CHCANet: Two-view Correspondence Pruning with Consensus-guided Hierarchical Context Aggregation
Gang Wang, Yufei Chen, Bin Wu
@article{wang2024chcanet,
title={CHCANet: Two-view correspondence pruning with Consensus-guided Hierarchical Context Aggregation},
author={Wang, Gang and Chen, Yufei and Wu, Bin},
journal={Pattern Recognition},
pages={111282},
year={2024},
publisher={Elsevier}
}
Please use Python 3.7 and Pytorch 1.13.
Other dependencies should be easily installed through pip or conda.
pip install -r core/requirements.txt
Train model on outdoor (yfcc100m) scene
bash train.sh
or
python main.py --data_tr=../../data_dump/yfcc-sift-2000-train.hdf5 --data_va=../../data_dump/yfcc-sift-2000-val.hdf5 --log_base=../model/logCHCANet/yfcc_sift --gpu_id=0
Train model on indoor (sun3d) scene
python main.py --data_tr=../../data_dump/sun3d-sift-2000-train.hdf5 --data_va=../../data_dump/sun3d-sift-2000-val.hdf5 --log_base=../model/logCHCANet/sun3d_sift --gpu_id=0
Test pretrained model on outdoor (yfcc100m) scene
bash test.sh
or
python main.py --run_mode=test --data_te=../../data_dump/yfcc-sift-2000-test.hdf5 --model_path=../model/logCHCANet/yfcc_sift/train/ --res_path=../model/logCHCANet/yfcc_sift/test/ --gpu_id=1
Test pretrained models on indoor (sun3d) scene
python main.py --run_mode=test --data_te=../../data_dump/sun3d-sift-2000-test.hdf5 --model_path=../model/logCHCANet/sun3d_sift/train/ --res_path=../model/logCHCANet/sun3d_sift/test/ --gpu_id=1
This code is heavily borrowed from zjhthu/OANet. If you use the part of code related to data generation, testing and evaluation, you should cite this paper and follow its license.
@article{zhang2019oanet,
title={Learning Two-View Correspondences and Geometry Using Order-Aware Network},
author={Zhang, Jiahui and Sun, Dawei and Luo, Zixin and Yao, Anbang and Zhou, Lei and Shen, Tianwei and Chen, Yurong and Quan, Long and Liao, Hongen},
journal={International Conference on Computer Vision (ICCV)},
year={2019}
}