-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
uniquePathsIII.py
74 lines (60 loc) · 2.45 KB
/
uniquePathsIII.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# 980. Unique Paths III
# On a 2-dimensional grid, there are 4 types of squares:
# 1 represents the starting square. There is exactly one starting square.
# 2 represents the ending square. There is exactly one ending square.
# 0 represents empty squares we can walk over.
# -1 represents obstacles that we cannot walk over.
# Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.
# Example 1:
# Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
# Output: 2
# Explanation: We have the following two paths:
# 1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
# 2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
# Example 2:
# Input: [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
# Output: 4
# Explanation: We have the following four paths:
# 1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
# 2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
# 3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
# 4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
# Example 3:
# Input: [[0,1],[2,0]]
# Output: 0
# Explanation:
# There is no path that walks over every empty square exactly once.
# Note that the starting and ending square can be anywhere in the grid.
# Note:
# 1 <= grid.length * grid[0].length <= 20
class Solution:
ans = 0
def findPathNum(self, i, j, grid: List[List[int]], curLen, pLen)->None:
if(grid[i][j]==2):
if(pLen-1==curLen):
self.ans+=1
return
elif (grid[i][j]==-1):
return
curLen+=1
grid[i][j]=-1
if(i-1>=0):
self.findPathNum(i-1, j, grid, curLen, pLen)
if(j-1>=0):
self.findPathNum(i, j-1, grid, curLen, pLen)
if(i+1<len(grid)):
self.findPathNum(i+1, j, grid, curLen, pLen)
if(j+1<len(grid[0])):
self.findPathNum(i, j+1, grid, curLen, pLen)
grid[i][j]=0
def uniquePathsIII(self, grid: List[List[int]]) -> int:
pathLen = 0
start = (0, 0)
for i in range(len(grid)):
for j in range(len(grid[0])):
if(grid[i][j]!=-1):
pathLen+=1
if(grid[i][j]==1):
start = (i, j)
self.findPathNum(start[0], start[1], grid, 0, pathLen)
return self.ans