5ramrw29/+Fk6nE0NDQ2CM
4datW3jvvfdgt9sBjM2VdO7cOfzzP/8ztmzZAsYYrl69it/+9rcYHR1FZ2cnHj16hIsXL+Lq
1atgjKGzsxNPnjwJv5l9+/Zt/Pa3v4XD4UB9fT1+/etfY3BwMLwP/f39cDgcOHPmDICxi/jJ
kyfx6aeforu7Gx6PBx988AEuXboUnsa5vb0dRUVFKCgoQE9PD37/+9/j7t27MBqN2L59Ozwe
Dy5fvoz3338f9+/fx6ZNm3D//n34/f6k1T0lAEJISuXl5YUnrWtpacGaNWvwwx/+EKtWrcLv
fvc7jIyMwOVyobS0FL/85S8RDAZx9OhRPHz4EMeOHcPq1avDTSP9/f34+OOPUVFRgf/8z/8E
YwzZ2dnIz8/H9773PQSDQbS1teGzzz7DSy+9hJ///Oeoq6vD9773PaiqiitXrqC3txcffvgh
JEnCJ598Ev6cNWvWYHh4GL/61a+wevVq/PSnPw3vw9WrV3Ho0CGoqgqn04nf/OY3cLvdsNls
qKurw//8z/9g9uzZ+Pzzz8MTOt6/fx9r164FMPaW87Jly/Bf//VfGBkZwSeffAKbzYY//OEP
WLBgAX71q19BEAQsWLAAAwMDSat7SgCEkJQSBAHr169HVVUVioqKYDKZ0N3djWvXriEvLw9+
vx9lZWXYtGnTuGkOurq6sPX/b+9+WlKJwjiOfyOhIdEZpcnCqWlTi6DMAjNcJITvomVvok0b
m5fg0qAX0CIoKJdhIARRu1ZaDAV5nFEX/TFqvAuvw5V7LxcuQYvOZz1zDnMW5zmcgd+ztsbi
4iJjY2MA3N/f47ouFxcXqKoK9OJNdnd32draolAocHNzgxCC6+trQqEQAJubm+RyOdbX1zk7
O6NerzM9PQ30srTS6TQLCwt0u10cx+H8/BxN04DeFVO5XObw8BDbtrm8vMS2bXK5HKZp+mNc
XV0RCAR4fX0F8GMdoJdWurS0hGEYAyf82dlZUqmUH3+hKIr//meQBUCSpC+XyWTY398nk8kw
NDREKpXC8zx0XR/Y9H/NAUomk5yenlIsFrm9vQVgbm6OQCBAJBLxi4IQgu3tbU5OThgdHSWZ
TAIMPNPfiJeXlzk6OiKRSPhzJRIJSqUSe3t7fHx8EA6H0TTNb9xTr9eJRCJYlkU+n6dcLpPN
ZrEsi4ODAwBWV1d5e3tD13U/bdQ0TarVKgCO41AsFnFdl2g0+tu39j08PBCLxT5hxX+up8wC
kiTpq3meR7VaZWpqipGREd7f37m7u0NRFCYmJmi1WkSjURqNhp/42+8VIIRgZmaGVquFruu0
220eHx+ZnJwkFArR7XYRQtBsNjEMg2AwSLPZRAhBPB732zT2o5trtRrj4+MEg0EcxxmYxzRN
Op2OvxFrmkan0+Hl5QVN0/A8D8dx/GurUqnExsYG6XQa27YBMAyD4eFhnp+fyefzWJZFo9Gg
3W4Tj8dRFAXXdVFVlaenJ1RVxXEcAAqFAjs7O58WPikLgCRJ0ier1WpUKhVisRjZbPavKbKV
SoVwOMz8/Pw/xzw+PmZlZeW/G0/9iSwAkiRJ35T8ByBJkvRN/QBd+h52v9dXKgAAAABJRU5E
rkJggg==
</thumbnail>
</thumbnails>
</workbook>